WO2020052103A1 - 一种消防无人机的消防方法 - Google Patents

一种消防无人机的消防方法 Download PDF

Info

Publication number
WO2020052103A1
WO2020052103A1 PCT/CN2018/118587 CN2018118587W WO2020052103A1 WO 2020052103 A1 WO2020052103 A1 WO 2020052103A1 CN 2018118587 W CN2018118587 W CN 2018118587W WO 2020052103 A1 WO2020052103 A1 WO 2020052103A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
drone
image
area
bomb
Prior art date
Application number
PCT/CN2018/118587
Other languages
English (en)
French (fr)
Inventor
罗之洪
李奔
夏烨
罗强
Original Assignee
广州市华科尔科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市华科尔科技股份有限公司 filed Critical 广州市华科尔科技股份有限公司
Publication of WO2020052103A1 publication Critical patent/WO2020052103A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C19/00Hand fire-extinguishers in which the extinguishing substance is expelled by an explosion; Exploding containers thrown into the fire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the invention relates to the field of unmanned aerial vehicles, in particular to a fire fighting method for fire fighting unmanned aerial vehicles.
  • the commonly used fire extinguishing method is to extinguish fire through fire ladders and fire water guns, but for residential buildings with more than 10 floors and high-rise fires over 24 meters high, the length of fire ladders and the range of fire water guns and water cannons Both are severely restricted as the height of the fire incident increases, manifested as the ladder rising to the air, affected by wind, will sway left and right, increasing the difficulty of firefighting;
  • the use of fire water guns and water cannons to extinguish fires requires water to be carried out. Pressurized operation, water pressure will also limit height.
  • drones As a new type of industrial technology, drones have been widely used in various fields. With the development of drone technology, enabling drones to provide fire fighting and extinguishing functions will become a feasible means of high-altitude fire fighting. Therefore, How to provide a fire protection measure that can protect high-rise buildings from fire, provide protection for residents' lives and property safety, have strong fire fighting strength and high fire efficiency is a technical problem that needs to be solved urgently.
  • the present invention provides a fire fighting drone fire fighting method, which can perform fire protection for high-rise buildings and timely and effectively perform fixed-point fire fighting.
  • the technical solution of the present invention is a fire fighting drone fire fighting method for high-rise building fire fighting.
  • the fire drone comprises a fuselage with a box structure, a battery module provided on the top of the fuselage, and a fuselage provided on the fuselage.
  • the functional component includes a fire-fighting barrel with one or more fire-fighting bombs, a sight and a gimbal camera arranged adjacent to the fire-fighting barrel, an infrared fixed-height component for determining the height of the drone, and an identification device.
  • the thermal sensor assembly of the fire center and the GPS assembly located at the upper part of the fuselage for positioning the current position of the drone; the fire drone issues an action command through the operating terminal; further, the sight and the fire monitor
  • the launch port of the barrel is located in the same vertical plane; the fire fighting method includes:
  • the image of the high-rise building area is transmitted back through the gimbal camera and thermistor components;
  • A4 According to the image of the high-rise building area, coarsely adjust the height position of the drone so that the drone stops at the fire floor area;
  • the battery module is composed of a plurality of batteries for providing power, and the output power is controlled by the battery PCB board.
  • Each set of feet includes two diagonal support feet fixed on the bottom surface of the fuselage box structure and horizontal feet that are perpendicularly connected to the same end of the diagonal support feet to form two continuous inverted T-shaped structures.
  • the included angle ⁇ is 30 ° ⁇ 80 °.
  • Each rotor component includes a tubular rotor arm supported by a carbon fiber material, a propeller drive motor, and a propeller. One end of the rotor arm is inserted into the inclined side wall and the other end is connected to the motor holder. A propeller drive motor and propeller are provided on the rotor arm.
  • the driving motor is connected to the propeller, and the battery PCB board is used to control the function of the battery to the motor to drive the propeller to rotate.
  • the signal lamp can be set on the motor holder. With the battery function, the signal lamp lights up when the drone is flying. It can indicate the ground personnel, the flying direction and status of the drone.
  • the drone in the present invention also includes a control module for driving various functional components, which is controlled by a remote terminal;
  • the control module is arranged inside the fuselage box structure, and includes a flight control for controlling the flight of the drone Modules, launch modules for controlling whether fire cannons are fired, PTZ adapter modules for controlling PTZ shooting, image transmission modules for controlling positioning pictures, PTZ shooting pictures, and aiming picture returns, Battery module for controlling battery output, infrared fixed-height module for measuring the height of drone flight, obstacle avoidance module for measuring the distance of obstacles, and control of fire-fighting tanks for spraying dry powder into dry powder spray tubes
  • the dry powder spraying module and the motherboard module The main board module plays the role of comprehensive control.
  • the flight control module is used to stabilize the drone's flight attitude and can control the hovering, autonomous or semi-autonomous flight of the drone.
  • the group is electrically connected to the motherboard module respectively to realize various operations of the drone.
  • the unmanned aerial vehicle in the present invention is driven by pure electric power, instead of the traditional fuel-driven or hybrid electric drive of the unmanned aerial vehicle, and avoids secondary dangers such as fuel explosion caused by operation in a high-temperature environment.
  • the drone When the operator receives a fire alarm, according to the fire address in the alarm message, the drone can be transported to the vicinity of the fire location, and the drone is controlled to take off, determine the fire center, aim, and fire a fire bomb. The location and operation of the man-machine launch fire bombs. After the launch, observe the fire-fighting situation on the spot to determine whether a second fire or another fire drone is required for fire-fighting operations.
  • step A1 according to the fire address and the current position of the drone, plan the shortest flight route for the drone; the operator issues a take-off order to the drone, and the drone flies to the fire area.
  • the PTZ camera passes The image transmission module returns the real-time flight picture to the operator, the infrared fixed height module returns the real-time altitude data of the drone, and the GPS component returns the real-time positioning information of the drone.
  • the operator combines these three types of information to understand in real time
  • the current state of the drone makes it easy to adjust the flying height and direction of the drone at any time to avoid high-altitude collisions.
  • the functional component further includes an obstacle avoidance device for identifying an obstacle; in step A1, during the flight of the fire drone, when the distance of the obstacle from the drone is at least 5 meters, The drone starts to slow down.
  • the distance of the nearest obstacle can be determined according to the obstacle avoidance device.
  • the flight speed of the fire drone in the present invention is between 10m / s to 25m / s. Therefore, It is necessary to give the drone a certain response time.
  • the distance from the obstacle to the drone is not less than 5 meters, it is preferably 5 to 20 meters, that is, 1/5 to 2s for the drone.
  • Response time when an obstacle is encountered, the obstacle information can be fed back to the operator. Through manual operation, the drone can also automatically avoid, start deceleration, and wait for the obstacle to leave the flight line or the drone to bypass. .
  • the obstacle avoidance process of the drone is: during the flight, the obstacle avoidance device is used to identify the position of a distant obstacle, and the current position and altitude of the drone fed back by the infrared fixed height module is used to determine whether the drone is Need to climb over obstacles or slow down.
  • the obstacle avoidance device is realized by using the infrared TOF technology, that is, the distance from an object is calculated by using the flying time of infrared light in the air.
  • the TOF technology has a long ranging distance, high accuracy, and relatively low requirements for reflective objects. It is suitable for small-area objects such as lines and cones. It has a great advantage over ultrasonic ranging and has a multi-point sensing TOF chip. It can realize the construction of 3D models of objects, which is widely used, such as scanning the outline of a room, building a map, and recognizing gestures.
  • the fire cannon barrel in the present invention is a tubular structure without an end cap; when a fire bomb is fired, a considerable part of the gas generated during the launch can overflow from the rear of the fire cannon cap without an end cap, resulting in a close to Promote the reverse momentum of the forward momentum of the fire bomb, so that the fire bomb itself has almost no recoil, and the fire bomb becomes ammunition without recoil. Fire reconnaissance without recoil can prevent the fire extinguishing equipment from deviating from the fire area due to reverse impulse, and improve the accuracy of fire extinguishing.
  • the fire recoil without recoil makes the fire cannon barrel not require the recoil cushioning device required for conventional fire bomb launch, which makes the whole Fire-fighting equipment has become very lightweight and easy to use, thereby reducing the load of fire-fighting drones, increasing the number of fire-fighting bombs they carry, and increasing the fire-fighting area of a single drone.
  • step A2 when the operator sees the fire information from the PTZ camera, such as thick smoke, fire light, etc., the drone is operated to hover near the high-rise building. Therefore, to control the fire bomb's firing speed not to exceed 35m / s, in order to ensure that the fire bomb can reach the fire area accurately, further, set the hovering position of the fire drone to a horizontal distance of 20 to 50 from the high-rise building Meter.
  • step A4 the image of the high-rise building area is a live image returned by the PTZ camera and a thermal image returned by the thermal sensor component; the rough adjustment step is:
  • step B3 If yes, the drone rises or descends to a high-temperature area, takes a thermal image again, and repeats step B2;
  • the drone's barrel may not be aimed at the fire floor at this time. Therefore, it is necessary to control the drone's height near the fire floor. It can be fully realized by using the thermal sensor components carried by the drone. Specifically, when the fire area is located on a high level and the drone is located on a low floor, the high temperature area of the thermal image captured must be located on the upper edge of the image. At this time, Control the drone to fly one or two floors upwards. If the fire center is located on the upper one or two floors of the drone, then the thermal image returned again will form a distribution situation where the center is the high temperature area and the surrounding is the low temperature area.
  • the control drone continues to fly upward one or two layers until the low temperature area is distributed in the high temperature in the thermal image. Hover again when going around. In this way, after steps A2 and A4, the drone can be hovered at the most appropriate position from the fire floor. Similarly, when the fire area is located on the lower floor and the drone is located on the high floor, the same judgment is made.
  • the drone's rising speed is controlled to be 2m / s ⁇ 8m / s; the falling speed is 1m / s ⁇ 6m / s.
  • the steps of fine-tuning are: determining the fire center through the thermal imaging returned by the thermal sensor, and aligning the cross cursor of the scope with the fire center through the operating end.
  • the mouth and the sight are located in the same vertical plane.
  • the tail of the fire bomb is electrically connected to the tail of the fire gun barrel through a trigger switch; in step A6, the step of launching the fire bomb includes: the remote end of the drone sends an action signal to the fire gun barrel to close the trigger switch , Fire bombs fired.
  • the process of triggering the switch closing is: the operating end sends a signal to the main control board, and the signal is amplified. Then, it is passed to the transmitting module, which controls the battery assembly to conduct electricity to the trigger switch, and the trigger switch is closed.
  • the signal amplification can be realized by an amplification circuit.
  • One-click signal transmission can be used on the remote end, and fire bombs are controlled by pure circuits. The response is fast and there is no deviation. When the fire bombs are launched and they are filled with new fire bombs again, they only need to use the electrical connection again, which is simple and convenient. .
  • step A7 the return of the fire drone is one-click return or automatic return; when the fire bomb is fired, the fire drone automatically returns; when the fire bomb is not fired and the fire has been extinguished, the fire is unmanned One-click return to home.
  • the control center when the control center receives a fire signal, it first dispatches a fire drone to extinguish the fire. At this time, when the fire area is too large, the fire bomb carried by the fire drone is not enough to extinguish the fire.
  • the gimbal camera on the drone sends back the fire situation, the remote end increases the number of fire drones flying to the fire area, and at the same time, the fire drones dispatched first will automatically return after the fire extinguishing equipment is launched.
  • the two can improve the efficiency of drone use; when the fire is small, the fire bomb carried by the drone is sufficient to extinguish the fire, and the drone can hover on the scene for a while, waiting for the picture returned by the gimbal camera to display The fire has been extinguished. At this time, the background operator can operate the drone to return to the home with one button to avoid re-ignition caused by incomplete fire extinguishment.
  • the positioning information returned by the GPS component, the fire area image returned by the PTZ camera, the thermal imaging image returned by the thermal sensor, and the aiming image returned by the sighting lens are presented in a picture-in-picture manner on the operating end. .
  • Picture-in-picture is a way of presenting video content. It means that one or more pictures are broadcast on a small area of the picture at the same time when one picture is displayed in full screen. In this way, multiple pictures can be displayed on the screen. Presented on the same screen, it is convenient for the remote control to switch between large and small screens, comprehensive judgment, and finally achieve short-term precise and precise fire suppression.
  • the fire extinguishing method of the present invention is smooth and smooth. Fire extinguishing can be completed by issuing simple action commands, and it can ensure short fire extinguishing time, high efficiency, and reduce fire losses. Second, by setting multiple Fire reconnaissance without recoil acts as a fire-fighting equipment, which meets the basic fire-fighting needs of urban high-rise buildings without increasing the total weight of the fire-fighting drone.
  • FIG. 1 is a perspective view of a fire drone of the present invention.
  • Fig. 2 is a front view of a fire drone of the present invention.
  • FIG. 3 is a left side view of the fire drone of the present invention.
  • FIG. 4 is an enlarged view of A in FIG. 1.
  • FIG. 5 is a structural diagram of a rotor assembly in the present invention.
  • FIG. 6 is a rough adjustment step diagram in the present invention.
  • a fire-fighting method for a fire drone is used to extinguish a high-rise building.
  • the fire-fighting method includes:
  • the image of the high-rise building area is transmitted back through the gimbal camera and thermistor components;
  • A4 According to the image of the high-rise building area, coarsely adjust the height position of the drone so that the drone stops at the fire floor area;
  • step A1 during the flight of the fire drone, when the distance between the obstacle and the drone is at least 5 meters, the drone starts braking and decelerating; preferably, the distance is 5-20 meters.
  • the obstacle avoidance process of the drone is: during the flight, the obstacle avoidance device is used to identify the position of a distant obstacle, and the current position and altitude of the drone fed back by the infrared fixed height module is used to determine whether the drone is Need to climb over obstacles or slow down.
  • the obstacle avoidance device is realized by using the infrared TOF technology, that is, the distance from an object is calculated by using the flying time of infrared light in the air.
  • the TOF technology has a long ranging distance, high accuracy, and relatively low requirements for reflective objects. It is suitable for small-area objects such as lines and cones. It has a great advantage over ultrasonic ranging and has a multi-point sensing TOF chip. It can realize the construction of 3D models of objects, which is widely used, such as scanning the outline of a room, building a map, and recognizing gestures.
  • step A2 the hovering position of the fire drone is set to a horizontal distance of 20 to 50 meters from the fire area.
  • step A4 the image of the high-rise building area is a live image returned by the PTZ camera and a thermal image returned by the thermal sensor component; the rough adjustment step is:
  • step B3 If yes, the drone rises or descends to a high-temperature area, takes a thermal image again, and repeats step B2;
  • step A5 the step of fine-tuning is: determining the fire center through the thermal imaging returned by the thermal sensor, and aligning the cross cursor of the sight with the fire center through the operating end.
  • step A6 the tail of the fire bomb is electrically connected to the tail of the fire gun barrel through a trigger switch; the fire bomb launch step includes: the remote end of the drone sends an action signal to the fire gun barrel to close the trigger switch and fire ejection Out.
  • step A7 the fire drone returns to one-click or automatic return; after the fire bomb is fired, the fire drone automatically returns; when the fire bomb has not been fired and the fire has been extinguished, the fire drone has one button Return.
  • the positioning information returned by the GPS component, the fire area image returned by the PTZ camera, the thermal imaging image returned by the thermal sensor, and the aiming image returned by the sighting lens are presented in a picture-in-picture manner on the operating end. .
  • a compact fire-fighting drone includes a fuselage 1, four rotor components 3, two sets of feet 4, an image component 7, and a fire protection component 5.
  • the fuselage 1 is a cabinet Structure, with multiple control modules inside, battery module 2 on top of fuselage 3, rotor assembly 3 on the side wall of fuselage 1, multiple sets of feet 4 components located on the lateral sides of the lower part of fuselage 1, An anti-vibration device is provided; the rotor assembly 3 includes a rotor arm 31, a driving motor 32 provided at the distal end of the rotor arm 31, and a rotor 33 that is driven by the motor to rotate; one end of the leg 4 and the structure of the box body The bottom surface is connected and the other end is used to support the ground.
  • the battery module 2 is used to drive whether the fire-fighting component 5 is working, and provides power to the driving motor 32 of the rotor component 3 to realize the power supply of the drone.
  • Each rotor assembly 3 includes a tubular rotor arm 31 supported by a carbon fiber material, a rotor drive motor 32 and a rotor 33.
  • One end of the rotor arm 31 is inserted into the inclined side wall 15 and the other end is connected to the motor fixing frame 34.
  • the propeller drive motor 32 is connected to the propeller 33, and the battery 21 is controlled by the battery PCB board 25 to function as a motor, which drives the propeller 33 to rotate.
  • a signal light 35 can be set on the motor holder 34. With the function of the battery 21, the signal light 35 is used when the drone is flying. When lit, it can also indicate the ground personnel, the flying direction and flight status of the drone.
  • the rotor arm 31 includes a first wing arm 311 fixed to a side wall of the fuselage 1, a second wing arm 312 for supporting the propeller 33, and a first wing arm for connection. 311 and wing arm adapter of the second wing arm 312, the second wing arm 312 can be folded around the first wing arm 311 through the wing arm adapter, the folded rotor assembly 3 does not exceed the range of the fire protection assembly 5 .
  • the adapter includes a first adapter 313 sleeved on the distal end of the first wing arm 311, a second adapter 314 sleeved on the proximal end of the second wing arm 312, and a first adapter 313 and a connecting piece locking spring 315 of the second adapter 314, a spring guide rod 316 and a sliding shaft 317 sleeved in the retracted spring, one end of the connecting piece locking spring 315 is fixed to the first adapter 313
  • the spring guide rod 316 passes through the distal end of the second adapter 314 and is fixed to the other end of the connecting member locking spring 315.
  • the first adapter 313 and the second adapter 314 are used.
  • the rotating shaft is connected, and a horizontal chute is provided on the second adapter 314.
  • the sliding shaft 317 passes through the horizontal chute vertically. When it needs to be folded, the locking spring is extended.
  • the sliding shaft 317 is located at the proximal end of the chute. It is fixed back to keep the locking spring stretched to achieve the folding of the second wing arm 312.
  • the sliding shaft 317 is moved to the distal end of the chute and fixed to keep the locking spring naturally extended. Just long.
  • the wires for connecting the propeller drive motor 32 pass through the second wing arm 312, the second adapter 314, the first adapter 313, and the first wing arm 311 in sequence, and are electrically connected to the battery 21 component, and the wires A certain margin is left to prevent it from obstructing the folding of the second wing arm 312.
  • the fire protection assembly 5 includes an integrated support and a fire gun barrel 51, and the elevation angle of the launch port of each fire gun barrel 51 and the horizontal line is in a range of 10 ° to 20 °;
  • the integrated bracket includes a first barrel fixing member 52 and a second barrel fixing member 53.
  • the front end of the fire barrel 51 is connected laterally with the foot 4 on the front side of the fuselage 1 through the first barrel fixing member 52.
  • the fire barrel 51 The rear end of the rear end is connected laterally with the foot 4 on the rear side of the fuselage 1 through the second barrel fixing member 53.
  • the fire cannon barrel is a cylindrical structure without an end cap; when firing a fire bomb, a considerable part of the gas generated during the launch can overflow from the rear of the fire cannon without an end cap, thereby generating a force close to the forward momentum of the fire bomb. Reverse momentum, so that the fire bomb itself produces almost no recoil, making the fire bomb ammunition without recoil. Fire reconnaissance without recoil can prevent the fire extinguishing equipment from deviating from the fire area due to reverse impulse, and improve the accuracy of fire extinguishing.
  • the fire recoil without recoil makes the fire cannon barrel not require the recoil cushioning device required for conventional fire bomb launch, which makes the whole Fire-fighting equipment has become very lightweight and easy to use, thereby reducing the load of fire-fighting drones, increasing the number of fire-fighting bombs they carry, and increasing the fire-fighting area of a single drone.
  • the image assembly 7 includes a sight 71 and a gimbal assembly 72.
  • the sight 71 is provided above the fire cannon barrel 51, and its axis is in the same vertical plane as the fire cannon barrel 51 axis. Adjacent to the fire gun barrel 51, it is fixed to the lower part of the first gun barrel fixing member 52 by a gimbal bracket; it further includes a night vision camera 73 disposed behind the sight 71, and the night vision camera 73 and the sight 71 pass through.
  • the scope fixing member 712 is longitudinally disposed on the first barrel fixing member 52 and the second barrel fixing member 53.
  • the fire drone further includes an obstacle avoidance assembly 74 provided on the upper part of the first barrel fixing member 52.
  • the obstacle avoidance assembly 74 determines whether the drone needs to bypass by measuring the distance from the obstacle.
  • the control module is arranged on the bottom plate of the box structure, and includes a flight control module for controlling the drone flight, a launch module for controlling whether a fire cannon is fired, and a gimbal transfer for controlling gimbal shooting.
  • Modules image transmission modules for controlling positioning images, gimbal shooting images and aiming image returns, battery modules for controlling battery output, infrared fixed-height modules for determining the altitude of drones, Obstacle avoidance module for measuring the distance of obstacles, dry powder spraying module and motherboard module for controlling the fire tank to spray dry powder into the dry powder spraying pipe.
  • the main board module plays the role of comprehensive control and regulation, mainly for driving regulation, such as batteries, rotor drive motors, etc .; the flight control module is used to stabilize the drone's flying attitude, and can control the drone's hovering, autonomous or semi-autonomous Autonomous flight; each module set on the chassis bottom of the box structure is electrically connected to the main board module respectively to realize various operations of the drone.
  • the infrared height-fixing module mainly uses infrared to determine the flying height of the drone to control the accuracy of the fire protection.
  • the obstacle avoidance module is mainly used for the distance measurement of the drone to realize the obstacle avoidance function of the drone.
  • the PTZ conversion module is mainly used to realize the communication connection between the drone and the remote control of the operation terminal, thereby realizing various operations of the user.

Abstract

一种消防无人机的消防方法,所述消防方法包括:控制消防无人机飞向火灾区域;使消防无人机悬停在高层建筑附近;通过云台相机(72)及热敏仪组件传回高层建筑区域图像;根据高层建筑区域图像,对无人机高度位置进行粗调,使无人机停在火楼层区域;通过瞄准镜(71)传回无人机的瞄准画面;根据瞄准画面,对无人机角度进行微调,将消防炮筒(51)瞄准火灾区域;向火灾区域发射消防弹,进行灭火;消防无人机返航。

Description

一种消防无人机的消防方法 技术领域
本发明涉及无人机领域,具体的说,是一种消防无人机的消防方法。
背景技术
随着城市化建设的不断发展,高层建筑越来越多,随之而来的是高楼火灾的频发,由于高楼结构复杂、人员密集、且高楼火灾具有火势蔓延快、疏散困难和扑救难度大的特点,一旦失火,火势难以控制、人员难以逃离。
在现有技术中,常用的灭火方式是通过消防云梯及消防水枪等进行灭火,但对于超过10层的住宅建筑和超过24米高的高层火灾,消防云梯的长度及消防水枪、水炮的射程均随着火灾发生点的高度增加严重受限,表现为云梯升到空中后,受风力影响,会左右摇摆,增加救火难度;其次,采用消防水枪、水炮进行灭火的方式,需要对水进行加压操作,水压也会对到高度产生限制。
无人机作为一种新型工业技术,已被广泛应用于各种领域,随着无人机技术的发展,使无人机赋予消防灭火的功能,将会成一种高空消防的可行手段,因此,如何提供一种可对高层建筑进行消防保护,可为居民的生命财产安全提供保障的、消防力度强的、消防效率高的消防措施,是急需解决的技术问题。
技术问题
有鉴于此,本发明为解决上述问题,提供一种消防无人机的消防方法,能对高层建筑进行消防保护,及时有效的进行定点灭火。
技术解决方案
本发明的技术方案是,一种消防无人机的消防方法,用于高层建筑灭火,所述消防无人机包括箱体结构的机身、设置在机身顶部的电池模块、设置在机身底部的两组支脚、设置在机身侧壁的四组旋翼组件;所述消防无人机还包括通过设置在无人机的机身底部或无人机的两组支脚上的多个功能组件;
所述功能组件包括带有一枚或多枚消防弹的消防炮筒、设置在消防炮筒邻近的瞄准镜及云台相机、用于测定无人机飞行的高度的红外定高组件、用于识别火灾中心的热敏仪组件及设置在机身上部的用于定位无人机当前位置的GPS组件;所述消防无人机通过操作端下达动作命令;更进一步地,所述瞄准镜与消防炮筒的发射口位于位于同一竖直平面;所述消防方法包括:
A1、控制消防无人机飞向火灾区域;
A2、使消防无人机悬停在高层建筑附近;
A3、通过云台相机及热敏仪组件传回高层建筑区域图像;
A4、根据高层建筑区域图像,对无人机高度位置进行粗调,使无人机停在火楼层区域;
A5、通过瞄准镜传回无人机的瞄准画面;
A6、根据瞄准画面,对无人机角度进行微调,将消防炮筒瞄准火灾区域;
A7、向火灾区域发射消防弹,进行灭火;
A8、消防无人机返航。
在本发明中,电池模块由多块用于提供动力的电池组成,通过电池PCB板控制输出的电量。每组支脚包括两条固定在机身箱体结构的底面上斜撑支脚和与斜撑支脚同一端垂直连接的水平支脚,使其形成两个连续的倒置T型结构,两组支脚之间的夹角β为30°~80°。每个旋翼组件均包括碳纤维材质支撑的管状旋翼臂、旋桨驱动电机及旋桨,旋翼臂的一端插入斜侧壁,另一端与电机固定架连接,其上设有旋桨驱动电机,旋桨驱动电机与旋桨连接,通过电池PCB板控制电池向电机功能,带动旋桨转动。当消防无人机作业时户外光线不足时,需要让操作人员了解无人机起飞时的状态,可以在电机固定架上设置信号灯,通过电池功能,在无人机飞行时,信号灯点亮,也可示意地面人员,无人机的飞行方向和飞行状态。
本发明中无人机还包括用于驱动各功能组件的控制模组,通过遥控端进行控制;所述控制模组设置在机身箱体结构内部,包括用于控制无人机飞行的飞控模组、用于控制消防炮是否发射的发射模组、用于控制云台拍摄的云台转接模组、用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组、用于控制电池输出的电池模组、用于测定无人机飞行的高度的红外定高模组、用于测量障碍物距离的避障模组、用于控制消防罐向干粉喷射管中干粉喷出的干粉喷射模组及主板模组。其中主板模组起综合控制调控的作用,飞控模组用于稳定无人机飞行姿态,并能控制无人机悬停、自主或半自主飞行;其中设置在箱体结构底板上的各个模组分别与主板模组电连接,实现无人机的各种操作。
本发明中的无人机采用纯电力驱动,取代传统无人机的燃油驱动或油电混合驱动,避免在高温环境下作业引发燃油爆炸等二次危险。
当操作端收到火灾报警后,根据报警信息中的火灾地址,可将无人机运送至火灾地点附近后,操纵无人机起飞、确定火灾中心、瞄准、发射消防弹灭火,通过人为观察无人机的位置及操作发射消防弹,发射完后,就地观察灭火情况,判断是否需要第二次发射或者调取另一台消防无人机进行灭火操作。
在步骤A1中,根据火灾地址和无人机当前位置,为无人机规划飞行最短路线;操作端向无人机下达起飞命令,无人机飞向火灾区域,此过程中,云台相机通过图传模组向操作端回传飞行实时画面、红外定高模组传回无人机的实时高度数据、GPS组件传回无人机的实时定位信息,操作端结合此三种信息,实时了解无人机的当前状态,便于随时调整无人机的飞行高度和飞行方向,避免发生高空碰撞。
进一步地,所述功能组件还包括用于识别障碍物的避障装置;在步骤A1中,所述消防无人机在飞行过程中,当障碍物离无人机的距离至少为5米时,无人机开始刹车减速。
由于当前的地图还是以地面方位信息,对于建筑物的高度信息没有显示,而无人机的飞行搞定不足以绕过所有的高层建筑,在无人机的飞行线路里,还会出现其他飞行物体等,当无人机的线路中出现此种情况时,可以根据避障装置判断最近障碍物的距离,本发明中的消防无人机飞行速度在10m/s~25m/s之间,因此,需要给予无人机一定的反应时间,本发明中设置障碍物距离无人机的距离不少于5米时,优选地,为5~20米,即留给无人机的1/5~2s的反应时间,当遇到障碍物时,可将障碍物信息反馈给操作端,通过手动操作,也可使无人机自动避让,开始减速,等待障碍物离开飞行线路或无人机绕行通过。
进一步地,无人机的避障过程为:在飞行过程中,通过避障装置识别远处的障碍物的位置,结合红外定高模组反馈的无人机当前位置高度,判断无人机是否需要上升越过障碍物或减速绕行。
所述避障装置采用红外TOF技术实现,即利用红外光在空气中的飞行时间,算出距离物体距离。由于TOF技术具有测距距离远,精度高,对反射物体要求比较低,适用于面积小的物体,如线、锥形物体等,相比超声波测距优势很大,同时多点感应的TOF芯片可以实现构建物体3D模型,应用非常广,比如扫描房间轮廓,构建地图、识别手势等。
更进一步地,本发明中的消防炮筒为无端盖的筒状结构;在发射消防弹时,发射时产生的气体中有相当一部分可以从无端盖的消防炮筒后方溢出,从而产生一个接近于推动消防弹前进动量的反向动量,这样就使得消防弹本身几乎不产生后坐力,使消防弹成为无后坐力的的弹药。无后坐力的消防炮可以避免由于反向冲力导致消防灭火设备偏离火灾区域,提高灭火精准性;其次,无后坐力消防弹使得消防炮筒不需要常规消防弹发射时所需的后坐缓冲装置,使整个消防灭火设备变得很轻便且易于使用,从而减小消防无人机的载重,提高其承载消防弹的数量,增大无人机单次飞行的灭火面积。
在步骤A2中,操作端从云台相机中看到火灾信息,如浓烟、火光等时,操纵无人机悬停在高层建筑附近;为进一步减少消防弹发射时对无人机悬停时的影响,因此,控制消防弹的发射速度不超过35m/s,为保证消防弹能精准的到达火灾区域,进一步地,设置消防无人机的悬停位置为距离高层建筑水平距离为20至50米。
进一步地,在步骤A4中,所述高层建筑区域图像为云台相机传回的现场图像、及热敏仪组件传回的热敏图像;所述粗调步骤为:
B1、通过热敏图像找到图像里的高温区域;
B2、判断高温区域是否位于热敏图像边缘;
B3、若是,则无人机沿上升或下降至高温区域,再次拍摄热敏图像,重复步骤B2;
B4、若否,即高温区域位于热敏图像中心,则无人机停留在此处。
当无人机悬停在距离火灾区域水平距离为20至50米位置时,此时无人机的炮筒不一定是对准着火楼层,因此,需要控制无人机位于火灾楼层附附近高度。可充分利用无人机携带的热敏仪组件实现,具体为:当着火区域位于高层,而无人机位于低楼层时,所拍摄的热敏图像的高温区域必然位于图像上方边沿,此时,控制无人机向上飞行一至两层,若火灾中心位于无人机上部的一至两层,则再次返回的热敏图像中,将形成已中心为高温区,四周为低温区的分布状况,此时可以确定无人机的高度合适;当再次返回的热敏图像中,高温去依旧位于图像边缘,此时,控制无人机继续向上飞行一至两层,直至热敏图像中,低温区分布在高温去四周时再次悬停。如此,经过步骤A2和A4,可将无人机悬停在距离火灾楼层最恰当的位置。同理,当着火区域位于低层,而无人机位于高楼层时,也如此判断。
其中,为避免无人机上升或下降速度太大而使无人机上振动过大,控制无人机的上升速度为2m/s~8m/s;下降速度为1m/s~6m/s。
进一步地,当无人机经过粗调,到达合适位置后,瞄准镜传回的图像也不一点是正对火灾中心,为保证消防弹的射击精度,还需要使瞄准镜能正对火灾中心,即对无人机位置进行微调,所述微调的步骤为:通过热敏仪传回的热敏成像,确定火灾中心,通过操作端使瞄准镜的十字光标对准火灾中心,由于消防炮筒的发射口与瞄准镜位于同一竖直平面,当瞄准镜对准火灾中心时,就能保证消防弹最终精准到达火灾中心,提高灭火的可靠性。
进一步地,所述消防弹的尾部通过触发开关与消防炮筒尾部电连接;在步骤A6中,消防弹的发射步骤包括:无人机的遥控端向消防炮筒发送动作信号,使触发开关闭合,消防弹射出。
由于机身箱体内部设有起综合控制调控的作用的主控制板及用于控制消防炮是否发射的发射模组,触发开关闭合的过程为:操作端向主控制板发射信号,信号经过放大后,传给发射模组,发射模组控制电池组件向触发开关导电,触发开关闭合。信号放大可采用放大电路实现。可在遥控端采用一键式信号发送,通过纯电路控制消防弹发射,反应迅速,无偏差,当消防弹发射后,再次填充新的消防弹时,只需要重新采用电连接即可,简单便捷。
进一步地,由于火灾场景情况多变,为降低遥控端误判的几率,设定消防弹为延时射出,延时时间t=1s~10s,为遥控端修正预留时间。
进一步地,在步骤A7中,消防无人机返航为一键返航或自动返航;当消防弹发射完后,消防无人机自动返航;当消防弹未发射完、火灾已扑灭时,消防无人机一键返航。
从经济性考虑,控制中心接到火灾信号时,先行派遣一台消防无人机前往灭火,此时,火灾面积过大时,消防无人机承载的消防弹不足以扑灭火灾时,通过此台无人机上的云台相机将火灾情况传回,遥控端增加飞往火灾区域的消防无人机数量,同时,先行派遣的消防无人机在消防灭火设备发射完后,无人机自动返航,二者同时进行,可以提高无人机的使用效率;当火灾较小时,无人机承载的消防弹足以扑灭火灾时,无人机可在现场悬停片刻,待云台相机传回的画面显示火灾已扑灭,此时,后台操作人员可以一键操作无人机返航,避免火灾扑灭不彻底引起的复燃等现象。
进一步地,所述GPS组件传回的定位信息、云台相机传回火灾区域图像、热敏仪传回的热敏成像及瞄准镜传回的瞄准画面在操作端上采用画中画的方式呈现。
画中画是一种视频内容呈现方式,是指在一个画面全屏播出的同时,于画面的小面积区域上同时播出另一个或多个画面,采用此种方式,可以将多个画面在同一屏幕上呈现,便于遥控端切换大小画面,综合判断,最终实现短时间操纵精准灭火。
有益效果
与现有技术相比,本发明的消防灭火方法流畅顺利,通过下达简单的动作命令即可完成消防灭火,且能保证消防灭火的时间短、效率高,减少火灾损失;其次,通过设置多枚无后坐力的消防弹充当消防灭火设备,在不增加消防无人机总重的前提下满足城市高楼基本灭火需求,实现对高层建筑进行消防保护,及时有效的进行定点灭火。
附图说明
图1为本发明消防无人机的立体图。
图2为本发明消防无人机的主视图。
图3为本发明消防无人机的左视图。
图4为图1的A处放大图。
图5为本发明中旋翼组件结构图。
图6为本发明中粗调步骤图。
本发明的最佳实施方式
 一种消防无人机的消防方法,用于高层建筑灭火,所述消防方法包括:
A1、控制消防无人机飞向火灾区域;
A2、使消防无人机悬停在高层建筑附近;
A3、通过云台相机及热敏仪组件传回高层建筑区域图像;
A4、根据高层建筑区域图像,对无人机高度位置进行粗调,使无人机停在火楼层区域;
A5、通过瞄准镜传回无人机的瞄准画面;
A6、根据瞄准画面,对无人机角度进行微调,将消防炮筒瞄准火灾区域;
A7、向火灾区域发射消防弹,进行灭火;
A8、消防无人机返航。
在步骤A1中,所述消防无人机在飞行过程中,当障碍物离无人机的距离至少为5米时,无人机开始刹车减速;优选地,距离为5~20米。
进一步地,无人机的避障过程为:在飞行过程中,通过避障装置识别远处的障碍物的位置,结合红外定高模组反馈的无人机当前位置高度,判断无人机是否需要上升越过障碍物或减速绕行。
所述避障装置采用红外TOF技术实现,即利用红外光在空气中的飞行时间,算出距离物体距离。由于TOF技术具有测距距离远,精度高,对反射物体要求比较低,适用于面积小的物体,如线、锥形物体等,相比超声波测距优势很大,同时多点感应的TOF芯片可以实现构建物体3D模型,应用非常广,比如扫描房间轮廓,构建地图、识别手势等。
在步骤A2中,设置消防无人机的悬停位置为距离火灾区域水平距离为20至50米。
如图6所示,在步骤A4中,所述高层建筑区域图像为云台相机传回的现场图像、及热敏仪组件传回的热敏图像;所述粗调步骤为:
B1、通过热敏图像找到图像里的高温区域;
B2、判断高温区域是否位于热敏图像边缘;
B3、若是,则无人机沿上升或下降至高温区域,再次拍摄热敏图像,重复步骤B2;
B4、若否,即高温区域位于热敏图像中心,则无人机停留在此处。
在步骤A5中,所述微调的步骤为:通过热敏仪传回的热敏成像,确定火灾中心,通过操作端使瞄准镜的十字光标对准火灾中心。
在步骤A6中,所述消防弹的尾部通过触发开关与消防炮筒尾部电连接;消防弹的发射步骤包括:无人机的遥控端向消防炮筒发送动作信号,使触发开关闭合,消防弹射出。
进一步地,由于火灾场景情况多变,为降低遥控端误判的几率,设定消防弹为延时射出,延时时间t=1s~10s,为遥控端修正预留时间。
在步骤A7中,消防无人机返航为一键返航或自动返航;当消防弹发射完后,消防无人机自动返航;当消防弹未发射完、火灾已扑灭时,消防无人机一键返航。
进一步地,所述GPS组件传回的定位信息、云台相机传回火灾区域图像、热敏仪传回的热敏成像及瞄准镜传回的瞄准画面在操作端上采用画中画的方式呈现。
本发明的实施方式
如图1和图2所示,一种紧凑型消防无人机,包括机身1、四个旋翼组件3、两组支脚4、图像组件7及消防组件5,所述机身1为箱体结构,内部设有多个控制模组,机身1上部设有电池模块2,旋翼组件3设于机身1侧壁,多组支脚4组件分别位于机身1下部的横向两侧、且均设有防震装置;所述旋翼组件3包括旋翼臂31、设置在旋翼臂31远端的驱动电机32,以及设有利用电机驱动转动的旋桨33;所述支脚4的一端与箱体结构的底面连接,另一端用于支撑地面,所述消防组件5和图像组件7固定在支脚4上;两组支脚4之间的夹角β为30°~80°,优选地,夹角β=30°或40°或50°或60°或70°或80°。所述电池模块2用于驱动消防组件5是否工作,且为旋翼组件3的驱动电机32提供动力,实现无人机的供能。
每个旋翼组件3均包括碳纤维材质支撑的管状旋翼臂31、旋桨驱动电机32及旋桨33,旋翼臂31的一端插入斜侧壁15,另一端与电机固定架34连接,其上设有旋桨驱动电机32,旋桨驱动电机32与旋桨33连接,通过电池PCB板25控制电池21向电机功能,带动旋桨33转动。当消防无人机作业时户外光线不足时,需要让操作人员了解无人机起飞时的状态,可以在电机固定架34上设置信号灯35,通过电池21功能,在无人机飞行时,信号灯35点亮,也可示意地面人员,无人机的飞行方向和飞行状态。
如图4和图5所示,所述旋翼臂31包括固定在机身1侧壁的第一翼臂311、用于承托旋桨33的第二翼臂312及用于连接第一翼臂311与第二翼臂312的翼臂转接装置,所述第二翼臂312可通过翼臂转接装置绕着第一翼臂311折叠,折叠后的旋翼组件3不超出消防组件5的范围。所述转接装置包括套设在第一翼臂311远端的第一转接件313、套设在第二翼臂312近端的第二转接件314、用于连接第一转接件313及第二转接件314的连接件锁紧弹簧315、套设在缩进弹簧内的弹簧导向杆316及滑动轴317,所述连接件锁紧弹簧315一端固定在第一转接件313内,所述弹簧导向杆316从第二转接件314的远端穿过,再与连接件锁紧弹簧315的另一端固定,所述第一转接件313与第二转接件314采用转轴连接,且在第二转接件314上设有水平滑槽,所述滑动轴317垂直穿过水平滑槽,当需要折叠时,锁紧弹簧伸长,滑动轴317位于滑槽的近端后固定,使锁紧弹簧保持伸长,实现第二翼臂312的折叠;当需要展开第二翼臂312时,将滑动轴317移动至滑槽的远端后固定,保持锁紧弹簧自然伸长即可。此外,用于连接旋桨驱动电机32的导线依次通过第二翼臂312、第二转接件314、第一转接件313、第一翼臂311后,与电池21组件电连接,且导线留有一定裕度,避免其阻挠第二翼臂312的折叠。
如图2和图3所示,所述消防组件5包括集成支架和消防炮筒51,每个消防炮筒51的发射口与水平线的仰角为α的范围在10°至20°之间;所述集成支架包括第一炮筒固定件52和第二炮筒固定件53,消防炮筒51的前端通过第一炮筒固定件52横向与机身1前侧的支脚4连接,消防炮筒51的后端通过第二炮筒固定件53横向与机身1后侧的支脚4连接。
其中,消防炮筒为无端盖的筒状结构;在发射消防弹时,发射时产生的气体中有相当一部分可以从无端盖的消防炮筒后方溢出,从而产生一个接近于推动消防弹前进动量的反向动量,这样就使得消防弹本身几乎不产生后坐力,使消防弹成为无后坐力的的弹药。无后坐力的消防炮可以避免由于反向冲力导致消防灭火设备偏离火灾区域,提高灭火精准性;其次,无后坐力消防弹使得消防炮筒不需要常规消防弹发射时所需的后坐缓冲装置,使整个消防灭火设备变得很轻便且易于使用,从而减小消防无人机的载重,提高其承载消防弹的数量,增大无人机单次飞行的灭火面积。
所述图像组件7包括瞄准镜71和云台组件72,所述瞄准镜71设于消防炮筒51的上方,其轴线与消防炮筒51轴线位于同一竖直平面;所述云台组件72设于消防炮筒51的邻侧,通过云台支架固定在第一炮筒固定件52下部;还包括设置在瞄准镜71后方的夜视相机73,所述夜视相机73与瞄准镜71均通过瞄准镜固定件712纵向跨设在第一炮筒固定件52和第二炮筒固定件53上。
所述消防无人机还包括设置在第一炮筒固定件52上部的避障组件74,所述避障组件74通过测量与障碍物之间的距离来判断是否无人机是否需要绕行。
所述控制模组设置在箱体结构底板上,包括用于控制无人机飞行的飞控模组、用于控制消防炮是否发射的发射模组、用于控制云台拍摄的云台转接模组、用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组、用于控制电池输出的电池模组、用于测定无人机飞行的高度的红外定高模组、用于测量障碍物距离的避障模组、用于控制消防罐向干粉喷射管中干粉喷出的干粉喷射模组及主板模组。
其中主板模组起综合控制调控的作用,主要针对驱动的调控,如电池、旋翼驱动电机等;飞控模组用于稳定无人机飞行姿态,并能控制无人机悬停、自主或半自主飞行;其中设置在箱体结构底板上的各个模组分别与主板模组电连接,实现无人机的各种操作。
所述红外定高模组主要利用红外测定无人机飞行的高度,从而控制消防的精度;所述避障模组主要用于无人机的测距,实现无人机的避障功能。所述云台转接模组主要用于实现无人机与操作端遥控器之间的通讯连接,从而实现用户的各项操作。

Claims (10)

  1. 一种消防无人机的消防方法,用于高层建筑灭火,所述消防无人机包括箱体结构的机身、设置在机身顶部的电池模块、设置在机身底部的两组支脚、设置在机身侧壁的四组旋翼组件;所述消防无人机还包括通过设置在无人机的机身底部或无人机的两组支脚上的多个功能组件;所述功能组件包括带有一枚或多枚消防弹的消防炮筒、设置在消防炮筒邻近的瞄准镜及云台相机、用于测定无人机飞行的高度的红外定高组件、用于识别火灾中心的热敏仪组件及设置在机身上部的用于定位无人机当前位置的GPS组件;所述消防无人机通过操作端下达动作命令;其特征在于,所述消防方法包括:A1、控制消防无人机飞向火灾区域;A2、使消防无人机悬停在高层建筑附近;A3、通过云台相机及热敏仪组件传回高层建筑区域图像;A4、根据高层建筑区域图像,对无人机高度位置进行粗调,使无人机停在火楼层区域;A5、通过瞄准镜传回无人机的瞄准画面;A6、根据瞄准画面,对无人机角度进行微调,将消防炮筒瞄准火灾区域;A7、向火灾区域发射消防弹,进行灭火;A8、消防无人机返航。
  2. 根据权利要求1所述的一种消防无人机的消防方法,其特征在于,所述功能组件还包括用于识别障碍物的避障装置;在步骤A1中,所述消防无人机在飞行过程中,当障碍物离无人机的距离至少为5米时,无人机开始刹车减速。
  3. 根据权利要求2所述的一种消防无人机的消防方法,其特征在于,无人机的避障过程为:在飞行过程中,通过避障装置识别远处的障碍物的位置,结合红外定高模组反馈的无人机当前位置高度,判断无人机是否需要上升越过障碍物或减速绕行。
  4. 根据权利要求1所述的一种消防无人机的消防方法,其特征在于,在步骤A2中,消防无人机的悬停位置为:距离高层建筑水平距离为20至50米。
  5. 根据权利要求1所述的一种消防无人机的消防方法,其特征在于,在步骤A4中,所述高层建筑区域图像为云台相机传回的现场图像、及热敏仪组件传回的热敏图像;所述粗调步骤为:
    B1、通过热敏图像找到图像里的高温区域;
    B2、判断高温区域是否位于热敏图像边缘;
    B3、若是,则无人机沿上升或下降至高温区域,再次拍摄热敏图像,重复步骤B2;
    B4、若否,即高温区域位于热敏图像中心,则无人机停留在此处。
  6. 根据权利要求1所述的一种消防无人机的消防方法,其特征在于,在步骤A5中,所述微调的步骤为:通过热敏仪传回的热敏图像,确定火灾中心,通过操作端使瞄准镜的十字光标对准火灾中心。
  7. 根据权利要求1所述的一种消防无人机的消防方法,其特征在于,所述消防弹的尾部通过触发开关与消防炮筒尾部电连接;在步骤A6中,消防弹的发射步骤包括:无人机的遥控端向消防炮筒发送动作信号,使触发开关闭合,消防弹射出。
  8. 根据权利要求7所述的一种消防无人机的消防方法,其特征在于,所述消防弹为延时射出,延时时间t=1s~10s。
  9. 根据权利要求1所述的一种消防无人机的消防方法,其特征在于,在步骤A7中,消防无人机返航为一键返航或自动返航;当消防弹发射完后,消防无人机自动返航;当消防弹未发射完、火灾已扑灭时,消防无人机一键返航。
  10. 根据权利要求1至9任一项所述的一种消防无人机的消防方法,其特征在于,所述GPS组件传回的定位信息、云台相机传回火灾区域图像、热敏仪传回的热敏成像及瞄准镜传回的瞄准画面在操作端上采用画中画的方式呈现。
PCT/CN2018/118587 2018-09-14 2018-11-30 一种消防无人机的消防方法 WO2020052103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811073467.3 2018-09-14
CN201811073467.3A CN109464766A (zh) 2018-09-14 2018-09-14 一种消防无人机的消防方法

Publications (1)

Publication Number Publication Date
WO2020052103A1 true WO2020052103A1 (zh) 2020-03-19

Family

ID=65664497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118587 WO2020052103A1 (zh) 2018-09-14 2018-11-30 一种消防无人机的消防方法

Country Status (2)

Country Link
CN (1) CN109464766A (zh)
WO (1) WO2020052103A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112093050A (zh) * 2020-09-21 2020-12-18 山东指南者消防装备有限公司 一种模块化无人机消防车
CN115177890A (zh) * 2022-07-11 2022-10-14 赣州恒玖电气有限公司 一种消防水带铺设机构及铺设方法
CN115649499A (zh) * 2022-11-28 2023-01-31 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种地热温泉不规则面积测量装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10599818B2 (en) * 2012-10-02 2020-03-24 Banjo, Inc. Event-based vehicle operation and event remediation
CN110075461A (zh) * 2019-04-25 2019-08-02 南阳师范学院 一种基于无人机和监测机器人的灭火救援方法和装置
CN110254715B (zh) * 2019-06-11 2021-08-20 北京机械设备研究所 一种无人机载消防弹发射系统和发射方法
CN110124228A (zh) * 2019-06-26 2019-08-16 张兰勇 空中无人灭火机器人系统
CN110772728A (zh) * 2019-12-17 2020-02-11 淮安航空产业研究院有限公司 消防专用无人机、系统及其消防方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104590562A (zh) * 2015-02-12 2015-05-06 马鞍山市赛迪智能科技有限公司 一种防撞式定点消防无人机
CN105667795A (zh) * 2016-01-18 2016-06-15 江苏顶飞航空科技有限公司 无人机灭火弹发射系统
CN205345332U (zh) * 2016-01-22 2016-06-29 江苏数字鹰科技发展有限公司 警用多功能无人机
KR101755199B1 (ko) * 2017-03-24 2017-07-11 김빛누리 연근해 양식장 관리용 드론
CN108096743A (zh) * 2017-12-26 2018-06-01 佛山市幻龙科技有限公司 一种灭火无人机
CN108408053A (zh) * 2018-04-25 2018-08-17 天津中德应用技术大学 抛射式高空灭火无人机系统及其使用方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203753400U (zh) * 2014-03-24 2014-08-06 广东省公安消防总队 一种用于消防的无人侦察救援飞行器
CN104027909B (zh) * 2014-06-11 2016-05-04 江苏数字鹰科技发展有限公司 高楼警用灭火无人机
CN204864620U (zh) * 2015-07-10 2015-12-16 深圳市森讯达电子技术有限公司 一种无人机载灭火装置
CN105129091B (zh) * 2015-08-13 2017-12-01 王清洁 一种无人机灭火装置
KR101741578B1 (ko) * 2015-08-28 2017-05-30 금오공과대학교 산학협력단 소화탄을 발사할 수 있는 화재 진압 드론
CN105676884B (zh) * 2016-01-27 2018-09-25 武汉天木林科技有限公司 一种红外热成像搜索跟踪瞄准的装置及方法
CN107021225B (zh) * 2016-01-29 2023-06-20 广东飞翔达科技有限公司 一种农业无人机自动喷洒方法及农业无人机
CN106563231B (zh) * 2016-10-13 2019-06-04 长沙中联消防机械有限公司 消防车的灭火控制方法、控制装置、控制系统及消防车
CN106741875A (zh) * 2016-12-30 2017-05-31 天津市天安博瑞科技有限公司 一种飞行搜救系统及方法
CN106628152B (zh) * 2017-01-16 2023-02-24 西安科技大学 消防救援探测飞行器及其使用方法
CN107543449A (zh) * 2017-09-14 2018-01-05 牟正芳 一种搭载自动榴弹发射器的旋翼武装无人机
CN107875540A (zh) * 2017-11-29 2018-04-06 天长航空技术有限公司 一种巡消一体的无人机
CN108062108A (zh) * 2017-12-11 2018-05-22 郑宏远 一种基于机载计算机的智能多旋翼无人机及其实现方法
CN108404318A (zh) * 2018-05-23 2018-08-17 深圳飞凡空中机器人有限公司 一种系留供电干粉消防无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104590562A (zh) * 2015-02-12 2015-05-06 马鞍山市赛迪智能科技有限公司 一种防撞式定点消防无人机
CN105667795A (zh) * 2016-01-18 2016-06-15 江苏顶飞航空科技有限公司 无人机灭火弹发射系统
CN205345332U (zh) * 2016-01-22 2016-06-29 江苏数字鹰科技发展有限公司 警用多功能无人机
KR101755199B1 (ko) * 2017-03-24 2017-07-11 김빛누리 연근해 양식장 관리용 드론
CN108096743A (zh) * 2017-12-26 2018-06-01 佛山市幻龙科技有限公司 一种灭火无人机
CN108408053A (zh) * 2018-04-25 2018-08-17 天津中德应用技术大学 抛射式高空灭火无人机系统及其使用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112093050A (zh) * 2020-09-21 2020-12-18 山东指南者消防装备有限公司 一种模块化无人机消防车
CN115177890A (zh) * 2022-07-11 2022-10-14 赣州恒玖电气有限公司 一种消防水带铺设机构及铺设方法
CN115649499A (zh) * 2022-11-28 2023-01-31 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种地热温泉不规则面积测量装置
CN115649499B (zh) * 2022-11-28 2023-06-20 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种地热温泉不规则面积测量装置

Also Published As

Publication number Publication date
CN109464766A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2020052103A1 (zh) 一种消防无人机的消防方法
WO2020052100A1 (zh) 一种消防无人机发射消防炮的触发方法
WO2020052102A1 (zh) 一种消防无人机的瞄准方法
CN109248390B (zh) 一种基于无人机平台的消防救援综合系统及方法
CN106581906B (zh) 一种基于无人机的高层楼宇灭火装置
CN102785778B (zh) 一种管式发射灭火无人机及灭火控制方法
CN105963882B (zh) 一种空对地火箭灭火器及方法
WO2020052105A1 (zh) 一种纯电力驱动的消防无人机
WO2015006915A1 (zh) 适用于高层和超高层建筑火灾扑救的消防车
US9526930B2 (en) Control method of a fire truck for high-rise and super high-rise building firefighting
AU2020101085A4 (en) A Fire Extinguishing Device for High-rise Buildings Based on UAV
CN110465036B (zh) 可控制导灭火弹、灭火系统及灭火方法
WO2015006917A1 (zh) 适用于高层和超高层建筑火灾扑救消防车的控制系统
CN110624189B (zh) 无人机机载灭火弹装置、消防无人机以及发射控制方法
CN112043992A (zh) 一种高层建筑消防飞行机器人
CN108545192A (zh) 无人机投弹系统及方法
CN209092567U (zh) 无人机高楼发射灭火弹装置
CN108619641B (zh) 一种垂直发射制导消防弹的灭火系统及方法
CN107878739B (zh) 一种无人直升机控制系统及其控制方法
CN206007850U (zh) 空对地火箭灭火器
CN208049219U (zh) 抛投智能灭火弹无人机
CN113274663A (zh) 一种消防型无人机的控制方法、装置和计算设备
CN107651187A (zh) 一种以火制火的消防无人机
TW202009029A (zh) 無人機滅火裝置及滅火方法
CN217032193U (zh) 一种集成式高层楼宇机载智能灭火系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933089

Country of ref document: EP

Kind code of ref document: A1