WO2020052145A1 - 一种fcc汽油改质方法 - Google Patents

一种fcc汽油改质方法 Download PDF

Info

Publication number
WO2020052145A1
WO2020052145A1 PCT/CN2018/122105 CN2018122105W WO2020052145A1 WO 2020052145 A1 WO2020052145 A1 WO 2020052145A1 CN 2018122105 W CN2018122105 W CN 2018122105W WO 2020052145 A1 WO2020052145 A1 WO 2020052145A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
tungsten
zsm
molecular sieve
reaction
Prior art date
Application number
PCT/CN2018/122105
Other languages
English (en)
French (fr)
Inventor
鲍晓军
王廷海
岳源源
王学丽
刘杰
袁珮
朱海波
白正帅
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Priority to JP2021524084A priority Critical patent/JP7083967B2/ja
Publication of WO2020052145A1 publication Critical patent/WO2020052145A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a method for upgrading FCC gasoline.
  • FCC gasoline is a mixture of C4-C12 hydrocarbons and trace amounts of sulfides, oxides, and metal arsenides. According to the differences in crude oil properties and processing routes of various refineries, FCC gasoline is composed of 18 to 55v% olefins. , 12 to 20v% of a mixture of aromatics and alkanes, the octane characteristics of each component is aromatics> olefin ⁇ isoparaffin> paraffin.
  • CN201010224554.1 Provides a method for producing ultra-low sulfur and high octane gasoline.
  • the production method includes: inferior full-distillation gasoline raw materials are entered into a reactive distillation tower, contacted with a thioetherification catalyst, a thioetherification reaction occurs, and fraction cutting is performed, so that low-boiling thiols and sulfides such as thiophene are converted into high-boiling The thioether is transferred to the heavy distillate gasoline.
  • the cut fractionation temperature of the light distillate gasoline and the heavy distillate gasoline is 50-90 ° C; the light distillate gasoline is brought into contact with the hydrocarbon multi-branched isomerization catalyst; the heavy distillate gasoline and the selective fuel
  • the hydrogen desulfurization catalyst is contacted with the supplemental desulfurization-hydrocarbon isomerization / aromatic catalyst; the treated light-distillate gasoline and the heavy-distillate gasoline are mixed to obtain ultra-low sulfur high-octane gasoline.
  • the invention is suitable for the upgrading of inferior gasoline, especially for the inferior catalytic cracking gasoline with ultra-high sulfur and high olefins, which can obtain better desulfurization and olefin reduction effects, and after the reaction, the octane number of the product can be maintained or increased and kept higher Product yield.
  • the highly selective desulfurization process represented by Prime-G technology uses pre-hydrogenation-light and heavy gasoline cutting-heavy gasoline selective hydrogenation desulfurization-heavy gasoline supplemental desulfurization process principle.
  • the gasoline modification process and the catalysts used are also quite different.
  • the invention provides a method for upgrading FCC gasoline, in particular to a catalytic cracking gasoline that is pre-hydrogenated, cut into light and heavy gasoline fractions, the light gasoline fractions undergo an isomerization reaction, and the heavy gasoline fractions are hydrodesulfurized-isomerized, and then carried out.
  • a method for upgrading FCC gasoline Under the action of a pre-hydrogenation catalyst, FCC gasoline undergoes a thiol etherification and a double bond isomerization reaction through a pre-hydrogenation reactor. The effluent of the pre-hydrogenation reaction is cut into light and heavy gasoline fractions.
  • the light gasoline fraction undergoes an isomerization reaction under the action of an isomerization catalyst
  • the heavy gasoline fraction undergoes a selective hydrodesulfurization under the action of a hydrodesulfurization-isomerization catalyst
  • the linear olefin isomerizes into a single branched olefin or a single branch Paraffinic hydrocarbons
  • the heavy gasoline fractions after the reaction enter the octane recovery unit, and are contacted with the octane recovery catalyst to perform a double branched isomerization reaction
  • the light and heavy gasoline fractions are blended to obtain clean gasoline.
  • the above FCC gasoline undergoes a thiol etherification and double bond isomerization reaction through a pre-hydrogenation reactor.
  • the reaction conditions are as follows: reaction temperature 80-160 ° C, reaction pressure 1-5MPa, liquid volume space velocity 1-10h -1 , hydrogen
  • the oil volume ratio is 3-8: 1;
  • the pre-hydrogenation catalyst includes a support and an active component, and the support contains 75-95% by weight of an alumina composite support having a macroporous structure and 5-25% by weight selected from ZSM-5, ZSM-11, One or more of ZSM-12, ZSM-35, mordenite, amorphous silica-alumina, SAPO-11, MCM-22, Y molecular sieve or beta molecular sieve,
  • the alumina composite support contains 0.1-12 wt% tungsten doped Lanthanum ferrite and alumina composite support mesopores account for 1-85% of the total pores, and macropores account for 1-70% of the total pores.
  • mesopores account for 5-70% of the total pores, and preferably macropores account for 5-45% of the total pores.
  • the surface of the carrier supports one or more of the active components cobalt, molybdenum, nickel, and tungsten.
  • the content of the active components is 0.1 to 15.5% in terms of oxides.
  • the reaction conditions are as follows: the reaction temperature is 90-145 ° C, the reaction pressure is 1-4 MPa, the liquid volumetric space velocity is 1-8 h -1 , and the hydrogen oil volume ratio is 3-6: 1;
  • the pre-hydrogenation reaction of the present invention is mainly a reaction of a small molecule thiol and a thioether with a diolefin under the action of a pre-hydrogenation catalyst, and a double bond isomerization (i.e., the conversion of a terminal olefin into an internal olefin), and The remaining diene is saturated.
  • the thiol etherification and double-bond isomerization reaction simultaneously inhibit the side reactions such as olefin polymerization, excessive cracking, and excessive cracking, so as to improve catalyst activity and selectivity, and improve liquid yield.
  • the alumina composite support having a macroporous structure contains 0.1-12 wt% of tungsten-doped lanthanum ferrite, the support mesopores occupy 1-85% of the total pores, and the macropores occupy 1-70% of the total pores.
  • mesopores account for 5-70% of the total pores, and preferably macropores account for 5-45% of the total pores.
  • a method for preparing an alumina composite support with a macroporous structure An aluminum source and a cyanine powder are added to a kneader and mixed uniformly, an inorganic acid solution and an organic polymer are added, and the kneaded mixture is uniform, and then tungsten-doped lanthanum ferrite is added. After the kneading is uniform, the alumina carrier is obtained through extrusion, molding, drying, and baking.
  • the active components cobalt, molybdenum, nickel, tungsten, and cobalt, molybdenum, nickel, and tungsten in the catalyst are recorded as oxides, and the content is 0.1-15.5%.
  • the aluminum source for preparing the alumina carrier is one or more of pseudo-boehmite, alumina, and aluminum sulfate.
  • the aluminum source may also be one or more of kaolin, rector, perlite, and montmorillonite.
  • the carrier contains 0.1-12 wt% silicon oxide, tungsten-doped lanthanum ferrite 0.1-10 wt%, the carrier mesopores account for 1-80% of the total pores, and the macropores account for 1-55% of the total pores.
  • mesopores account for 1-65% of the total pores, more preferably 5-55%, preferably macropores account for 5-45% of the total pores, and more preferably 10-35%.
  • the carrier micropores, mesopores, and macropores are not Evenly distributed.
  • the tungsten-doped lanthanum ferrite in the above-mentioned alumina carrier is 0.3-9 wt%, more preferably 0.3-5% by weight, and the tungsten in the tungsten-doped lanthanum ferrite is 0.1-8 wt% of the tungsten-doped lanthanum ferrite.
  • the organic polymer is one or more of polyvinyl alcohol, sodium polyacrylate, polyethylene glycol, and polyacrylate, preferably polyacrylic acid or sodium polyacrylate.
  • tungsten-doped lanthanum ferrite is added to the alumina support, and then selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-35, mordenite, and amorphous silicon
  • One or more of aluminum, SAPO-11, MCM-22, Y molecular sieves or beta molecular sieves are used to prepare composite carriers, which support the active components of cobalt, molybdenum, nickel, and tungsten.
  • the catalyst effectively promotes the sulfide reaction, and the double bonds are different. Structure (that is, the conversion of terminal olefins to internal olefins), and the remaining diolefins are saturated, especially the double bond isomerism selectivity is relatively high.
  • the carrier is further improved. It is preferable to add silica to the alumina carrier.
  • the improved method for preparing the alumina carrier is to add the pseudo-boehmite and Tianjing powder to the kneader and mix well. Add the inorganic or organic acid solution and organic polymer. , Knead uniformly, and then add tungsten-doped lanthanum ferrite, mix well to obtain alumina precursor for future use; silicon source is added to the acid solution of organic polymer, and the unit content of organic polymer in alumina precursor is more organic than that in silicon source. The polymer content is more than 1.5 times higher.
  • the silicon source may be sodium silicate or silicon fine powder
  • the tungsten-containing compound includes ammonium tungstate, ammonium metatungstate, ammonium paratungstate, and the like.
  • the inorganic acid is nitric acid, hydrochloric acid, and sulfuric acid
  • the organic acid is oxalic acid, citric acid, ammonia triacetic acid, tartaric acid, acetic acid, or malic acid.
  • the above-mentioned alumina carrier is further improved.
  • the silicon source may be sodium silicate or fine silicon powder, or one or two of diatomite and opal.
  • the aluminum source may also be kaolin, rector, perlite , One or more of montmorillonite.
  • the kaolinite, rectorite, perlite, and montmorillonite powders are activated by NaOH-H 2 O.
  • the bauxite powder and the sub-melted salt medium are mixed at a mass ratio of 1: 0.2-2.
  • the activation time is 0.5-4h.
  • the activation process of diatomite and opal is that the diatomite is roasted at a temperature of 500-1000 ° C for 1-10h.
  • the tungsten-doped lanthanum ferrite in the above alumina carrier preferably has micro-mesopores.
  • the introduction of tungsten-doped lanthanum ferrite with micro-mesopores can prepare catalysts that are beneficial to suppress the occurrence of side reactions such as hydrocarbon cracking and improve the selectivity of target products. .
  • a method for preparing tungsten-doped lanthanum ferrite with micro mesopores citric acid is dissolved in deionized water, stirred and dissolved, and then lanthanum nitrate and iron nitrate are added to citric acid, stirred and dissolved, and sodium polyacrylate or polyacrylic acid is added.
  • the added amount of sodium polyacrylate or polyacrylic acid is 0.1-9 wt%, preferably 0.1-6.0 wt%, of tungsten-doped lanthanum ferrite.
  • a tungsten-containing compound is further added, and in terms of oxides, tungsten accounts for 0.1-8 wt% of the tungsten-doped lanthanum ferrite, which is stirred. After the reaction, the product is dried, roasted and ground.
  • the alumina support according to the present invention is an alumina composite support having a macroporous structure.
  • the organic polymer content per unit content in the alumina precursor is more than 1.5 times higher than that in the silicon source. It can effectively improve the pore structure of the carrier.
  • the micropores, mesopores and macropores of the carrier are unevenly distributed, side reactions such as olefin polymerization and excessive cracking are reduced, selectivity is improved, and the gasoline yield is high, which is conducive to the long-term operation of the device. ;
  • the support of the pre-hydrogenation catalyst of the present invention comprises an alumina composite support having a macroporous structure and selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-35, mordenite, amorphous silica-alumina, SAPO-11 , MCM-22, one or more of Y molecular sieves or beta molecular sieves, loaded with one or more of cobalt, molybdenum, nickel, tungsten, used for gasoline to remove diolefins and thiols, thioethers, and simultaneously The isomerized terminal olefins are converted to internal olefins; and the remaining diolefins are saturated.
  • the catalyst not only effectively promotes the conversion of terminal olefins to internal olefins and increases the octane number, but also helps to reduce the re-cracking reaction of low-carbon isomers, reduce the occurrence of side reactions such as olefin polymerization and excessive cracking, improve the activity selectivity, and improve the gasoline yield.
  • cobalt, molybdenum, nickel, and tungsten active components may be one or more of their various salts or their respective oxides, sulfides, nitrides, and phosphides.
  • a method for preparing a pre-hydrogenation catalyst includes the following steps: preparing an active component material containing cobalt, molybdenum, nickel, and tungsten into an impregnating solution, impregnating a carrier, drying at 120-180 ° C for 4-8 hours, and 450-800 ° C Calcined for 3-9 hours to obtain a pre-hydrogenation catalyst.
  • the catalyst is further improved, and the catalyst further includes one or more selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-35, mercerizing, SAPO-11, MCM-22, Y molecular sieve, or beta molecular sieve .
  • the pre-hydrogenation reaction effluent is cut and fractionated at a temperature of 50-70 ° C.
  • the light gasoline fraction undergoes an isomerization reaction under the action of an isomerization catalyst.
  • the above-mentioned pre-hydrogenation catalyst has a macroporous alumina composite support and SAPO.
  • the -11 molecular sieve is prepared by using a composite material obtained with a mass ratio of 80-90: 10-20 as a carrier, and loading active components Mo, Co and Ni with a mass percentage of 5-18%.
  • the heavy gasoline fraction reaction effluent according to the present invention undergoes selective hydrodesulfurization under the action of a hydrodesulfurization-isomerization catalyst, and the reaction process conditions for the isomerization of linear olefins to mono-branched olefins or mono-branched alkanes are
  • the temperature is 190-330 ° C
  • the reaction pressure is 1.2-3.5MPa
  • the volumetric space velocity is 2.5-5h -1
  • the hydrogen oil volume ratio is 160-460: 1.
  • Catalytic cracking gasoline selective hydrodesulfurization-isomerization catalyst including a carrier and active components
  • the carrier is a carrier used for a pre-hydrogenation catalyst
  • the surface of the carrier is supported with phosphomolybdic acid, phosphotungstic acid, or phosphomolybdic tungstic acid, and phosphomolybdic acid in the catalyst Phosphotungstic acid or molybdenum tungstic acid is recorded as oxide, and the content is 0.1-16.5%.
  • the catalyst component is further impregnated with the active component on the surface of the catalyst to improve the catalyst.
  • the catalyst includes 0.1-14.5% metal active component, and the active component is selected from one or more of cobalt, molybdenum, nickel, and tungsten. Species.
  • the hydrodesulfurization-isomerization catalyst according to the present invention uses a macroporous alumina containing tungsten-doped lanthanum ferrite as a carrier, and supports tungsten phosphomolybdate, phosphotungstic acid or phosphomolybdenum tungstic acid and / or cobalt, molybdenum, nickel,
  • tungsten used for selective hydrogenation and desulfurization of gasoline, not only effectively promote single-chain isomerization, increase octane number, but also help to reduce the re-cracking reaction of low-carbon isomers and reduce Side reactions such as olefin polymerization and excessive cracking occur, which improves the activity selectivity and high gasoline yield.
  • the catalyst is used to catalyze cracked gasoline to produce clean gasoline that meets the national and national standards.
  • reaction effluent enters the octane recovery unit again, and the double branched chain isomerization is performed under the action of the alkane recovery catalyst.
  • the reaction conditions are: reaction temperature 180-450 ° C, reaction pressure 0.6-4.8MPa, space velocity 0.5-8h -1 , hydrogen oil volume ratio 50-450: 1.
  • the double-branched isomerism includes the isomerization of a single-branched olefin or a single-branched alkane into a double-branched alkane.
  • the octane recovery catalyst includes ZSM-5 molecular sieve, and the octane recovery catalyst includes 32-88% weakly acidic mesoporous H-type Zn-ZSM-5 molecular sieve or modified weakly acidic mesoporous H-type by weight percentage.
  • Zn-ZSM-5 molecular sieve preferably 42-83%; 0-66% pseudo-boehmite, macroporous alumina or zinc-aluminum hydrotalcite binder as carrier, preferably 8-55%; impregnated 0.5-16 % Metal active component, preferably 1-12%; the metal active component is one or more of Fe, Co, Ni, Mo and W, and the loading method is an impregnation method, preferably an equal volume impregnation method or Multiple impregnation method.
  • the weakly acidic mesoporous H-type Zn-ZSM-5 molecular sieve has a mesoporous pore size concentrated at 4.5-36 nm and a specific surface area of 320-650 m 2 / g; the zinc oxide content is 0.15- 12%.
  • the improved weakly acidic mesoporous Zn-ZSM-5 molecular sieve the mesopore pore size is concentrated at 4.5-36nm, and the specific surface area is 320-650m 2 / g; the zinc oxide content is 0.15-12% of the total weight of the molecular sieve, The zinc content on the surface of the molecular sieve is higher than the zinc content inside the molecular sieve, preferably 0.2-2 times higher.
  • the invention also provides a method for preparing mesoporous Zn-ZSM-5 molecular sieve, which includes the following steps:
  • step (2) The gel obtained in step (1) is aged and transferred to a polytetrafluoroethylene-lined stainless steel reactor for sealing and crystallization. After the crystallization is completed, the crystallization product is cooled, filtered to remove the mother liquor, and filtered. The cake was washed with deionized water to neutrality, and dried to obtain Zn-ZSM-5 molecular sieve;
  • step (3) The Zn-ZSM-5 molecular sieve obtained in step (2) is subjected to a series of processes such as exchange, filtration, drying, and baking to obtain an H-type Zn-ZSM-5 molecular sieve.
  • the invention further improves the mesoporous Zn-ZSM-5 molecular sieve.
  • the surface of the H-type Zn-ZSM-5 molecular sieve is further impregnated with a zinc-containing compound for modification by the dipping method, so that the surface of the molecular sieve is modified.
  • the zinc content is higher than the zinc content inside the molecular sieve, and equal volume impregnation is preferred to obtain a modified Zn-modified H-type Zn-ZSM-5 molecular sieve, that is, an improved Zn-ZSM-5 molecular sieve.
  • the zinc-containing compound is one or more of zinc nitrate, zinc acetate, zinc chloride and zinc sulfate, and zinc acetate is preferred.
  • the silicon source described in step (1) may be a conventional commercially available silicon source, or one or two of diatomaceous earth and opal.
  • the aluminum source may be a conventional commercially available aluminum source, or kaolin, rector. One or more of soil, perlite, and montmorillonite.
  • the zinc source may also be one or two of zinc siderite and red zincite.
  • the SDA in step (1) is one or more of trimethylamine (TMA), methylethylamine, pyrrole, and morphine, and may also be commonly used tetrapropylammonium hydroxide (TPAOH), tetrapropyl bromide One or more of ammonium (TPABr), 1,6-hexanediamine, n-butylamine, and hexanediol, preferably one or more of trimethylamine (TMA), methylethylamine, pyrrole, and morphine.
  • the aging temperature described in step (2) is 30-85 ° C, preferably 40-80 ° C; the aging time is 1-24h, preferably 2-16h.
  • the crystallization temperature described in step (2) is 120-210 ° C, preferably 130-185 ° C; the temperature is programmed in steps 1-5, preferably 1-3; it is best to perform stepwise non-isothermal temperature rise and non-isothermal stepwise Heat treatment, the heating rate is fast first and then slow. Before 100 °C, the temperature is increased at a temperature increasing rate of 6-8 °C / min. 20-30 °C is a heating section, and the temperature section processing time is 0.5-5 hours; The temperature is raised at a temperature increasing rate of 3-5 ° C / min, and a temperature increasing period is 10-20 ° C, and the processing time in the temperature range is 0.5-8 hours.
  • the invention adopts non-isothermal stepwise temperature treatment, which is beneficial to control the nucleation rate and growth rate of the crystallization process of Zn-ZSM-5 molecular sieve, and can control the size and number of mesopores, thereby improving the activity of the catalyst and the selectivity of the target product.
  • the crystallization time is 10-96h, preferably 24-72h.
  • the roasting temperature described in step (3) is 420-780 ° C, preferably 450-650 ° C; the roasting time is 1-8h; the exchange reagent is one of hydrochloric acid, nitric acid, sulfuric acid, ammonium chloride or ammonium nitrate;
  • the surface modification of the molecular sieve described in step (3) uses an equal volume of impregnated zinc-containing compounds, wherein the mass fraction of ZnO is 0.5-15%, preferably 0.5-10%.
  • the octane recovery catalyst of the present invention comprises a one-step method for synthesizing Zn-ZSM-5 molecular sieve containing Zn in a skeleton.
  • the method for synthesizing a molecular sieve is simple. As Zn enters the molecular sieve framework, the crystal structure is changed, mesopores are generated, and Zn dispersibility is improved This will reduce the diffusion resistance of the reactants and improve the carbon deposition resistance.
  • the content of zinc on the surface of Zn-ZSM-5 molecular sieve is higher than the content of zinc inside the molecular sieve.
  • the interaction of Zn atoms on the surface and Al hydroxyl groups results in the weakening of the strong acid strength to the medium strong acid, which reduces the acid strength of the molecular sieve, and reduces side reactions such as hydrocarbon cracking from the root. Occurs, increasing the selectivity of double branched isomers.
  • the invention provides a method for producing low-olefin, ultra-low-sulfur, and high-octane clean gasoline, in particular, a catalytic cracked gasoline is pre-hydrogenated and cut into light and heavy gasoline fractions. Hydrodesulfurization-isomerization of gasoline fractions, and double branched chain isomerization processes to produce low-olefin, ultra-low sulfur content, and high octane clean gasoline.
  • the method of the present invention achieves ultra-deep desulfurization of FCC gasoline, further reduces the olefin content of gasoline and maintains the octane number of gasoline, and obtains clean gasoline that meets the national sixth standard, thereby significantly improving the economic benefits of the refinery.
  • the molecular sieve and the catalyst of the present invention can also be used for catalytic cracking gasoline to produce G5 gasoline.
  • the present invention is further described in detail through examples below, but these examples should not be considered as limiting the present invention.
  • the raw material reagents used in the present invention are all commercially available products.
  • the alumina carrier 1 is kneaded with Tianjing powder, acidified amorphous silicon aluminum, and deionized water, and dried and roasted to obtain a composite carrier 1-1.
  • Ammonium heptamolybdate and nickel nitrate are added to distilled water, and an impregnating solution is used to impregnate the composite
  • the obtained catalyst precursor was dried at 140 ° C and then calcined at 500 ° C for 6 hours to obtain a catalyst 1.
  • Catalyst 1 main composition alumina carrier containing micro-mesoporous tungsten doped lanthanum ferrite is 73.2 wt%, alumina content is 4.8 wt%, silicon oxide content is 5.2 wt%, nickel oxide content is 7.7 wt%, molybdenum oxide The content was 9.1 wt%.
  • catalyst 2 Same as catalyst 1, zsm-5 was introduced into the carrier to obtain composite carrier 2-1.
  • the impregnating solution containing molybdenum and cobalt was impregnated into composite carrier 2-1.
  • the obtained catalyst precursor was dried at 140 ° C and then calcined at 530 ° C for 5 hours.
  • the main composition of catalyst 2 is: alumina support containing tungsten-doped lanthanum ferrite is 71.5 wt%, zsm-5 content is 7 wt%, molybdenum oxide is 10.8 wt%, and cobalt oxide is 10.7 wt%.
  • alumina support 3 containing micro-mesoporous tungsten-doped lanthanum ferrite is the same as that of catalyst 1, except that micro-mesoporous tungsten-doped lanthanum ferrite accounts for 6 wt% of the support.
  • the preparation of the catalyst is the same as that of catalyst 1, and activated montmorillonite is used as the aluminum source. The difference is that the active components are molybdenum and tungsten.
  • the main components of catalyst 3 are: alumina carrier containing micro-mesoporous tungsten doped lanthanum ferrite is 75.6% by weight, alumina content is 4.0% by weight, and silicon oxide content is 4.0%. %, Molybdenum oxide 10.1 wt%, tungsten oxide 6.3 wt%.
  • micro-mesoporous tungsten-doped lanthanum ferrite is added, mixed uniformly, and formed into a clover shape after kneading-extrusion. It was dried at 130 ° C. for 7 hours and baked at 650 ° C. for 5 hours to obtain a micro-mesoporous tungsten-doped lanthanum ferrite and silicon oxide alumina support 4.
  • the preparation of the catalyst is the same as that of the catalyst 2, except that the active components are tungsten, nickel, and molybdenum.
  • the main composition of the catalyst 4 is: alumina carrier with micro-mesoporous tungsten doped lanthanum ferrite is 71.7% by weight, and the zsm-5 content is 5WT. %, Tungsten oxide 7.8 wt%, nickel oxide 3.2 wt%, molybdenum oxide 12.3 wt%.
  • alumina support 5 containing tungsten-doped lanthanum ferrite is the same as catalyst 4, except that tungsten-doped lanthanum ferrite accounts for 3% by weight of the support, and activated diatomite and kaolin are used as the silicon source aluminum source.
  • the main composition of catalyst 5 is: alumina support containing tungsten-doped lanthanum ferrite and silicon oxide is 74.0 wt%, zsm-5 content is 4 wt%, molybdenum oxide is 12.9 wt%, and tungsten oxide is 9.1 wt%.
  • the preparation of the catalyst is the same as that of catalyst 4, except that mordenite is added to the catalyst.
  • the main composition of catalyst 6 is: alumina carrier 4 containing micro-mesoporous tungsten-doped lanthanum ferrite and silicon oxide. The content is 80.1% by weight and the content of mordenite is 6.8% by weight. , Molybdenum oxide 10.4wt%, Tungsten oxide 2.7wt%. Activated diatomite and kaolin were used as the silicon source and aluminum source.
  • the preparation of the catalyst is the same as that of catalyst 6, except that beta molecular sieve is added to the catalyst.
  • the main composition of catalyst 7 is: alumina carrier 4 containing micro-mesoporous tungsten doped lanthanum ferrite and silicon oxide. The content is 72.8 wt%, and the beta molecular sieve content is 6.7% wt. , Molybdenum oxide 10.4wt%, Nickel oxide 10.1wt%. Activated diatomite and kaolin were used as the silicon source and aluminum source.
  • the preparation of the support is the same as that of the catalyst 4, except that lanthanum ferrite is added.
  • the preparation of the catalyst is the same as that of the catalyst 4.
  • the reaction conditions are the same as those of the catalyst 4. See Table 2 for the reaction results.
  • the carrier of the prehydrogenation catalyst 1 was used as a carrier, and the molybdenum tungstic acid was impregnated.
  • the obtained catalyst precursor was dried at 140 ° C and then calcined at 600 ° C for 7 hours to obtain a hydrodesulfurization-isomerization catalyst 1.
  • the main composition of catalyst 1 is: alumina carrier containing micro-mesoporous tungsten-doped lanthanum ferrite is 90.2 wt%, and phosphorus molybdenum tungsten oxide is 9.8 wt%.
  • the carrier of the pre-hydrogenation catalyst 3 was used as a carrier, and the molybdic acid was impregnated.
  • the obtained catalyst precursor was dried at 140 ° C, and then calcined at 630 ° C for 5 hours to obtain a catalyst 2.
  • the main components of the hydrodesulfurization-isomerization catalyst 2 are: an alumina carrier containing tungsten doped lanthanum ferrite is 85.2 wt%, and a phosphorus molybdenum oxide is 14.8 wt%.
  • the carrier of pre-hydrogenation catalyst 4 was used as the carrier, and impregnated with phosphotungstic acid and ammonium molybdate (the weight of molybdenum oxide accounted for 4.1% of the catalyst).
  • the main composition of catalyst 4 was: alumina carrier containing micro-mesoporous tungsten doped lanthanum ferrite was 88.9 wt%, phosphorus tungsten oxide 7.0wt%.
  • the carrier of pre-hydrogenation catalyst 4 and mordenite were used as carriers, and impregnated and impregnated with phosphomolybdic tungstic acid and cobalt nitrate (cobalt oxide accounted for 3.6% by weight of the catalyst), and activated diatomite and kaolin were used as the silicon source aluminum source.
  • the main composition of catalyst 4 is: alumina support containing tungsten doped lanthanum ferrite and silicon oxide is 86.8 wt%, and phosphorus molybdenum tungsten oxide is 9.6 wt%.
  • the alumina composite support with macroporous structure and SAPO-11 molecular sieve in the prehydrogenation catalyst 1 are mixed with Tianjing powder at a mass ratio of 85:15, and the support is obtained by kneading, molding, drying, and calcining, and then carrying a mass of 100%.
  • the active ingredients Mo, 12% Co and 9% Ni are 12%.
  • the alumina composite support with a macroporous structure and the SAPO-11 molecular sieve in the prehydrogenation catalyst 4 are mixed with Tianjing powder according to a mass ratio of 80:20, and the support is obtained by kneading, molding, drying, and calcining, and then carrying a mass of 100%.
  • the active ingredients are Mo, 5% Co and 9% Ni with a content of 15%.
  • step (2) The mixture obtained in step (1) is heated to 75 ° C for 6 hours, and then the solution is poured into a stainless steel crystallization kettle with a polytetrafluoroethylene lining, and the temperature is increased to 130 ° C for 12 hours, and then heated to 180 ° C. Crystallize at °C for 24h. After the crystallization was completed, the mother liquor was cooled and filtered to remove the mother liquor, washed to neutrality, and dried at 120 ° C. to obtain a crystalline Zn-ZSM-5 molecular sieve.
  • Zn-ZSM-5 molecular sieve is added to a 1mol / L ammonium chloride solution at a solid-liquid ratio of 1:10, mixed and stirred at 60 ° C for 4h, suction filtered, and dried. It was exchanged once, put into a muffle furnace and calcined at 550 ° C for 6 hours to obtain H-type Zn-ZSM-5 molecular sieve, and then impregnated with 5% ZnO.
  • Ni-Mo / Zn-ZSM-5 catalyst was prepared by impregnating 7.0 wt% of NiO and 6.0 wt% of MoO3.
  • FCC gasoline is processed by a pre-hydrogenation reactor under the action of a pre-hydrogenation catalyst to remove diolefins, thiols, and thioethers, while double bond isomerization (that is, the conversion of terminal olefins to internal olefins), and the remaining two The olefin is saturated.
  • the reaction temperature was 115 ° C
  • the reaction pressure was 1.8 MPa
  • the liquid volumetric space velocity was 5 h -1
  • the hydrogen oil volume ratio was 4: 1.
  • the reaction results are shown in Table 2.
  • Pre-hydrogenation catalysts 2, 3, 4, 7 reaction effluent is cut into light and heavy gasoline fractions at 42 ° C.
  • Pre-hydrogenation catalysts 2 and 3 use light gasoline.
  • the isomerization reaction of the fraction isomerization catalyst 1 is performed, and the prehydrogenation catalysts 4 and 7 are subjected to the isomerization reaction of the light gasoline fraction isomerization catalyst 2.
  • the reaction temperature is 240 ° C
  • the reaction pressure is 1.2 MPa
  • the space velocity is 0.5 h -1
  • the increase of isopentane is above 10%.
  • the heavy gasoline fraction is subjected to selective hydrodesulfurization under the action of hydrodesulfurization-isomerization catalyst 1-4, and the linear olefin isomerizes to a single branched olefin or a single branched alkane.
  • the reaction process conditions are: reactor temperature 255 ° , Reaction pressure 1.6MPa, volumetric space velocity 2.0h -1 , hydrogen oil volume ratio 260. Samples were taken after 100 hours of reaction. The results are shown in Table 3.
  • the catalyst effluent from catalysts 2, 3, and 4 then enters the octane recovery unit.
  • the double branched isomerization reaction is performed under the action of the octane recovery catalyst.
  • the reaction temperature is 365 ° C
  • the reaction pressure is 1.6 MPa
  • the space velocity is 0.8 h -1 2.
  • the branched paraffin increased by more than 4.6%.
  • the sulfur contents were 6mg / kg, 5mg / kg, 8mg / kg, and the olefin contents were 11v%, 13v%, and 10v%. Clean gasoline with an alkane number loss of 0.3, 0.3, and 0.2, respectively, meets the National Six standard.
  • pre-hydrogenation catalysts 1-7 have low octane loss, high gasoline yield, high mercaptan removal rate, and good activity.
  • the catalyst can effectively inhibit the occurrence of side reactions such as olefin polymerization and excessive cracking, and inhibit low carbon. Cracking of hydrocarbons, high gasoline yield, favorable for long-term operation of the unit; more active site load centers are generated on the catalyst carrier surface, which effectively improves the catalyst's removal of diolefins, thiols, thioethers, and double bond isomerism.
  • Activity the catalyst has good activity and selectivity. The reaction was run for 600 hours.
  • the mercaptan removal rates of the pre-hydrogenation catalysts 4 and 7 were 98.2% and 98.6%.
  • the octane loss was 0.2 units and 0.3 units.
  • the carbon deposition rate was 0.3 and 0.2.
  • the liquid yield was 99.6%. 99.0%.
  • the internal olefin increased by 0.37% and 0.42%, the diolefin content removal rate was 100% and 98.2%, and the catalyst reaction performance was stable.
  • Hydrodesulfurization-isomerization catalyst 1-4 has a high desulfurization rate and good activity.
  • the catalyst can effectively inhibit the occurrence of side reactions such as olefin polymerization and excessive cracking, and reduce the re-cracking reaction of low-carbon isomers.
  • the catalyst carrier surface produces more
  • the active site support center can effectively improve the desulfurization-isomerization activity of the catalyst, and the catalyst has good hydrodesulfurization-isomerization activity and selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种FCC汽油改质方法,FCC汽油在预加氢催化剂作用下,经过预加氢反应器,进行硫醇醚化、双键异构反应,预加氢反应流出物切割为轻、重汽油馏分,轻汽油馏分在异构催化剂的作用下发生异构反应,重汽油馏分在加氢脱硫-异构催化剂作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃;反应后的重汽油馏分再进入辛烷值恢复单元,与辛烷值恢复催化剂接触,进行双支链异构反应;最后轻、重汽油馏分调和得到低烯烃、超低硫含量,辛烷值高的清洁汽油产品。

Description

一种FCC汽油改质方法 技术领域
本发明涉及一种FCC汽油改质方法。
背景技术
FCC汽油是由C4-C12的烃类以及微量的硫化物、氧化物和金属砷化物等组成的混合物,根据各炼油企业的原油性质和加工路线的差异,FCC汽油是由18~55v%的烯烃、12~20v%的芳烃和烷烃组成的混合物,各组分的辛烷值特性是芳烃>烯烃≈异构烷烃>烷烃。我国高硫、高烯烃含量和较低辛烷值的FCC汽油约占70%,而低硫含量、低烯烃含量、高辛烷值的烷基化油、异构化油和重整油的比例较低,这使得我国FCC汽油的清洁化需要同时承载着脱硫、降烯烃和保持辛烷值的三重任务目标。
CN201010224554.1提供一种超低硫且高辛烷值汽油的生产方法。该生产方法包括:使劣质全馏分汽油原料进入反应蒸馏塔中,与硫醚化催化剂接触,发生硫醚化反应并进行馏分切割,使低沸点的硫醇及噻吩等硫化物转化为高沸点的硫醚而转移到重馏分汽油中,轻馏分汽油和重馏分汽油的切割分馏温度为50-90℃;使轻馏分汽油与烃类多支链异构催化剂接触;使重馏分汽油与选择性加氢脱硫催化剂和补充脱硫-烃类异构/芳构催化剂接触;将处理后的轻馏分汽油和重馏分汽油混合,得到超低硫高辛烷值汽油。该发明适用于劣质汽油的改质,尤其对超高硫、高烯烃的劣质催化裂化汽油可以获得较好的脱硫、降烯烃效果,且反应后可维持或提高产品的辛烷值并保持较高的产品收率。
目前,国内炼油企业普遍选用的汽油质量升级技术中,以Prime-G技术为代表的高选择性脱硫工艺,采用预加氢-轻重汽油切割-重汽油选择性加氢脱硫-重汽油补充脱硫工艺原理。但由于具体汽油原料组成及含量不同,以及汽油产品标准不同,汽油改质工艺及所用催化剂差异也较大。
发明内容
本发明提供一种FCC汽油改质方法,具体是一种催化裂化汽油经预加氢、切割为、轻重汽油馏分,轻汽油馏分发生异构反应,重汽油馏分加氢脱硫-异构,再进行双支链异构等过程生产低烯烃、超低硫含量,高辛烷值清洁汽油的方法。
一种FCC汽油改质方法,FCC汽油在预加氢催化剂作用下,经过预加氢反应器,进行硫醇醚化、双键异构反应,预加氢反应流出物切割为轻、重汽油馏分,轻汽油馏分在异构催化剂的作用下发生异构反应,重汽油馏分在加氢脱硫-异构催化剂作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃;反应后的重汽油馏分再进入辛烷值恢复单元,与辛烷值恢复催化剂接触,进行双支链异构反应;最后轻、重汽油馏分调和得到清洁汽油。
上述FCC汽油经过预加氢反应器,进行硫醇醚化、双键异构反应,反应条件如下:反应温度80-160℃,反应压力1-5MPa,液体体积空速1-10h -1,氢油体积比3-8:1;预加氢催化剂包括载体和活性组分,载体包含75-95wt%具有大孔结构的氧化铝复合载体和5-25wt%选自ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光沸石、无定型硅铝、SAPO-11、MCM-22、Y分子筛或beta分子筛中的一种或几种,氧化铝复合载体含有0.1-12wt%的钨掺杂铁酸镧,氧化铝复合载体介孔占总孔的1-85%,大孔占总孔的1-70%。优选地,介孔占总孔的5-70%,优选大孔占总孔的5-45%。载体表面负载活性组分钴,钼,镍,钨中的一种或几种,以氧化物记,活性组分含量为0.1~15.5%。
进一步优选,反应条件如下:反应温度90-145℃,反应压力1-4MPa,液体体积空速1-8h -1,氢油体积比3-6:1;
本发明的预加氢反应主要是小分子硫醇、硫醚在预加氢催化剂的作用下,与二烯烃发生硫醚化反应,同时双键异构(即端烯烃转化为内烯烃),并将剩余的二烯烃饱和。在硫醇醚化、双键异构反应的同时抑制烯烃聚合、过度裂化、过度裂化等副反应,以提高催化剂活性和选择性,提高液体收率。
所述具有大孔结构的氧化铝复合载体中包含0.1-12wt%的钨掺杂铁酸镧,载体介孔占总孔的1-85%,大孔占总孔的1-70%。优选地,介孔占总孔的5-70%,优选大孔占总孔的5-45%。
一种具有大孔结构的氧化铝复合载体的制备方法,将铝源和田菁粉加入到捏合机中混合均匀,加入无机酸溶液和有机聚合物,捏合均匀,然后再加入钨掺杂铁酸镧,捏合均匀后,经过挤条、成型、干燥、焙烧,得到氧化铝载体。
上述具有大孔结构的氧化铝复合载体粉末与ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光沸石、SAPO-11、MCM-22、Y分子筛或beta分子筛粉末中的一种或几种混合均 匀,再加入田菁粉去离子水混和,加入无机酸,搅拌,干燥,焙烧处理得到混合载体。再负载活性组分钴,钼,镍,钨,催化剂中钴,钼,镍,钨以氧化物记,含量为0.1-15.5%。
上述制备氧化铝载体所述铝源为拟薄水铝石、氧化铝、硫酸铝中的一种或几种。铝源也可以是高岭土、累托土、珍珠岩、蒙脱土中的一种或几种。
对载体的进一步改进,一种改进氧化铝载体,载体中包含0.1-12wt%的氧化硅,钨掺杂铁酸镧0.1-10wt%,载体介孔占总孔的1-80%,大孔占总孔的1-55%。优选地,介孔占总孔的1-65%,更优选5-55%,优选大孔占总孔的5-45%,更优选10-35%,载体微孔、介孔、大孔不均匀分布。
优选地,上述氧化铝载体中钨掺杂铁酸镧为0.3-9wt%,更优选0.3-5wt%,钨掺杂铁酸镧中钨占钨掺杂铁酸镧的0.1-8wt%。
所述有机聚合物为聚乙烯醇、聚丙烯酸钠、聚乙二醇、聚丙烯酸酯中的一种或几种,优选聚丙烯酸或聚丙烯酸钠。
-相比加入铁酸镧(LaFeO 3),氧化铝载体中加入钨掺杂铁酸镧,再引入选自ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光沸石、无定型硅铝、SAPO-11、MCM-22、Y分子筛或beta分子筛中的一种或几种制备复合载体,负载钴、钼、镍、钨活性组分,催化剂有效促进硫醚化反应,同时双键异构(即端烯烃转化为内烯烃),并将剩余的二烯烃饱和,尤其是双键异构选择性比较高。
对载体进一步改进,氧化铝载体中优选加入氧化硅,改进的氧化铝载体的制备方法,将拟薄水铝石和田菁粉加入到捏合机中混合均匀,加入无机酸或有机酸溶液和有机聚合物,捏合均匀,然后再加入钨掺杂铁酸镧,混合均匀得到氧化铝前驱体备用;有机聚合物的酸液中加入硅源,氧化铝前驱体中单位含量的有机聚合物比硅源中有机聚合物的含量高1.5倍以上。混合均匀后,与氧化铝前驱体混合,经挤条、成型、干燥、焙烧,得到氧化铝载体。所述硅源可以是硅酸钠或硅微粉,含钨化合物包括钨酸铵、偏钨酸铵、仲钨酸铵等。所述无机酸为硝酸、盐酸、硫酸,有机酸为草酸、柠檬酸、氨三乙酸、酒石酸、醋酸或苹果酸。
上述氧化铝载体的进一步改进,所述硅源可以是硅酸钠或硅微粉,也可以是硅藻土、蛋白石中的一种或两种,铝源也可以是高岭土、累托土、珍珠岩、蒙脱土中的一种或几种。
高岭土、累托土、珍珠岩、蒙脱土粉末活化过程的亚熔盐介质为NaOH-H 2O,将铝土矿粉末与亚熔盐介质按质量比为1:0.2-2混合均匀,在100-400℃温度下,活化时间为0.5-4h。硅藻土、蛋白石的活化过程是将硅藻土在500-1000℃温度下,焙烧1-10h。上述氧化铝载体中的钨掺杂铁酸镧最好具有微介孔,引入具有微介孔钨掺杂铁酸镧,制备的催化剂有利于抑制烃类裂化等副反应发生,提高目的产物选择性。
一种具有微介孔的钨掺杂铁酸镧的制备方法,柠檬酸溶于去离子水中搅拌溶解,然后将硝酸镧与硝酸铁加入柠檬酸中,搅拌溶解,加入聚丙烯酸钠或聚丙烯酸,聚丙烯酸钠或聚丙烯酸的加入量为钨掺杂铁酸镧的0.1-9wt%,优选0.1-6.0wt%。再加入含钨化合物,以氧化物记,钨占钨掺杂铁酸镧的0.1-8wt%,搅拌,反应后,经干燥、焙烧、研磨得到成品。
本发明所述氧化铝载体为具有大孔结构的氧化铝复合载体。
改进的氧化铝载体中,氧化铝前驱体中单位含量的有机聚合物比硅源中有机聚合物的含量高1.5倍以上。可以有效改善载体的孔结构,一方面使载体微孔、介孔、大孔不均匀分布,减少烯烃聚合、过度裂化等副反应发生、提高选择性,汽油收率高,有利于装置长周期运转;另一方面有利于载体表面产生出更多的活性位负载中心,提高催化剂活性。
本发明所述预加氢催化剂的载体包含具有大孔结构的氧化铝复合载体和选自ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光沸石、无定型硅铝、SAPO-11、MCM-22、Y分子筛或beta分子筛中的一种或几种,负载钴,钼,镍,钨中的一种或几种,用于汽油脱除二烯烃及硫醇、硫醚,同时双键异构端烯烃转化为内烯烃;并饱和剩余二烯烃。催化剂不但有效促进端烯烃转内烯烃,提高辛烷值,而且有利于减少低碳异构烃的再裂化反应,减少烯烃聚合、过度裂化等副反应发生,提高活性选择性,汽油收率高。
上述钴,钼,镍,钨活性组分可以是它们的各种盐类或者它们各自的氧化物,硫化物,氮化物,磷化物中的一种或几种。
预加氢催化剂的制备方法,包括如下步骤:将含钴,钼,镍,钨的活性组分物质配成浸渍液,浸渍载体,在120-180℃下干燥4-8小时,450-800℃下焙烧3-9小时,得到预加氢催化剂。
对催化剂进一步改进,所述催化剂还包括选自ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光、SAPO-11、MCM-22、Y分子筛或beta分子筛中的一种或几种。
预加氢反应流出物切割分馏温度为50-70℃,轻汽油馏分在异构催化剂的作用下发生异构反应,异构催化剂以上述预加氢催化剂具有大孔结构的氧化铝复合载体与SAPO-11分子筛按质量比80-90:10-20的配比得到的复合材料为载体,负载质量百分含量为5-18%的活性组分Mo、Co和Ni而制成。
本发明所述重汽油馏分反应流出物在加氢脱硫-异构催化剂作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃的反应工艺条件为:反应温度190-330℃,反应压力1.2-3.5MPa,体积空速2.5-5h -1,氢油体积比160-460:1。
催化裂化汽油选择性加氢脱硫-异构催化剂,包括载体和活性组分,载体为预加氢催化剂所用载体,载体表面负载磷钼酸、磷钨酸或磷钼钨酸,催化剂中磷钼酸、磷钨酸或磷钼钨酸以氧化物记,含量为0.1-16.5%。
进一步改进,上述催化剂表面再浸渍活性组分得到改进催化剂,以重量百分比计,催化剂包括0.1-14.5%的金属活性组分,活性组分选自钴,钼,镍,钨中的一种或几种。
本发明所述加氢脱硫-异构催化剂以包含钨掺杂铁酸镧的大孔氧化铝为载体,负载磷钼酸钨、磷钨酸或磷钼钨酸和/或钴,钼,镍,钨中的一种或几种,用于汽油加氢选择性脱硫-异构,不但有效促进单支链异构,提高辛烷值,而且有利于减少低碳异构烃的再裂化反应,减少烯烃聚合、过度裂化等副反应发生,提高活性选择性,汽油收率高。该催化剂用于催化裂化汽油生产满足国五、国六标准的清洁汽油。
反应流出物再进入辛烷值恢复单元,在烷值恢复催化剂作用下,进行双支链异构,反应的条件为:反应温度180-450℃,反应压力0.6-4.8MPa、空速0.5-8h -1、氢油体积比50-450:1。
所述双支链异构包括单支链烯烃或单支链烷烃异构为双支链烷烃。
所述辛烷值恢复催化剂包含ZSM-5分子筛,所述辛烷值恢复催化剂以重量百分比计包括32-88%弱酸性介孔H型Zn-ZSM-5分子筛或改进的弱酸性介孔H型Zn-ZSM-5分子筛,优选为42-83%;0-66%拟薄水铝石、大孔氧化铝或锌铝水滑石粘结剂作为载体,优选为8-55%;浸渍0.5-16%金属活性组分,优选为1-12%;所述的金属活性 组分为Fe、Co、Ni、Mo和W中的一种或几种,负载方法为浸渍法,优选等体积浸渍法或多次浸渍法。
在本发明中,所述的弱酸性介孔H型Zn-ZSM-5分子筛,介孔孔径集中在4.5-36nm,比表面积为320-650m 2/g;氧化锌含量为分子筛总重量的0.15-12%。
在本发明中,改进的弱酸性介孔Zn-ZSM-5分子筛,介孔孔径集中在4.5-36nm,比表面积为320-650m 2/g;氧化锌含量为分子筛总重量的0.15-12%,分子筛表面锌含量比分子筛内部锌含量高,优选高0.2-2倍。
本发明还提供一种介孔Zn-ZSM-5分子筛的制备方法,包括如下步骤:
(1)在一定温度下,将去离子水、铝源、锌源、酸源、模板剂(SDA)和硅源在搅拌条件下混合均匀制备成凝胶,调节物料摩尔比为(0.003-0.07)Al 2O 3:(0.03-0.3)Na 2O:1SiO 2:(8-45)H 2O:(0.05-0.2)SDA:(0.001-0.15)ZnO;
(2)将步骤(1)中获得的凝胶老化后转移至含聚四氟乙烯内衬的不锈钢反应釜中密封晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到Zn-ZSM-5分子筛;
(3)将步骤(2)中得到的Zn-ZSM-5分子筛经交换、过滤、干燥、焙烧等一系列处理,得到H型Zn-ZSM-5分子筛。
本发明对介孔Zn-ZSM-5分子筛进一步改进,得到H型Zn-ZSM-5分子筛后,通过浸渍法在H型Zn-ZSM-5分子筛的表面再浸渍含锌化合物进行修饰,使得分子筛表面锌含量比分子筛内部锌含量高,优选等体积浸渍,得到Zn修饰的改进H型Zn-ZSM-5分子筛,即改进Zn-ZSM-5分子筛。其中,所述含锌化合物为硝酸锌、醋酸锌、氯化锌和硫酸锌中的一种或几种,优选醋酸锌。
步骤(1)中所述的硅源可以是常规市售硅源,也可以硅藻土、蛋白石中的一种或两种,铝源可以是常规市售铝源,也可以是高岭土、累托土、珍珠岩、蒙脱土中的一种或几种,锌源也可以是菱锌矿、红锌矿中的一种或两种。
步骤(1)中所述SDA为三甲胺(TMA)、甲乙胺、吡咯、吗琳中的一种或几种,也可以是常用的四丙基氢氧化铵(TPAOH)、四丙基溴化铵(TPABr)、1,6-己二胺、正丁胺、己二醇中的一种或几种,优选三甲胺(TMA)、甲乙胺、吡咯、吗琳中的一种或几种。
步骤(2)中所述的老化温度为30-85℃,优选40-80℃;老化时间为1-24h,优选2-16h。
步骤(2)中所述的晶化温度为120-210℃,优选130-185℃;分1-5段程序升温,优选1-3段;最好进行分段不等温升温,非等温分段升温处理,升温速率先快后慢,100℃以前以6-8℃/min的升温速率升温,20-30℃为一个升温段,温度区段处理时间为0.5-5小时;100-200℃之间以3-5℃/min的升温速率升温,10-20℃为一个升温段,温度区段处理时间为0.5-8小时。本发明采用非等温分段升温处理,有利于Zn-ZSM-5分子筛晶化过程的成核速率和生长速率控制,可以控制介孔的大小及数量,进而可以提高催化剂的活性和目的产物选择性。晶化时间为10-96h,优选24-72h。
步骤(3)中所述的焙烧温度420-780℃,优选450-650℃;焙烧时间1-8h;交换试剂为盐酸、硝酸、硫酸、氯化铵或硝酸铵中的一种;
步骤(3)中所述的分子筛的表面修饰采用等体积浸渍含锌化合物,其中ZnO的质量分数为0.5-15%,优选为0.5-10%。
本发明的辛烷值恢复催化剂包括一步法合成骨架含Zn的Zn-ZSM-5分子筛,分子筛合成方法简单,由于Zn进入分子筛骨架导致晶体结构发生改变,产生介孔,同时提高了Zn的分散性,这就会使反应物扩散阻力减小,提高抗积碳性能。
Zn-ZSM-5分子筛表面锌含量比分子筛内部锌含量高,表面Zn原子与Al羟基相互作用导致强酸强度减弱至中强酸,使分子筛的酸强度降低,从根源上减少了烃类裂化等副反应发生,提高了双支链异构烃的选择性。
本发明提供一种低烯烃、超低硫含量且高辛烷值清洁汽油的生产方法,具体是一种催化裂化汽油经预加氢,切割为轻、重汽油馏分,轻汽油馏分异构,重汽油馏分加氢脱硫-异构,再进行双支链异构等过程生产低烯烃、超低硫含量、高辛烷值清洁汽油的方法。本发明方法在实现FCC汽油超深度脱硫的同时,进一步降低汽油的烯烃含量并保持汽油的辛烷值,得到满足国六标准的清洁汽油,从而显著地提高炼厂的经济效益。本发明分子筛以及催化剂也可以用于催化裂化汽油生产国五汽油。
具体实施方式
以下通过实施例进一步详细描述本发明,但这些实施例不应认为是对本发明的限制。本发明所用的原料试剂均为市售产品。
一、制备预加氢催化剂
(1)制备预加氢催化剂1
1、制备具有微介孔的钨掺杂铁酸镧
搅拌条件下,将2.2mol La(NO 3) 3溶于100mL水中,加入柠檬酸搅拌溶解;再加入4.2mol Fe(NO 3) 3,然后再加入160g聚丙烯酸钠,再加入含10g偏钨酸铵的水溶液,继续搅拌30min,经烘干、焙烧、研磨得到微介孔钨掺杂铁酸镧。
2、制备氧化铝载体
2.2g微介孔钨掺杂铁酸镧中加入柠檬酸备用,将300g拟薄水铝石粉子和20.0g田菁粉加入到捏合机中,并混合均匀,再加入硝酸、8g聚丙烯酸钠,捏合均匀,然后加入微介孔钨掺杂铁酸镧,混合均匀,经过捏合-挤条成型为三叶草形状。在120℃干燥8小时,700℃焙烧4小时,得到含微介孔钨掺杂铁酸镧的氧化铝载体1。载体孔结构如表1所示。
3、制备预加氢催化剂1
氧化铝载体1与田菁粉、酸化无定型硅铝、去离子水捏合搅拌,经干燥焙烧得到复合载体1-1,将七钼酸铵和硝酸镍加入到蒸馏水中,配成浸渍液浸渍上述复合载体1-1,得到的催化剂前躯体在140℃烘干后,在500℃焙烧6h,得到催化剂1。催化剂1主要组成:含微介孔钨掺杂铁酸镧的氧化铝载体为73.2wt%,氧化铝含量为4.8wt%,氧化硅含量为5.2wt%,氧化镍含量为7.7wt%,氧化钼含量为9.1wt%。
(2)制备预加氢催化剂2
1、制备钨掺杂铁酸镧
搅拌条件下,将2.2mol La(NO 3) 3溶于100mL水中,加入柠檬酸搅拌溶解;再加入4.2mol Fe(NO 3) 3,再加入含10g偏钨酸铵的水溶液,继续搅拌30min,经烘干、焙烧、研磨得到钨掺杂铁酸镧。
2、制备氧化铝载体
2.2g钨掺杂铁酸镧中加入柠檬酸,将300g拟薄水铝石粉子和20.0g田菁粉加入到捏合机中,并混合均匀,再加入硝酸、8g聚丙烯酸钠,捏合均匀,然后加入钨掺杂铁酸镧,混合均匀,经过捏合-挤条成型为三叶草形状。在120℃干燥8小时,700℃焙烧4小时,得到含钨掺杂铁酸镧的氧化铝载体2。载体孔结构如表1。
3、制备预加氢催化剂2
同催化剂1,载体中引入zsm-5,得到复合载体2-1,将含钼、钴的浸渍液浸渍复合载体2-1,得到的催化剂前躯体在140℃烘干后,在530℃焙烧5h,得到催化剂2。催化剂2主要组成:含钨掺杂铁酸镧的氧化铝载体为71.5WT%,zsm-5含量7WT%,钼氧化物10.8wt%,钴氧化物10.7wt%。
(3)制备预加氢催化剂3
含微介孔钨掺杂铁酸镧的氧化铝载体3的制备同催化剂1,所不同的是微介孔钨掺杂铁酸镧占载体6wt%。催化剂的制备同催化剂1,用活化后的蒙脱土为铝源。所不同的是活性组分为钼、钨,催化剂3主要组成:含微介孔钨掺杂铁酸镧的氧化铝载体为75.6wt%,氧化铝含量为4.0wt%,氧化硅含量为4.0wt%,钼氧化物10.1wt%,钨氧化物6.3wt%。
(4)制备预加氢催化剂4
制备改进型氧化铝载体
2g聚丙烯酸钠溶于硝酸中,再加入28g硅微粉,搅拌均匀,得到硅微粉-聚丙烯酸钠混合物,取1/10的量备用,2.0g微介孔钨掺杂铁酸镧中加入柠檬酸备用。将310g拟薄水铝石粉子和22.0g田菁粉加入到捏合机中,加入硝酸,再加入28g聚丙烯酸钠硝酸溶液,并混合均匀,再加入上述硅微粉-聚丙烯酸钠混合物,捏合均匀,然后加入微介孔钨掺杂铁酸镧,混合均匀,经过捏合-挤条成型为三叶草形状。在130℃干燥7小时,650℃焙烧5小时,得到微介孔钨掺杂铁酸镧和氧化硅的氧化铝载体4。
催化剂的制备同催化剂2,所不同的是活性组分为钨、镍、钼,催化剂4主要组成:含微介孔钨掺杂铁酸镧的氧化铝载体为71.7wt%,zsm-5含量5WT%,钨氧化物7.8wt%,镍氧化物3.2wt%,钼氧化物12.3wt%。
(5)制备预加氢催化剂5
搅拌条件下,将2.0mol La(NO 3) 3溶于100mL水中,加入柠檬酸搅拌溶解;再加入4.0mol Fe(NO 3) 3,再加入含12g偏钨酸铵的水溶液,继续搅拌30min,经烘干、焙烧、研磨得到钨掺杂铁酸镧。
含钨掺杂铁酸镧的氧化铝载体5的制备同催化剂4,所不同的是钨掺杂铁酸镧占载体3wt%,用活化后的硅藻土和高岭土为硅源铝源。催化剂5主要组成:含钨 掺杂铁酸镧和氧化硅的氧化铝载体为74.0wt%,zsm-5含量4WT%,钼氧化物12.9wt%、钨氧化物9.1wt%。
(6)制备预加氢催化剂6
催化剂制备同催化剂4,所不同是的催化剂中加入丝光沸石,催化剂6主要组成:含微介孔钨掺杂铁酸镧和氧化硅的氧化铝载体4含量80.1wt%、丝光沸石含量6.8wt%,钼氧化物10.4wt%,钨氧化物2.7wt%。用活化后的硅藻土和高岭土为硅源铝源。
(7)制备预加氢催化剂7
催化剂制备同催化剂6,所不同是的催化剂中加入beta分子筛,催化剂7主要组成:含微介孔钨掺杂铁酸镧和氧化硅的氧化铝载体4含量72.8wt%,beta分子筛含量6.7wt%,钼氧化物10.4wt%,镍氧化物10.1wt%。用活化后的硅藻土和高岭土为硅源铝源。
(8)制备预加氢对比催化剂1
载体制备同催化剂4,只是加入的是铁酸镧,催化剂的制备同催化剂4,反应条件同催化剂4,反应结果见表2。
二、制备加氢脱硫-异构催化剂
(1)制备加氢脱硫-异构催化剂1
以预加氢催化剂1的载体为载体,浸渍磷钼钨酸,得到的催化剂前躯体在140℃烘干后,在600℃焙烧7h,得到加氢脱硫-异构催化剂1。催化剂1主要组成:含微介孔钨掺杂铁酸镧的氧化铝载体为90.2wt%,磷钼钨氧化物9.8wt%。
(2)制备加氢脱硫-异构催化剂2
以预加氢催化剂3的载体为载体,浸渍磷钼酸,得到的催化剂前躯体在140℃烘干后,在630℃焙烧5h,得到催化剂2。加氢脱硫-异构催化剂2主要组成:含钨掺杂铁酸镧的氧化铝载体为85.2WT%,磷钼氧化物14.8wt%。
(3)制备加氢脱硫-异构催化剂3
以预加氢催化剂4的载体为载体,浸渍磷钨酸和钼酸铵(氧化钼重量占催化剂4.1%),催化剂4主要组成:含微介孔钨掺杂铁酸镧的氧化铝载体为88.9wt%,磷钨氧化物7.0wt%。
(4)制备加氢脱硫-异构催化剂4
以预加氢催化剂4的载体和丝光沸石为载体,浸渍浸渍磷钼钨酸和硝酸钴(氧化钴重量占催化剂3.6%),用活化后的硅藻土和高岭土为硅源铝源。催化剂4主要组成:含钨掺杂铁酸镧和氧化硅的氧化铝载体为86.8wt%,磷钼钨氧化物9.6wt%。
三、制备轻汽油馏分异构催化剂
(1)制备轻汽油馏分异构催化剂1
预加氢催化剂1中的具有大孔结构的氧化铝复合载体与SAPO-11分子筛按质量比85:15的配比与田菁粉混合,经捏合、成型、干燥、焙烧得到载体,然后负载质量百分含量为12%的活性组分Mo、6%Co和9%Ni。
(2)制备轻汽油馏分异构催化剂2
预加氢催化剂4中的具有大孔结构的氧化铝复合载体与SAPO-11分子筛按质量比80:20的配比与田菁粉混合,经捏合、成型、干燥、焙烧得到载体,然后负载质量百分含量为15%的活性组分Mo、5%Co和9%Ni。
四、制备辛烷值恢复催化剂
1、制备介孔Zn-ZSM-5分子筛
(1)称取0.44g NaAlO2和2.14g Zn(NO3)2·6H2O溶于49.55g去离子水中,然后滴加2.00g硫酸(3mol/L),搅拌5min后加入0.93g TMA,搅拌1h后加入14.20g水玻璃(含27.6wt%的SiO2,7.1wt%的Na2O和65.3wt%的H2O),在室温下混合搅拌2h,其混合物的摩尔组成为0.003Al2O3:0.25Na2O:1SiO2:50H2O:0.24SDA:0.11ZnO。
(2)将步骤(1)得到的混合物升温至75℃老化6h,再将该溶液倒入带聚四氟乙烯内衬的不锈钢晶化釜内,升温至130℃晶化12h,然后升温至180℃静止晶化24h。晶化结束后,冷却、过滤除去母液,洗涤至中性,于120℃下干燥,得到晶化产物Zn-ZSM-5分子筛。
(3)将Zn-ZSM-5分子筛按照固液比为1:10加入到浓度为1mol/L的氯化铵溶液中,在60℃下混合搅拌4h,抽滤,烘干,以同样方法再交换一次,放入马弗炉中在550℃下高温焙烧6h得到H型Zn-ZSM-5分子筛,然后再浸渍质量分数为5%的ZnO。
2、制备Ni-Mo/Zn-ZSM-5-Y分子筛催化剂
将30g上述处理好的Zn-ZSM-5分子筛和11gY分子筛,与30g去离子水混合均匀,然后挤条成型,在120℃下干燥4h,550℃焙烧5h,得到分子筛载体,然后采用多次浸渍法浸渍7.0wt%的NiO和6.0wt%的MoO3,制得Ni-Mo/Zn-ZSM-5催化剂。
表1大孔的氧化铝载体比表面积与孔径分布
Figure PCTCN2018122105-appb-000001
表2催化剂预加氢反应结果
Figure PCTCN2018122105-appb-000002
FCC汽油通过预加氢反应器在预加氢催化剂的作用下进行处理,脱除二烯烃及硫醇、硫醚,同时双键异构(即端烯烃转化为内烯烃),并将剩余的二烯烃饱和。反应温度为115℃,反应压力为1.8MPa,液体体积空速为5h -1,氢油体 积比为4:1,反应结果见表2。预加氢催化剂2、3、4、7反应流出物在42℃条件下切割为轻重汽油馏分,轻汽油馏分在异构催化剂的作用下发生异构反应,预加氢催化剂2、3用轻汽油馏分异构催化剂1进行异构反应,预加氢催化剂4、7用轻汽油馏分异构催化剂2进行异构反应。反应温度240℃,反应压力1.2MPa、空速0.5h -1,异戊烷增量在10%以上。重汽油馏分在加氢脱硫-异构催化剂1-4作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃,反应工艺条件为:反应器温度255℃,反应压力1.6MPa,体积空速2.0h -1,氢油体积比260。反应约100h后取样分析,结果如表3所示。催化剂2、3、4反应流出物再进入辛烷值恢复单元,在辛烷值恢复催化剂的作用下进行双支链异构反应,反应温度365℃,反应压力1.6MPa、空速0.8h -1、氢油体积比270:1。反应后双支链烷烃增量4.6%以上,轻、重汽油馏分调和后得到硫含量分别为6mg/kg,5mg/kg,8mg/kg,烯烃含量分别为11v%,13v%,10v%;辛烷值损失分别为0.3,0.3,0.2的清洁汽油,满足国六标准。
由表2可知,预加氢催化剂1-7辛烷值损失低,汽油收率高,硫醇脱除率高,活性好,催化剂能够有效抑制烯烃聚合、过度裂化等副反应发生,抑制低碳烃类的裂化反应,汽油收率高,有利于装置长周期运转;催化剂的载体表面产生出更多的活性位负载中心,有效提高催化剂脱除二烯烃及硫醇、硫醚,双键异构活性,催化剂具有良好的活性和选择性。反应运行600h,预加氢催化剂4和7产品硫醇脱除率为98.2%、98.6%,辛烷值损失为0.2个单位、0.3个单位,积碳率0.3、0.2,液体收率99.6%、99.0%。内烯烃增量0.37%、0.42%,二烯烃含量脱除率100%、98.2%,催化剂反应性能稳定。加氢脱硫-异构催化剂1-4脱硫率高,活性好,催化剂能够有效抑制烯烃聚合、过度裂化等副反应发生,减少低碳异构烃的再裂化反应,催化剂的载体表面产生出更多的活性位负载中心,有效提高催化剂脱硫-异构活性,催化剂具有良好的加氢脱硫-异构活性和选择性。
表3催化剂加氢脱硫-异构反应结果
Figure PCTCN2018122105-appb-000003
Figure PCTCN2018122105-appb-000004
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的保护范围。

Claims (13)

  1. 一种FCC汽油改质方法,其特征在于:其包括如下步骤:FCC汽油在预加氢催化剂作用下,经过预加氢反应器,进行硫醇醚化、双键异构反应,预加氢反应流出物切割为轻、重汽油馏分,轻汽油馏分在异构催化剂的作用下发生异构反应,重汽油馏分在加氢脱硫-异构催化剂作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃;反应后的重汽油馏分再进入辛烷值恢复单元,与辛烷值恢复催化剂接触,进行双支链异构反应;最后轻、重汽油馏分调和得到清洁汽油。
  2. 根据权利要求1所述FCC汽油的改质方法,其特征在于:所述预加氢催化剂包括载体和活性组分,载体包含75~95wt%具有大孔结构的氧化铝复合载体和5~25wt%选自ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光沸石、无定型硅铝、SAPO-11、MCM-22、Y分子筛或beta分子筛中的一种或几种,其中具有大孔结构的氧化铝复合载体中包含0.1~12wt%的钨掺杂铁酸镧,氧化铝复合载体介孔占总孔的1~85%,氧化铝复合载体大孔占总孔的1~70%,载体表面负载活性组分钴,钼,镍,钨中的一种或几种,以氧化物记,活性组分含量为0.1~15.5%。
  3. 根据权利要求2所述FCC汽油的改质方法,其特征在于:所述具有大孔结构的氧化铝复合载体包含0.1~12WT%的氧化硅,0.1~10WT%的钨掺杂铁酸镧,介孔占总孔的1~80%,大孔占总孔的1~40%,载体中微孔、介孔、大孔不均匀分布。
  4. 根据权利要求2所述FCC汽油的改质方法,其特征在于:所述预加氢反应条件如下:反应温度80-160℃,反应压力1-5MPa,液体体积空速1-10h -1,氢油体积比3-8:1。
  5. 根据权利要求3所述FCC汽油的改质方法,其特征在于:所述具有大孔结构的氧化铝复合载体的制备方法包括如下步骤:将铝源和田菁粉加入到捏合机中混合均匀,加入无机酸或有机酸溶液和有机聚合物,捏合均匀,然后再加入钨掺杂铁酸镧,混合均匀得到氧化铝前驱体备用;有机聚合物的酸液中加入硅源,混合均匀后,与氧化铝前驱体混合,氧化铝前驱体中单位含量的有机聚合物比硅源中有机聚合物的含量高1.5倍以上,经挤条、成型、干燥、焙烧,得到氧化铝载体。
  6. 根据权利要求2-5任一项所述FCC汽油的改质方法,其特征在于:所述钨掺杂铁酸镧为具有微介孔的钨掺杂铁酸镧,其制备方法如下:柠檬酸溶于去离子水中搅拌溶解,然后将硝酸镧与硝酸铁加入柠檬酸中,搅拌溶解,加入聚丙烯酸钠或聚丙烯酸,聚丙烯酸钠或聚丙烯酸的加入量为钨掺杂铁酸镧的0.1~9wt%,再加入含钨化合物,以氧化物记,钨占钨掺杂铁酸镧的0.1~8wt%,搅拌,反应后,经干燥、焙烧、研磨得到成品。
  7. 根据权利要求1所述FCC汽油的改质方法,其特征在于:所述加氢脱硫-异构催化剂包括 载体和活性组分,载体包含具有大孔结构的氧化铝复合载体,氧化铝复合载体含有0.1~12wt%的钨掺杂铁酸镧,氧化铝复合载体介孔占总孔的1~85%,氧化铝复合载体大孔占总孔的1~70%,载体表面负载磷钼酸、磷钨酸或磷钼钨酸,以重量百分比计,催化剂中磷钼酸、磷钨酸或磷钼钨酸以氧化物记,含量为0.1~16.5%。
  8. 根据权利要求1所述FCC汽油的改质方法,其特征在于:加氢脱硫-异构反应工艺条件为:反应温度190-330℃,反应压力1.2-3.5MPa,体积空速2.5-5h -1,氢油体积比160-460:1。
  9. 根据权利要求1所述FCC汽油的改质方法,其特征在于,所述预加氢反应流出物切割温度为50-70℃。
  10. 根据权利要求1所述FCC汽油的改质方法,其特征在于:轻汽油馏分异构催化剂以预加氢催化剂具有大孔结构的氧化铝复合载体与SAPO-11分子筛按质量比80-90:10-20的配比得到的复合材料为载体,负载质量百分含量为5-18%的活性组分Mo、Co和Ni而制成。
  11. 根据权利要求1所述FCC汽油的改质方法,其特征在于:所述辛烷值恢复单元中辛烷值恢复催化剂以重量百分比计,包括32-88%弱酸性介孔H型Zn-ZSM-5分子筛或改进的弱酸性介孔H型Zn-ZSM-5分子筛,0-66%拟薄水铝石、大孔氧化铝或锌铝水滑石粘结剂作为载体,浸渍0.5-16%金属活性组分,金属活性组分为Fe、Co、Ni、Mo和W中的一种或几种。
  12. 根据权利要求1所述FCC汽油的改质方法,其特征在于:所述辛烷值恢复单元双中支链异构反应的条件为:反应温度180-450℃,反应压力0.6-4.8MPa、空速0.5-8h -1、氢油体积比50-450:1。
  13. 根据权利要求11所述FCC汽油的改质方法,其特征在于:所述改进的弱酸性介孔H型Zn-ZSM-5分子筛的制备方法,包括如下步骤:
    (1)在一定温度下,将去离子水、铝源、锌源、酸源、模板剂和硅源在搅拌条件下混合均匀制备成凝胶,调节物料摩尔比为(0.003-0.07)Al 2O 3:(0.03-0.3)Na 2O:1SiO 2:(8-45)H 2O:(0.05-0.2)SDA:(0.001-0.15)ZnO;
    (2)将步骤(1)中获得的凝胶老化后转移至含聚四氟乙烯内衬的不锈钢反应釜中密封晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到Zn-ZSM-5分子筛;
    (3)将步骤(2)中得到的Zn-ZSM-5分子筛经交换、过滤、干燥、焙烧处理,得到H型Zn-ZSM-5分子筛;
    (4)在H型Zn-ZSM-5分子筛的表面再浸渍含锌化合物进行修饰,使得分子筛表面锌含量比分子筛内部锌含量高,得到改进的弱酸性介孔H型Zn-ZSM-5分子筛。
PCT/CN2018/122105 2018-09-11 2018-12-19 一种fcc汽油改质方法 WO2020052145A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021524084A JP7083967B2 (ja) 2018-09-11 2018-12-19 Fccガソリンの改質方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811057464.0A CN109097104B (zh) 2018-09-11 2018-09-11 一种fcc汽油改质方法
CN201811057464.0 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020052145A1 true WO2020052145A1 (zh) 2020-03-19

Family

ID=64865915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122105 WO2020052145A1 (zh) 2018-09-11 2018-12-19 一种fcc汽油改质方法

Country Status (3)

Country Link
JP (1) JP7083967B2 (zh)
CN (1) CN109097104B (zh)
WO (1) WO2020052145A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206813A (zh) * 2020-09-30 2021-01-12 天长市润源催化剂有限公司 一种高硅铝比脱硫催化剂的制备方法
CN115999627A (zh) * 2021-10-22 2023-04-25 中国石油化工股份有限公司 一种用于临氢异构化反应催化剂及其制备方法和应用
CN116060115A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种临氢降凝催化剂及其制法和应用
CN116273154A (zh) * 2023-05-16 2023-06-23 福州大学 兼具噻吩烷基化与硫醇醚化双功能催化剂及其制备方法
CN116408099A (zh) * 2021-12-29 2023-07-11 中国石油天然气股份有限公司 吸附脱硫催化剂及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160191B (zh) * 2021-12-02 2023-07-14 万华化学集团股份有限公司 一种催化裂化催化剂及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769388A (zh) * 2004-10-29 2006-05-10 中国石油化工股份有限公司 一种降低劣质汽油硫和烯烃含量的加氢改质方法
WO2006120898A1 (ja) * 2005-05-06 2006-11-16 Japan Energy Corporation 低硫黄分解ガソリン基材の製造方法および無鉛ガソリン組成物
CN101845322A (zh) * 2010-05-12 2010-09-29 中国石油天然气股份有限公司 一种降低汽油中硫和烯烃含量的生产方法
CN101885985A (zh) * 2010-07-02 2010-11-17 中国石油大学(北京) 一种超低硫且高辛烷值汽油的生产方法
WO2012066572A2 (en) * 2010-11-19 2012-05-24 Indian Oil Corporation Ltd. Process for deep desulfurization of cracked gasoline with minimum octane loss
CN104277875A (zh) * 2013-07-12 2015-01-14 中国石油天然气股份有限公司 一种降低催化裂化汽油中硫和烯烃含量的方法
CN105733672A (zh) * 2014-12-11 2016-07-06 中国石油天然气股份有限公司 超低硫汽油的组合生产方法
CN106147838A (zh) * 2015-04-03 2016-11-23 中国石油化工股份有限公司 一种生产超低硫汽油的方法
CN106929099A (zh) * 2015-12-30 2017-07-07 中国石油天然气股份有限公司 一种劣质汽油加氢改质的方法
CN108219841A (zh) * 2018-03-26 2018-06-29 福州大学 一种全馏分催化裂化汽油的清洁化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU661863B2 (en) * 1991-08-15 1995-08-10 Mobil Oil Corporation Hydrocarbon upgrading process
JP3398273B2 (ja) * 1995-11-14 2003-04-21 新日本石油株式会社 接触分解ガソリンの脱硫方法
FR2753717B1 (fr) * 1996-09-24 1998-10-30 Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre
US6610197B2 (en) * 2000-11-02 2003-08-26 Exxonmobil Research And Engineering Company Low-sulfur fuel and process of making

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769388A (zh) * 2004-10-29 2006-05-10 中国石油化工股份有限公司 一种降低劣质汽油硫和烯烃含量的加氢改质方法
WO2006120898A1 (ja) * 2005-05-06 2006-11-16 Japan Energy Corporation 低硫黄分解ガソリン基材の製造方法および無鉛ガソリン組成物
CN101845322A (zh) * 2010-05-12 2010-09-29 中国石油天然气股份有限公司 一种降低汽油中硫和烯烃含量的生产方法
CN101885985A (zh) * 2010-07-02 2010-11-17 中国石油大学(北京) 一种超低硫且高辛烷值汽油的生产方法
WO2012066572A2 (en) * 2010-11-19 2012-05-24 Indian Oil Corporation Ltd. Process for deep desulfurization of cracked gasoline with minimum octane loss
CN104277875A (zh) * 2013-07-12 2015-01-14 中国石油天然气股份有限公司 一种降低催化裂化汽油中硫和烯烃含量的方法
CN105733672A (zh) * 2014-12-11 2016-07-06 中国石油天然气股份有限公司 超低硫汽油的组合生产方法
CN106147838A (zh) * 2015-04-03 2016-11-23 中国石油化工股份有限公司 一种生产超低硫汽油的方法
CN106929099A (zh) * 2015-12-30 2017-07-07 中国石油天然气股份有限公司 一种劣质汽油加氢改质的方法
CN108219841A (zh) * 2018-03-26 2018-06-29 福州大学 一种全馏分催化裂化汽油的清洁化方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206813A (zh) * 2020-09-30 2021-01-12 天长市润源催化剂有限公司 一种高硅铝比脱硫催化剂的制备方法
CN115999627A (zh) * 2021-10-22 2023-04-25 中国石油化工股份有限公司 一种用于临氢异构化反应催化剂及其制备方法和应用
CN116060115A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种临氢降凝催化剂及其制法和应用
CN116408099A (zh) * 2021-12-29 2023-07-11 中国石油天然气股份有限公司 吸附脱硫催化剂及其制备方法和应用
CN116273154A (zh) * 2023-05-16 2023-06-23 福州大学 兼具噻吩烷基化与硫醇醚化双功能催化剂及其制备方法
CN116273154B (zh) * 2023-05-16 2024-04-26 福州大学 兼具噻吩烷基化与硫醇醚化双功能催化剂及其制备方法

Also Published As

Publication number Publication date
JP7083967B2 (ja) 2022-06-13
JP2021530609A (ja) 2021-11-11
CN109097104B (zh) 2019-11-08
CN109097104A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2020052145A1 (zh) 一种fcc汽油改质方法
CN101885985B (zh) 一种超低硫且高辛烷值汽油的生产方法
CN109201072B (zh) 一种催化裂化汽油预加氢催化剂及制备方法
CN108452840B (zh) 一种异构化催化剂及制备方法
US11685868B2 (en) Catalytic cracking gasoline upgrading method
US8603324B2 (en) Method for hydro-upgrading inferior gasoline via ultra-deep desulfurization and octane number recovery
CN109092352B (zh) 一种fcc汽油叠合催化剂及制备方法
CN109082303B (zh) 一种fcc汽油清洁化方法
CN101837299B (zh) 一种用于催化裂化汽油加氢改质的催化剂及其制备方法
CN102513143A (zh) 一种用于催化汽油芳构化改质催化剂的制备方法
CN109266387A (zh) Fcc汽油选择性加氢处理方法
CN109097103B (zh) 一种由催化裂化汽油生产清洁汽油的方法
CN111073683B (zh) 一种柴油超深度脱硫、脱芳烃的方法
US11674091B2 (en) Catalytic cracking gasoline prehydrogenation method
CN109097102B (zh) 一种催化裂化汽油的改质方法
CN107151563B (zh) 耦合超深度脱硫与烯烃高辛烷值转化的清洁汽油生产方法
CN113117729B (zh) 异构化催化剂及其制备方法
CN108993583B (zh) 一种汽油选择性加氢脱硫-异构催化剂及制备方法
CN114075453B (zh) 一种催化裂化汽油加氢改质方法
CN109207191A (zh) 一种催化裂化汽油脱硫醇的方法
CN109331830A (zh) 一种汽油脱硫醇的方法
CN109370647A (zh) 一种催化裂化汽油选择性加氢方法
CN109097105B (zh) 一种fcc汽油降烯烃方法
CN109364966A (zh) 一种汽油脱硫醇的催化剂及制备方法
CN109261161A (zh) 一种fcc汽油加氢脱硫醇的催化剂及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933284

Country of ref document: EP

Kind code of ref document: A1