WO2020052105A1 - 一种纯电力驱动的消防无人机 - Google Patents
一种纯电力驱动的消防无人机 Download PDFInfo
- Publication number
- WO2020052105A1 WO2020052105A1 PCT/CN2018/118899 CN2018118899W WO2020052105A1 WO 2020052105 A1 WO2020052105 A1 WO 2020052105A1 CN 2018118899 W CN2018118899 W CN 2018118899W WO 2020052105 A1 WO2020052105 A1 WO 2020052105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fire
- drone
- fuselage
- fighting
- component
- Prior art date
Links
- 239000000843 powder Substances 0.000 claims description 21
- 230000004297 night vision Effects 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 11
- 229940098458 powder spray Drugs 0.000 claims description 11
- 238000005507 spraying Methods 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims description 10
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 230000001960 triggered effect Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 8
- 238000013016 damping Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C19/00—Hand fire-extinguishers in which the extinguishing substance is expelled by an explosion; Exploding containers thrown into the fire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/30—Parts of fuselage relatively movable to reduce overall dimensions of aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C25/00—Alighting gear
- B64C25/02—Undercarriages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D47/00—Equipment not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D47/00—Equipment not otherwise provided for
- B64D47/08—Arrangements of cameras
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to the field of unmanned aerial vehicles, in particular to a fire-fighting drone driven by pure electric power.
- the commonly used fire extinguishing method is to extinguish fire through fire ladders and fire water guns, but for residential buildings with more than 10 floors and high-rise fires over 24 meters high, the length of fire ladders and the range of fire water guns and water cannons Both are severely restricted as the height of the fire incident increases, manifested as the ladder rising to the air, affected by wind, will sway left and right, increasing the difficulty of firefighting;
- the use of fire water guns and water cannons to extinguish fires requires water to be carried out. Pressurized operation, water pressure will also limit height.
- the present invention provides a pure electric-powered fire drone, which can perform fire protection for high-rise buildings, and perform timely and effective spot fire suppression.
- the technical solution of the present invention is a fire-powered drone driven by pure electric power, which is operated by a remote control terminal and includes a fuselage, four rotor components, two sets of feet, an image component and a fire protection component.
- the fuselage is a box structure with multiple control modules inside, a power module on the upper part of the fuselage, a rotor assembly on the side wall of the fuselage, and two sets of leg assemblies on the lateral sides of the lower part of the fuselage, respectively;
- the rotor assembly includes a rotor arm, a drive motor provided at a distal end of the rotor arm, and a rotor provided with a motor to drive rotation;
- One end of the leg is connected to the bottom surface of the box structure, and the other end is used for supporting the ground, and the fire protection component and the image component are fixed on the leg;
- the image component includes a sight, a gimbal component, and a night vision camera disposed behind the sight, the scope is disposed above the fire protection component; and the gimbal component is disposed adjacent to the fire protection component.
- the power module includes a plurality of batteries, a battery box for fixing the battery, and a head cover for preventing liquid from penetrating.
- the battery box is arranged in the head cover, and the battery is used to drive whether the fire protection component works, and is The drive motor of the rotor assembly provides power to realize the power supply of the drone.
- the drone provided by the present invention is mainly used for fire extinguishing of high-rise buildings.
- the side wall of the fuselage is an octagonal surrounding structure, which includes a front side wall, a rear side wall, a left side wall, a right side wall, and four applications.
- the fuselage further includes a top plate and a bottom plate, which are connected to the oblique sidewall of the front side wall, the left side wall, the rear side wall, and the right side wall in order, and together with the side wall of the fuselage form a box body.
- the power module includes a plurality of batteries for providing power, a battery box for fixing the battery, and a head cover for preventing liquid from penetrating.
- the battery box is disposed in the head cover, and is surrounded by a side wall and Cover composition. Among them, multiple batteries are placed on the top plate of the box structure, and the battery is limited in the box structure by the battery box, which reduces the gap between the battery and the surrounding area, which is helpful to reduce the battery vibration when the drone is flying; multiple batteries are connected A battery PCB board is used to control the output power.
- the battery box is consistent with the shape of multiple batteries, and the battery box has a battery non-slip pad on the side wall to avoid the battery caused by vibration during the drone flight or landing. Loose; there is a handle on the upper cover of the battery box, which is convenient for picking up the power module during maintenance and replacement.
- each rotor component is It includes a tubular rotor supported by a carbon fiber material, a propeller drive motor and a propeller.
- One end of the rotor arm is inserted into the inclined side wall and the other end is connected to the motor holder.
- the propeller drive motor, the propeller drive motor and the propeller are provided on the rotor arm. Connect, control the battery to the motor function through the battery PCB board, and drive the propeller to rotate.
- the signal lamp can be set on the motor holder. With the battery function, the signal lamp lights up when the drone is flying. It can indicate the ground personnel, the flying direction and status of the drone.
- the rotor arm includes a first wing arm fixed on a side wall of the fuselage, a second wing arm for supporting the propeller, and a wing arm adapter for connecting the first wing arm and the second wing arm.
- the second wing arm can be folded around the first wing arm through a wing arm transfer device, and the folded rotor assembly does not exceed the range of the fire protection assembly.
- the size of the rotor arm of the drone is longer.
- the deployed rotor arm is greatly limited. Drones are transported and stored. Therefore, the rotor arm can be set to a two-stage structure, and connected in the middle by an adapter.
- the near-fuselage is defined as the near end
- the far-away from the fuselage is defined as the far-end.
- the ratio of the length of the first wing arm to the second wing arm is set to 1/5 to 1/3, and the The length does not exceed the distance between the distal ends of two adjacent first wing arms.
- the entire drone can be folded into an approximate Cube structure for easy transportation or storage.
- a waterproof pad of the rotor arm may be provided at the joint.
- the adapter device includes a first adapter piece sleeved on the distal end of the first wing arm, a second adapter piece sleeved on the proximal end of the second wing arm, and a first adapter piece.
- the first adapter and the second adapter are connected by a rotating shaft, and the second adapter is provided on the second adapter.
- the sliding shaft passes through the horizontal chute vertically.
- the locking spring is extended.
- the sliding shaft is fixed at the proximal end of the chute to keep the locking spring extended and realize the second wing. Folding of the arm; when the second wing arm needs to be deployed, the sliding shaft is moved to the distal end of the chute and fixed, and the locking spring can be naturally extended.
- the wires used to connect the propeller drive motor pass through the second wing arm, the second adapter, the first adapter, and the first wing arm in sequence, and are electrically connected to the battery assembly, and the wire has a certain margin. Avoid it blocking the folding of the second wing arm.
- the second wing arm is folded with the lightest structure by cleverly setting an adapter device, and the operation is simple and effective.
- the folding body design is used to make the drone compact and firm. After folding, the whole machine appears as a hug, which reduces the area occupied by the drone and reduces the difficulty of packing and transportation.
- the legs include two diagonal support legs fixed on the bottom surface of the fuselage box structure and horizontal legs vertically connected to the same end of the diagonal support legs to form two continuous inverted T-shaped structures.
- fire protection components and image components are required.
- the two sets of feet and the vertical line in the fuselage are symmetrically arranged, and the included angle ⁇ between the two sets of legs is 30 ° to 80 °.
- the included angle ⁇ 30 ° or 40 ° or 50 ° or 60 ° or 70 ° or 80 °.
- the two diagonal support legs may be arranged in parallel or in a trapezoidal configuration.
- the four diagonal support legs of the two sets of legs form a quadrangular platform structure; the horizontal legs are intermittently covered with anti-vibration pads.
- an anti-vibration device is set at the bottom, which can be an anti-vibration sleeve made of a soft material wrapped around the bottom of the pole, or a dot-matrix-type anti-vibration ball arranged at the bottom of the pole, or an inverted T-shaped leg horizontal Shock-resistant soft rubber is fully wrapped or partially wrapped on the pole.
- the fuselage bottom plate is no longer suitable for fixing heavy objects, so the space between the feet can be used.
- the fire-fighting components are arranged in the lower part of the fuselage so that the battery components and the fire-fighting components are symmetrically distributed with respect to the fuselage, which can ensure the balance of the drone, appropriately reduce the center of gravity of the drone, and make it more stable after landing.
- fire drones According to the use characteristics of fire drones, during their flight to the fire scene, ground operators need to know the flight conditions in real time and know the specific conditions of the fire at the first time. Therefore, fire drones need to have at least Fire center sights, gimbal components for shooting drone navigation images, night vision cameras to assist sights for night sighting, and other image components to make drones from the start of flight until they reach the fire scene. The screen is visible to improve the operation accuracy of the operator.
- the battery is used as the power source, and a sufficient amount of batteries can be used to fully meet the normal operation requirements of the drone, and to eliminate secondary dangers such as self-explosion caused by traditional fuel-driven or hybrid fuel-electricity;
- the upper part of the fuselage is only equipped with battery components, and a protective hood is added.
- the space between the lower legs is used to set fire protection components and image components. From the overall view of the fire drone, its functional components are integrated and arranged to save the drone.
- Layout space is conducive to reducing the size of the drone, making the drone model more compact; secondly, the weight of each part of the drone is reasonably distributed, ensuring that the center of gravity of the fire drone is located in the middle and lower part of the fuselage, reducing the drone Oscillation during take-off or landing, and it helps to improve the stability of the drone when landing.
- the fire protection assembly includes an integrated bracket and a fire gun barrel
- the integrated bracket includes a fixed bracket and an adjustable bracket
- the front end of the fire gun barrel is horizontally connected with the feet on the front side of the fuselage through the fixed bracket
- the rear of the fire gun barrel The end is horizontally connected to the feet on the rear side of the fuselage through an adjustable bracket
- the firearm barrel can adjust the firing angle of the barrel under the action of the adjustable bracket.
- the buckles are made up of two half rings, and threaded holes are provided on the two sides of the upper half ring.
- the fixing bracket is a " ⁇ " structure, that is, two parallel first vertical plates are connected below the first horizontal plate, and the first vertical plate is provided with a first hole; two ends of the first horizontal plate It is respectively fixed on the front diagonal support legs of the two sets of legs, and the threaded hole on the longitudinal front buckle of the fire gun barrel corresponds to the position of the first hole.
- the first vertical plate and the buckle are fixed, so that One end of the fire gun barrel is fixed between two first vertical plates; one end of the fire gun barrel near the fixed bracket is a launch port.
- the adjustable bracket is a " ⁇ " type structure, that is, two parallel second vertical plates are connected below the second horizontal plate, and a second hole is provided on the second vertical plate; The ends are respectively fixed on the diagonal support legs of the two sets of feet, and the threaded holes on the longitudinal rear end buckle of the fire gun barrel correspond to the position of the second hole. By screwing in the screws, the second vertical plate and the buckle are fixed. Thus, one end of the fire monitor barrel is fixed between the two second vertical plates.
- a pan / tilt head assembly is disposed adjacent to the fire cannon barrel.
- the pan / tilt head assembly includes a 30-times camera, a dual-timer bracket for fixing the 30-times camera, PTZ vibration damping device for reducing PTZ vibration.
- the dual gimbal bracket includes a first gimbal bracket connected to a 30x camera, and a second gimbal bracket fixed below a first horizontal plate; a space is provided between the first gimbal bracket and the second gimbal bracket.
- PTZ vibration damping device is a circular circular platen.
- the circular circular platen is outwardly provided with four short plates.
- a damping ball is fixed at the lower portion of the short plate. During the flight of the drone, it is transmitted from the fuselage. When the vibration passes through the double gimbal bracket, it is eliminated or reduced by the vibration damping ball to ensure the stability of the 30x camera shooting picture. Secondly, in order to further ensure the stability of the gimbal, a horizontal casing is set on the 30x camera, and the horizontal casing is connected to the two diagonal support legs on the front side of the fuselage through a horizontal support rod.
- a reliable 2.4G / 1.4G module is selected to reduce the drone itself.
- the structure blocks the signal, and the installed communication equipment should not be moved. Therefore, antenna fixings can be set at the four corners of the bottom of the fuselage to install the 2.4G / 1.4G module, and the antenna is fixed.
- Antenna insulation pads are installed between the components and the bottom plate to avoid the 2.4G / 1.4G module from being damaged by the water-conducting wires. As the bottom plate is fixed, neither the 2.4G / 1.4G module will be driven and the communication effect will not be affected.
- a sight can be set up to ensure that the sight of the sight and the launch port are as close as possible.
- the aiming scope is set above the fire cannon barrel, and its axis is in the same vertical plane as the fire cannon barrel axis; that is, the center point of the aiming and the center point of the launch port are on a vertical line.
- the scope and the night vision camera are installed on the lower part of the fuselage through a scope bracket which is longitudinally located between the fixed bracket and the adjustable bracket, that is, the scope bracket is longitudinally located between the first horizontal plate and the first horizontal plate.
- a sighting and vibration damping device is arranged between the sighting lens holder and the fixed bracket and the adjustable bracket.
- the scope holder includes an upper plate of the bracket, a lower plate of the bracket, and at least two scope fixing members; the upper plate of the bracket and the lower plate of the bracket are supported and connected through 4 to 8 positioning posts, and the scope fixing member is composed of The upper fixing part and the lower fixing part are snap-connected.
- the sight is located between the upper fixing part and the lower fixing part, and is arranged on the upper plate of the bracket through the lower fixing part.
- the aiming and shock absorbing device is a shock absorbing spring between the upper plate and the lower plate of the bracket, which avoids excessive vibration of the drone during the hovering and aiming process, which leads to excessive aiming deviation and improves fire fighting accuracy.
- the night vision camera is arranged on the upper plate of the bracket through the camera fixing member to ensure that the center point of the night vision camera and the center point of the sight are on the same vertical horizontal line.
- two sides of the fixed bracket are connected to the feet on the front side of the fuselage through two first steering gears; two sides of the adjustable bracket are connected to the feet on the rear side of the fuselage through two second steering gears.
- the second steering gear is provided with a steering gear motor for controlling the elevation angle ⁇ of the firing port of the fire gun barrel and the horizontal line between 10 ° and 20 °.
- the first horizontal plate is connected to the feet on the front side of the fuselage through the first steering gear; the second horizontal plate is connected to the feet on the rear side of the fuselage through the second steering gear, and the second steering gear is provided with a steering motor.
- the second horizontal plate is driven by the servo motor, so that the first horizontal plate is electrically rotated around the connection with the feet, thereby adjusting the inclination angle of the fire cannon barrel, that is, adjusting the launching mouth of the fire barrel.
- the first and second steering gears in the present invention are both electric steering gears. They have a battery function and are equipped with a steering gear motor on the second steering gear.
- the drone When the drone is flying near the fire area and hovering, it can According to the relative position of the fire cannon barrel and the fire center point, a signal is input to the servo motor to make the second servo move, thereby adjusting the firing mouth angle of the fire barrel. And success rate.
- the sight, gimbal assembly, and night vision camera are all fixed on the first horizontal plate and / or the second horizontal plate, when the second servo moves, it will drive the first horizontal plate and / or the second horizontal plate.
- the board rotates, so the relative positions of the scope, gimbal components, night vision camera and fire cannon can be kept the same, that is, the picture taken is also the picture that most closely matches the actual alignment of the fire cannon, ensuring the fire extinguishing. Precision.
- the fire-fighting cannon is a cylindrical structure without an end cap.
- the inside of the fire-fighting cannon is filled with a fire recoil without recoil.
- the rear end of the fire-fighting cannon is electrically connected to the fire-fighting bomb through a trigger module.
- the front of the barrel is filled towards the rear.
- Fire reconnaissance without recoil can prevent the fire extinguishing equipment from deviating from the fire area due to reverse impulse, and improve the accuracy of fire extinguishing.
- the fire recoil without recoil makes the fire cannon barrel not require the recoil cushioning device required for conventional fire bomb launch, which makes the whole Fire-fighting components have become very lightweight and easy to use, thereby reducing the load of fire-fighting drones, increasing the number of fire-fighting bombs they carry, and increasing the fire-fighting area of a single drone.
- the fire cannon barrel is a cylindrical structure without an end cap, and the launch port is at a certain elevation angle with the horizontal line.
- the fire bomb When filling the fire bomb, it can be taken along the firing direction of the fire bomb and filled from the front to the rear. It is simple and convenient, and can avoid the high temperature scalding operator from the launch port.
- the fire-fighting drone is in a hovering state when the fire-fighting fire-fighting equipment is launched. Therefore, in the technical solution, the fire-fighting fire-fighting equipment is set as a fire bomb without recoil.
- the firing port of the fire gun barrel is located at the front end of the fire gun, and the firing of the fire bomb is realized by electrical signals, the triggered wires and the like will be installed at the tail of the fire gun barrel, resulting in the situation that the rear space of the fire gun barrel is covered. Therefore, filling the fire ammunition along the front end to the rear end of the fire cannon, the filling is unobstructed and more rapid, which is particularly important at the time of fire fighting.
- this fire drone can extinguish a fire area of 6m 2 to 36m 2 in one flight.
- the fire area of urban residential buildings will not be too large. As long as it is found in time, it can basically meet the fire fighting needs of urban high-rise residents.
- the fire-fighting assembly further includes a fire-fighting tank storing dry powder and a dry-powder spraying pipe for spraying dry powder; the top of the fire-fighting tank is fixed to the lower part of the bottom plate of the fuselage through a fire-fighting pipe bracket; and the dry-powder spraying pipe passes through
- the two spray tube brackets are fixed on a set of feet, that is, the axis of the spray tube bracket is in the longitudinal direction, the spray port is located at one end on the front side of the fuselage, and the spray angle of the dry powder spray tube is between 10 ° and 20 °.
- the top of the fire-fighting tank is fixed to the lower part of the bottom plate of the fuselage through a fire-fighting pipe support; the bottom of the fire-fighting tank and the rear end of the dry powder spraying pipe are provided with joints, and the two joints communicate through the fire-fighting tank connecting pipe.
- another fire protection method is provided, that is, using dry powder for fire extinguishing, which is suitable for fire areas such as precision instruments and equipment.
- the fire extinguishing agent does not damage the instrument and saves fire losses to a large extent.
- the fire-fighting tank is electrically connected to a battery, and the fire-fighting tank is triggered by a signal sent from a remote terminal to inject dry powder into the dry-powder spray pipe and spray it out.
- the top of the fire tank is connected to the battery point.
- the operating end gives a signal to the fire tank, and the battery functions as a fire tank.
- the dry powder enters the dry powder spray pipe through the fire tank connection pipe and is sprayed to the fire. region.
- the fire-fighting tank is located at the bottom of the fuselage and is located behind the gimbal assembly to maintain the horizontal center of gravity balance of the fuselage; in order to further ensure the spraying accuracy of the dry-powder spraying pipe, keep the dry-powder spraying pipe parallel to the fire gun barrel, That is to reduce the aiming error between it and the sight, and improve the accuracy of fire suppression.
- the fire drone further includes an obstacle avoidance component provided on the upper part of the gimbal component, and the obstacle avoidance component judges whether the drone needs to bypass by measuring the distance between the obstacle and the obstacle.
- the obstacle avoidance components includes an obstacle avoidance ranging module using infrared TOF technology, and an obstacle avoidance fixing plate for fixing the obstacle avoidance fixing plate on the first horizontal plate.
- the obstacle avoidance fixing plate is disposed directly above the second gimbal bracket, so that The obstacle avoidance ranging module is located above the camera in the gimbal assembly, making full use of the remaining installation position of the first horizontal plate to make the structure more compact and reduce the installation of integrated brackets.
- the obstacle avoidance fixing plate and the first horizontal plate are used. A number of rubber columns are arranged in between.
- a GPS antenna is installed on the left and right sides of the drone's fuselage, combined with the PTZ component.
- colleagues display the current positioning position and current shooting of the drone. Screen.
- the positioning picture, the shooting picture, and the aiming picture are presented on the same screen in picture-in-picture mode, and the split-screen mode is used to more intuitively observe and judge the current fire situation.
- control module is arranged on the bottom plate of the box structure and includes at least a flight control module for controlling the drone flight, a launch module for controlling whether the fire protection component is activated, and a camera for controlling the PTZ shooting.
- PTZ conversion module image transmission module for controlling positioning picture, PTZ shooting picture and aiming picture return, battery module and motherboard module for controlling battery output.
- control module further includes an infrared fixed height module for measuring the flying height of the drone, an obstacle avoidance module for measuring the distance of the obstacle and a dry powder for controlling the fire tank to the dry powder spray pipe. Sprayed dry powder spray module.
- the main board module plays the role of comprehensive control and regulation, mainly for driving regulation, such as batteries, rotor drive motors, etc.
- the control is achieved by electrical signals;
- the flight control module is used to stabilize the drone's flying attitude and can control the unmanned The aircraft hovering, autonomous or semi-autonomous flight;
- each module set on the chassis structure chassis is electrically connected to the motherboard module, respectively, to achieve various operations of the drone.
- the infrared height-fixing module mainly uses infrared to determine the flying height of the drone to control the accuracy of the fire protection.
- the obstacle avoidance module is mainly used for the distance measurement of the drone to realize the obstacle avoidance function of the drone.
- the PTZ conversion module is mainly used to realize the communication connection between the drone and the remote control of the operation terminal, thereby realizing various operations of the user.
- the fire extinguishing equipment falls to the fire area along the trajectory of the parabola after being fired. Therefore, the operating fire drone is hovered at a horizontal distance from the fire area as Between 20 and 50 meters, and the drone is located between 1 and 5 meters above the fire area, it is convenient for the fire extinguishing equipment to accurately reach the fire area for fire extinguishing.
- the present invention takes the fuselage as the center, other functional components are arranged around the fuselage radioactively, and uses the space between the feet and the fuselage to use the same integrated bracket to simultaneously fix all the image components, reducing the installation space; Secondly, a foldable rotor arm is used, and the folded size is limited to the expansion area of the feet. The space occupied by the entire drone is reduced to a quadrangular table structure, making the structure of the drone compact and orderly.
- the battery components are distributed at the upper part of the fuselage, and the fire cannon barrel and image components are located at the lower part of the fuselage, so that the vertical weight of the drone is evenly distributed;
- the fire gun barrel and the gimbal components are set close to each other, and located on the left and right sides of the longitudinal axis of the drone, to further improve the lateral stability of the drone; from the longitudinal distribution of the drone, the fire gun barrel is evenly distributed on the aircraft.
- the fire cannon trigger member is located at the longitudinal rear side, and the gimbal and sight are located at the longitudinal front side to ensure the uniformity of the longitudinal distribution of the drone.
- the present invention only the battery is used as the power source, and a sufficient amount of batteries is carried, which can fully meet the normal operation requirements of the drone, and prevent secondary explosions such as self-explosion caused by the traditional fuel-driven or hybrid fuel-electricity. Dangerous; using fire bombs without recoil to extinguish fires can fully meet general high-rise fires, and will not generate a backward impact on the drone, which will help improve the accuracy of drone fire suppression.
- FIG. 1 is a three-dimensional structural diagram of the drone.
- FIG. 2 is a perspective structural view of a drone.
- Figure 3 is an exploded view of the drone.
- FIG. 4 is an exploded view of a body and a battery module of the drone in the present invention.
- FIG. 5 is an exploded view of a rotor assembly in the present invention.
- FIG. 6 is a top view of the drone.
- FIG. 7 is an exploded view of the feet in the present invention.
- FIG. 8 is an exploded view of the fire protection assembly in the present invention.
- Figure 9 is a left side view of the drone.
- FIG. 10 is an exploded view of a fire-fighting tank and a dry powder injection pipe in the present invention.
- FIG. 11 is an exploded view of an image component in the present invention.
- Fig. 12 is a front view of the drone.
- FIG. 13 is an exploded view of a control module in the present invention.
- a compact fire-fighting drone includes a fuselage 1, four rotor assemblies 3, two sets of feet 4, an image assembly 7, and a fire-fighting assembly 5.
- the fuselage 1 It is a box structure with multiple control modules 6 inside, a power module 2 on the upper part of the fuselage 3, a rotor assembly 3 on the side wall of the fuselage 1, and multiple sets of feet 4 components located in the transverse direction of the lower part of the fuselage 1, respectively.
- the rotor assembly 3 includes a rotor arm 31, a drive motor 32 provided at the distal end of the rotor arm 31, and a rotor 33 which is driven by the motor to rotate; one end of the leg 4 It is connected to the bottom surface of the box structure, and the other end is used to support the ground.
- the fire protection assembly 5 and the image assembly 7 are fixed on the feet 4; the power module 2 is used to drive the fire protection assembly 5 to work, and is the rotor assembly 3
- the driving motor 32 provides power to realize the power supply of the drone.
- the side wall of the fuselage 1 is an octagonal surrounding structure, which includes a front side wall 11, a rear side wall 13, a left side wall 12, a right side wall 14 and four for sequentially connecting the front side.
- the fuselage 1 further includes a top plate 16 and a bottom plate 17, which together form a box structure with the side wall of the fuselage 1.
- the power module 2 includes a plurality of batteries 21 for providing power, a battery box 22 for fixing the battery 21, and a head cover 23 for preventing liquid from penetrating.
- the battery box 22 is disposed in the head cover 23.
- a plurality of batteries 21 are placed on the top plate of the box structure, and the battery 21 is limited in the box structure by the battery box 22, which reduces the gap between the battery 21 and the surroundings, which is beneficial to reducing the vibration of the battery 21 when the drone is flying. ;
- Multiple batteries 21 are connected to a battery PCB board 25 for controlling the output power.
- the battery box 22 is consistent with the shape of the multiple batteries 21, and the battery box 22 has non-slip mats on the side wall of the battery box 22 to prevent unmanned people.
- the upper cover 222 of the battery box 22 is provided with a handle 24 to facilitate the maintenance and replacement of the power module 2.
- each rotor assembly 3 includes a tubular rotor arm 31, a propeller driving motor 32, and a propeller 33 supported by a carbon fiber material.
- One end of the rotor arm 31 is inserted into the inclined side wall 15, and the other end is connected to the motor fixing frame 34. It is connected with a propeller drive motor 32.
- the propeller drive motor 32 is connected to the propeller 33.
- the battery PCB board 25 is used to control the battery 21 to function as a motor to drive the propeller 33 to rotate.
- a signal light 35 can be set on the motor holder 34. With the function of the battery 21, the signal light 35 is used when the drone is flying. When lit, it can also indicate the ground personnel, the flying direction and flight status of the drone.
- the rotor arm 31 includes a first wing arm 311 fixed on a side wall of the fuselage 1, a second wing arm 312 for supporting the propeller 33, and a wing for connecting the first wing arm 311 and the second wing arm 312.
- An arm transfer device The second wing arm 312 can be folded around the first wing arm 311 through the wing arm transfer device.
- the folded rotor assembly 3 does not exceed the range of the fire protection assembly 5.
- the near end of the fuselage 1 is defined as the near end
- the far end of the fuselage 1 is defined as the far end.
- the length ratio of the first wing arm 311 to the second wing arm 312 is set to 1/5 to 1/3, and the first The length of the two wing arms 312 does not exceed the distance between the distal ends of two adjacent first wing arms 311. It can be seen from FIG. 6 that when the second wing arm 312 is horizontally folded, the four rotor components 3 surround a square shape, and the distance L2 between the two second wing arms 312 does not exceed the lateral distance L1 between the two sets of legs 4. Furthermore, in order to prevent rainwater or the like from penetrating through the joint between the side wall of the fuselage 1 and the first wing arm 311, a rotor arm waterproof pad 36 may be provided at the joint.
- the adapter device includes a first adapter 313 sleeved at the distal end of the first wing arm 311 and a second adapter sleeved at the proximal end of the second wing arm 312.
- Piece 314 a connecting piece lock spring 315 for connecting the first adapter piece 313 and the second adapter piece 314, a spring guide rod 316 and a sliding shaft 317 sleeved in the retracted spring, the connecting piece is locked
- One end of the spring 315 is fixed in the first adapter 313, the spring guide rod 316 passes through the distal end of the second adapter 314, and is fixed with the other end of the connecting member locking spring 315, the first rotation
- the connecting piece 313 and the second adapter 314 are connected by a rotating shaft, and a horizontal slide groove is provided on the second adapter 314.
- the slide shaft 317 passes through the horizontal slide groove vertically. When it needs to be folded, the locking spring is extended.
- the sliding shaft 317 is fixed at the proximal end of the chute, so that the lock spring is kept extended to achieve the folding of the second wing arm 312; when the second wing arm 312 needs to be expanded, the sliding shaft 317 is moved to the chute The distal end is fixed, and the locking spring can be extended naturally.
- the wires for connecting the propeller drive motor 32 pass through the second wing arm 312, the second adapter 314, the first adapter 313, and the first wing arm 311 in sequence, and are electrically connected to the battery 21 component, and the wires A certain margin is left to prevent it from obstructing the folding of the second wing arm 312.
- the leg 4 includes two diagonal support legs 41 fixed on the bottom surface of the cabinet structure of the fuselage 1 and horizontal legs 42 connected vertically at the same end of the diagonal support legs 41 to form two continuous legs.
- the two diagonal support legs 41 may be arranged in parallel or in a trapezoidal configuration.
- the four diagonal support legs 41 of the two sets of legs 4 form a quadrangular platform structure; Discontinuously covered shockproof pad 43.
- the two sets of legs 4 are symmetrically arranged with the vertical line in the fuselage 1, and the included angle ⁇ between the two sets of legs 4 is 30 ° to 80 °.
- the included angle ⁇ 30 ° or 40 ° or 50 ° or 60 ° or 70 ° or 80 °.
- the fire protection assembly 5 includes an integrated support and a fire cannon barrel 51.
- the integrated support includes a fixed support 52 and an adjustable support 53. It is connected to the feet 4 on the front side of the fuselage 1, and the rear end of the fire cannon barrel 51 is laterally connected to the feet 4 on the rear side of the fuselage 1 through an adjustable bracket 53.
- the fire gun barrel 51 is provided with two sets of buckles at both ends in the longitudinal direction. The buckles are made up of two half-circles 511, and threaded holes are provided on the two lateral sides of the upper half-circle 511.
- the fixing bracket 52 has a “ ⁇ ” structure, that is, two parallel first vertical plates 522 are connected below the first horizontal plate 521, and a first vertical plate 522 is provided with a first One hole 523; the two ends of the first horizontal plate 521 are respectively fixed on the front side diagonally supporting legs 41 of the two sets of legs 4, and the threaded holes on the longitudinal front end snap of the fire gun barrel 51 correspond to the positions of the first holes 523.
- the first vertical plate 522 is fastened to the buckle by screwing, so that one end of the fire cannon barrel 51 is fixed between the two first vertical plates 522.
- One end of the fire cannon barrel 51 near the fixing bracket 52 is a launch port.
- the adjustable bracket 53 is of a “ ⁇ ” type structure, that is, two parallel second vertical plates 532 are connected below the second horizontal plate 531, and the second vertical plate 532 is provided with The second hole 533; the two ends of the second horizontal plate 531 are respectively fixed to the rear diagonal support legs 41 of the two sets of legs 4, and the threaded holes on the longitudinal rear end snap of the fire gun barrel 51 correspond to the positions of the second holes 533, By screwing in the screws, the second vertical plate 532 and the buckle are fixed, so that one end of the fire monitor barrel 51 is fixed between the two second vertical plates 532.
- the second vertical plate 532 is arc-shaped, and the second hole 533 is an arc chute.
- a plurality of scales are provided on the second vertical plate 532, and two second vertical plates are used to fix the second vertical plate 532.
- a scale indicating mark is set on the screw of the fire gun barrel 51 between the straight plates 532, and the elevation angle ⁇ of the fire gun barrel 51 is adjusted by adjusting the position of the screw in the arc chute.
- the fire cannon barrel 51 is a cylindrical structure without an end cap.
- the inside of the fire cannon barrel 51 is filled with a firearm without recoil in the cannon barrel.
- FIG. 9 it can be known that there are 1 to 3 fire gun barrels 51, and the elevation angle of the launch port of each fire gun barrel 51 and the horizontal line is in the range of 10 ° to 20 °.
- the fire protection assembly 5 further includes a fire protection tank 55 storing dry powder and a dry powder spraying pipe 54 for spraying dry powder.
- the top of the fire tank 55 is fixed to the lower part of the bottom plate 17 of the fuselage 1 through a fire tube bracket 551; the dry powder spray pipe 54 is fixed to a set of feet through two spray pipe brackets 541, that is, the axis of the spray pipe bracket 541 is at In the longitudinal direction, and the spray port is located at one end on the front side of the fuselage, the spray angle of the dry powder spray pipe 54 is between 10 ° and 20 °.
- the top of the fire tank 55 is fixed to the lower part of the bottom plate 17 of the fuselage 1 through a fire tube bracket 551; the bottom of the fire tank 55 and the rear end of the dry powder injection pipe 54 are provided with a joint 552, and two joints 552 are passed through the fire tank
- the connection pipe 553 communicates.
- the image assembly 7 includes a sight 71 and a gimbal assembly 72.
- the sight 71 is disposed above the fire cannon barrel 51, and its axis lies in the same vertical plane as the axis of the fire barrel 51.
- the pan / tilt head assembly 72 is located adjacent to the fire gun barrel 51 and is fixed to the lower portion of the fixed bracket 52 through a pan / tilt bracket; the lateral distance between the pan / tilt head assembly 72 and the outer wall of the fire gun barrel 51 is not greater than 50 mm.
- the pan / tilt head assembly 72 includes a 30-times camera 721, a dual-pylon stand for fixing the 30-times camera 721, and a pan-tilt vibration reduction device 724 for reducing the vibration of the pan-tilt.
- the dual gimbal bracket includes a first gimbal bracket 722 connected to a 30x camera 721, and a second gimbal bracket 723 fixed below the first horizontal plate 521; the first gimbal bracket 722 and the second gimbal A gimbal vibration reduction device 724 is provided between the brackets 723.
- the middle part of the gimbal shock absorbing device 724 is a circular circular platen.
- the circular circular platen is outwardly provided with four short plates.
- a damping ball is fixed at the lower portion of the short plate.
- the fuselage 1 When the transmitted vibration passes through the double gimbal bracket, it is eliminated or reduced by the vibration damping ball to ensure the smoothness of the picture taken by the 30x camera 721.
- a horizontal casing 725 is sleeved on the 30x camera 721, and the horizontal casing 725 is connected to two diagonal support legs 41 on the front side of the fuselage through a horizontal support rod 726.
- antenna fixing pieces 751 can be set at the four corners of the bottom plate 17 of the fuselage 1 for 2.4G / 1.4 installation.
- G module 75, and an antenna insulation pad 752 is provided between the antenna fixing member 751 and the bottom plate 17 to prevent the 2.4G / 1.4G module 75 from being burned by the water-conducting wire. /1.4G module 75, and will not affect the communication effect.
- a night vision camera 73 is provided behind the sight 71, and the night vision camera 73 and the sight 71 are both
- the scope fixing piece 712 is longitudinally arranged on the fixed bracket 52 and the adjustable bracket 53, that is, the scope bracket 711 is longitudinally arranged on the first horizontal plate 521 and the second horizontal plate 531.
- the scope holder 711 includes a bracket upper plate 7111, a bracket lower plate 7112, and at least two scope fixing members 712. Between the bracket upper plate 7111 and the bracket lower plate 7112, 4 to 8 positioning posts are passed. Supporting connection, the scope fixing piece 712 is snapped from the upper fixing piece 7121 and the lower fixing piece 7122. The sight 71 is located between the upper fixing piece 7121 and the lower fixing piece 7122. The lower fixing piece 7122 is arranged on the upper plate 7111 of the bracket. on.
- a shock absorbing spring is provided between the upper plate 7111 and the lower plate 7112 of the bracket to prevent the drone from excessively vibrating during the hovering and aiming process, resulting in excessive aiming deviation, and improving fire fighting accuracy.
- the night vision camera 73 is arranged on the upper plate 7111 of the bracket through a camera fixing member to ensure that the center point of the night vision camera 73 and the center point of the sight 71 are on the same vertical horizontal line; the sight 71 is perpendicular to the firing port of the fire gun barrel 51
- the pitch is between 5mm and 50mm.
- the fire drone further includes an obstacle avoidance assembly 74 provided on the upper portion of the fixed bracket 52, and the obstacle avoidance assembly 74 determines whether the drone is measured by measuring the distance from the obstacle. Whether to bypass.
- a GPS antenna 76 is provided on the left and right sides of the drone body 1 in combination with the gimbal component 72. In the background of the ground operation, colleagues display the current positioning position of the drone and The current shooting frame.
- the obstacle avoidance assembly 74 includes an obstacle avoidance ranging module 741 using infrared TOF technology, and an obstacle avoidance fixing plate 742 for fixing the obstacle avoidance fixing plate 742 on the first horizontal plate 521.
- the obstacle avoidance ranging module 741 is positioned above the camera in the gimbal assembly 72, making full use of the remaining installation position of the first horizontal plate 521, making the structure more compact and reducing the installation of integrated brackets;
- a plurality of shock-absorbing rubber columns 743 are provided between the obstacle avoidance fixing plate 742 and the first horizontal plate 521.
- control module 6 is disposed on the chassis bottom plate 17 and includes a flight control module 61 for controlling drone flight and a launch for controlling whether a fire monitor can fire or not.
- Module 62 PTZ adapter module 63 for controlling PTZ shooting, image transmission module 64 for controlling positioning picture, PTZ shooting picture and aiming picture return, battery 21 for controlling output of battery 21
- Module 65 infrared fixed-height module 66 for measuring the altitude of the drone, obstacle avoidance module 67 for measuring the distance of obstacles, control of the fire tank 55 for spraying dry powder into the dry powder spray pipe 54 Dry powder injection module 68 and motherboard module 69.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
- Toys (AREA)
Abstract
一种纯电力驱动的消防无人机,通过遥控端操作,包括机身(1)、四个旋翼组件(3)、两组支脚(4)、图像组件(7)及消防组件(5),机身(1)内部设有多个控制模组(6),机身(1)上部设有动力模组(2),旋翼组件(3)包括旋翼臂(31)、驱动电机(32)及旋桨(33);消防组件(5)和图像组件(7)固定在支脚(4)上;图像组件(7)包括瞄准镜(71)、云台组件(72)和设置在瞄准镜(71)后方的夜视相机(73);动力模组(2)包括多块电池(21)、电池盒(22)及头罩(23);电池(21)用于驱动消防组件(5)是否工作,且为旋翼组件(3)的驱动电机提供动力,实现无人机的供能。
Description
本发明涉及无人机领域,具体的说,是一种纯电力驱动的消防无人机。
随着城市化建设的不断发展,高层建筑越来越多,随之而来的是高楼火灾的频发,由于高楼结构复杂、人员密集、且高楼火灾具有火势蔓延快、疏散困难和扑救难度大的特点,一旦失火,火势难以控制、人员难以逃离。
在现有技术中,常用的灭火方式是通过消防云梯及消防水枪等进行灭火,但对于超过10层的住宅建筑和超过24米高的高层火灾,消防云梯的长度及消防水枪、水炮的射程均随着火灾发生点的高度增加严重受限,表现为云梯升到空中后,受风力影响,会左右摇摆,增加救火难度;其次,采用消防水枪、水炮进行灭火的方式,需要对水进行加压操作,水压也会对到高度产生限制。
无人机作为一种新型工业技术,已被广泛应用于各种领域,随着无人机技术的发展,使无人机赋予消防灭火的功能,将会成一种高空消防的可行手段,由于消防无人机靠近火场作业,若采用传统的燃油驱动或油电混合,会导致消防无人机自爆等二次危险,因此,亟需一种纯电力驱动的消防无人机。
发明内容
有鉴于此,本发明为解决上述问题,提供一种纯电力驱动的消防无人机,能对高层建筑进行消防保护,及时有效的进行定点灭火。
本发明的技术方案是,一种纯电力驱动的消防无人机,通过遥控端操作,包括机身、四个旋翼组件、两组支脚、图像组件及消防组件,
所述机身为箱体结构,内部设有多个控制模组,机身上部设有动力模组,旋翼组件设于机身侧壁,两组支脚组件分别位于机身下部的横向两侧;
所述旋翼组件包括旋翼臂、设置在旋翼臂远端的驱动电机,以及设有利用电机驱动转动的旋桨;
所述支脚的一端与箱体结构的底面连接,另一端用于支撑地面,所述消防组件和图像组件固定在支脚上;
所述图像组件包括瞄准镜、云台组件和设置在瞄准镜后方的夜视相机,所述瞄准镜设于消防组件的上方;所述云台组件设于消防组件的邻侧。
所述动力模组包括多块电池、用于固定电池的电池盒及用于防止液体渗入的头罩,所述电池盒设于头罩内,所述电池用于驱动消防组件是否工作,且为旋翼组件的驱动电机提供动力,实现无人机的供能。
本发明提供的无人机,主要针对于高层建筑灭火,所述机身侧壁为八边形围边结构,其包括前侧壁、后侧壁、左侧壁、右侧壁及4个用于依次连接前侧壁、左侧壁、后侧壁、右侧壁的斜侧壁,所述机身还包括顶板和底板,与机身侧壁共同形成箱体结构的机身。更进一步地,动力模组包括多块 用于提供动力的电池、用于固定电池的电池盒及用于防止液体渗入的头罩,所述电池盒设于头罩内,由围边侧壁和上盖组成。其中,多块电池放置在箱体结构的顶板上,通过电池盒将电池限位在箱体结构内,减少电池与四周的间隙,有利于降低无人机飞行时电池的振动;多块电池连接一块电池PCB板,用于控制输出的电量,所述电池盒与多块电池外形保持一致,且电池盒侧壁上设有电池防滑垫,避免无人机飞行或降落过程中,由于震动导致电池松动;电池盒的上盖上设有提手,便于维修更换时,拿起动力模组。
更进一步地,为减轻消防无人机的自重,使其能承载更多用于消防灭火的设备,在保证消防无人机具有足够升力的前提下,设置四个旋翼组件,每个旋翼组件均包括碳纤维材质支撑的管状旋翼臂、旋桨驱动电机及旋桨,旋翼臂的一端插入斜侧壁,另一端与电机固定架连接,其上设有旋桨驱动电机,旋桨驱动电机与旋桨连接,通过电池PCB板控制电池向电机功能,带动旋桨转动。当消防无人机作业时户外光线不足时,需要让操作人员了解无人机起飞时的状态,可以在电机固定架上设置信号灯,通过电池功能,在无人机飞行时,信号灯点亮,也可示意地面人员,无人机的飞行方向和飞行状态。
更进一步地,所述旋翼臂包括固定在机身侧壁的第一翼臂、用于承托旋桨的第二翼臂及用于连接第一翼臂与第二翼臂的翼臂转接装置,所述第二翼臂可通过翼臂转接装置绕着第一翼臂折叠,折叠后的旋翼组件不超出消防组件的范围。
消防无人机承载的重量较大,因此,为提供足够大的升力和保持水平方向的稳定性,无人机的旋翼臂尺寸较长,当无人机降落后,展开的旋翼臂大大限制了无人机的运输和储藏,因此,可将旋翼臂设置为两段式结构,中间通过转接装置进行连接。更进一步地,定义靠近机身的为近端、远离机身的为远端,设置第一翼臂与第二翼臂的长度之比为1/5~1/3,且第二翼臂的长度不超过相邻两个第一翼臂远端之间的距离相对两个。当第二翼臂水平折叠后,四个旋翼组件围城一个口字形,相对两个第二翼臂的间距L2不超过两组支脚的横向间距L1,如此,可将整个无人机收拢成近似于立方体结构,便于运输或存放。
更进一步地,为避免雨水等通过机身侧壁与第一翼臂之间连接处渗入,可在连接处设置旋翼臂防水垫。
更进一步地,所述转接装置包括套设在第一翼臂远端的第一转接件、套设在第二翼臂近端的第二转接件、用于连接第一转接件及第二转接件的连接件锁紧弹簧、套设在缩进弹簧内的弹簧导向杆及滑动轴,所述连接件锁紧弹簧一端固定在第一转接件内,所述弹簧导向杆从第二转接件的远端穿过,再与连接件锁紧弹簧的另一端固定,所述第一转接件与第二转接件采用转轴连接,且在第二转接件上设有水平滑槽,所述滑动轴垂直穿过水平滑槽,当需要折叠时,锁紧弹簧伸长,滑动轴位于滑槽的近端后固定,使锁紧弹簧保持伸长,实现第二翼臂的折叠;当需要展开第二翼臂时,将滑动轴移动至滑槽的远端后固定,保持锁紧弹簧自然伸长即可。此外,用于连接旋桨驱动电机的导线依次通过第二翼臂、第二转接件、第一转接件、第一翼臂后,与电池组件电连接,且导线留有一定裕度,避免其阻挠第二翼臂的折叠。在本技术方案中,通过巧妙设置转接装置,采用最轻便的结构实现第二翼臂的折叠,操作简单有效。采用折叠式机身设计,使无人机结构紧凑牢固,折叠后整机呈现环抱式,减少无人机的占用面积,减少装箱运输的难度。
更进一步地,所述支脚包括两条固定在机身箱体结构的底面上的斜撑支脚和与斜撑支脚同一端垂直连接的水平支脚,使其形成两个连续的倒置T型结构。两组支脚之间的夹角β越大,无人机停 靠地面时,其重心越低,停靠也就越稳定,但由于机身下部、支脚之间的空间需要设置消防组件及图像组件,两组支脚之间的夹角β越大,机身底部空间也就越矮,若想要增大底部空间,在相同夹角β的前提下,可以采取延长支脚长度的方式,即增大支脚的垂直高度,但此种方式会导致支脚尺寸增大,一方便导致无人机外形尺寸增大,另一方面增加机身自重,因此,经过试验后,将两组支脚与机身中垂线保持对称设置,且两组支脚之间的夹角β为30°~80°,优选地,夹角β=30°或40°或50°或60°或70°或80°。所述两条斜撑支脚可以平行设置,也可以采用梯形设置,总体来看,两组支脚的四条斜撑支脚形成四棱台结构;所述水平支脚上间断式包覆防震垫。此外,无人机在停靠地面的过程中,采用钛合金或碳纤维材质支撑的支脚与地面直接接触,会产生严重的振动及导致支脚磨损,为降低震动且保护支脚,可以在斜撑支杆的底部设置防震装置,可以是套设包裹在支杆底部的由软性材质制成的防震套,也采用设置在支杆底部的点阵式分布的防震球,或在倒置的T型支脚的横杆上全包裹或局部包裹防震软胶。
由于机身上部已经设置了电池组件,且机身的底板内部用于设置控制模组,其电路结构精细复杂,因此,机身底板不再适宜固定重型物体,因此,可以利用支脚之间的空间,将消防组件设置在机身下部,使电池组件和消防组件相对于机身对称分布,可以保证无人机的平衡,适当降低无人机的重心,使其在降落后稳定性更好。
根据消防无人机的使用特点,在其飞向火灾现场的过程中,需要地面操作人员实时了解飞行状况,第一时间知道火灾具体情况,因此,消防无人机需要具备至少需要包括用于瞄准火灾中心的瞄准镜、拍摄无人机航行画面的云台组件、用于协助瞄准镜进行夜间瞄准的夜视相机等图像组件,使无人机从飞行开始直到到达火灾现场,进行消防工作时,画面可视,提高操作端的操作精准度。
在本技术方案中,只采用电池作为动力来源,携带足量的电池,完全可以满足无人机的正常作业需求,杜绝采用传统的燃油驱动或油电混合而导致的自爆等二次危险;其次,机身上部只设置电池组件,且增加防护的头罩,利用下部支脚之间的空间设置消防组件和图像组件,从消防无人机整体来看,其功能组件集成布置,节约无人机的布置空间,利于减小无人机的尺寸,是无人机机型更紧凑;其次,无人机各部件的重量合理分布,保证消防无人机的重心位于机身中下部,减少无人机起飞或降落时的振荡,且有利于提高无人机降落时的稳定性。
进一步地,所述消防组件包括集成支架和消防炮筒,所述集成支架包括固定支架和可调支架,消防炮筒的前端通过固定支架横向与机身前侧的支脚连接,消防炮筒的后端通过可调支架横向与机身后侧的支脚连接,消防炮筒可在可调支架的动作下调整炮筒发射角度。
所述消防炮筒的纵向两端设有两组卡扣,所述卡扣由两个半圆环卡接而成,在上部的半圆环的横向两侧设有螺纹孔。
所述固定支架为“Π”型结构,即在第一水平板的下方连接两个平行相对的第一竖直板,第一竖直板上设有第一孔;第一水平板的两端分别固定在两组支脚的前侧斜撑支脚上,消防炮筒纵向前端卡扣上的螺纹孔与第一孔位置对应,通过拧入螺丝,将第一竖直板与卡扣固定,从而使消防炮筒的一端固定在两个第一竖直板之间;靠近固定支架的消防炮筒一端为发射口。
所述可调支架为“Π”型结构,即在第二水平板的下方连接两个平行相对的第二竖直板,第二竖直板上设有第二孔;第二水平板的两端分别固定在两组支脚的后侧斜撑支脚上,消防炮筒纵向后端卡扣上的螺纹孔与第二孔位置对应,通过拧入螺丝,将第二竖直板与卡扣固定,从而使消防炮筒的一端固定在两个第二竖直板之间。
更进一步地,为提高本发明无人机的紧凑度,将云台组件设置在消防炮筒的邻侧,所述云台组件包括30倍相机、用于固定30倍相机的双云台支架、用于减低云台振动的云台减震装置。所述双云台支架包括与30倍相机连接的第一云台支架,及固定在第一水平板下方的第二云台支架;在第一云台支架与第二云台支架之间设有云台减震装置。所述云台减震装置的中部为环形圆台板,环形圆台板朝外放射性设有四个短板,短板下部固定有减震球,在无人机的飞行过程中,从机身传来的振动在通过双云台支架时,被减震球消除或降低振动,保证30倍相机拍摄画面的平稳。其次,为进一步保证云台的稳定性,在30倍相机上套设有水平外壳、水平外壳通过水平支杆连接在机身前侧的两个斜撑支脚上。
此外,由于无人机需要回传图像模组所拍摄的图像,传输的稳定性关系着灭火的开展和及时反馈,因此,选取通信可靠的2.4G/1.4G模组,为减少无人机自身结构对信号的遮挡,且安装后的通信设备不宜移动,因此,可在机身的底板下部的四个角点处设置天线固定件,用于安装2.4G/1.4G模组,且在天线固定件与底板之间设置天线绝缘垫块,避免触水导线烧毁2.4G/1.4G模组,由于底板固定不动,均不会带动2.4G/1.4G模组,且不会影响通信效果。
进一步地,当无人机靠近火灾区域时,为了使拍摄的画面更加贴合消防炮筒所对准的真实画面,设置所述云台组件与消防炮筒外壁横向间距不大于50mm,也可避免云台组件与消防炮筒的触碰。
当无人机到达合适的灭火位置后,为进一步提高消防弹的发射精度,使发射口对准火灾中心位置,可通过设置瞄准镜实现,为保证瞄准镜的视线与发射口尽可能充合,将瞄准镜设于消防炮筒的上方,其轴线与消防炮筒轴线位于同一竖直平面;即瞄准的中心点与发射口的中心点在一条竖直线上。
进一步地,所述瞄准镜和夜视相机通过纵向跨设在固定支架和可调支架之间的瞄准镜支架安装在机身下部,即所述瞄准镜支架纵向跨设在第一水平板和第二水平板上,瞄准镜支架与固定支架、可调支架之间设有瞄准减震装置。
更进一步地,所述瞄准镜支架包括支架上板、支架下板、至少两个瞄准镜固定件;支架上板和支架下板之间通过4至8个定位柱支撑连接,瞄准镜固定件由上部固定件和下部固定件卡接而成,瞄准镜位于上部固定件和下部固定件之间,通过下部固定件设置在支架上板上。所述瞄准减震装置为在支架上板、支架下板之间的减震弹簧,避免无人机在悬停瞄准过程中,振动过大导致瞄准偏差过大,提高消防精度。
其次,夜视相机通过相机固定件设置在支架上板,保证夜视相机的中心点与瞄准镜的中心点在同一纵向水平线上。
进一步地,所述固定支架的两侧通过两个第一舵机连接在机身前侧的支脚上;所述可调支架的两侧通过两个第二舵机连接在机身后侧的支脚上,且第二舵机上设有舵机电机,用于控制消防炮筒的发射口与水平线的仰角α在10°至20°之间。
换言之,第一水平板通过第一舵机连接在机身前侧的支脚上;第二水平板通过第二舵机连接在机身后侧的支脚上,且第二舵机上设有舵机电机,通过舵机电机带动第二水平板,使第一水平板绕着与支脚的连接电转动,从而调整消防炮筒的倾斜角度,即调整消防炮筒的发射口。本发明中的第一舵机、第二舵机均为电动舵机,通过电池功能,且在第二舵机上设有舵机电机,当无人机飞行至火灾区域附近,悬停时,可以根据消防炮筒与火灾中心点的相对位置,向舵机电机输入信号,从而使第二舵机动作,从而调整消防炮筒的发射口角度,是消防弹精准的射向火灾中心,提高灭火效率和成功率。
其次,由于瞄准镜、云台组件、夜视相机均固定在第一水平板和/或第二水平板上,当第二 舵机动作带动时,会带动第一水平板和/或第二水平板转动,因此,可以保持瞄准镜、云台组件、夜视相机与消防炮筒的相对位置始终一致,即所拍摄的画面也是最贴合消防炮筒实际对准的画面,保证了消防灭火的精准性。
进一步地,所述消防炮筒为无端盖的筒状结构,内部填充有炮筒内的无后坐力的消防弹,消防炮筒的后端通过触发模组与消防弹电连接,消防弹沿着消防炮筒的前端向后端填充。
在发射消防弹时,发射时产生的气体中有相当一部分可以从无端盖的消防炮筒后方溢出,从而产生一个接近于推动消防弹前进动量的反向动量,这样就使得消防弹本身几乎不产生后坐力,使消防弹成为无后坐力的的弹药。
无后坐力的消防炮可以避免由于反向冲力导致消防灭火设备偏离火灾区域,提高灭火精准性;其次,无后坐力消防弹使得消防炮筒不需要常规消防弹发射时所需的后坐缓冲装置,使整个消防组件变得很轻便且易于使用,从而减小消防无人机的载重,提高其承载消防弹的数量,增大无人机单次飞行的灭火面积。
在本技术方案中,消防炮筒为无端盖的筒状结构,且发射口与水平线呈一定仰角,在填充消防弹时,可以采取沿着消防弹的发射方向、从后向前填充,更为简便,也可避免发射口产生的高温烫伤操作人员。消防无人机在发射消防灭火设备时为悬停状态,因此,在本技术方案中将所述消防灭火设备设置为无后坐力的消防弹。
由于消防炮筒的发射口位于消防炮的前端,而消防弹的触发采用电信号实现,因此,触发的电线等会安装在消防炮筒的尾部,导致消防炮筒的尾部空间存在遮蔽的情况,因此,将消防弹沿着消防炮筒的前端向后端填充,填充无遮挡、更为迅速,在救火时刻显得尤为重要。
更进一步地,由于无人机的载重能力有限,避免消防无人机总重过大,设置消防弹数量为1枚或2枚或3枚;每枚消防弹的灭火范围为6m
2/4kg至12m
2/4kg,以此消防无人机飞行一次可以扑灭6m
2至36m
2的火灾面积,城市居民楼一般着火面积不会太大,只要及时发现,基本可以满足城市高楼居民的灭火需求。
进一步地,所述消防组件还包括存放有干粉的消防罐及用于喷出干粉的干粉喷射管;所述消防罐的顶部通过消防管支架固定在机身的底板下部;所述干粉喷射管通过两个喷射管支架固定在一组支脚上,即喷射管支架的轴线在纵向方向,且喷射口位于机身前侧的一端,干粉喷射管的喷射角在10°至20°之间。所述消防罐的顶部通过消防管支架固定在机身的底板下部;所述消防罐的底部及干粉喷射管的后端均设有接头,两个接头通过消防罐连接管连通。
在本发明中,还提供另一种消防方式,即采用干粉灭火,适用于精密仪器设备等火灾区域,灭火剂不损伤仪器,较大程度上挽救火灾损失。进一步地,所述消防罐与电池电连接,通过遥控端发送的信号触发消防罐向干粉喷射管内注入干粉并喷出。在本技术方案中,消防罐的顶部与电池点连接,当需要灭火时,操作端给予消防罐信号,且使电池向消防罐功能,使干粉通过消防罐连接管进入干粉喷射管后喷向火灾区域。优选地,所述消防罐设置在机身底部,且位于云台组件的后方,保持机身横向重心平衡;为进一步保证干粉喷射管的喷射精准度,将干粉喷射管与消防炮筒保持平行,即减少其与瞄准镜之间的瞄准误差,提高灭火精准度。
进一步地,所述消防无人机还包括设置在云台组件上部的避障组件,避障组件通过测量与障碍物之间的距离来判断是否无人机是否需要绕行。
随着无人机的发展,一直采用地面人为操作,必将影响无人机的反应速度,因此,从提高无 人机的智能性出发,在无人机上设置避障组件,所述避障组件包括采用红外TOF技术实现的避障测距模组,及用于将其固定在第一水平板上的避障固定板,所述避障固定板设置在第二云台支架的正上方,使避障测距模组位于云台组件中相机的上方,充分利用第一水平板的剩余安装位置,使结构更紧凑,减少安装集成支架;为降低振动,在避障固定板与第一水平板之间设置若干个减震胶柱。
此外,为配合避障组件的使用,在无人机机身的横向左右两侧各设置一个GPS天线,与云台组件结合,在地面操作后台,同事显示无人机的当前定位位置和当前拍摄画面。更进一步地,在无人机的操作端,定位画面与拍摄画面、瞄准画面采用画中画的方式呈现在同一屏幕中,采用分屏的模式更为直观的观察判断当前火情。
进一步地,所述控制模组设置在箱体结构底板上,至少包括用于控制无人机飞行的飞控模组、用于控制消防组件是否启动的发射模组、用于控制云台拍摄的云台转接模组、用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组、用于控制电池输出的电池模组及主板模组。
更进一步地,所述控制模组还包括用于测定无人机飞行的高度的红外定高模组、用于测量障碍物距离的避障模组及用于控制消防罐向干粉喷射管中干粉喷出的干粉喷射模组。
其中主板模组起综合控制调控的作用,主要针对驱动的调控,如电池、旋翼驱动电机等,控制均通过电信号实现;飞控模组用于稳定无人机飞行姿态,并能控制无人机悬停、自主或半自主飞行;其中设置在箱体结构底板上的各个模组分别与主板模组电连接,实现无人机的各种操作。
所述红外定高模组主要利用红外测定无人机飞行的高度,从而控制消防的精度;所述避障模组主要用于无人机的测距,实现无人机的避障功能。所述云台转接模组主要用于实现无人机与操作端遥控器之间的通讯连接,从而实现用户的各项操作。
进一步地,根据消防无人机发射消防灭火设备的初始速度,消防灭火设备在射出后沿着抛物线的轨迹落向火灾区域,因此,将操作消防无人机悬停在距离火灾区域的水平距离为20至50米之间,且无人机位于火灾区域上方的1至5米之间,便于消防灭火设备精准到达火灾区域,进行消防灭火。
与现有技术相比,本发明以机身为中心,其他功能组件围绕机身放射性布置,且利用支脚与机身之间的空间,采用同一个集成支架同时固定全部图像组件,缩小安装空间;其次,采用可折叠式的旋翼臂,且将折叠后的尺寸限定在与支脚的展开面积近似,将整个无人机的占用空间缩减至类似四棱台结构,使得无人机的结构紧凑有序;从无人机垂向重量分布来看,电池组件分布在机身上部,消防炮筒、图像组件位于机身下部,使无人机垂向重量均匀分布;从无人机横向重量分布来看,将消防炮筒和云台组件临近设置,且位于无人机纵向轴线的左右两侧,进一步提高无人机横向稳定性;从无人机的纵向分布来看,消防炮筒均匀分布在机身底部,消防炮触发构件位于纵向后侧,云台和瞄准镜位于纵向前侧,保证无人机纵向分布的均匀性。更为重要的是,本发明中只采用电池作为动力来源,携带足量的电池,完全可以满足无人机的正常作业需求,杜绝采用传统的燃油驱动或油电混合而导致的自爆等二次危险;采用无后座力的消防弹进行灭火,完全可以满足一般的高层火灾,且不会对无人机产生后退的冲击力,有利于提高无人机灭火的精准度。
图1为无人机正立立体结构图。
图2为无人机倒立立体结构图。
图3为无人机的爆炸图。
图4为本发明中无人机的机身及电池模块的爆炸图。
图5为本发明中旋翼组件的爆炸图。
图6为无人机的俯视图。
图7为本发明中支脚的爆炸图。
图8为本发明中消防组件的爆炸图。
图9为无人机的左视图。
图10为本发明中消防罐及干粉喷射管的爆炸图。
图11为本发明中图像组件的爆炸图。
图12为无人机的主视图。
图13为本发明中控制模块的爆炸图。
下面结合具体实施方式对本发明作进一步的说明。其中,本发明实施例附图中相同或相似的标号对应相同或相似的部件,仅用于示例性说明,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;本发明中实施例术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,而不是指示或暗示所指的装置或元件必须具有特定的方位或以特定的方位构造,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
实施例
如图1、图2和图3所示,一种紧凑型消防无人机,包括机身1、四个旋翼组件3、两组支脚4、图像组件7及消防组件5,所述机身1为箱体结构,内部设有多个控制模组6,机身1上部设有动力模组2,旋翼组件3设于机身1侧壁,多组支脚4组件分别位于机身1下部的横向两侧、且均设有防震装置;所述旋翼组件3包括旋翼臂31、设置在旋翼臂31远端的驱动电机32,以及设有利用电机驱动转动的旋桨33;所述支脚4的一端与箱体结构的底面连接,另一端用于支撑地面,所述消防组件5和图像组件7固定在支脚4上;所述动力模组2用于驱动消防组件5是否工作,且为旋翼组件3的驱动电机32提供动力,实现无人机的供能。
如图4所示,所述机身1侧壁为八边形围边结构,其包括前侧壁11、后侧壁13、左侧壁12、右侧壁14及4个用于依次连接前侧壁11、左侧壁12、后侧壁13、右侧壁14的斜侧壁15,所述机身1还包括顶板16和底板17,与机身1侧壁共同形成箱体结构的机身1。更进一步地,动力模组2包括多块用于提供动力的电池21、用于固定电池21的电池盒22及用于防止液体渗入的头罩23,所述电池盒22设于头罩23内,由围边侧壁221和上盖222组成。其中,多块电池21放置在箱体结构的顶板上,通过电池盒22将电池21限位在箱体结构内,减少电池21与四周的间隙,有利于降低无人机飞行时电池21的振动;多块电池21连接一块电池PCB板25,用于控制输出的电量,所述电池盒22与多块电池21外形保持一致,且电池盒22侧壁上设有电池21防滑垫,避免无人机飞行或降落过程中,由于震动导致电池21松动;电池盒22的上盖222上设有提手24,便于维修更换时,拿起动力模组2。
如图5所示,每个旋翼组件3均包括碳纤维材质支撑的管状旋翼臂31、旋桨驱动电机32及旋桨33,旋翼臂31的一端插入斜侧壁15,另一端与电机固定架34连接,其上设有旋桨驱动电机32,旋桨驱动电机32与旋桨33连接,通过电池PCB板25控制电池21向电机功能,带动旋桨33转动。当消防无人机作业时户外光线不足时,需要让操作人员了解无人机起飞时的状态,可以在电机固定架34上设置信号灯35,通过电池21功能,在无人机飞行时,信号灯35点亮,也可示意地面人员,无人机的飞行方向和飞行状态。
所述旋翼臂31包括固定在机身1侧壁的第一翼臂311、用于承托旋桨33的第二翼臂312及用于连接第一翼臂311与第二翼臂312的翼臂转接装置,所述第二翼臂312可通过翼臂转接装置绕着第一翼臂311折叠,折叠后的旋翼组件3不超出消防组件5的范围。更进一步地,定义靠近机身1的为近端、远离机身1的为远端,设置第一翼臂311与第二翼臂312的长度之比为1/5~1/3,且第二翼臂312的长度不超过相邻两个第一翼臂311远端之间的距离。结合图6可知,当第二翼臂312水平折叠后,四个旋翼组件3围城一个口字形,相对两个第二翼臂312的间距L2不超过两组支脚4的横向间距L1。更进一步地,为避免雨水等通过机身1侧壁与第一翼臂311之间连接处渗入,可在连接处设置旋翼臂防水垫36。
结合图5和图2中放大图可知,所述转接装置包括套设在第一翼臂311远端的第一转接件313、套设在第二翼臂312近端的第二转接件314、用于连接第一转接件313及第二转接件314的连接件锁紧弹簧315、套设在缩进弹簧内的弹簧导向杆316及滑动轴317,所述连接件锁紧弹簧315一端固定在第一转接件313内,所述弹簧导向杆316从第二转接件314的远端穿过,再与连接件锁紧弹簧315的另一端固定,所述第一转接件313与第二转接件314采用转轴连接,且在第二转接件314上设有水平滑槽,所述滑动轴317垂直穿过水平滑槽,当需要折叠时,锁紧弹簧伸长,滑动轴317位于滑槽的近端后固定,使锁紧弹簧保持伸长,实现第二翼臂312的折叠;当需要展开第二翼臂312时,将滑动轴317移动至滑槽的远端后固定,保持锁紧弹簧自然伸长即可。此外,用于连接旋桨驱动电机32的导线依次通过第二翼臂312、第二转接件314、第一转接件313、第一翼臂311后,与电池21组件电连接,且导线留有一定裕度,避免其阻挠第二翼臂312的折叠。
如图7所示,所述支脚4包括两条固定在机身1箱体结构的底面上的斜撑支脚41和与斜撑支脚41同一端垂直连接的水平支脚42,使其形成两个连续的倒置T型结构,所述两条斜撑支脚41可以平行设置,也可以采用梯形设置,总体来看,两组支脚4的四条斜撑支脚41形成四棱台结构;所述水平支脚42上间断式包覆防震垫43。结合图12可知,将两组支脚4与机身1中垂线保持对称设置,且两组支脚4之间的夹角β为30°~80°,优选地,夹角β=30°或40°或50°或60°或70°或80°。
结合图2、图3和图8可知,所述消防组件5包括集成支架和消防炮筒51,所述集成支架包括固定支架52和可调支架53,消防炮筒51的前端通过固定支架52横向与机身1前侧的支脚4连接,消防炮筒51的后端通过可调支架53横向与机身1后侧的支脚4连接。所述消防炮筒51的纵向两端设有两组卡扣,所述卡扣由两个半圆环511卡接而成,在上部的半圆环511的横向两侧设有螺纹孔。
如图8所示,所述固定支架52为“Π”型结构,即在第一水平板521的下方连接两个平行相对的第一竖直板522,第一竖直板522上设有第一孔523;第一水平板521的两端分别固定在两组支脚4的前侧斜撑支脚41上,消防炮筒51纵向前端卡扣上的螺纹孔与第一孔523位置对应,通过拧入螺丝,将第一竖直板522与卡扣固定,从而使消防炮筒51的一端固定在两个第一竖直板522之间; 靠近固定支架52的消防炮筒51一端为发射口。
如图8所示,所述可调支架53为“Π”型结构,即在第二水平板531的下方连接两个平行相对的第二竖直板532,第二竖直板532上设有第二孔533;第二水平板531的两端分别固定在两组支脚4的后侧斜撑支脚41上,消防炮筒51纵向后端卡扣上的螺纹孔与第二孔533位置对应,通过拧入螺丝,将第二竖直板532与卡扣固定,从而使消防炮筒51的一端固定在两个第二竖直板532之间。
优选地,所述第二竖直板532为圆弧状,且第二孔533为圆弧滑槽,在第二竖直板532上设有多个刻度,在用于固定两个第二竖直板532之间消防炮筒51的螺丝上设置刻度指示标识,通过调整螺丝在圆弧滑槽的位置,调整消防炮筒51的仰角α。
所述消防炮筒51为无端盖的筒状结构,内部填充有炮筒内的无后坐力的消防弹,消防弹沿着消防炮筒51的前端向后端填充。结合图9所示可知,所述消防炮筒51有1至3个,每个消防炮筒51的发射口与水平线的仰角为α的范围在10°至20°之间。
结合图3和图10可知,所述消防组件5还包括存放有干粉的消防罐55及用于喷出干粉的干粉喷射管54。所述消防罐55的顶部通过消防管支架551固定在机身1的底板17下部;所述干粉喷射管54通过两个喷射管支架541固定在一组支脚上,即喷射管支架541的轴线在纵向方向,且喷射口位于机身前侧的一端,干粉喷射管54的喷射角在10°至20°之间。所述消防罐55的顶部通过消防管支架551固定在机身1的底板17下部;所述消防罐55的底部及干粉喷射管54的后端均设有接头552,两个接头552通过消防罐连接管553连通。
结合图3和图11可知,所述图像组件7包括瞄准镜71和云台组件72,所述瞄准镜71设于消防炮筒51的上方,其轴线与消防炮筒51轴线位于同一竖直平面;所述云台组件72设于消防炮筒51的邻侧,通过云台支架固定在固定支架52下部;所述云台组件72与消防炮筒51外壁横向间距不大于50mm。
如图11所示,所述云台组件72包括30倍相机721、用于固定30倍相机721的双云台支架、用于减低云台振动的云台减震装置724。所述双云台支架包括与30倍相机721连接的第一云台支架722,及固定在第一水平板521下方的第二云台支架723;在第一云台支架722与第二云台支架723之间设有云台减震装置724。所述云台减震装置724的中部为环形圆台板,环形圆台板朝外放射性设有四个短板,短板下部固定有减震球,在无人机的飞行过程中,从机身1传来的振动在通过双云台支架时,被减震球消除或降低振动,保证30倍相机721拍摄画面的平稳。
在30倍相机721上套设有水平外壳725、水平外壳725通过水平支杆726连接在机身前侧的两个斜撑支脚41上。
由于无人机需要回传图像模组所拍摄的图像,传输的稳定性关系着灭火的开展和及时反馈,因此,选取通信可靠的2.4G/1.4G模组75,为减少无人机自身结构对信号的遮挡,且安装后的通信设备不宜移动,结合图11和图12可知,可在机身1的底板17下部的四个角点处设置天线固定件751,用于安装2.4G/1.4G模组75,且在天线固定件751与底板17之间设置天线绝缘垫块752,避免触水导线烧毁2.4G/1.4G模组75,由于底板17固定不动,均不会带动2.4G/1.4G模组75,且不会影响通信效果。
进一步地,为提高无人机的适用性,使其在夜间也可作业,结合图9和图11可知,在瞄准镜71后方设置夜视相机73,所述夜视相机73与瞄准镜71均通过瞄准镜固定件712纵向跨设在固定支架52和可调支架53上,即所述瞄准镜支架711纵向跨设在第一水平板521和第二水平板531上。
如图11所示,所述瞄准镜支架711包括支架上板7111、支架下板7112、至少两个瞄准镜固定件712;支架上板7111和支架下板7112之间通过4至8个定位柱支撑连接,瞄准镜固定件712由上部固定件7121和下部固定件7122卡接而成,瞄准镜71位于上部固定件7121和下部固定件7122之间,通过下部固定件7122设置在支架上板7111上。优选地,在支架上板7111、支架下板7112之间设有减震弹簧,避免无人机在悬停瞄准过程中,振动过大导致瞄准偏差过大,提高消防精度。
夜视相机73通过相机固定件设置在支架上板7111,保证夜视相机73的中心点与瞄准镜71的中心点在同一纵向水平线上;所述瞄准镜71与消防炮筒51发射口的垂直间距在5mm~50mm之间。
结合图11和图12所示,所述消防无人机还包括设置在固定支架52上部的避障组件74,所述避障组件74通过测量与障碍物之间的距离来判断是否无人机是否需要绕行。为配合避障组件74的使用,在无人机机身1的横向左右两侧各设置一个GPS天线76,与云台组件72结合,在地面操作后台,同事显示无人机的当前定位位置和当前拍摄画面。
所述避障组件74包括采用红外TOF技术实现的避障测距模组741,及用于将其固定在第一水平板521上的避障固定板742,所述避障固定板742设置在第二云台支架723的正上方,使避障测距模组741位于云台组件72中相机的上方,充分利用第一水平板521的剩余安装位置,使结构更紧凑,减少安装集成支架;为降低振动,在避障固定板742与第一水平板521之间设置若干个减震胶柱743。
结合图3、图4和图13可知,所述控制模组6设置在箱体结构底板17上,包括用于控制无人机飞行的飞控模组61、用于控制消防炮是否发射的发射模组62、用于控制云台拍摄的云台转接模组63、用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组64、用于控制电池21输出的电池21模组65、用于测定无人机飞行的高度的红外定高模组66、用于测量障碍物距离的避障模组67、用于控制消防罐55向干粉喷射管54中干粉喷出的干粉喷射模组68及主板模组69。
显然,本发明虽然以上述实施例公开,但并不是对本发明的限定。任何本领域的普通技术人员在不脱离本发明的精神和范围内,在上述说明的基础上都可以做出可能的变化和修改。因此,本发明的保护范围应当以本发明的权利要求书所界定的范围为准。
Claims (10)
- 一种纯电力驱动的消防无人机,通过遥控端操作,包括机身(1)、四个旋翼组件(3)、两组支脚(4)、图像组件(7)及消防组件(5),其特征在于,所述机身(1)内部设有多个控制模组(6),机身(1)上部设有动力模组(2),旋翼组件(3)设于机身(1)侧壁,两组支脚(4)组件分别位于机身(1)下部的横向两侧;所述旋翼组件(3)包括旋翼臂(31)、设置在旋翼臂(31)远端的驱动电机(32),以及设有利用电机驱动转动的旋桨(33);所述支脚(4)的一端与机身(1)的底面连接,另一端用于支撑地面,所述消防组件(5)和图像组件(7)固定在支脚(4)上;所述图像组件(7)包括瞄准镜(71)、云台组件(72)和设置在瞄准镜(71)后方的夜视相机(73),所述瞄准镜(71)设于消防组件(5)的上方;所述云台组件(72)设于消防组件(5)的邻侧。所述动力模组(2)包括多块电池(21)、用于固定电池(21)的电池盒(22)及用于防止液体渗入的头罩(23),所述电池盒(22)设于头罩(23)内,所述电池(21)用于驱动消防组件(5)是否工作,且为旋翼组件(3)的驱动电机(32)提供动力,实现无人机的供能。
- 根据权利要求1所述的一种纯电力驱动的消防无人机,其特征在于,所述消防组件(5)包括集成支架和消防炮筒(51),所述集成支架包括固定支架(52)和可调支架(53),消防炮筒(51)的前端通过固定支架(52)横向与机身(1)前侧的支脚(4)连接,消防炮筒(51)的后端通过可调支架(53)横向与机身(1)后侧的支脚(4)连接,消防炮筒(51)可在可调支架(53)的动作下调整炮筒发射角度。
- 根据权利要求2所述的一种纯电力驱动的消防无人机,其特征在于,所述固定支架(52)的两侧通过两个第一舵机连接在机身(1)前侧的支脚(4)上;所述可调支架(53)的两侧通过两个第二舵机连接在机身(1)后侧的支脚(4)上,且第二舵机上设有舵机电机,用于控制消防炮筒(51)的发射口与水平线的仰角α在10°至20°之间。
- 根据权利要求1或2所述的一种纯电力驱动的消防无人机,其特征在于,所述消防炮筒(51)为无端盖的筒状结构,内部填充有炮筒内的无后坐力的消防弹,消防炮筒(51)的后端通过触发模组与消防弹电连接,消防弹沿着消防炮筒(51)的前端向后端填充。
- 根据权利要求1至3任一项所述的一种纯电力驱动的消防无人机,其特征在于,所述消防组件(5)还包括存放有干粉的消防罐(55)及用于喷出干粉的干粉喷射管(54);所述消防罐(55)的顶部通过消防管支架(551)固定在机身(1)的底板下部;所述干粉喷射管(54)通过两个喷射管支架(541)固定在一组支脚(4)上。
- 根据权利要求5所述的一种纯电力驱动的消防无人机,其特征在于,所述消防罐(55)与电池(21)电连接,通过遥控端发送的信号触发消防罐(55)向干粉喷射管(54)内注入干粉并喷出。
- 根据权利要求1至3任一项所述的一种纯电力驱动的消防无人机,其特征在于,所述消防无人机还包括设置在云台组件(72)上部的避障组件(74),避障组件(74)通过测量与障碍物之间的距离来判断是否无人机是否需要绕行。
- 根据权利要求2或3所述的一种纯电力驱动的消防无人机,其特征在于,所述瞄准镜(71)和夜视相机(73)通过纵向跨设在固定支架(52)和可调支架(53)之间的瞄准镜支架(711)安装在机身(1)下部。
- 根据权利要求1所述的一种纯电力驱动的消防无人机,其特征在于,所述控制模组(6)设置在 箱体结构底板(17)上,至少包括用于控制无人机飞行的飞控模组(61)、用于控制消防组件(5)是否启动的发射模组(62)、用于控制云台拍摄的云台转接模组(63)、用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组(64)、用于控制电池(21)输出的电池模组(65)及主板模组(69)。
- 根据权利要求1所述的一种纯电力驱动的消防无人机,其特征在于,所述消防无人机作业时,距离火灾区域水平距离为20至50米、垂直距离为1至5米。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811074070.6 | 2018-09-14 | ||
CN201811074070.6A CN109178310A (zh) | 2018-09-14 | 2018-09-14 | 一种纯电力驱动的消防无人机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020052105A1 true WO2020052105A1 (zh) | 2020-03-19 |
Family
ID=64911110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/118899 WO2020052105A1 (zh) | 2018-09-14 | 2018-12-03 | 一种纯电力驱动的消防无人机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109178310A (zh) |
WO (1) | WO2020052105A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113401330A (zh) * | 2021-07-27 | 2021-09-17 | 上海工程技术大学 | 一种可折叠微型旋翼无人机 |
DE102022104458B3 (de) | 2022-02-24 | 2022-12-22 | DFS-G e.K. | Landegestell mit Standelementen zur Befestigung an Drohnen |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109733596A (zh) * | 2019-02-19 | 2019-05-10 | 沈阳无距科技有限公司 | 无人机 |
CN212921966U (zh) * | 2020-04-20 | 2021-04-09 | 深圳市大疆创新科技有限公司 | 无人机 |
CN112559662A (zh) * | 2020-12-15 | 2021-03-26 | 中南大学 | 移动互联网地图大数据平台 |
CN113702988B (zh) * | 2021-08-10 | 2024-04-16 | 井冈山大学 | 一种测绘无人机测距避障装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011149544A1 (en) * | 2010-05-26 | 2011-12-01 | Aerovironment Inc. | Reconfigurable battery-operated vehicle system |
CN203944052U (zh) * | 2014-06-11 | 2014-11-19 | 江苏数字鹰科技发展有限公司 | 高楼警用灭火无人机 |
CN205345332U (zh) * | 2016-01-22 | 2016-06-29 | 江苏数字鹰科技发展有限公司 | 警用多功能无人机 |
CN107472536A (zh) * | 2017-07-24 | 2017-12-15 | 西北工业大学 | 一种高空消防灭火无人机 |
CN207694102U (zh) * | 2017-12-11 | 2018-08-07 | 云南优航无人机科技有限公司 | 一种高空灭火无人机 |
-
2018
- 2018-09-14 CN CN201811074070.6A patent/CN109178310A/zh active Pending
- 2018-12-03 WO PCT/CN2018/118899 patent/WO2020052105A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011149544A1 (en) * | 2010-05-26 | 2011-12-01 | Aerovironment Inc. | Reconfigurable battery-operated vehicle system |
CN203944052U (zh) * | 2014-06-11 | 2014-11-19 | 江苏数字鹰科技发展有限公司 | 高楼警用灭火无人机 |
CN205345332U (zh) * | 2016-01-22 | 2016-06-29 | 江苏数字鹰科技发展有限公司 | 警用多功能无人机 |
CN107472536A (zh) * | 2017-07-24 | 2017-12-15 | 西北工业大学 | 一种高空消防灭火无人机 |
CN207694102U (zh) * | 2017-12-11 | 2018-08-07 | 云南优航无人机科技有限公司 | 一种高空灭火无人机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113401330A (zh) * | 2021-07-27 | 2021-09-17 | 上海工程技术大学 | 一种可折叠微型旋翼无人机 |
DE102022104458B3 (de) | 2022-02-24 | 2022-12-22 | DFS-G e.K. | Landegestell mit Standelementen zur Befestigung an Drohnen |
Also Published As
Publication number | Publication date |
---|---|
CN109178310A (zh) | 2019-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020052105A1 (zh) | 一种纯电力驱动的消防无人机 | |
CN107472536B (zh) | 一种高空消防灭火无人机 | |
CN109305364B (zh) | 一种消防无人机的瞄准方法 | |
WO2020052100A1 (zh) | 一种消防无人机发射消防炮的触发方法 | |
WO2020052103A1 (zh) | 一种消防无人机的消防方法 | |
CN209305831U (zh) | 一种紧凑型消防无人机 | |
US9526930B2 (en) | Control method of a fire truck for high-rise and super high-rise building firefighting | |
CN104527979B (zh) | 空基催泪瓦斯弹自动投放器 | |
CN104590562A (zh) | 一种防撞式定点消防无人机 | |
WO2015006915A1 (zh) | 适用于高层和超高层建筑火灾扑救的消防车 | |
CN112043992A (zh) | 一种高层建筑消防飞行机器人 | |
JP6749693B2 (ja) | 無人航空機 | |
CN107487444B (zh) | 一种高空系留无人灭火系统 | |
US20220080237A1 (en) | An Apparatus and Method for Firefighting | |
CN105573343A (zh) | 一种无人机抓捕系统 | |
WO2023070787A1 (zh) | 一种空投式森林灭火弹 | |
CN109178309A (zh) | 一种紧凑型消防无人机 | |
CN108619641B (zh) | 一种垂直发射制导消防弹的灭火系统及方法 | |
CN108248848A (zh) | 一种多功能多旋翼无人机 | |
CN209305830U (zh) | 一种纯电力驱动的消防无人机 | |
CN209305832U (zh) | 一种集成安装消防无人机功能模块的集成支架 | |
CN210882619U (zh) | 消防无人机 | |
WO2009104142A1 (en) | Transportable impulse fire extinguishing system | |
CN212282613U (zh) | 一种高层建筑消防飞行机器人 | |
CN114715401A (zh) | 一种精确发射压缩干粉灭火弹的消防无人机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18933161 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18933161 Country of ref document: EP Kind code of ref document: A1 |