WO2020050086A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2020050086A1
WO2020050086A1 PCT/JP2019/033285 JP2019033285W WO2020050086A1 WO 2020050086 A1 WO2020050086 A1 WO 2020050086A1 JP 2019033285 W JP2019033285 W JP 2019033285W WO 2020050086 A1 WO2020050086 A1 WO 2020050086A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature
heat storage
unit
refrigerant
Prior art date
Application number
PCT/JP2019/033285
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 布施
友宏 早瀬
横山 直樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020050086A1 publication Critical patent/WO2020050086A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present disclosure relates to a compressor and a refrigeration cycle device.
  • Patent Document 1 discloses a refrigeration cycle device that stores exhaust heat of a compressor in a heat storage material and effectively uses the stored heat for defrosting an outdoor heat exchanger that functions as an evaporator.
  • a heat storage tank filled with a heat storage material is used as a heat storage unit, and the heat storage unit forms a cover that covers the outer periphery of the compressor.
  • the heat stored in the heat storage unit is transferred to the refrigerant by flowing the refrigerant through a refrigerant pipe arranged to be wound around the outer periphery of the compressor.
  • the present disclosure aims to sufficiently store heat generated by a compressor in a heat storage unit in a short time.
  • the present disclosure relates to a refrigeration cycle device that stores and uses heat generated by a compressor in a heat storage unit, and stores the heat generated by the compressor sufficiently in the heat storage unit in a short time to store the heat in the heat storage unit.
  • Another object of the present invention is to provide a refrigeration cycle device that can effectively and effectively use the heat obtained.
  • a compressor includes a compression unit and a cover unit.
  • the compression unit compresses and discharges the fluid.
  • the cover part is arranged on the outer peripheral side of the compression part and covers the compression part.
  • the cover has a heat storage section for storing heat and a heat transfer promoting section having a higher thermal conductivity than the heat storage section.
  • a fluid passage through which a fluid that exchanges heat with the heat storage unit flows is formed in the cover.
  • the heat transfer promoting section is disposed between the compression section and the heat storage section.
  • the heat transfer promoting section having a higher thermal conductivity than the heat storage section is disposed between the compression section and the heat storage section, the thermal resistance between the compression section and the heat storage section can be reduced. Can be. Therefore, the heat generated by the compression unit can be sufficiently stored in the heat storage unit in a short time.
  • the refrigeration cycle device is a refrigeration cycle device having a compressor that compresses and discharges a refrigerant.
  • the compressor includes a compression section and a cover section.
  • the compression unit compresses and discharges the fluid.
  • the cover part is arranged on the outer peripheral side of the compression part and covers the compression part.
  • the cover has a heat storage section for storing heat and a heat transfer promoting section having a higher thermal conductivity than the heat storage section.
  • a fluid passage through which a fluid that exchanges heat with the heat storage unit flows is formed in the cover.
  • the heat transfer promoting section is disposed between the compression section and the heat storage section. Further, the heat generated by the compression unit by the fluid can be transferred.
  • the heat transfer promoting section having a higher thermal conductivity than the heat storage section is disposed between the compression section and the heat storage section, the thermal resistance between the compression section and the heat storage section can be reduced. Can be. Therefore, the heat generated by the compression unit can be sufficiently stored in the heat storage unit in a short time. Further, since the heat generated by the compression section by the fluid is configured to be conveyable, the heat can be conveyed to a desired portion and used efficiently. That is, it is possible to provide a refrigeration cycle device that can effectively and effectively use the heat generated by the compression unit.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle device of one embodiment. It is a perspective view of the compressor of one embodiment.
  • FIG. 3 is a sectional view taken along the line III-III of FIG. 2. It is sectional drawing of a heat storage material.
  • It is a block diagram showing an electric control part of a refrigeration cycle device. It is a flow chart which shows a part of control flow of a refrigeration cycle device.
  • 6 is a time chart illustrating a relationship between a heat release amount of a compression unit, a heat storage amount of a cover unit, and a temperature of a low-temperature side heat medium flowing into a low-temperature side radiator in a heating mode.
  • a refrigeration cycle device 10 including a compressor 11 according to the present disclosure will be described.
  • the refrigeration cycle device 10 is applied to an electric vehicle that obtains driving power for traveling from an electric motor.
  • the refrigeration cycle device 10 performs air conditioning in a vehicle cabin of an electric vehicle.
  • the refrigeration cycle device 10 is a vapor compression type refrigeration cycle device.
  • the refrigeration cycle apparatus 10 can switch the refrigerant circuit according to the operation mode for air conditioning.
  • the operation modes for air conditioning include a cooling mode, a dehumidifying heating mode, and a heating mode.
  • the cooling mode is an operation mode in which the air blown into the vehicle interior, which is the space to be air-conditioned, is cooled and blown out into the vehicle interior.
  • the dehumidifying and heating mode is an operation mode in which the cooled and dehumidified blast air is reheated and blown into the vehicle interior.
  • the heating mode is an operation mode in which the blown air is heated and blown into the vehicle interior.
  • the refrigeration cycle apparatus 10 constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • the refrigeration cycle apparatus 10 employs an HFC-based refrigerant (specifically, R134a) as the refrigerant.
  • Refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant.
  • Part of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the compressor 11 sucks in the refrigerant, compresses and discharges the refrigerant.
  • the compressor 11 is disposed in a driving device room on the front side of the vehicle.
  • the driving device room is a space in which on-vehicle devices such as a traveling electric motor are arranged.
  • the compressor 11 includes a compression unit 110 that draws refrigerant from a suction port 110a, compresses the refrigerant, and discharges the refrigerant through a discharge port 110b, and a cover unit 120 that covers an outer peripheral side of the compression unit 110. .
  • the compression section 110 is an electric compressor configured to house a fixed capacity type compression mechanism having a fixed discharge capacity and an electric motor for rotating the compression mechanism in a housing 111 forming an outer shell thereof. is there.
  • the compression mechanism various compression mechanisms such as a scroll type compression mechanism and a vane type compression mechanism can be adopted. Further, as the electric motor, any of an AC motor and a DC motor may be used. The rotation speed of the electric motor is controlled by a control signal output from a control device 60 described later. Then, the refrigerant discharge capacity of the compression unit 110 is controlled by the rotation speed control.
  • the housing 111 is formed of an iron-based metal.
  • the housing 111 is formed in a bottomed cylindrical shape extending in the rotation axis direction of the electric motor.
  • the cover section 120 has a first heat storage section 121, a second heat storage section 122, and two heat transfer promotion sections 126.
  • the first heat storage section 121 and the second heat storage section 122 are formed of a heat storage material described later.
  • the first heat storage section 121 and the second heat storage section 122 have a substantially circular plate shape.
  • the two heat storage sections 122 are integrally formed into a substantially cylindrical shape.
  • a space 120b is formed in the first heat storage unit 121 and the second heat storage unit 122.
  • a fluid flow path 120a through which a low-temperature side heat medium, which will be described later, which is a fluid, is formed.
  • a partition 120c is disposed in the space 120b in order to increase the flow path length of the fluid flow path 120a.
  • the partition 120c partitions a space 120b between the first heat storage unit 121 and the second heat storage unit 122.
  • a meandering fluid flow path 120a is formed in the space 120b, as indicated by the thick arrow in FIG.
  • the partition wall 120c is formed along the circumferential direction of the first heat storage section 121 and the second heat storage section 122, and is formed so as to partition the space 120b in the axial direction of the compressor 11. At one end or the other end of the partition wall 120c, a communication port 120d that connects the spaces 120b partitioned by the partition wall 120c is formed.
  • an inflow port 121d connected to the start end of the fluid channel 120a of the first heat storage unit 121 is formed.
  • a first connection port 121e that connects to the end of the fluid flow path 120a of the first heat storage unit 121 is formed on the outer peripheral surface of the first heat storage unit 121.
  • a second connection port 122a is formed on the outer peripheral surface of the second heat storage unit 122 to be connected to the start end of the fluid flow path 120a of the second heat storage unit 122.
  • the first connection port 121e and the second connection port 122a are connected by a pipe 123 made of rubber or the like.
  • an outlet 122b connected to the end of the fluid channel 120a of the first heat storage unit 121 is formed on the outer peripheral surface of the second heat storage unit 122.
  • the low-temperature side heat medium flowing from the inflow port 121d flows through the fluid flow path 120a formed in a meandering shape in the first heat storage section 121 and the second heat storage section 122, and flows out of the outflow port 122b. leak.
  • a contact area increasing portion 120h for increasing the contact area with the fluid is formed on the inner peripheral side of the fluid flow path 120a.
  • the contact area increasing portion 120h is formed along the axial direction of the compressor 11 and has a groove shape formed in parallel in the circumferential direction.
  • the heat storage material forming the first heat storage unit 121 and the second heat storage unit 122 will be described.
  • the heat storage material is formed by bonding a large number of fine spherical capsule-shaped heat storage materials 125a with a skeleton material 125b.
  • the skeletal material 125b is a synthetic resin having excellent heat resistance (specifically, polypropylene), and is a sensible heat storage material that does not undergo a phase change when storing heat.
  • the capsule-like heat storage material 125a has a structure in which a latent heat storage material 125d that undergoes a phase change during heat storage is enclosed in a spherical capsule 125c.
  • the capsule 125c is made of the same material as the skeletal material 125b (that is, polypropylene), and is a sensible heat storage material that does not undergo a phase change when storing heat.
  • the heat storage temperature at which the latent heat storage material 125d changes phase to store heat is set to 35 ° C. or more and 60 ° C. or less.
  • a paraffin wax-based heat storage material As the latent heat storage material 125d, a paraffin wax-based heat storage material, a higher alcohol-based heat storage material, an inorganic salt-based heat storage material, or a mixture thereof can be used.
  • Paraffin wax-based heat storage materials include C22 docosane, C24 tetracosane, and C26 hexacosane.
  • Higher alcohol-based heat storage materials include Caprylone and Camphene.
  • the inorganic salt-based heat storage materials include sodium phosphate dibasic dodecahydrate and sodium thiosulfate pentahydrate.
  • the latent heat storage material 125d absorbs or dissipates heat by changing its phase around its own melting point.
  • the latent heat storage material 125d absorbs heat from the low-temperature side heat medium and changes phase in a region where the temperature of the low-temperature side heat medium is higher than its own melting point. Thereby, as compared with the sensible heat storage material, the latent heat storage material 125d stores more heat of the low-temperature side heat medium.
  • the melting point of the latent heat storage material 125d is set lower than the surface temperature of the compression section 110 during operation. Therefore, when the compression unit 110 operates, the latent heat storage material 125d changes its phase from solid to liquid and absorbs heat.
  • the latent heat storage material 125d radiates heat to the low-temperature side heat medium in a region where the temperature of the low-temperature side heat medium is lower than its own melting point, and changes phase.
  • the melting point of the latent heat storage material 125d is set to be higher than the temperature of the low-temperature side heat medium when the heat stored in the cover 120 is transferred to the low-temperature side heat medium. Therefore, when the heat stored in the cover part 120 is transferred to the low-temperature side heat medium, the latent heat storage material 125d changes its phase from liquid to solid and dissipates heat to the low-temperature side heat medium.
  • the melting point of the latent heat storage material 125 d is lower than the surface temperature of the compression unit 110 during operation, and is lower than the temperature of the low-temperature side heat medium when transferring the heat stored in the cover unit 120 to the low-temperature side heat medium. Is also set high.
  • the skeletal material 125b and the capsule 125c have heat resistance. Specifically, in a temperature range assumed for the housing 111, the skeletal material 125b and the capsule 125c are solid. Therefore, the entire cover portion 120 is solid within the temperature range assumed for the housing 111 and is a fixed-shaped member whose appearance does not change. As described above, the latent heat storage material 125d is held by the capsule 125c and the skeletal material 125b, which are sensible heat storage materials.
  • the heat transfer promoting section 126 is made of a metal material having excellent heat conductivity (for example, copper or aluminum). As shown in FIG. 3, the heat transfer promoting section 126 is a substantially arc-shaped plate-shaped member. When the two heat transfer promoting sections 126 are arranged on the outer peripheral side of the compression section 110, the two heat transfer promoting sections 126 Together they form a substantially cylindrical shape.
  • the heat transfer promoting unit 126 is attached to the inner peripheral surface of each of the first heat storage unit 121 and the second heat storage unit 122 so as to be integrated with the first heat storage unit 121 and the second heat storage unit 122.
  • the inner peripheral surface of the heat transfer promoting portion 126 has a shape corresponding to the outer peripheral surface of the housing 111. Between the inner peripheral surface of the heat transfer promoting portion 126 and the outer peripheral surface of the housing 111, a thermal resistance reducing member 127 made of a flexible material having excellent thermal conductivity is arranged.
  • the thermal resistance reducing member 127 is a soft material such as a thermal conductive grease in which a thermal conductive filler such as a metal is dispersed in grease or a thermal conductive sheet in which a thermal conductive filler is dispersed in silicone.
  • the thermal resistance between the outer peripheral surface of the housing 111 and the inner peripheral surface of the heat transfer promoting section 126 is reduced by the thermal resistance reducing member 127.
  • a contact area increasing portion 126a is formed on the outer peripheral surface of the heat transfer promoting portion 126 to increase a contact area between the inner peripheral surface of each of the first heat storage portion 121 and the second heat storage portion 122.
  • the contact area increasing portion 126a has a fin shape protruding toward the first heat storage portion 121 or the second heat storage portion 122, and is formed in a shape extending along the axial direction of the compressor 11. Further, a plurality of contact area increasing portions 126a are formed in parallel in the circumferential direction.
  • the temperature of the refrigerant increases due to the compression work of the compression mechanism and the temperature of the electric motor increases due to Joule heat, so that the temperature of the entire compression unit 110 increases.
  • part of the heat of the compression unit 110, whose temperature has increased, is stored as waste heat in the first heat storage unit 121 and the second heat storage unit 122 from the housing 111 via the heat transfer promotion unit 126.
  • the water-refrigerant heat exchanger 12 has a refrigerant passage through which the high-pressure refrigerant discharged from the compressor 11 flows, and a water passage through which the high-temperature side heat medium circulating through the high-temperature side heat medium circuit 20 flows.
  • the water-refrigerant heat exchanger 12 is a heating heat exchanger that exchanges heat between the high-pressure refrigerant flowing through the refrigerant passage and the high-temperature heat medium flowing through the water passage to heat the high-temperature heat medium. is there. Details of the high-temperature side heat medium circuit 20 will be described later.
  • the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the refrigerant inlet side of the branch portion 13a.
  • the branch portion 13a branches the flow of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the branch portion 13a has a three-way joint structure having three refrigerant inflow ports that communicate with each other. One of the three inflow ports is a refrigerant inflow port, and the other two are refrigerant outflow ports.
  • a refrigerant inlet side of the indoor evaporator 16 is connected to one refrigerant outlet of the branch portion 13a via a cooling expansion valve 14.
  • the inlet side of the refrigerant passage of the chiller 17 is connected to the other refrigerant outlet of the branch portion 13a via an expansion valve 15 for heat absorption.
  • the cooling expansion valve 14 is a cooling pressure reducing unit that reduces the pressure of the refrigerant that has flowed out of the one refrigerant outlet of the branch portion 13a at least in the cooling mode. Further, the cooling expansion valve 14 is a cooling flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing into the indoor evaporator 16 connected to the downstream side.
  • the cooling expansion valve 14 is an electric device having a valve body configured to change the opening degree of the throttle and an electric actuator (specifically, a stepping motor) that changes the opening degree of the valve body. This is a variable aperture mechanism.
  • the operation of the cooling expansion valve 14 is controlled by a control signal (specifically, a control pulse) output from the control device 60.
  • the cooling expansion valve 14 has a fully closed function of closing the refrigerant passage by fully closing the valve opening. With this fully-closed function, the cooling expansion valve 14 can switch between a refrigerant circuit in which the refrigerant flows into the indoor evaporator 16 and a refrigerant circuit in which the refrigerant does not flow into the indoor evaporator 16. That is, the cooling expansion valve 14 also has a function as a circuit switching unit that switches the refrigerant circuit.
  • the indoor evaporator 16 is a heat exchanger that exchanges heat between the low-pressure refrigerant depressurized by the cooling expansion valve 14 and the blown air.
  • the indoor evaporator 16 is a cooling heat exchanger that evaporates the low-pressure refrigerant to cool the blown air at least in the cooling mode.
  • the indoor evaporator 16 is arranged in a casing 51 of the indoor air conditioning unit 50. The details of the indoor air conditioning unit 50 will be described later.
  • the refrigerant outlet of the indoor evaporator 16 is connected to the inlet side of the evaporation pressure regulating valve 18.
  • the evaporation pressure adjustment valve 18 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at or above a predetermined reference pressure.
  • the evaporating pressure regulating valve 18 is configured by a mechanical variable throttle mechanism that increases the valve opening as the refrigerant pressure on the outlet side of the indoor evaporator 16 increases.
  • the refrigerant evaporation temperature in the indoor evaporator 16 is maintained at a frost formation suppression reference temperature (1 ° C. in the present embodiment) at which frost formation on the indoor evaporator 16 can be suppressed.
  • a frost formation suppression reference temperature (1 ° C. in the present embodiment
  • One outlet side of the merging portion 13b is connected to the outlet of the evaporation pressure regulating valve 18.
  • the junction 13 b joins the flow of the refrigerant flowing out of the evaporation pressure regulating valve 18 with the flow of the refrigerant flowing out of the chiller 17.
  • the joining portion 13b has the same three-way joint structure as the branching portion 13a, and two of the three inlets and outlets are used as refrigerant inlets, and the other one is used as a refrigerant outlet.
  • the inlet of the compressor 11 is connected to the refrigerant outlet of the junction 13b.
  • the heat absorbing expansion valve 15 is a heat absorbing pressure reducing section that reduces the pressure of the refrigerant flowing out of the other refrigerant outlet of the branch portion 13a at least in the heating mode. That is, it is a decompression unit that decompresses the high-pressure refrigerant pressurized by the compressor 11. Further, the heat-absorbing expansion valve 15 is a heat-absorbing flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing into the refrigerant passage of the chiller 17 connected to the downstream side.
  • the basic configuration of the heat absorption expansion valve 15 is the same as that of the cooling expansion valve 14. Therefore, the heat absorbing expansion valve 15 is an electric variable throttle mechanism having a fully closed function. Further, the heat-absorbing expansion valve 15 can switch between a refrigerant circuit in which the refrigerant flows into the refrigerant passage of the chiller 17 and a refrigerant circuit in which the refrigerant does not flow into the refrigerant passage of the chiller 17. That is, the heat absorption expansion valve 15 also has a function as a circuit switching unit, similarly to the cooling expansion valve 14.
  • the chiller 17 has a refrigerant passage through which the low-pressure refrigerant depressurized by the heat absorbing expansion valve 15 flows, and a water passage through which the low-temperature heat medium circulating through the low-temperature heat medium circuit 30 flows. Then, at least in the heating mode, the chiller 17 performs heat exchange between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the water passage, and evaporates the low-pressure refrigerant to exhibit an endothermic effect. It is a heat exchanger.
  • the chiller 17 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat with the low-temperature side heat medium.
  • the other refrigerant inlet side of the junction 13b is connected to the outlet of the refrigerant passage of the chiller 17. The details of the low-temperature side heating medium circuit 30 will be described later.
  • the high temperature side heat medium circuit 20 is a circuit for circulating the high temperature side heat medium.
  • the high-temperature side heat medium a solution containing ethylene glycol, an antifreeze, or the like can be used.
  • the high-temperature heat medium circuit 20 includes a water passage of the water-refrigerant heat exchanger 12, a high-temperature heat medium pump 21, a heater core 22, a high-temperature radiator 23, a high-temperature flow control valve 24, and the like.
  • the high-temperature heat medium pump 21 is a water pump that pumps the high-temperature heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12.
  • the high-temperature-side heat medium pump 21 is an electric pump whose rotation speed (ie, pumping capacity) is controlled by a control voltage output from the control device 60.
  • One inlet / outlet of the high temperature side flow control valve 24 is connected to the outlet of the water passage of the water-refrigerant heat exchanger 12.
  • the high-temperature-side flow control valve 24 is an electric three-way flow control valve that has three inflow / outflow ports and can continuously adjust the passage area ratio of two inflow / outflow ports. The operation of the high temperature side flow control valve 24 is controlled by a control signal output from the control device 60.
  • the heating medium inlet side of the heater core 22 is connected to another inlet / outlet of the high temperature side flow control valve 24.
  • the heating medium inlet side of the high-temperature side radiator 23 is connected to another inflow / outflow port of the high-temperature side flow control valve 24.
  • the high-temperature side flow control valve 24 controls the flow rate of the high-temperature side heat medium flowing into the heater core 22 of the high-temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12. The flow ratio with the flow rate of the high-temperature side heat medium flowing into the radiator 23 is continuously adjusted.
  • the heater core 22 is a heat exchanger that heats the blown air by exchanging heat between the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the blown air that has passed through the indoor evaporator 16.
  • the heater core 22 is disposed in a casing 51 of the indoor air conditioning unit 50.
  • the heat medium outlet of the heater core 22 is connected to the suction port side of the high-temperature side heat medium pump 21.
  • the high-temperature side radiator 23 exchanges heat between the high-temperature side heat medium heated in the water-refrigerant heat exchanger 12 and the outside air blown from an outside air fan (not shown), and radiates heat of the high-temperature side heat medium to the outside air. Heat exchanger.
  • the high-temperature side radiator 23 is disposed on the front side in the driving device room. Therefore, when the vehicle is traveling, the traveling wind can be applied to the high-temperature side radiator 23.
  • the high temperature radiator 23 may be formed integrally with the water-refrigerant heat exchanger 12 and the like.
  • the heat medium outlet of the high-temperature side radiator 23 is connected to the suction port side of the high-temperature side heat medium pump 21.
  • the high-temperature side flow control valve 24 adjusts the flow rate of the high-temperature side heat medium flowing into the heater core 22, so that the heat radiation amount of the high-temperature side heat medium to the blowing air in the heater core 22 is reduced. Can be adjusted. That is, the heating amount of the blown air in the heater core 22 can be adjusted.
  • each component of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 20 constitutes a heating unit that heats the blown air using the refrigerant discharged from the compressor 11 as a heat source.
  • the low-temperature-side heat medium circuit 30 is a heat medium circuit that circulates the low-temperature-side heat medium.
  • the low-temperature-side heat medium the same fluid as the high-temperature-side heat medium can be used.
  • the low-temperature-side heat medium circuit 30 includes a water passage of the chiller 17, a low-temperature-side heat medium pump 31, a low-temperature-side radiator 33, a low-temperature-side flow control valve 34, and the like.
  • a cooling water passage of the battery 32 is connected to the low-temperature side heat medium circuit 30.
  • the battery 32 supplies electric power to various electric devices mounted on the vehicle.
  • the battery 32 is a chargeable / dischargeable secondary battery (in the present embodiment, a lithium ion battery). This type of battery 32 generates heat during charging and discharging. For this reason, the cooling water passage of the battery 32 is formed so that the entirety of the battery 32 can be cooled by flowing the low-temperature side heat medium.
  • the low-temperature heat medium pump 31 is a water pump that pumps the low-temperature heat medium to the inlet side of the water passage of the chiller 17.
  • the basic configuration of the low-temperature-side heat medium pump 31 is the same as that of the high-temperature-side heat medium pump 21.
  • the heat medium inlet side of the low-temperature radiator 33 is connected to the outlet side of the water passage of the chiller 17.
  • the low-temperature radiator 33 is an outside air heat exchanger that exchanges heat between the low-temperature heat medium flowing out of the chiller 17 and the outside air blown from an outside air fan (not shown).
  • the low-temperature side radiator 33 functions as an external heat exchanger for radiating the heat of the low-temperature side heat medium to the outside air.
  • the low-temperature side heat medium functions as an endothermic outside air heat exchanger for absorbing the heat of the outside air to the low-temperature side heat medium.
  • bypass passage 35 is provided in the low-temperature side heat medium circuit 30.
  • the bypass passage 35 is a passage that guides the low-temperature side heat medium flowing out of the water passage of the chiller 17 to the suction side of the low-temperature side heat medium pump 31, bypassing the low-temperature side radiator 33.
  • the cooling water passage of the battery 32 is connected to the bypass passage 35.
  • a low temperature side flow control valve 34 is disposed at the outlet of the bypass passage 35.
  • the basic configuration of the low temperature side flow control valve 34 is the same as that of the high temperature side flow control valve 24.
  • the low temperature side flow control valve 34 is a flow rate control valve that adjusts the flow rate of the low temperature side heat medium flowing through the bypass passage 35 in the low temperature side heat medium circuit 30.
  • the low-temperature side flow control valve 34 adjusts the flow rate of the low-temperature side heat medium flowing through the bypass passage 35 (that is, the cooling water passage of the battery 32), so that the temperature of the battery 32 increases. Can be adjusted.
  • the refrigeration cycle device 10 also has a first connection flow path 45 that connects the low-temperature side heat medium circuit 30 on the outlet side of the water passage of the chiller 17 to the inlet 121 d of the cover 120. Further, the refrigeration cycle device 10 has a second connection flow path 46 that connects the outlet 122 b of the cover part 120 and the low-temperature heat medium circuit 30 on the inlet side of the low-temperature radiator 33.
  • An on-off valve 47 that opens or closes the inlet of the first connection channel 45 is disposed at the connection between the first connection channel 45 and the low-temperature side heat medium circuit 30.
  • the on-off valve 47 is a three-way valve having three inflow / outflow ports. The operation of the on-off valve 47 is controlled by a control signal output from the control device 60.
  • the indoor air-conditioning unit 50 forms an air passage in the refrigeration cycle device 10 for blowing the blast air whose temperature has been adjusted by the refrigeration cycle device 10 to an appropriate location in the vehicle compartment.
  • the indoor air-conditioning unit 50 is arranged inside the instrument panel (i.e., instrument panel) at the forefront of the passenger compartment in the passenger compartment.
  • the indoor air-conditioning unit 50 has a blower 52, an indoor evaporator 16, a heater core 22, and the like housed in an air passage formed inside a casing 51 forming an outer shell.
  • the casing 51 forms an air passage for blowing air blown into the vehicle interior, and is formed of a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 53 is arranged on the most upstream side of the casing 51 in the flow of the blown air. The inside / outside air switching device 53 switches and introduces inside air (vehicle interior air) and outside air (vehicle outside air) into the casing 51.
  • the inside / outside air switching device 53 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 51 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, so that the inside air introduction air volume and the outside air It is possible to change the introduction ratio with the introduced air volume.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the control device 60.
  • a blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air.
  • the blower 52 blows the air taken in through the inside / outside air switching device 53 toward the vehicle interior.
  • the blower 52 is an electric blower that drives a centrifugal multiblade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the blower 52 is controlled by the control voltage output from the control device 60.
  • the indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blast air on the downstream side of the blast air flow of the blower 52. That is, the indoor evaporator 16 is disposed on the upstream side of the flow of the blown air from the heater core 22. Further, a cool air bypass passage 55 is formed in the casing 51 so that the air blown through the indoor evaporator 16 flows to the downstream side bypassing the heater core 22.
  • An air mix door 54 is arranged on the downstream side of the air flow of the indoor evaporator 16 and on the upstream side of the air flow of the heater core 22.
  • the air mix door 54 adjusts the ratio of the amount of air that passes through the heater core 22 and the amount of air that passes through the cool air bypass passage 55 in the air that has passed through the indoor evaporator 16.
  • the air mix door 54 is driven by an electric actuator for driving the air mix door.
  • the operation of the electric actuator is controlled by a control signal output from the control device 60.
  • a mixing space 56 for mixing the air heated by the heater core 22 and the air not heated by the heater core 22 through the cool air bypass passage 55 is provided on the downstream side of the air flow of the heater core 22 .
  • a mixing space 56 for mixing the air heated by the heater core 22 and the air not heated by the heater core 22 through the cool air bypass passage 55 is provided on the downstream side of the air flow of the heater core 22 .
  • an opening hole for blowing out the blast air (conditioned air) mixed in the mixing space 56 into the vehicle interior is disposed at the most downstream portion of the blast air flow of the casing 51.
  • the face opening hole is an opening hole for blowing out conditioned air toward the upper body of the occupant in the passenger compartment.
  • the foot opening hole is an opening hole for blowing out conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing out conditioned air toward the inner surface of the vehicle front window glass.
  • the face opening, the foot opening, and the defroster opening are respectively connected to a face outlet, a foot outlet, and a defroster outlet provided in the vehicle cabin through ducts forming air passages. )It is connected to the.
  • the temperature of the conditioned air mixed in the mixing space 56 is adjusted by the air mix door 54 adjusting the air flow ratio between the air flow passing through the heater core 22 and the air flow passing through the cool air bypass passage 55. Thereby, the temperature of the blast air (conditioned air) blown out from each outlet into the vehicle interior is also adjusted.
  • a face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening are respectively provided on the upstream side of the blown air flow of the face opening hole, the foot opening hole, and the defroster opening hole.
  • a defroster door (both not shown) for adjusting the opening area of the hole is arranged.
  • the face door, the foot door, and the defroster door constitute an air outlet mode switching device that switches an air outlet through which the conditioned air is blown out.
  • the face door, the foot door, and the defroster door are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction therewith.
  • the operation of the electric actuator is controlled by a control signal output from the control device 60.
  • the control device 60 includes a well-known microcomputer including a CPU, a ROM, a RAM, and the like, and its peripheral circuits. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 14, 15, 21, 24, 31, 34, 47, 52 connected to the output side. And the like.
  • an inside air temperature sensor 62a On the input side of the control device 60, as shown in FIG. 5, an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, an evaporator temperature sensor 62e, an air conditioning wind temperature sensor 62f, a battery temperature
  • a sensor group for control such as a sensor 62g and a low-temperature-side heat medium temperature sensor 62h, is connected. The detection signals of these sensor groups are input to the control device 60.
  • the internal air temperature sensor 62a is an internal air temperature detecting unit that detects the vehicle interior temperature (internal air temperature) Tr.
  • the outside air temperature sensor 62b is an outside air temperature detection unit that detects a vehicle outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 62c is a solar radiation amount detector that detects the amount of solar radiation As emitted to the vehicle interior.
  • the high-pressure sensor 62d is a refrigerant pressure detection unit that detects the high-pressure refrigerant pressure Pd in the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 14 or the heat absorption expansion valve 15.
  • the evaporator temperature sensor 62e is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16.
  • the air-conditioning air temperature sensor 62f is an air-conditioning air temperature detection unit that detects the temperature of the air blown from the mixing space 56 into the vehicle compartment TAV.
  • the battery temperature sensor 62g is a battery temperature detector that detects the temperature Tb of the battery 32.
  • the battery temperature sensor 62g has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 32. Therefore, control device 60 employs an average value of the detection values of the plurality of temperature sensors as temperature Tb of battery 32.
  • the low-temperature heat medium temperature sensor 62h is a low-temperature heat medium temperature detection unit that detects the temperature of the low-temperature heat medium flowing through the low-temperature heat medium circuit 30.
  • the low-temperature heat medium temperature sensor 62h detects the temperature of the low-temperature heat medium of the low-temperature heat medium circuit 30 on the inlet side of the low-temperature radiator 33.
  • an operation panel 61 disposed near the instrument panel in the front of the vehicle compartment is connected to the input side of the control device 60, and various operation switches provided on the operation panel 61 An operation signal is input.
  • Specific examples of various operation switches provided on the operation panel 61 include an air-conditioning operation switch, an air volume setting switch, and a temperature setting switch.
  • the air-conditioning operation switch is an air-conditioning operation requesting unit for requesting that an occupant perform air-conditioning of the vehicle interior.
  • the air volume setting switch is an air volume setting unit for the occupant to manually set the air volume of the blower 52.
  • the temperature setting switch is a temperature setting unit for setting a set temperature in the vehicle compartment.
  • the control device 60 of the present embodiment has an integrated control unit for controlling various control target devices connected to the output side. Therefore, the configuration (hardware and software) that controls the operation of each control target device constitutes a control unit that controls the operation of each control target device.
  • control device 60 that controls the operation of the compressor 11 constitutes the compressor control unit 60a.
  • the configuration for controlling the operation of the on-off valve 47 constitutes the on-off valve control unit 60b.
  • each control unit such as the compressor control unit 60a and the on-off valve control unit 60b may be configured separately.
  • the refrigeration cycle device 10 of the present embodiment can switch the refrigerant circuit according to the operation mode for air conditioning.
  • the air-conditioning operation mode is determined by executing an air-conditioning control program stored in the control device 60 in advance.
  • the air-conditioning control program is executed when the air-conditioning operation switch on the operation panel 61 is turned on (ON) while the vehicle system is running.
  • the target blowing temperature TAO of the air blown into the vehicle compartment is calculated based on the detection signal detected by the control sensor group and the operation signal output from the operation panel 61.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C (F1)
  • Tset is a set temperature set by a temperature setting switch. Tr is the inside air temperature detected by the inside air temperature sensor 62a. Tam is the outside air temperature detected by the outside air temperature sensor 62b. As is the amount of solar radiation detected by the solar radiation sensor 62c. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • the operation mode is switched based on the target outlet temperature TAO, the detection signal, and the operation signal.
  • control device 60 of the present embodiment the operation of the on-off valve 47 is controlled by executing the control routine shown in FIG. 6 to prevent frost formation on the low-temperature radiator in the heating mode.
  • the control routine shown in FIG. 6 is executed at predetermined intervals as a subroutine of the main routine of the air conditioning control program.
  • step S11 When the operation mode is switched to the heating mode in the main routine in step S11 of the subroutine, the process proceeds to step S12. On the other hand, when the operation mode is not switched to the heating mode in step S11, the process proceeds to step S14, where the on-off valve control unit 60b closes the on-off valve 47 and returns to the main routine.
  • step S12 if the following frosting condition (1) is satisfied, the process proceeds to step S13, where the on-off valve controller 60b opens the on-off valve 47 and returns to the main routine.
  • the frosting condition (1) is a reference condition in the present embodiment.
  • the frosting condition (1) is a condition for determining whether or not the low-temperature side radiator 33 is an operating condition in which frost may occur. The operation of each operation mode will be described below.
  • (A) Cooling Mode In the cooling mode, the control device 60 causes the cooling expansion valve 14 to be in the throttled state for exerting the refrigerant pressure reducing action, and the heat absorption expansion valve 15 to be in the fully closed state.
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of 13b ⁇ the suction port of the compressor 11 is configured.
  • the control device 60 controls the operation of various control target devices connected to the output side.
  • control device 60 determines a control signal to be output to the compressor 11 so that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62e becomes the target evaporation temperature TEO.
  • the target evaporation temperature TEO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in the control device 60 in advance.
  • the target evaporation temperature TEO is increased with the increase of the target blowout temperature TAO so that the blown air temperature TAV detected by the air-conditioning wind temperature sensor 62f approaches the target blowout temperature TAO. Furthermore, the target evaporation temperature TEO is determined to a value within a range (specifically, 1 ° C. or more) in which frost formation on the indoor evaporator 16 can be suppressed.
  • control device 60 controls the output to the cooling expansion valve 14 so that the superheat degree of the refrigerant at the outlet side of the indoor evaporator 16 approaches a predetermined reference superheat degree (3 ° C. in the present embodiment). Determine the signal.
  • the control device 60 activates the high-temperature side heat medium pump 21 so as to exhibit a predetermined pumping capacity in the cooling mode. Further, the control device 60 controls the control signal output to the high temperature side flow control valve 24 so that the entire flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23. To determine.
  • Control device 60 determines a control voltage to be output to blower 52 with reference to a control map stored in control device 60 in advance based on target outlet temperature TAO. Specifically, in this control map, the blowing amount of the blower 52 is maximized in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target outlet temperature TAO, and as the temperature approaches the intermediate temperature region. Reduce the air flow.
  • the control device 60 determines a control signal to be output to the electric actuator for driving the air mix door such that the cold air bypass passage 55 is fully opened and the ventilation passage on the heater core 22 side is closed. Further, the control device 60 appropriately determines a control signal or the like to be output to other various control target devices.
  • control device 60 outputs the control signals and the like determined as described above to various control target devices. Thereafter, until the stop of the air conditioning in the vehicle compartment is requested, the above-described detection signal and operation signal are read at every predetermined control cycle ⁇ calculation of the target outlet temperature TAO ⁇ control signals output to various control target devices, etc. A control routine such as determination ⁇ output of a control signal or the like is repeated. The repetition of such a control routine is similarly performed in other operation modes.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high-temperature-side heat medium pump 21 is operating, so that the high-pressure refrigerant and the high-temperature side heat medium exchange heat, the high-pressure refrigerant is cooled and condensed, and the high-temperature side heat medium is heated. Is done.
  • the high-temperature heat medium heated by the water-refrigerant heat exchanger 12 flows into the high-temperature radiator 23 through the high-temperature flow control valve 24.
  • the high-temperature side heat medium that has flowed into the high-temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high-temperature side heat medium is cooled.
  • the high-temperature-side heat medium cooled by the high-temperature-side radiator 23 is sucked into the high-temperature-side heat medium pump 21 and is again pumped to the water passage of the water-refrigerant heat exchanger 12.
  • the low-pressure refrigerant that has been decompressed by the cooling expansion valve 14 and is in a gas-liquid two-phase state flows into the indoor evaporator 16.
  • the refrigerant flowing into the indoor evaporator 16 absorbs heat from the blown air blown from the blower 52 and evaporates. As a result, the blown air is cooled, and the blown air temperature TAV approaches the target blowout temperature TAO.
  • the refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure regulating valve 18 and the junction 13b, and is compressed again.
  • the air in the vehicle compartment can be cooled by blowing the blast air cooled by the indoor evaporator 16 into the vehicle compartment.
  • the cooling mode is an operation mode executed when the outside temperature Tam is relatively high (for example, when the outside temperature is 25 ° C. or higher). For this reason, there is a possibility that the temperature of the battery 32 may rise above an appropriate temperature range due to self-heating.
  • the control device 60 controls the low-temperature side heat so as to exhibit a predetermined pumping ability.
  • the medium pump 31 is operated.
  • the control device 60 controls the operation of the low temperature side flow control valve 34 so that the temperature Tb of the battery 32 is maintained in an appropriate temperature zone.
  • the temperature adjustment of the electric device by the control device 60 is not limited to the cooling mode, but is performed as needed in the dehumidifying heating mode and the heating mode. Further, if the entire vehicle system is activated, it is executed as necessary regardless of whether or not air conditioning in the vehicle compartment is being performed (that is, whether or not the air conditioning control program is being executed). You.
  • (B) Dehumidifying and heating mode In the dehumidifying and heating mode, the control device 60 sets the cooling expansion valve 14 to a throttled state and sets the heat absorption expansion valve 15 to a throttled state.
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the part 13b and the suction port of the compressor 11 is configured.
  • a vapor compression type in which the refrigerant circulates in the order of the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the branch portion 13a, the heat absorbing expansion valve 15, the chiller 17, the junction 13b, and the suction port of the compressor 11. Is configured.
  • the indoor evaporator 16 and the chiller 17 are switched to a refrigerant circuit connected in parallel. Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side.
  • control device 60 determines a control signal to be output to the compressor 11 so that the high-pressure refrigerant pressure Pd detected by the high-pressure sensor 62d becomes the target high-pressure PCO.
  • the target high pressure PCO is determined based on the target outlet temperature TAO with reference to a control map for the dehumidifying and heating mode stored in the control device 60 in advance.
  • the target high-pressure PCO is increased with the increase of the target outlet temperature TAO such that the blown air temperature TAV approaches the target outlet temperature TAO.
  • control device 60 refers to the control map for the dehumidifying and heating mode stored in the control device 60 in advance based on the target outlet temperature TAO and the outside air temperature Tam, and outputs a control signal output to the cooling expansion valve 14. And the control signal output to the heat absorption expansion valve 15 is determined.
  • the throttle opening of the heat absorption expansion valve 15 is determined so that the refrigerant evaporation temperature in the chiller 17 is at least lower than the outside temperature Tam. Further, the throttle opening of the cooling expansion valve 14 is determined in a range that is larger than the throttle opening of the heat absorption expansion valve 15.
  • the control device 60 activates the high-temperature side heat medium pump 21 so as to exhibit a predetermined pumping capacity in the dehumidifying and heating mode. Further, the control device 60 determines a control signal output to the high-temperature side flow control valve 24 so that the entire flow rate of the high-temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 22. I do.
  • the control device 60 activates the low-temperature side heat medium pump 31 so as to exhibit a predetermined pumping capacity in the dehumidifying and heating mode.
  • control device 60 determines the control voltage output to the blower 52. Further, control device 60 determines a control signal to be output to the electric actuator for driving the air mix door such that the ventilation passage on the side of heater core 22 is fully opened and the cooling air bypass passage 55 is closed. Further, the control device 60 appropriately determines a control signal or the like to be output to other various control target devices.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high-temperature-side heat medium pump 21 is operating, so that the high-pressure refrigerant and the high-temperature side heat medium exchange heat, the high-pressure refrigerant is cooled and condensed, and the high-temperature side heat medium is heated. Is done.
  • the high-temperature heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high-temperature flow control valve 24.
  • the high-temperature side heat medium that has flowed into the heater core 22 radiates heat by exchanging heat with the blast air that has passed through the indoor evaporator 16 because the air mix door 54 fully opens the ventilation path on the heater core 22 side.
  • the blast air that has passed through the indoor evaporator 16 is heated, and the temperature of the blast air approaches the target blowing temperature TAO.
  • the high-pressure refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12 is branched at the branch portion 13a.
  • One of the refrigerants branched at the branch portion 13a flows into the cooling expansion valve 14 and is decompressed.
  • the low-pressure refrigerant that has been decompressed by the cooling expansion valve 14 and is in a gas-liquid two-phase state flows into the indoor evaporator 16.
  • the refrigerant flowing into the indoor evaporator 16 absorbs heat from the blown air blown from the blower 52 and evaporates. Thereby, the blown air is cooled and dehumidified.
  • the refrigerant evaporation temperature in the indoor evaporator 16 is maintained at 1 ° C. or higher by the operation of the evaporation pressure regulating valve 18 irrespective of the refrigerant discharge capacity of the compressor 11. Therefore, frost does not occur on the indoor evaporator 16.
  • the refrigerant flowing out of the indoor evaporator 16 flows into one refrigerant inlet of the junction 13b via the evaporation pressure regulating valve 18.
  • the other refrigerant branched at the branch portion 13a flows into the heat absorbing expansion valve 15 and is decompressed.
  • the throttle opening of the heat absorbing expansion valve 15 is adjusted such that the refrigerant evaporation temperature in the chiller 17 is at least lower than the outside air temperature Tam.
  • the low-pressure refrigerant that has been decompressed by the heat-absorbing expansion valve 15 and is in a gas-liquid two-phase state flows into the chiller 17.
  • the refrigerant flowing into the chiller 17 absorbs heat from the low-temperature side heat medium and evaporates.
  • the low-temperature side heat medium cooled by the chiller 17 flows into the low-temperature side radiator 33.
  • the low-temperature heat medium absorbs heat from the outside air. Thereby, the temperature of the low-temperature side heat medium approaches the outside air temperature Tam.
  • the low-temperature-side heat medium flowing out of the low-temperature-side radiator 33 is sucked into the low-temperature-side heat medium pump 31 and is again pressure-fed to the water passage side of the chiller 17.
  • the refrigerant flowing out of the chiller 17 flows into the other refrigerant inlet of the merging portion 13b, and merges with the refrigerant flowing out of the evaporation pressure regulating valve 18.
  • the refrigerant flowing out of the junction 13b is sucked into the compressor and compressed again.
  • the blast air cooled and dehumidified by the indoor evaporator 16 is reheated by the heater core 22 and blown out into the vehicle interior, whereby dehumidification and heating in the vehicle interior can be performed.
  • (C) Heating Mode In the heating mode, the control device 60 sets the cooling expansion valve 14 to the fully closed state, and sets the heat absorption expansion valve 15 to the throttled state.
  • control device 60 controls the operation of various control target devices connected to the output side.
  • control device 60 determines a control signal to be output to the compressor 11 as in the dehumidifying and heating mode. Further, the control device 60 refers to a heating mode control map stored in the control device 60 in advance based on the target outlet temperature TAO and the outside air temperature Tam, and outputs a control signal output to the heat absorption expansion valve 15. decide. Specifically, in this control map, the refrigerant evaporation temperature in the chiller 17 is determined to be at least equal to or less than the outside temperature Tam.
  • the control device 60 activates the high-temperature side heat medium pump 21 so as to exhibit a predetermined pumping capacity in the heating mode. Further, similarly to the dehumidifying and heating mode, the controller 60 controls the high-temperature side flow control valve 24 so that the entire flow rate of the high-temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 22. Determine the control signal to be output.
  • the control device 60 operates the low-temperature side heat transfer medium pump 31 so as to exhibit a predetermined pumping capacity in the heating mode.
  • the control device 60 determines the control voltage output to the blower 52. Further, similarly to the dehumidifying and heating mode, the control device 60 determines a control signal to be output to the electric actuator for driving the air mix door so that the ventilation path on the heater core 22 side is fully opened and the cool air bypass passage 55 is closed. . Further, the control device 60 appropriately determines a control signal or the like to be output to other various control target devices.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high-temperature-side heat medium pump 21 is operating, so that the high-pressure refrigerant and the high-temperature side heat medium exchange heat, the high-pressure refrigerant is cooled and condensed, and the high-temperature side heat medium is heated. Is done.
  • the high-temperature heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high-temperature flow control valve 24.
  • the high-temperature side heat medium that has flowed into the heater core 22 radiates heat by exchanging heat with the blast air that has passed through the indoor evaporator 16 because the air mix door 54 fully opens the ventilation path on the heater core 22 side.
  • the blown air is heated, and the blown air temperature TAV approaches the target blowout temperature TAO.
  • the low-temperature side heat medium cooled by the chiller 17 flows into the low-temperature side radiator 33, similarly to the dehumidifying and heating mode.
  • the low-temperature heat medium absorbs heat from the outside air. Thereby, the temperature of the low-temperature side heat medium approaches the outside air temperature Tam.
  • the low-temperature-side heat medium flowing out of the low-temperature-side radiator 33 is sucked into the low-temperature-side heat medium pump 31 and is again pressure-fed to the water passage side of the chiller 17.
  • the air inside the vehicle compartment can be heated by blowing the blast air heated by the heater core 22 into the vehicle compartment.
  • FIG. 7 shows the relationship between the heat release amount, the heat storage amount, and the temperature of the low-temperature side heat medium when the heating mode is started in the refrigeration cycle device 10 from the state in which the air conditioning by the refrigeration cycle device 10 is not executed. I have.
  • the heat radiation amount of the compression part 110 and the heat storage amount of the cover part 120 in FIG. 7 are the heat amounts (W) per unit time, and do not indicate the heat radiation amount or the integrated value (J) of the heat storage amount.
  • the compression unit 110 When the compression unit 110 starts operating, the compression unit 110 generates heat and radiates heat from the housing 111 to the cover unit 120 via the heat transfer promoting unit 126. With the heat radiation of the compression unit 110, the heat generated by the compression unit 110 is stored in the cover unit 120.
  • the amount of heat storage indicated by a dashed line indicates the amount of heat storage in a compressor provided with a comparative cover that does not include the heat transfer promoting unit 126.
  • the temperature of the low-temperature heat medium flowing through the low-temperature heat medium circuit 30 gradually decreases.
  • the low-temperature side heat medium which has flown through the fluid passage 120a to the cover portion 120 and has risen in temperature flows through the second connection flow path 46, flows into the low-temperature side heat medium circuit 30, and flows into the low-temperature side heat medium circuit 30. Further, the temperature of the low-temperature side heat medium flowing through is further reduced. Therefore, frost formation on the low-temperature side radiator 33 is prevented.
  • the temperature of the low-temperature side heat medium indicated by the broken line represents the temperature of the low-temperature side heat medium flowing through the low-temperature side heat medium circuit 30 in a state where the on-off valve 47 remains closed.
  • the refrigeration cycle apparatus 10 can switch between the cooling mode, the dehumidification heating mode, and the heating mode by switching the refrigerant circuit, thereby providing comfortable air conditioning in the vehicle compartment. Can be realized.
  • the cycle configuration is likely to be complicated.
  • the refrigeration cycle device 10 of the present embodiment there is no switching between the refrigerant circuit for flowing the high-pressure refrigerant and the refrigerant circuit for flowing the low-pressure refrigerant into the same heat exchanger. That is, since it is not necessary to make the high-pressure refrigerant flow into the indoor evaporator 16 when switching to any of the refrigerant circuits, the refrigerant circuit can be switched with a simple configuration without complicating the cycle configuration.
  • the cover 120 in the heating mode, can store and recover the exhaust heat of the compressor 110 in the heating mode. Then, the low-temperature side heat medium is circulated through the cover section 120, and the exhaust heat stored in the cover section 120 is supplied to the low-temperature side radiator 33, so that frost formation on the low-temperature side radiator 33 can be prevented.
  • the heat transfer promoting unit 126 having a higher thermal conductivity than the first heat storage unit 121 and the second heat storage unit 122 includes the compression unit 110, the first heat storage unit 121, and the second heat storage unit. 122. According to this, the thermal resistance between the compression part 110 and the first heat storage part 121 and between the compression part 110 and the second heat storage part 122 can be reduced.
  • the heat generated by the compression unit 110 is sufficiently transferred to the first compressor in a short time by a compressor having a comparative cover unit without the heat transfer promotion unit 126.
  • Heat can be stored in the heat storage unit 121 and the second heat storage unit 122. Therefore, the heat stored in the first heat storage unit 121 and the second heat storage unit 122 can be effectively used. That is, in the heating mode, it can be effectively used to prevent frost formation on the low-temperature radiator 33.
  • the heat transfer promoting section 126 is arranged on the outer peripheral side of the compression section 110 so as to cover the compression section 110. According to this, the heat transfer promoting unit 126 can receive the heat radiated to the outer peripheral side of the compression unit 110. Therefore, the heat generated by the compression unit 110 can be transferred to the first heat storage unit 121 and the second heat storage unit 122 without waste, and stored.
  • the heat transfer promoting unit 126 is in contact with the outer peripheral surface of the compression unit 110, the inner peripheral surface of the first heat storage unit 121, and the inner peripheral surface of the second heat storage unit 122. .
  • the compression unit 110, the first heat storage unit 121, and the second heat storage unit are compared with the case where the heat transfer promotion unit 126 is separated from the compression unit 110, the first heat storage unit 121, and the second heat storage unit 122.
  • the thermal resistance between the portion 122 can be reduced. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
  • the heat transfer promoting unit 126 protrudes toward the first heat storage unit 121 and the second heat storage unit 122, and has a contact area with the first heat storage unit 121 and the second heat storage unit 122. Is increased. According to this, the thermal resistance between the heat transfer promoting unit 126 and the first heat storage unit 121 and the thermal resistance between the heat transfer promoting unit 126 and the second heat storage unit 122 can be further reduced. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
  • the heat transfer promoting unit 126 is made of metal. According to this, the heat conductivity of the heat transfer promoting unit 126 can be easily improved. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
  • the heat storage material is a latent heat storage material 125d that undergoes a phase change during heat storage, and a sensible heat storage material that does not undergo a phase change during the heat storage. And a skeletal material 125b.
  • the latent heat storage material 125d is held by a capsule 125c and a skeletal material 125b, which are sensible heat storage materials.
  • the heat storage material includes the latent heat storage material 125d, efficient heat storage can be realized as compared with a case where the entire heat storage material is formed of the sensible heat storage material. Therefore, the amount of heat that can be stored in the cover 120 can be increased. As a result, frost formation on the low-temperature radiator 33 can be further prevented.
  • the capsule 125c which is a sensible heat storage material
  • the capsule 125c which is a sensible heat storage material
  • the capsule 125c which is a sensible heat storage material
  • the cover part 120 can be easily formed while increasing the heat storage amount of the cover part 120, and the degree of freedom of the shape of the cover part 120 can be improved.
  • the melting point of the latent heat storage material 125d is set lower than the surface temperature of the compression section 110 during operation. According to this, when the compression unit 110 is operated, the latent heat storage material 125d changes its phase from a solid phase to a liquid phase. Therefore, the amount of heat stored in the cover unit 120 can be increased by the amount of heat absorbed by the latent heat storage material 125d due to the phase change of the latent heat storage material 125d.
  • the melting point of the latent heat storage material 125d is higher than the temperature of the low-temperature side heat medium when the heat stored in the cover 120, which is the heat storage material, is transferred to the low-temperature side heat medium. Is set. According to this, when transferring the heat stored in the cover unit 120 to the fluid, the latent heat storage material 125d changes its phase from a liquid phase to a solid phase. For this reason, the heat radiation amount of the cover unit 120 can be increased by the heat radiation of the latent heat storage material 125d due to the phase change of the latent heat storage material 125d.
  • the waste heat of the compression unit 110 can be efficiently stored by using the phase change of the latent heat storage material 125d, and the heat stored in the cover unit 120 can be stored. Can be efficiently dissipated.
  • a soft material that reduces the thermal resistance between the heat transfer promoting unit 126 and the compression unit 110 is provided between the heat transfer promoting unit 126 and the outer peripheral surface of the compression unit 110.
  • the configured thermal resistance reducing member 127 is arranged. According to this, the thermal resistance between the outer peripheral surface of the compression unit 110 and the inner peripheral surfaces of the first heat storage unit 121 and the second heat storage unit 122 can be reduced. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
  • the fluid passage 120a is formed in the first heat storage unit 121 and the second heat storage unit 122.
  • the low-temperature side heat medium can be brought into direct contact with the first heat storage section 121 and the second heat storage section 122.
  • the heat exchange efficiency between the low-temperature side heat medium and the first heat storage section 121 and the second heat storage section 122 is improved, and the heat stored in the first heat storage section 121 and the second heat storage section 122 is transferred to the low-temperature side heat medium. It can be sufficiently moved to the medium. Therefore, the heat stored in the first heat storage unit 121 and the second heat storage unit 122 can be effectively used. That is, in the heating mode, it can be effectively used to prevent frost formation on the low-temperature radiator 33.
  • the partition 120c that partitions the space 120b of the first heat storage unit 121 and the second heat storage unit 122 is formed in the space 120b so that the meandering fluid flow path 120a is formed.
  • the flow path length of the fluid flow path 120a can be increased by the partition wall 120c.
  • the contact area between the low-temperature side heat medium and the heat storage material can be increased. Therefore, the heat exchange efficiency between the low-temperature side heat medium and the heat storage material can be further improved, and the heat stored in the heat storage material can be sufficiently transferred by the low-temperature side heat medium.
  • the heat stored in the heat storage material can be used more effectively. That is, in the heating mode, it can be effectively used to prevent frost formation on the low-temperature radiator 33.
  • the refrigeration cycle device 10 of the present embodiment is configured to be able to convey the heat generated by the compression unit 110 by the low-temperature side heat medium. Therefore, the heat generated by the compression unit 110 can be effectively and effectively used.
  • the refrigeration cycle apparatus 10 of the present embodiment includes a chiller 17 which is an evaporator for evaporating the refrigerant by exchanging heat with the low-temperature side heat medium, and a heating apparatus in which the low-temperature side heat medium circulates and is heated by the low-temperature side heat medium. And a low-temperature side heat medium circuit 30 in which a low-temperature side radiator 33 as an object is disposed.
  • the heat stored in the cover unit 120 can be used for heating the low-temperature radiator 33 that is the object to be heated. That is, by supplying the heat stored in the cover unit 120 to the low-temperature radiator 33, frost formation on the low-temperature radiator 33 can be prevented. When the low-temperature radiator 33 is frosted, the low-temperature radiator 33 can be defrosted.
  • the on-off valve 47 is opened to exchange the heat with the heat storage material in the fluid flow path 120a and to heat the low-temperature side heat medium to the low-temperature side heat medium. It is distributed to the medium circuit 30.
  • the low-temperature side heat medium heated in the fluid flow path 120a is transferred to the low-temperature side heat medium circuit 30.
  • the heat stored in the cover section 120 can be supplied to the low-temperature radiator 33 by flowing the heat through the cover section 120. Therefore, frost formation on the low-temperature radiator 33 can be prevented.
  • the present invention may be applied to a normal engine vehicle that obtains a driving force for driving a vehicle from an internal combustion engine, or a hybrid vehicle that obtains driving force for driving a vehicle from both an internal combustion engine and an electric motor. Further, the present invention is not limited to a vehicle, and may be applied to a stationary temperature control device or the like.
  • the refrigeration cycle apparatus 10 configured to be able to switch the air-conditioning operation mode is described.
  • the switching of the air-conditioning operation mode is not essential. If at least the heating mode can be executed, the exhaust heat of the compressor 11 can be sufficiently recovered and used effectively.
  • the heat storage material is not limited to this.
  • the heat storage material may be formed of a metal member or the like.
  • the heat storage material may be a chemical heat storage material that undergoes a chemical change during heat storage. Examples of such a chemical heat storage material include a heat storage material for chemically reacting alkali metal chloride and ammonia, a heat storage material for chemically reacting alkaline earth metal chloride and ammonia, and a chemical reaction between transition metal element chloride and ammonia.
  • the heat storage material to be used can be adopted.
  • the skeletal material 125b which is a sensible heat storage material, may be made of an attenuating material (for example, rubber, urethane foam, or the like) that attenuates vibration of the compression unit 110 during operation.
  • an attenuating material for example, rubber, urethane foam, or the like
  • the vibration of the compression unit 110 is attenuated by the cover unit 120, and noise caused by the vibration of the compression unit 110 can be reduced.
  • the on-off valve 47 is opened to move the exhaust heat of the compression unit 110 stored in the cover unit 120 to the low-temperature side heat medium. May be.
  • the temperature of the low-temperature side heat medium flowing through the low-temperature side heat medium circuit 30 increases, the amount of heat absorbed by the low-pressure refrigerant in the chiller 17 increases, and the high-temperature side heat medium in the water-refrigerant heat exchanger 12 increases. The amount of heating increases. As a result, the heating capacity of the refrigeration cycle device 10 in the heating mode is improved.
  • the frosting condition as the reference condition determined in step S12 of FIG. 6 may be the following frosting condition (2) or (3).
  • the frosting condition (2) is a condition for determining whether or not the low-temperature side radiator 33 is an operating condition under which frosting may occur.
  • ⁇ Defrosting condition (3) When the blast air temperature TAV detected by the air-conditioning air temperature sensor 62f is equal to or lower than the specified blast air temperature.
  • the frosting condition (3) is a condition for determining whether or not frost has occurred on the low-temperature side radiator 33.
  • the heating capacity of the refrigeration cycle device 10 decreases, and the blast air temperature TAV detected by the conditioned air temperature sensor 62f decreases. Therefore, in the heating mode, it is possible to determine whether or not frost has formed on the low-temperature radiator 33 by detecting the blast air temperature TAV detected by the conditioned air temperature sensor 62f.
  • Each configuration of the refrigeration cycle device 10 is not limited to the configuration disclosed in the above embodiment.
  • an electric compressor was employed as the compressor 11, but the present invention is not limited to this.
  • an engine-driven compressor may be employed.
  • a variable displacement compressor configured to adjust the refrigerant discharge capacity by changing the discharge capacity may be adopted.
  • the gas-liquid separation unit that separates the gas-liquid of the refrigerant flowing into the inside and stores the excess liquid-phase refrigerant of the cycle may be added to the refrigeration cycle apparatus 10 described in the above embodiment.
  • an accumulator as a gas-liquid separation unit may be arranged in a refrigerant flow path from a refrigerant outlet of the junction 13b to a suction port of the compressor 11.
  • a receiver as a gas-liquid separation unit may be arranged in a refrigerant flow path from the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 to the refrigerant inlet of the branch part 13a.
  • an electric variable throttle mechanism with a fully closed function is employed as the cooling expansion valve 14 and the heat absorption expansion valve 15 .
  • a temperature-type expansion valve that adjusts the valve opening degree by a mechanical mechanism and an electric open / close valve may be employed.
  • the on-off valve 47 is employed as the flow rate adjustment unit that adjusts the flow rate of the low-temperature side heat medium flowing through the first connection flow channel 45, but the flow rate adjustment unit is not limited to this.
  • a variable throttle mechanism similar to the cooling expansion valve 14 or the heat absorption expansion valve 15 may be employed as the flow rate adjusting unit.
  • the on-off valve 47 is a three-way valve disposed at a connection between the first connection flow path 45 and the low-temperature side heat medium circuit 30.
  • the on-off valve 47 may be a valve arranged in the first connection channel 45 or the second connection channel 46 to open or close the first connection channel 45 or the second connection channel 46.
  • R134a is used as the refrigerant of the refrigeration cycle apparatus 10
  • the refrigerant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a mixed refrigerant obtained by mixing a plurality of types of these refrigerants may be employed.
  • the heating unit configured to heat the blown air by the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 20 is configured, but the heating unit is not limited to this.
  • an indoor condenser that directly exchanges heat between the refrigerant discharged from the compressor 11 and the blown air may be employed as the heating unit.
  • the low-temperature heat medium circuit 30 capable of adjusting the temperature of the battery 32 has been described.
  • the temperature adjustment target of the low-temperature heat medium circuit 30 is not limited to this.
  • the temperature adjustment target may be an inverter, a charger, a motor generator, or the like. Further, there may be a plurality of temperature adjustment objects.
  • the high-temperature radiator 23 and the low-temperature radiator 33 are not limited to independent configurations.
  • the high-temperature-side radiator 23 and the low-temperature-side radiator 33 described in the first embodiment may be integrated such that the heat of the high-temperature-side heat medium and the heat of the low-temperature-side heat medium can move mutually.
  • the heat mediums may be integrated so as to be heat-transferable.

Abstract

This compressor is provided with a compression unit (110) and a cover section (120). The compression unit (110) compresses and discharges a fluid. The cover section (120) is arranged on the outer circumferential side of the compression unit (110) and covers the compression unit (110). The cover section (120) includes heat storage sections (121, 122) for storing heat and a heat transfer enhancement section (126) having a higher thermal conductivity than the heat storage sections (121, 122). A fluid flow path (120a) through which a fluid that performs heat exchange with the heat storage sections (121, 122) flows is formed in the cover section (120).

Description

圧縮機及び冷凍サイクル装置Compressor and refrigeration cycle device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年9月3日に出願された日本特許出願番号2018-164673号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-164673 filed on Sep. 3, 2018, the contents of which are incorporated herein by reference.
 本開示は、圧縮機及び冷凍サイクル装置に関する。 The present disclosure relates to a compressor and a refrigeration cycle device.
 従来、特許文献1には、圧縮機の排熱を蓄熱材に蓄熱し、蓄熱された熱を蒸発器として機能する室外熱交換器の除霜等に有効利用する冷凍サイクル装置が開示されている。より具体的には、特許文献1では、蓄熱材が充填された蓄熱槽を蓄熱部とし、この蓄熱部によって圧縮機の外周を覆うカバー部を構成することで、蓄熱部に排熱を蓄熱させている。更に、圧縮機の外周側に巻き付けられるように配置された冷媒配管に冷媒を流通させることによって、蓄熱部に蓄えられた熱を冷媒に移動させている。 BACKGROUND ART Conventionally, Patent Document 1 discloses a refrigeration cycle device that stores exhaust heat of a compressor in a heat storage material and effectively uses the stored heat for defrosting an outdoor heat exchanger that functions as an evaporator. . More specifically, in Patent Literature 1, a heat storage tank filled with a heat storage material is used as a heat storage unit, and the heat storage unit forms a cover that covers the outer periphery of the compressor. ing. Further, the heat stored in the heat storage unit is transferred to the refrigerant by flowing the refrigerant through a refrigerant pipe arranged to be wound around the outer periphery of the compressor.
特開2008-241127号公報JP 2008-241127 A
 しかしながら、特許文献1の構成では、蓄熱部に充填された全ての蓄熱材を圧縮機に接触させることが難しい。そのため、特許文献1に示される構成では、圧縮機と蓄熱部との間の熱抵抗が大きくなり、圧縮機が発生させた熱を充分に蓄熱部に移動させることができなかった。従って、特許文献1の冷凍サイクル装置では、圧縮機が発生させた熱を短時間で充分に蓄熱部に蓄熱させることができなかった。 However, in the configuration of Patent Document 1, it is difficult to bring all the heat storage materials filled in the heat storage unit into contact with the compressor. Therefore, in the configuration disclosed in Patent Literature 1, the thermal resistance between the compressor and the heat storage unit increases, and the heat generated by the compressor cannot be sufficiently transferred to the heat storage unit. Therefore, in the refrigeration cycle device of Patent Literature 1, heat generated by the compressor cannot be sufficiently stored in the heat storage unit in a short time.
 本開示は、圧縮機が発生させた熱を短時間で充分に蓄熱部に蓄えさせることを目的とする。 The present disclosure aims to sufficiently store heat generated by a compressor in a heat storage unit in a short time.
 また、本開示は、圧縮機が発生させた熱を蓄熱部に蓄えて利用する冷凍サイクル装置において、圧縮機が発生させた熱を短時間で充分に蓄熱部に蓄えさせて、蓄熱部に蓄えられた熱を効果的に有効利用可能な冷凍サイクル装置を提供することを別の目的とする。 Further, the present disclosure relates to a refrigeration cycle device that stores and uses heat generated by a compressor in a heat storage unit, and stores the heat generated by the compressor sufficiently in the heat storage unit in a short time to store the heat in the heat storage unit. Another object of the present invention is to provide a refrigeration cycle device that can effectively and effectively use the heat obtained.
 本開示の一態様の圧縮機は、圧縮部と、カバー部と、を備える。圧縮部は、流体を圧縮して吐出する。カバー部は、圧縮部の外周側に配置され、圧縮部を覆う。 圧 縮 A compressor according to an embodiment of the present disclosure includes a compression unit and a cover unit. The compression unit compresses and discharges the fluid. The cover part is arranged on the outer peripheral side of the compression part and covers the compression part.
 カバー部は、熱を蓄える蓄熱部及び蓄熱部よりも熱伝導率の大きい伝熱促進部を有している。カバー部には、蓄熱部と熱交換する流体が流通する流体流路が形成されている。伝熱促進部は、圧縮部と蓄熱部との間に配置されている。 The cover has a heat storage section for storing heat and a heat transfer promoting section having a higher thermal conductivity than the heat storage section. A fluid passage through which a fluid that exchanges heat with the heat storage unit flows is formed in the cover. The heat transfer promoting section is disposed between the compression section and the heat storage section.
 これによれば、蓄熱部よりも熱伝導率の大きい伝熱促進部が、圧縮部と蓄熱部との間に配置されているので、圧縮部と蓄熱部との間の熱抵抗を低減することができる。このため、圧縮部が発生させた熱を、短時間で充分に蓄熱部に蓄熱させることができる。 According to this, since the heat transfer promoting section having a higher thermal conductivity than the heat storage section is disposed between the compression section and the heat storage section, the thermal resistance between the compression section and the heat storage section can be reduced. Can be. Therefore, the heat generated by the compression unit can be sufficiently stored in the heat storage unit in a short time.
 また、本開示の一態様の冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機を有する冷凍サイクル装置である。圧縮機は、圧縮部と、カバー部と、を備える。圧縮部は、流体を圧縮して吐出する。カバー部は、圧縮部の外周側に配置され、圧縮部を覆う。 冷凍 Further, the refrigeration cycle device according to an aspect of the present disclosure is a refrigeration cycle device having a compressor that compresses and discharges a refrigerant. The compressor includes a compression section and a cover section. The compression unit compresses and discharges the fluid. The cover part is arranged on the outer peripheral side of the compression part and covers the compression part.
 カバー部は、熱を蓄える蓄熱部及び蓄熱部よりも熱伝導率の大きい伝熱促進部を有している。カバー部には、蓄熱部と熱交換する流体が流通する流体流路が形成されている。伝熱促進部は、圧縮部と蓄熱部との間に配置されている。更に、流体によって圧縮部が発生させた熱を搬送可能に構成されている。 The cover has a heat storage section for storing heat and a heat transfer promoting section having a higher thermal conductivity than the heat storage section. A fluid passage through which a fluid that exchanges heat with the heat storage unit flows is formed in the cover. The heat transfer promoting section is disposed between the compression section and the heat storage section. Further, the heat generated by the compression unit by the fluid can be transferred.
 これによれば、蓄熱部よりも熱伝導率の大きい伝熱促進部が、圧縮部と蓄熱部との間に配置されているので、圧縮部と蓄熱部との間の熱抵抗を低減することができる。このため、圧縮部が発生させた熱を、短時間で充分に蓄熱部に蓄熱させることができる。更に、流体によって圧縮部が発生させた熱を搬送可能に構成されているので、この熱を所望の部位へ搬送して、効率的に有効利用することができる。すなわち、圧縮部が発生させた熱を効果的に有効利用可能な冷凍サイクル装置を提供することができる。 According to this, since the heat transfer promoting section having a higher thermal conductivity than the heat storage section is disposed between the compression section and the heat storage section, the thermal resistance between the compression section and the heat storage section can be reduced. Can be. Therefore, the heat generated by the compression unit can be sufficiently stored in the heat storage unit in a short time. Further, since the heat generated by the compression section by the fluid is configured to be conveyable, the heat can be conveyed to a desired portion and used efficiently. That is, it is possible to provide a refrigeration cycle device that can effectively and effectively use the heat generated by the compression unit.
一実施形態の冷凍サイクル装置の全体構成図である。1 is an overall configuration diagram of a refrigeration cycle device of one embodiment. 一実施形態の圧縮機の斜視図である。It is a perspective view of the compressor of one embodiment. 図2のIII-III断面図である。FIG. 3 is a sectional view taken along the line III-III of FIG. 2. 蓄熱材の断面図である。It is sectional drawing of a heat storage material. 冷凍サイクル装置の電気制御部を示すブロック図である。It is a block diagram showing an electric control part of a refrigeration cycle device. 冷凍サイクル装置の制御フローの一部を示すフローチャートである。It is a flow chart which shows a part of control flow of a refrigeration cycle device. 暖房モードにおける圧縮部の放熱量、カバー部の蓄熱量、及び低温側ラジエータに流入する低温側熱媒体の温度との関係を表したタイムチャートである。6 is a time chart illustrating a relationship between a heat release amount of a compression unit, a heat storage amount of a cover unit, and a temperature of a low-temperature side heat medium flowing into a low-temperature side radiator in a heating mode.
 以下、図面を用いて、本開示の一実施形態について説明する。本実施形態では、本開示に係る圧縮機11を備えた冷凍サイクル装置10について説明する。本実施形態では、冷凍サイクル装置10を、走行用の駆動力を電動モータから得る電気自動車に適用している。冷凍サイクル装置10は、電気自動車において、車室内の空調を行う。 Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. In the present embodiment, a refrigeration cycle device 10 including a compressor 11 according to the present disclosure will be described. In the present embodiment, the refrigeration cycle device 10 is applied to an electric vehicle that obtains driving power for traveling from an electric motor. The refrigeration cycle device 10 performs air conditioning in a vehicle cabin of an electric vehicle.
 冷凍サイクル装置10は、蒸気圧縮式の冷凍サイクル装置である。冷凍サイクル装置10は、空調用の運転モードに応じて、冷媒回路を切り替えることができる。空調用の運転モードには、冷房モード、除湿暖房モード、暖房モードがある。 The refrigeration cycle device 10 is a vapor compression type refrigeration cycle device. The refrigeration cycle apparatus 10 can switch the refrigerant circuit according to the operation mode for air conditioning. The operation modes for air conditioning include a cooling mode, a dehumidifying heating mode, and a heating mode.
 冷房モードは、空調対象空間である車室内へ送風される送風空気を冷却して車室内へ吹き出す運転モードである。除湿暖房モードは、冷却して除湿された送風空気を再加熱して車室内へ吹き出す運転モードである。暖房モードは、送風空気を加熱して車室内へ吹き出す運転モードである。 The cooling mode is an operation mode in which the air blown into the vehicle interior, which is the space to be air-conditioned, is cooled and blown out into the vehicle interior. The dehumidifying and heating mode is an operation mode in which the cooled and dehumidified blast air is reheated and blown into the vehicle interior. The heating mode is an operation mode in which the blown air is heated and blown into the vehicle interior.
 冷凍サイクル装置10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷凍サイクル装置10では、冷媒として、HFC系冷媒(具体的には、R134a)を採用している。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 10 constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. The refrigeration cycle apparatus 10 employs an HFC-based refrigerant (specifically, R134a) as the refrigerant. Refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. Part of the refrigerating machine oil circulates through the cycle together with the refrigerant.
 圧縮機11は、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車両前方側の駆動用装置室に配置されている。駆動用装置室は、走行用の電動モータ等の車載機器が配置される空間である。 The compressor 11 sucks in the refrigerant, compresses and discharges the refrigerant. The compressor 11 is disposed in a driving device room on the front side of the vehicle. The driving device room is a space in which on-vehicle devices such as a traveling electric motor are arranged.
 図2に示すように、圧縮機11は、冷媒を吸入口110aから吸入し、圧縮して吐出口110bから吐出する圧縮部110と、圧縮部110の外周側を覆うカバー部120と、を備える。 As shown in FIG. 2, the compressor 11 includes a compression unit 110 that draws refrigerant from a suction port 110a, compresses the refrigerant, and discharges the refrigerant through a discharge port 110b, and a cover unit 120 that covers an outer peripheral side of the compression unit 110. .
 圧縮部110は、その外殻を形成するハウジング111内に、吐出容量が固定された固定容量型の圧縮機構、及び圧縮機構を回転駆動する電動モータ等を収容して構成された電動圧縮機である。 The compression section 110 is an electric compressor configured to house a fixed capacity type compression mechanism having a fixed discharge capacity and an electric motor for rotating the compression mechanism in a housing 111 forming an outer shell thereof. is there.
 この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータとしては、交流モータ、直流モータのいずれの形式を採用してもよい。電動モータは、後述する制御装置60から出力される制御信号によって、回転数が制御される。そして、この回転数制御によって、圧縮部110の冷媒吐出能力が制御される。 各種 As the compression mechanism, various compression mechanisms such as a scroll type compression mechanism and a vane type compression mechanism can be adopted. Further, as the electric motor, any of an AC motor and a DC motor may be used. The rotation speed of the electric motor is controlled by a control signal output from a control device 60 described later. Then, the refrigerant discharge capacity of the compression unit 110 is controlled by the rotation speed control.
 ハウジング111は、鉄系金属で形成されている。ハウジング111は、電動モータの回転軸方向に延びる有底円筒状に形成されている。 The housing 111 is formed of an iron-based metal. The housing 111 is formed in a bottomed cylindrical shape extending in the rotation axis direction of the electric motor.
 カバー部120は、第1蓄熱部121、第2蓄熱部122、及び2つの伝熱促進部126を有している。第1蓄熱部121及び第2蓄熱部122は、後述する蓄熱材で構成されている。第1蓄熱部121及び第2蓄熱部122は、略円弧板形状であり、第1蓄熱部121及び第2蓄熱部122を、圧縮部110の外周側に配置すると、第1蓄熱部121及び第2蓄熱部122は、一体となって略円筒形状となる。 The cover section 120 has a first heat storage section 121, a second heat storage section 122, and two heat transfer promotion sections 126. The first heat storage section 121 and the second heat storage section 122 are formed of a heat storage material described later. The first heat storage section 121 and the second heat storage section 122 have a substantially circular plate shape. When the first heat storage section 121 and the second heat storage section 122 are arranged on the outer peripheral side of the compression section 110, the first heat storage section 121 and the second heat storage section 122 have the same shape. The two heat storage sections 122 are integrally formed into a substantially cylindrical shape.
 第1蓄熱部121及び第2蓄熱部122内には、空間120bが形成されている。空間120b内には、流体である後述する低温側熱媒体を流通させる流体流路120aが形成されている。本実施形態では、空間120b内に、流体流路120aの流路長を増大させるために隔壁120cが配置されている。隔壁120cは、第1蓄熱部121及び第2蓄熱部122の空間120bを仕切っている。これにより、図2の太線矢印で示すように、空間120b内に蛇行状の流体流路120aが形成される。 空間 A space 120b is formed in the first heat storage unit 121 and the second heat storage unit 122. In the space 120b, a fluid flow path 120a through which a low-temperature side heat medium, which will be described later, which is a fluid, is formed. In the present embodiment, a partition 120c is disposed in the space 120b in order to increase the flow path length of the fluid flow path 120a. The partition 120c partitions a space 120b between the first heat storage unit 121 and the second heat storage unit 122. As a result, a meandering fluid flow path 120a is formed in the space 120b, as indicated by the thick arrow in FIG.
 具体的には、隔壁120cは、第1蓄熱部121及び第2蓄熱部122の周方向に沿って形成され、空間120b内を圧縮機11の軸線方向に仕切るように形成されている。そして、隔壁120cの一端又は他端には、隔壁120cによって仕切られた空間120b同士を連通する連通口120dが形成されている。 Specifically, the partition wall 120c is formed along the circumferential direction of the first heat storage section 121 and the second heat storage section 122, and is formed so as to partition the space 120b in the axial direction of the compressor 11. At one end or the other end of the partition wall 120c, a communication port 120d that connects the spaces 120b partitioned by the partition wall 120c is formed.
 第1蓄熱部121の外周面には、第1蓄熱部121の流体流路120aの始端に接続する流入口121dが形成されている。また、第1蓄熱部121の外周面には、第1蓄熱部121の流体流路120aの終端に接続する第1接続口121eが形成されている。 (4) On the outer peripheral surface of the first heat storage unit 121, an inflow port 121d connected to the start end of the fluid channel 120a of the first heat storage unit 121 is formed. In addition, a first connection port 121e that connects to the end of the fluid flow path 120a of the first heat storage unit 121 is formed on the outer peripheral surface of the first heat storage unit 121.
 第2蓄熱部122の外周面には、第2蓄熱部122の流体流路120aの始端に接続する第2接続口122aが形成されている。第1接続口121eと第2接続口122aとは、ゴム等で構成された配管123によって接続されている。第2蓄熱部122の外周面には、第1蓄熱部121の流体流路120aの終端に接続する流出口122bが形成されている。 第 A second connection port 122a is formed on the outer peripheral surface of the second heat storage unit 122 to be connected to the start end of the fluid flow path 120a of the second heat storage unit 122. The first connection port 121e and the second connection port 122a are connected by a pipe 123 made of rubber or the like. On the outer peripheral surface of the second heat storage unit 122, an outlet 122b connected to the end of the fluid channel 120a of the first heat storage unit 121 is formed.
 このような構成によって、流入口121dから流入した低温側熱媒体は、第1蓄熱部121及び第2蓄熱部122内に蛇行状に形成された流体流路120aを流通して、流出口122bから流出する。 With such a configuration, the low-temperature side heat medium flowing from the inflow port 121d flows through the fluid flow path 120a formed in a meandering shape in the first heat storage section 121 and the second heat storage section 122, and flows out of the outflow port 122b. leak.
 図3に示すように、流体流路120aの内周側は、流体との接触面積を増大させるための接触面積増大部120hが形成されている。本実施形態では、接触面積増大部120hは、圧縮機11の軸線方向に沿って形成され、周方向に並列に複数形成された溝状である。 接触 As shown in FIG. 3, a contact area increasing portion 120h for increasing the contact area with the fluid is formed on the inner peripheral side of the fluid flow path 120a. In the present embodiment, the contact area increasing portion 120h is formed along the axial direction of the compressor 11 and has a groove shape formed in parallel in the circumferential direction.
 次に、第1蓄熱部121及び第2蓄熱部122を形成する蓄熱材について説明する。図4に示すように、蓄熱材は、多数の微細な球状のカプセル状蓄熱材125aを骨格材料125bで結合させることによって形成されている。骨格材料125bは、耐熱性に優れる合成樹脂(具体的には、ポリプロピレン)であり、蓄熱時に相変化を伴わない顕熱蓄熱材である。 Next, the heat storage material forming the first heat storage unit 121 and the second heat storage unit 122 will be described. As shown in FIG. 4, the heat storage material is formed by bonding a large number of fine spherical capsule-shaped heat storage materials 125a with a skeleton material 125b. The skeletal material 125b is a synthetic resin having excellent heat resistance (specifically, polypropylene), and is a sensible heat storage material that does not undergo a phase change when storing heat.
 カプセル状蓄熱材125aは、球状のカプセル125c内に、蓄熱時に相変化を伴う潜熱蓄熱材125dを封入した構造である。カプセル125cは、骨格材料125bと同じ材質(すなわち、ポリプロピレン)で形成されており、蓄熱時に相変化を伴わない顕熱蓄熱材である。 The capsule-like heat storage material 125a has a structure in which a latent heat storage material 125d that undergoes a phase change during heat storage is enclosed in a spherical capsule 125c. The capsule 125c is made of the same material as the skeletal material 125b (that is, polypropylene), and is a sensible heat storage material that does not undergo a phase change when storing heat.
 本実施形態では、潜熱蓄熱材125dが相変化して熱を蓄える蓄熱温度は、35℃以上、かつ、60℃以下に設定されている。 In the present embodiment, the heat storage temperature at which the latent heat storage material 125d changes phase to store heat is set to 35 ° C. or more and 60 ° C. or less.
 このような潜熱蓄熱材125dとしては、パラフィンワックス系の蓄熱材、高級アルコール系の蓄熱材、無機塩系の蓄熱材等、あるいはこれらの混合材料を採用することができる。パラフィンワックス系の蓄熱材には、C22ドコサン、C24テトラコサン、C26ヘキサコサンが含まれる。また、高級アルコール系の蓄熱材には、Caprylone、Campheneが含まれる。また、無機塩系の蓄熱材には、Sodium phosphate dibasic dodecahydrate、Sodium thiosulfate pentahydrate)が含まれる。 As the latent heat storage material 125d, a paraffin wax-based heat storage material, a higher alcohol-based heat storage material, an inorganic salt-based heat storage material, or a mixture thereof can be used. Paraffin wax-based heat storage materials include C22 docosane, C24 tetracosane, and C26 hexacosane. Higher alcohol-based heat storage materials include Caprylone and Camphene. The inorganic salt-based heat storage materials include sodium phosphate dibasic dodecahydrate and sodium thiosulfate pentahydrate.
 潜熱蓄熱材125dは、自身の融点を境に、相変化して、吸熱又は放熱する。潜熱蓄熱材125dは、低温側熱媒体の温度が自身の融点より高い領域で、低温側熱媒体から吸熱して相変化する。これにより、顕熱蓄熱材と比較して、潜熱蓄熱材125dに、低温側熱媒体の有する熱がより大きく蓄えられる。潜熱蓄熱材125dの融点は、作動時の圧縮部110の表面温度よりも低く設定されている。このため、圧縮部110が作動すると、潜熱蓄熱材125dが、固体から液体に相変化して吸熱する。 (4) The latent heat storage material 125d absorbs or dissipates heat by changing its phase around its own melting point. The latent heat storage material 125d absorbs heat from the low-temperature side heat medium and changes phase in a region where the temperature of the low-temperature side heat medium is higher than its own melting point. Thereby, as compared with the sensible heat storage material, the latent heat storage material 125d stores more heat of the low-temperature side heat medium. The melting point of the latent heat storage material 125d is set lower than the surface temperature of the compression section 110 during operation. Therefore, when the compression unit 110 operates, the latent heat storage material 125d changes its phase from solid to liquid and absorbs heat.
 一方で、潜熱蓄熱材125dは、低温側熱媒体の温度が自身の融点より低い領域で、低温側熱媒体に放熱して、相変化する。潜熱蓄熱材125dの融点は、カバー部120に蓄えられた熱を低温側熱媒体へ移動させる際の低温側熱媒体の温度よりも高く設定されている。このため、カバー部120に蓄えられた熱を低温側熱媒体へ移動させる際には、潜熱蓄熱材125dが液体から固体に相変化して低温側熱媒体へ放熱する。 On the other hand, the latent heat storage material 125d radiates heat to the low-temperature side heat medium in a region where the temperature of the low-temperature side heat medium is lower than its own melting point, and changes phase. The melting point of the latent heat storage material 125d is set to be higher than the temperature of the low-temperature side heat medium when the heat stored in the cover 120 is transferred to the low-temperature side heat medium. Therefore, when the heat stored in the cover part 120 is transferred to the low-temperature side heat medium, the latent heat storage material 125d changes its phase from liquid to solid and dissipates heat to the low-temperature side heat medium.
 すなわち、潜熱蓄熱材125dの融点は、作動時の圧縮部110の表面温度よりも低く、且つ、カバー部120に蓄えられた熱を低温側熱媒体へ移動させる際の低温側熱媒体の温度よりも高く設定されている。 That is, the melting point of the latent heat storage material 125 d is lower than the surface temperature of the compression unit 110 during operation, and is lower than the temperature of the low-temperature side heat medium when transferring the heat stored in the cover unit 120 to the low-temperature side heat medium. Is also set high.
 骨格材料125b及びカプセル125cは、耐熱性を有する。具体的には、ハウジング111に想定される温度範囲では、骨格材料125b及びカプセル125cは固体である。このため、カバー部120全体としても、ハウジング111に想定される温度範囲内では固体となり、外観形状の変化しない固定形状の部材となる。このように、潜熱蓄熱材125dは、顕熱蓄熱材であるカプセル125c及び骨格材料125bによって保持されている。 The skeletal material 125b and the capsule 125c have heat resistance. Specifically, in a temperature range assumed for the housing 111, the skeletal material 125b and the capsule 125c are solid. Therefore, the entire cover portion 120 is solid within the temperature range assumed for the housing 111 and is a fixed-shaped member whose appearance does not change. As described above, the latent heat storage material 125d is held by the capsule 125c and the skeletal material 125b, which are sensible heat storage materials.
 伝熱促進部126は、熱伝導率に優れた金属材料(例えば、銅やアルミニウム等)で構成されている。図3に示すように、伝熱促進部126は、略円弧板形状の部材であり、2つの伝熱促進部126を圧縮部110の外周側に配置すると、2つの伝熱促進部126は、一体となって略円筒形状となる。伝熱促進部126は、第1蓄熱部121及び第2蓄熱部122のそれぞれの内周面に、第1蓄熱部121及び第2蓄熱部122と一体となるように取り付けられている。 熱 The heat transfer promoting section 126 is made of a metal material having excellent heat conductivity (for example, copper or aluminum). As shown in FIG. 3, the heat transfer promoting section 126 is a substantially arc-shaped plate-shaped member. When the two heat transfer promoting sections 126 are arranged on the outer peripheral side of the compression section 110, the two heat transfer promoting sections 126 Together they form a substantially cylindrical shape. The heat transfer promoting unit 126 is attached to the inner peripheral surface of each of the first heat storage unit 121 and the second heat storage unit 122 so as to be integrated with the first heat storage unit 121 and the second heat storage unit 122.
 伝熱促進部126の内周面は、ハウジング111の外周面に対応した形状となっている。伝熱促進部126の内周面とハウジング111の外周面との間には、熱伝導性に優れ柔軟な材料で構成された熱抵抗低減部材127が配置されている。熱抵抗低減部材127は、グリースに金属等の熱伝導性フィラーを分散させた熱伝導グリースや、シリコーンに熱伝導性フィラーを分散させた熱伝導シート等の軟体材料である。この熱抵抗低減部材127によって、ハウジング111の外周面と伝熱促進部126の内周面との熱抵抗が低減される。 内 The inner peripheral surface of the heat transfer promoting portion 126 has a shape corresponding to the outer peripheral surface of the housing 111. Between the inner peripheral surface of the heat transfer promoting portion 126 and the outer peripheral surface of the housing 111, a thermal resistance reducing member 127 made of a flexible material having excellent thermal conductivity is arranged. The thermal resistance reducing member 127 is a soft material such as a thermal conductive grease in which a thermal conductive filler such as a metal is dispersed in grease or a thermal conductive sheet in which a thermal conductive filler is dispersed in silicone. The thermal resistance between the outer peripheral surface of the housing 111 and the inner peripheral surface of the heat transfer promoting section 126 is reduced by the thermal resistance reducing member 127.
 伝熱促進部126の外周面は、第1蓄熱部121及び第2蓄熱部122のそれぞれの内周面との接触面積を増大させるための接触面積増大部126aが形成されている。本実施形態では、接触面積増大部126aは、第1蓄熱部121側や第2蓄熱部122側に突出したフィン形状であり、圧縮機11の軸線方向に沿って延びる形状に形成されている。さらに、接触面積増大部126aは、周方向に並列に複数形成されている。 接触 A contact area increasing portion 126a is formed on the outer peripheral surface of the heat transfer promoting portion 126 to increase a contact area between the inner peripheral surface of each of the first heat storage portion 121 and the second heat storage portion 122. In the present embodiment, the contact area increasing portion 126a has a fin shape protruding toward the first heat storage portion 121 or the second heat storage portion 122, and is formed in a shape extending along the axial direction of the compressor 11. Further, a plurality of contact area increasing portions 126a are formed in parallel in the circumferential direction.
 従って、本実施形態の圧縮機11では、圧縮部110を作動させると、圧縮機構の圧縮仕事による冷媒の温度上昇や、ジュール熱による電動モータの温度上昇によって、圧縮部110全体の温度が上昇する。更に、温度上昇した圧縮部110の有する熱の一部は、排熱としてハウジング111から伝熱促進部126を介して第1蓄熱部121及び第2蓄熱部122に蓄熱される。 Accordingly, in the compressor 11 of the present embodiment, when the compression unit 110 is operated, the temperature of the refrigerant increases due to the compression work of the compression mechanism and the temperature of the electric motor increases due to Joule heat, so that the temperature of the entire compression unit 110 increases. . Further, part of the heat of the compression unit 110, whose temperature has increased, is stored as waste heat in the first heat storage unit 121 and the second heat storage unit 122 from the housing 111 via the heat transfer promotion unit 126.
 次に、図1に示すように、圧縮機11の吐出口には、水-冷媒熱交換器12の冷媒通路の入口側が接続されている。水-冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒を流通させる冷媒通路と、高温側熱媒体回路20を循環する高温側熱媒体を流通させる水通路とを有している。そして、水-冷媒熱交換器12は、冷媒通路を流通する高圧冷媒と、水通路を流通する高温側熱媒体とを熱交換させて、高温側熱媒体を加熱する加熱用の熱交換器である。高温側熱媒体回路20の詳細については後述する。 Next, as shown in FIG. 1, the inlet of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the outlet of the compressor 11. The water-refrigerant heat exchanger 12 has a refrigerant passage through which the high-pressure refrigerant discharged from the compressor 11 flows, and a water passage through which the high-temperature side heat medium circulating through the high-temperature side heat medium circuit 20 flows. The water-refrigerant heat exchanger 12 is a heating heat exchanger that exchanges heat between the high-pressure refrigerant flowing through the refrigerant passage and the high-temperature heat medium flowing through the water passage to heat the high-temperature heat medium. is there. Details of the high-temperature side heat medium circuit 20 will be described later.
 水-冷媒熱交換器12の冷媒通路の出口には、分岐部13aの冷媒流入口側が接続されている。分岐部13aは、水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒の流れを分岐する。分岐部13aは、互いに連通する3つの冷媒流入出口を有する三方継手構造のもので、3つの流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。 冷媒 The outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the refrigerant inlet side of the branch portion 13a. The branch portion 13a branches the flow of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12. The branch portion 13a has a three-way joint structure having three refrigerant inflow ports that communicate with each other. One of the three inflow ports is a refrigerant inflow port, and the other two are refrigerant outflow ports.
 分岐部13aの一方の冷媒流出口には、冷却用膨張弁14を介して、室内蒸発器16の冷媒入口側が接続されている。分岐部13aの他方の冷媒流出口には、吸熱用膨張弁15を介して、チラー17の冷媒通路の入口側が接続されている。 冷媒 A refrigerant inlet side of the indoor evaporator 16 is connected to one refrigerant outlet of the branch portion 13a via a cooling expansion valve 14. The inlet side of the refrigerant passage of the chiller 17 is connected to the other refrigerant outlet of the branch portion 13a via an expansion valve 15 for heat absorption.
 冷却用膨張弁14は、少なくとも冷房モード時に、分岐部13aの一方の冷媒流出口から流出した冷媒を減圧させる冷却用減圧部である。更に、冷却用膨張弁14は、下流側に接続される室内蒸発器16へ流入する冷媒の流量を調整する冷却用流量調整部である。 The cooling expansion valve 14 is a cooling pressure reducing unit that reduces the pressure of the refrigerant that has flowed out of the one refrigerant outlet of the branch portion 13a at least in the cooling mode. Further, the cooling expansion valve 14 is a cooling flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing into the indoor evaporator 16 connected to the downstream side.
 冷却用膨張弁14は、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータ(具体的には、ステッピングモータ)とを有して構成される電気式の可変絞り機構である。冷却用膨張弁14は、制御装置60から出力される制御信号(具体的には、制御パルス)によって、その作動が制御される。 The cooling expansion valve 14 is an electric device having a valve body configured to change the opening degree of the throttle and an electric actuator (specifically, a stepping motor) that changes the opening degree of the valve body. This is a variable aperture mechanism. The operation of the cooling expansion valve 14 is controlled by a control signal (specifically, a control pulse) output from the control device 60.
 更に、冷却用膨張弁14は、弁開度を全閉とすることで冷媒通路を閉塞する全閉機能を有している。この全閉機能により、冷却用膨張弁14は、室内蒸発器16へ冷媒を流入させる冷媒回路と室内蒸発器16へ冷媒を流入させない冷媒回路とを切り替えることができる。つまり、冷却用膨張弁14は、冷媒回路を切り替える回路切替部としての機能を兼ね備えている。 Furthermore, the cooling expansion valve 14 has a fully closed function of closing the refrigerant passage by fully closing the valve opening. With this fully-closed function, the cooling expansion valve 14 can switch between a refrigerant circuit in which the refrigerant flows into the indoor evaporator 16 and a refrigerant circuit in which the refrigerant does not flow into the indoor evaporator 16. That is, the cooling expansion valve 14 also has a function as a circuit switching unit that switches the refrigerant circuit.
 室内蒸発器16は、冷却用膨張弁14にて減圧された低圧冷媒と送風空気とを熱交換させる熱交換器である。室内蒸発器16は、少なくとも冷房モード時に、低圧冷媒を蒸発させて送風空気を冷却する冷却用の熱交換器である。室内蒸発器16は、室内空調ユニット50のケーシング51内に配置されている。室内空調ユニット50の詳細については後述する。 The indoor evaporator 16 is a heat exchanger that exchanges heat between the low-pressure refrigerant depressurized by the cooling expansion valve 14 and the blown air. The indoor evaporator 16 is a cooling heat exchanger that evaporates the low-pressure refrigerant to cool the blown air at least in the cooling mode. The indoor evaporator 16 is arranged in a casing 51 of the indoor air conditioning unit 50. The details of the indoor air conditioning unit 50 will be described later.
 室内蒸発器16の冷媒出口には、蒸発圧力調整弁18の入口側が接続されている。蒸発圧力調整弁18は、室内蒸発器16における冷媒蒸発圧力を予め定めた基準圧力以上に維持する蒸発圧力調整部である。蒸発圧力調整弁18は、室内蒸発器16の出口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。 入口 The refrigerant outlet of the indoor evaporator 16 is connected to the inlet side of the evaporation pressure regulating valve 18. The evaporation pressure adjustment valve 18 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at or above a predetermined reference pressure. The evaporating pressure regulating valve 18 is configured by a mechanical variable throttle mechanism that increases the valve opening as the refrigerant pressure on the outlet side of the indoor evaporator 16 increases.
 本実施形態では、蒸発圧力調整弁18として、室内蒸発器16における冷媒蒸発温度を、室内蒸発器16の着霜を抑制可能な着霜抑制基準温度(本実施形態では、1℃)以上に維持するものを採用している。 In the present embodiment, as the evaporation pressure adjusting valve 18, the refrigerant evaporation temperature in the indoor evaporator 16 is maintained at a frost formation suppression reference temperature (1 ° C. in the present embodiment) at which frost formation on the indoor evaporator 16 can be suppressed. We adopt what we do.
 蒸発圧力調整弁18の出口には、合流部13bの一方の冷媒流入口側が接続されている。合流部13bは、蒸発圧力調整弁18から流出した冷媒の流れとチラー17から流出した冷媒の流れとを合流させるものである。合流部13bは、分岐部13aと同様の三方継手構造のもので、3つの流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。合流部13bの冷媒流出口には、圧縮機11の吸入口側が接続されている。 出口 One outlet side of the merging portion 13b is connected to the outlet of the evaporation pressure regulating valve 18. The junction 13 b joins the flow of the refrigerant flowing out of the evaporation pressure regulating valve 18 with the flow of the refrigerant flowing out of the chiller 17. The joining portion 13b has the same three-way joint structure as the branching portion 13a, and two of the three inlets and outlets are used as refrigerant inlets, and the other one is used as a refrigerant outlet. The inlet of the compressor 11 is connected to the refrigerant outlet of the junction 13b.
 吸熱用膨張弁15は、少なくとも暖房モード時に、分岐部13aの他方の冷媒流出口から流出した冷媒を減圧させる吸熱用減圧部である。すなわち、圧縮機11にて昇圧された高圧冷媒を減圧させる減圧部である。更に、吸熱用膨張弁15は、下流側に接続されるチラー17の冷媒通路へ流入する冷媒の流量を調整する吸熱用流量調整部である。 熱 The heat absorbing expansion valve 15 is a heat absorbing pressure reducing section that reduces the pressure of the refrigerant flowing out of the other refrigerant outlet of the branch portion 13a at least in the heating mode. That is, it is a decompression unit that decompresses the high-pressure refrigerant pressurized by the compressor 11. Further, the heat-absorbing expansion valve 15 is a heat-absorbing flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing into the refrigerant passage of the chiller 17 connected to the downstream side.
 吸熱用膨張弁15の基本的構成は、冷却用膨張弁14と同様である。従って、吸熱用膨張弁15は、全閉機能を有する電気式の可変絞り機構である。更に、吸熱用膨張弁15は、チラー17の冷媒通路へ冷媒を流入させる冷媒回路とチラー17の冷媒通路へ冷媒を流入させない冷媒回路とを切り替えることができる。つまり、吸熱用膨張弁15は、冷却用膨張弁14と同様に、回路切替部としての機能を兼ね備えている。 基本 The basic configuration of the heat absorption expansion valve 15 is the same as that of the cooling expansion valve 14. Therefore, the heat absorbing expansion valve 15 is an electric variable throttle mechanism having a fully closed function. Further, the heat-absorbing expansion valve 15 can switch between a refrigerant circuit in which the refrigerant flows into the refrigerant passage of the chiller 17 and a refrigerant circuit in which the refrigerant does not flow into the refrigerant passage of the chiller 17. That is, the heat absorption expansion valve 15 also has a function as a circuit switching unit, similarly to the cooling expansion valve 14.
 チラー17は、吸熱用膨張弁15にて減圧された低圧冷媒を流通させる冷媒通路と、低温側熱媒体回路30を循環する低温側熱媒体を流通させる水通路とを有している。そして、チラー17は、少なくとも暖房モード時に、冷媒通路を流通する低圧冷媒と、水通路を流通する低温側熱媒体とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用の熱交換器である。チラー17は、低圧冷媒を低温側熱媒体と熱交換させて蒸発させる蒸発器である。チラー17の冷媒通路の出口には、合流部13bの他方の冷媒流入口側が接続されている。低温側熱媒体回路30の詳細については後述する。 The chiller 17 has a refrigerant passage through which the low-pressure refrigerant depressurized by the heat absorbing expansion valve 15 flows, and a water passage through which the low-temperature heat medium circulating through the low-temperature heat medium circuit 30 flows. Then, at least in the heating mode, the chiller 17 performs heat exchange between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the water passage, and evaporates the low-pressure refrigerant to exhibit an endothermic effect. It is a heat exchanger. The chiller 17 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat with the low-temperature side heat medium. The other refrigerant inlet side of the junction 13b is connected to the outlet of the refrigerant passage of the chiller 17. The details of the low-temperature side heating medium circuit 30 will be described later.
 次に、高温側熱媒体回路20について説明する。高温側熱媒体回路20は、高温側熱媒体を循環させる回路である。高温側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。高温側熱媒体回路20には、水-冷媒熱交換器12の水通路、高温側熱媒体ポンプ21、ヒータコア22、高温側ラジエータ23、高温側流量調整弁24等が配置されている。 Next, the high-temperature side heat medium circuit 20 will be described. The high temperature side heat medium circuit 20 is a circuit for circulating the high temperature side heat medium. As the high-temperature side heat medium, a solution containing ethylene glycol, an antifreeze, or the like can be used. The high-temperature heat medium circuit 20 includes a water passage of the water-refrigerant heat exchanger 12, a high-temperature heat medium pump 21, a heater core 22, a high-temperature radiator 23, a high-temperature flow control valve 24, and the like.
 高温側熱媒体ポンプ21は、高温側熱媒体を水-冷媒熱交換器12の水通路の入口側へ圧送する水ポンプである。高温側熱媒体ポンプ21は、制御装置60から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動ポンプである。 The high-temperature heat medium pump 21 is a water pump that pumps the high-temperature heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12. The high-temperature-side heat medium pump 21 is an electric pump whose rotation speed (ie, pumping capacity) is controlled by a control voltage output from the control device 60.
 水-冷媒熱交換器12の水通路の出口には、高温側流量調整弁24の1つの流入出口が接続されている。高温側流量調整弁24は、3つの流入出口を有し、そのうち2つの流入出口の通路面積比を連続的に調整可能な電気式の三方流量調整弁である。高温側流量調整弁24は、制御装置60から出力される制御信号によって、その作動が制御される。 流入 One inlet / outlet of the high temperature side flow control valve 24 is connected to the outlet of the water passage of the water-refrigerant heat exchanger 12. The high-temperature-side flow control valve 24 is an electric three-way flow control valve that has three inflow / outflow ports and can continuously adjust the passage area ratio of two inflow / outflow ports. The operation of the high temperature side flow control valve 24 is controlled by a control signal output from the control device 60.
 高温側流量調整弁24の別の流入出口には、ヒータコア22の熱媒体入口側が接続されている。高温側流量調整弁24の更に別の流入出口には、高温側ラジエータ23の熱媒体入口側が接続されている。 熱 The heating medium inlet side of the heater core 22 is connected to another inlet / outlet of the high temperature side flow control valve 24. The heating medium inlet side of the high-temperature side radiator 23 is connected to another inflow / outflow port of the high-temperature side flow control valve 24.
 高温側流量調整弁24は、高温側熱媒体回路20において、水-冷媒熱交換器12の水通路から流出した高温側熱媒体のうち、ヒータコア22へ流入させる高温側熱媒体の流量と高温側ラジエータ23へ流入させる高温側熱媒体の流量との流量比を連続的に調整する。 In the high-temperature side heat medium circuit 20, the high-temperature side flow control valve 24 controls the flow rate of the high-temperature side heat medium flowing into the heater core 22 of the high-temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12. The flow ratio with the flow rate of the high-temperature side heat medium flowing into the radiator 23 is continuously adjusted.
 ヒータコア22は、水-冷媒熱交換器12にて加熱された高温側熱媒体と室内蒸発器16を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。ヒータコア22は、室内空調ユニット50のケーシング51内に配置されている。ヒータコア22の熱媒体出口には、高温側熱媒体ポンプ21の吸入口側が接続されている。 The heater core 22 is a heat exchanger that heats the blown air by exchanging heat between the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the blown air that has passed through the indoor evaporator 16. The heater core 22 is disposed in a casing 51 of the indoor air conditioning unit 50. The heat medium outlet of the heater core 22 is connected to the suction port side of the high-temperature side heat medium pump 21.
 高温側ラジエータ23は、水-冷媒熱交換器12にて加熱された高温側熱媒体と図示しない外気ファンから送風された外気とを熱交換させて、高温側熱媒体の有する熱を外気に放熱させる熱交換器である。 The high-temperature side radiator 23 exchanges heat between the high-temperature side heat medium heated in the water-refrigerant heat exchanger 12 and the outside air blown from an outside air fan (not shown), and radiates heat of the high-temperature side heat medium to the outside air. Heat exchanger.
 高温側ラジエータ23は、駆動用装置室内の前方側に配置されている。このため、車両走行時には、高温側ラジエータ23に走行風を当てることができる。高温側ラジエータ23は、水-冷媒熱交換器12等と一体的に形成されていてもよい。高温側ラジエータ23の熱媒体出口には、高温側熱媒体ポンプ21の吸入口側が接続されている。 (4) The high-temperature side radiator 23 is disposed on the front side in the driving device room. Therefore, when the vehicle is traveling, the traveling wind can be applied to the high-temperature side radiator 23. The high temperature radiator 23 may be formed integrally with the water-refrigerant heat exchanger 12 and the like. The heat medium outlet of the high-temperature side radiator 23 is connected to the suction port side of the high-temperature side heat medium pump 21.
 従って、高温側熱媒体回路20では、高温側流量調整弁24が、ヒータコア22へ流入する高温側熱媒体の流量を調整することによって、ヒータコア22における高温側熱媒体の送風空気への放熱量を調整することができる。すなわち、ヒータコア22における送風空気の加熱量を調整することができる。 Therefore, in the high-temperature side heat medium circuit 20, the high-temperature side flow control valve 24 adjusts the flow rate of the high-temperature side heat medium flowing into the heater core 22, so that the heat radiation amount of the high-temperature side heat medium to the blowing air in the heater core 22 is reduced. Can be adjusted. That is, the heating amount of the blown air in the heater core 22 can be adjusted.
 つまり、本実施形態では、水-冷媒熱交換器12及び高温側熱媒体回路20の各構成機器によって、圧縮機11から吐出された冷媒を熱源として送風空気を加熱する加熱部が構成されている。 In other words, in the present embodiment, each component of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 20 constitutes a heating unit that heats the blown air using the refrigerant discharged from the compressor 11 as a heat source. .
 次に、低温側熱媒体回路30について説明する。低温側熱媒体回路30は、低温側熱媒体を循環させる熱媒体回路である。低温側熱媒体としては、高温側熱媒体と同様の流体を採用することができる。低温側熱媒体回路30には、チラー17の水通路、低温側熱媒体ポンプ31、低温側ラジエータ33、低温側流量調整弁34等が配置されている。 Next, the low-temperature side heat medium circuit 30 will be described. The low-temperature-side heat medium circuit 30 is a heat medium circuit that circulates the low-temperature-side heat medium. As the low-temperature-side heat medium, the same fluid as the high-temperature-side heat medium can be used. The low-temperature-side heat medium circuit 30 includes a water passage of the chiller 17, a low-temperature-side heat medium pump 31, a low-temperature-side radiator 33, a low-temperature-side flow control valve 34, and the like.
 更に、低温側熱媒体回路30には、バッテリ32の冷却水通路が接続されている。バッテリ32は、車両に搭載された各種電気機器に電力を供給する。バッテリ32は、充放電可能な二次電池(本実施形態では、リチウムイオン電池)である。この種のバッテリ32は充放電時に発熱を伴う。このため、バッテリ32の冷却水通路は、低温側熱媒体を流通させることで、バッテリ32全体を冷却できるように形成されている。 Furthermore, a cooling water passage of the battery 32 is connected to the low-temperature side heat medium circuit 30. The battery 32 supplies electric power to various electric devices mounted on the vehicle. The battery 32 is a chargeable / dischargeable secondary battery (in the present embodiment, a lithium ion battery). This type of battery 32 generates heat during charging and discharging. For this reason, the cooling water passage of the battery 32 is formed so that the entirety of the battery 32 can be cooled by flowing the low-temperature side heat medium.
 また、バッテリ32は、低温になると化学反応が進みにくく充放電の関して充分な性能を発揮することができない。一方、高温になると劣化が進行しやすくなる。従って、バッテリ32の温度は、充分な性能を発揮できる適正な温度帯(例えば、10℃以上、かつ、40℃以下)の範囲内に調整されている必要がある。 {Circle around (4)} When the temperature of the battery 32 becomes low, the chemical reaction hardly proceeds, and the battery 32 cannot exhibit sufficient performance with respect to charging and discharging. On the other hand, when the temperature becomes high, the deterioration easily proceeds. Therefore, the temperature of the battery 32 needs to be adjusted within a proper temperature range (for example, 10 ° C. or more and 40 ° C. or less) in which sufficient performance can be exhibited.
 低温側熱媒体ポンプ31は、低温側熱媒体をチラー17の水通路の入口側へ圧送する水ポンプである。低温側熱媒体ポンプ31の基本的構成は、高温側熱媒体ポンプ21と同様である。チラー17の水通路の出口側には、低温側ラジエータ33の熱媒体入口側が接続されている。低温側ラジエータ33は、チラー17から流出した低温側熱媒体と図示しない外気ファンから送風された外気とを熱交換させる外気熱交換器である。 The low-temperature heat medium pump 31 is a water pump that pumps the low-temperature heat medium to the inlet side of the water passage of the chiller 17. The basic configuration of the low-temperature-side heat medium pump 31 is the same as that of the high-temperature-side heat medium pump 21. The heat medium inlet side of the low-temperature radiator 33 is connected to the outlet side of the water passage of the chiller 17. The low-temperature radiator 33 is an outside air heat exchanger that exchanges heat between the low-temperature heat medium flowing out of the chiller 17 and the outside air blown from an outside air fan (not shown).
 低温側ラジエータ33は、低温側熱媒体の温度が外気よりも高くなっている場合には、低温側熱媒体の有する熱を外気に放熱させる放熱用の外気熱交換器として機能する。また、低温側熱媒体の温度が外気よりも低くなっている場合には、外気の有する熱を低温側熱媒体に吸熱させる吸熱用の外気熱交換器として機能する。 (4) When the temperature of the low-temperature side heat medium is higher than the outside air, the low-temperature side radiator 33 functions as an external heat exchanger for radiating the heat of the low-temperature side heat medium to the outside air. When the temperature of the low-temperature side heat medium is lower than that of the outside air, the low-temperature side heat medium functions as an endothermic outside air heat exchanger for absorbing the heat of the outside air to the low-temperature side heat medium.
 更に、低温側熱媒体回路30には、バイパス通路35が設けられている。バイパス通路35は、チラー17の水通路から流出した低温側熱媒体を、低温側ラジエータ33を迂回させて、低温側熱媒体ポンプ31の吸入口側へ導く通路である。バイパス通路35には、バッテリ32の冷却水通路が接続されている。 Furthermore, a bypass passage 35 is provided in the low-temperature side heat medium circuit 30. The bypass passage 35 is a passage that guides the low-temperature side heat medium flowing out of the water passage of the chiller 17 to the suction side of the low-temperature side heat medium pump 31, bypassing the low-temperature side radiator 33. The cooling water passage of the battery 32 is connected to the bypass passage 35.
 バイパス通路35の出口部には、低温側流量調整弁34が配置されている。低温側流量調整弁34の基本的構成は、高温側流量調整弁24と同様である。低温側流量調整弁34は、低温側熱媒体回路30において、バイパス通路35を流通する低温側熱媒体の流量を調整する流量調整弁である。 低温 At the outlet of the bypass passage 35, a low temperature side flow control valve 34 is disposed. The basic configuration of the low temperature side flow control valve 34 is the same as that of the high temperature side flow control valve 24. The low temperature side flow control valve 34 is a flow rate control valve that adjusts the flow rate of the low temperature side heat medium flowing through the bypass passage 35 in the low temperature side heat medium circuit 30.
 従って、低温側熱媒体回路30では、低温側流量調整弁34が、バイパス通路35(すなわち、バッテリ32の冷却水通路)を流通する低温側熱媒体の流量を調整することによって、バッテリ32の温度を調整することができる。 Therefore, in the low-temperature side heat medium circuit 30, the low-temperature side flow control valve 34 adjusts the flow rate of the low-temperature side heat medium flowing through the bypass passage 35 (that is, the cooling water passage of the battery 32), so that the temperature of the battery 32 increases. Can be adjusted.
 また、冷凍サイクル装置10は、チラー17の水通路の出口側の低温側熱媒体回路30とカバー部120の流入口121dとを接続する第1接続流路45を有している。更に、冷凍サイクル装置10は、カバー部120の流出口122bと低温側ラジエータ33の入口側の低温側熱媒体回路30とを接続する第2接続流路46を有している。 The refrigeration cycle device 10 also has a first connection flow path 45 that connects the low-temperature side heat medium circuit 30 on the outlet side of the water passage of the chiller 17 to the inlet 121 d of the cover 120. Further, the refrigeration cycle device 10 has a second connection flow path 46 that connects the outlet 122 b of the cover part 120 and the low-temperature heat medium circuit 30 on the inlet side of the low-temperature radiator 33.
 第1接続流路45と低温側熱媒体回路30との接続部には、第1接続流路45の入口部を開放又は閉塞する開閉弁47が配置されている。本実施形態では、開閉弁47は、3つの流入出口を有する三方弁である。開閉弁47は、制御装置60から出力される制御信号によって、その作動が制御される。 開 閉 An on-off valve 47 that opens or closes the inlet of the first connection channel 45 is disposed at the connection between the first connection channel 45 and the low-temperature side heat medium circuit 30. In the present embodiment, the on-off valve 47 is a three-way valve having three inflow / outflow ports. The operation of the on-off valve 47 is controlled by a control signal output from the control device 60.
 開閉弁47が開き、低温側熱媒体が低温側熱媒体回路30から第1接続流路45に流入すると、カバー部120の流体流路120aに低温側熱媒体が流通する。すると、カバー部120において、カバー部120と低温側熱媒体とが熱交換して、低温側熱媒体が加熱される。そして、加熱された低温側熱媒体は、第2接続流路46を流通して、低温側ラジエータ33の流入側の低温側熱媒体回路30に流入し、圧縮部110の排熱が、低温側ラジエータ33側に搬送される。 (5) When the on-off valve 47 is opened and the low-temperature heat medium flows into the first connection flow path 45 from the low-temperature heat medium circuit 30, the low-temperature heat medium flows through the fluid flow path 120 a of the cover 120. Then, in the cover part 120, the cover part 120 and the low-temperature side heat medium exchange heat, and the low-temperature side heat medium is heated. Then, the heated low-temperature side heat medium flows through the second connection flow path 46, flows into the low-temperature side heat medium circuit 30 on the inflow side of the low-temperature side radiator 33, and the exhaust heat of the compression unit 110 is reduced to the low-temperature side. It is conveyed to the radiator 33 side.
 次に、室内空調ユニット50について説明する。室内空調ユニット50は、冷凍サイクル装置10において、冷凍サイクル装置10によって温度調整された送風空気を車室内の適切な箇所へ吹き出すための空気通路を形成する。室内空調ユニット50は、車室内であって、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 50 will be described. The indoor air-conditioning unit 50 forms an air passage in the refrigeration cycle device 10 for blowing the blast air whose temperature has been adjusted by the refrigeration cycle device 10 to an appropriate location in the vehicle compartment. The indoor air-conditioning unit 50 is arranged inside the instrument panel (i.e., instrument panel) at the forefront of the passenger compartment in the passenger compartment.
 室内空調ユニット50は、その外殻を形成するケーシング51の内部に形成される空気通路に、送風機52、室内蒸発器16、ヒータコア22等を収容したものである。 The indoor air-conditioning unit 50 has a blower 52, an indoor evaporator 16, a heater core 22, and the like housed in an air passage formed inside a casing 51 forming an outer shell.
 ケーシング51は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて成形されている。ケーシング51の送風空気流れ最上流側には、内外気切替装置53が配置されている。内外気切替装置53は、ケーシング51内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。 (4) The casing 51 forms an air passage for blowing air blown into the vehicle interior, and is formed of a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength. An inside / outside air switching device 53 is arranged on the most upstream side of the casing 51 in the flow of the blown air. The inside / outside air switching device 53 switches and introduces inside air (vehicle interior air) and outside air (vehicle outside air) into the casing 51.
 内外気切替装置53は、ケーシング51内へ内気を導入させる内気導入口及び外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させることができる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 53 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 51 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, so that the inside air introduction air volume and the outside air It is possible to change the introduction ratio with the introduced air volume. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the control device 60.
 内外気切替装置53の送風空気流れ下流側には、送風機52が配置されている。送風機52は、内外気切替装置53を介して吸入した空気を車室内へ向けて送風する。送風機52は、遠心多翼ファンを電動モータにて駆動する電動送風機である。送風機52は、制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air. The blower 52 blows the air taken in through the inside / outside air switching device 53 toward the vehicle interior. The blower 52 is an electric blower that drives a centrifugal multiblade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the blower 52 is controlled by the control voltage output from the control device 60.
 送風機52の送風空気流れ下流側には、室内蒸発器16及びヒータコア22が、送風空気の流れに対して、この順に配置されている。つまり、室内蒸発器16は、ヒータコア22よりも送風空気流れ上流側に配置されている。また、ケーシング51内には、室内蒸発器16を通過した送風空気を、ヒータコア22を迂回させて下流側へ流す冷風バイパス通路55が形成されている。 室内 The indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blast air on the downstream side of the blast air flow of the blower 52. That is, the indoor evaporator 16 is disposed on the upstream side of the flow of the blown air from the heater core 22. Further, a cool air bypass passage 55 is formed in the casing 51 so that the air blown through the indoor evaporator 16 flows to the downstream side bypassing the heater core 22.
 室内蒸発器16の送風空気流れ下流側であって、かつ、ヒータコア22の送風空気流れ上流側には、エアミックスドア54が配置されている。エアミックスドア54は、室内蒸発器16を通過後の送風空気のうち、ヒータコア22を通過させる風量と冷風バイパス通路55を通過させる風量との風量割合を調整する。 エ ア An air mix door 54 is arranged on the downstream side of the air flow of the indoor evaporator 16 and on the upstream side of the air flow of the heater core 22. The air mix door 54 adjusts the ratio of the amount of air that passes through the heater core 22 and the amount of air that passes through the cool air bypass passage 55 in the air that has passed through the indoor evaporator 16.
 エアミックスドア54は、エアミックスドア駆動用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 The air mix door 54 is driven by an electric actuator for driving the air mix door. The operation of the electric actuator is controlled by a control signal output from the control device 60.
 ヒータコア22の送風空気流れ下流側には、ヒータコア22にて加熱された送風空気と冷風バイパス通路55を通過してヒータコア22にて加熱されていない送風空気とを混合させる混合空間56が設けられている。更に、ケーシング51の送風空気流れ最下流部には、混合空間56にて混合された送風空気(空調風)を、車室内へ吹き出す開口穴が配置されている。 On the downstream side of the air flow of the heater core 22, a mixing space 56 for mixing the air heated by the heater core 22 and the air not heated by the heater core 22 through the cool air bypass passage 55 is provided. I have. Further, an opening hole for blowing out the blast air (conditioned air) mixed in the mixing space 56 into the vehicle interior is disposed at the most downstream portion of the blast air flow of the casing 51.
 この開口穴としては、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 開口 As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided. The face opening hole is an opening hole for blowing out conditioned air toward the upper body of the occupant in the passenger compartment. The foot opening hole is an opening hole for blowing out conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing out conditioned air toward the inner surface of the vehicle front window glass.
 これらのフェイス開口穴、フット開口穴、及びデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口及びデフロスタ吹出口(いずれも図示せず)に接続されている。 The face opening, the foot opening, and the defroster opening are respectively connected to a face outlet, a foot outlet, and a defroster outlet provided in the vehicle cabin through ducts forming air passages. )It is connected to the.
 従って、エアミックスドア54が、ヒータコア22を通過させる風量と冷風バイパス通路55を通過させる風量との風量割合を調整することによって、混合空間56にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。 Therefore, the temperature of the conditioned air mixed in the mixing space 56 is adjusted by the air mix door 54 adjusting the air flow ratio between the air flow passing through the heater core 22 and the air flow passing through the cool air bypass passage 55. Thereby, the temperature of the blast air (conditioned air) blown out from each outlet into the vehicle interior is also adjusted.
 また、フェイス開口穴、フット開口穴、及びデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 A face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening are respectively provided on the upstream side of the blown air flow of the face opening hole, the foot opening hole, and the defroster opening hole. A defroster door (both not shown) for adjusting the opening area of the hole is arranged.
 これらのフェイスドア、フットドア、デフロスタドアは、空調風が吹き出される吹出口を切り替える吹出モード切替装置を構成している。フェイスドア、フットドア、デフロスタドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 フ ェ イ ス The face door, the foot door, and the defroster door constitute an air outlet mode switching device that switches an air outlet through which the conditioned air is blown out. The face door, the foot door, and the defroster door are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction therewith. The operation of the electric actuator is controlled by a control signal output from the control device 60.
 次に、図5のブロック図を用いて、本実施形態の電気制御部の概要について説明する。制御装置60は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、14、15、21、24、31、34、47、52等の作動を制御する。 Next, the outline of the electric control unit of the present embodiment will be described with reference to the block diagram of FIG. The control device 60 includes a well-known microcomputer including a CPU, a ROM, a RAM, and the like, and its peripheral circuits. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 14, 15, 21, 24, 31, 34, 47, 52 connected to the output side. And the like.
 また、制御装置60の入力側には、図5に示すように、内気温センサ62a、外気温センサ62b、日射センサ62c、高圧センサ62d、蒸発器温度センサ62e、空調風温度センサ62f、バッテリ温度センサ62g、低温側熱媒体温度センサ62h等の制御用のセンサ群が接続されている。制御装置60には、これらのセンサ群の検出信号が入力される。 On the input side of the control device 60, as shown in FIG. 5, an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, an evaporator temperature sensor 62e, an air conditioning wind temperature sensor 62f, a battery temperature A sensor group for control, such as a sensor 62g and a low-temperature-side heat medium temperature sensor 62h, is connected. The detection signals of these sensor groups are input to the control device 60.
 内気温センサ62aは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62bは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ62cは、車室内へ照射される日射量Asを検出する日射量検出部である。高圧センサ62dは、圧縮機11の吐出口側から冷却用膨張弁14あるいは吸熱用膨張弁15の入口側へ至る冷媒流路の高圧冷媒圧力Pdを検出する冷媒圧力検出部である。 The internal air temperature sensor 62a is an internal air temperature detecting unit that detects the vehicle interior temperature (internal air temperature) Tr. The outside air temperature sensor 62b is an outside air temperature detection unit that detects a vehicle outside temperature (outside air temperature) Tam. The solar radiation sensor 62c is a solar radiation amount detector that detects the amount of solar radiation As emitted to the vehicle interior. The high-pressure sensor 62d is a refrigerant pressure detection unit that detects the high-pressure refrigerant pressure Pd in the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 14 or the heat absorption expansion valve 15.
 蒸発器温度センサ62eは、室内蒸発器16における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。空調風温度センサ62fは、混合空間56から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The evaporator temperature sensor 62e is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16. The air-conditioning air temperature sensor 62f is an air-conditioning air temperature detection unit that detects the temperature of the air blown from the mixing space 56 into the vehicle compartment TAV.
 バッテリ温度センサ62gは、バッテリ32の温度Tbを検出するバッテリ温度検出部である。バッテリ温度センサ62gは、複数の温度センサを有し、バッテリ32の複数の箇所の温度を検出している。このため、制御装置60では、バッテリ32の温度Tbとして、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 62g is a battery temperature detector that detects the temperature Tb of the battery 32. The battery temperature sensor 62g has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 32. Therefore, control device 60 employs an average value of the detection values of the plurality of temperature sensors as temperature Tb of battery 32.
 低温側熱媒体温度センサ62hは、低温側熱媒体回路30を流通する低温側熱媒体の温度を検出する低温側熱媒体温度検出部である。本実施形態では、低温側熱媒体温度センサ62hは、低温側ラジエータ33の入口側の低温側熱媒体回路30の低温側熱媒体の温度を検出している。 The low-temperature heat medium temperature sensor 62h is a low-temperature heat medium temperature detection unit that detects the temperature of the low-temperature heat medium flowing through the low-temperature heat medium circuit 30. In the present embodiment, the low-temperature heat medium temperature sensor 62h detects the temperature of the low-temperature heat medium of the low-temperature heat medium circuit 30 on the inlet side of the low-temperature radiator 33.
 更に、制御装置60の入力側には、図5に示すように、車室内前部の計器盤付近に配置された操作パネル61が接続され、この操作パネル61に設けられた各種操作スイッチからの操作信号が入力される。 Further, as shown in FIG. 5, an operation panel 61 disposed near the instrument panel in the front of the vehicle compartment is connected to the input side of the control device 60, and various operation switches provided on the operation panel 61 An operation signal is input.
 操作パネル61に設けられた各種操作スイッチとしては、具体的に、空調作動スイッチ、風量設定スイッチ、温度設定スイッチ等がある。空調作動スイッチは、乗員が車室内の空調を行うことを要求するための空調作動要求部である。風量設定スイッチは、乗員が送風機52の風量をマニュアル設定するための風量設定部である。温度設定スイッチは、車室内の設定温度を設定するための温度設定部である。 各種 Specific examples of various operation switches provided on the operation panel 61 include an air-conditioning operation switch, an air volume setting switch, and a temperature setting switch. The air-conditioning operation switch is an air-conditioning operation requesting unit for requesting that an occupant perform air-conditioning of the vehicle interior. The air volume setting switch is an air volume setting unit for the occupant to manually set the air volume of the blower 52. The temperature setting switch is a temperature setting unit for setting a set temperature in the vehicle compartment.
 なお、本実施形態の制御装置60は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。このため、それぞれの制御対象機器の作動を制御する構成(ハードウェア及びソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The control device 60 of the present embodiment has an integrated control unit for controlling various control target devices connected to the output side. Therefore, the configuration (hardware and software) that controls the operation of each control target device constitutes a control unit that controls the operation of each control target device.
 例えば、制御装置60のうち、圧縮機11の作動を制御する構成は、圧縮機制御部60aを構成している。また、開閉弁47の作動を制御する構成は、開閉弁制御部60bを構成している。もちろん、圧縮機制御部60aや開閉弁制御部60b等の各制御部を別体に構成してもよい。 For example, the configuration of the control device 60 that controls the operation of the compressor 11 constitutes the compressor control unit 60a. The configuration for controlling the operation of the on-off valve 47 constitutes the on-off valve control unit 60b. Of course, each control unit such as the compressor control unit 60a and the on-off valve control unit 60b may be configured separately.
 次に、上記構成における本実施形態の冷凍サイクル装置10の作動について説明する。上述の如く、本実施形態の冷凍サイクル装置10は、空調用の運転モードに応じて冷媒回路を切り替えることができる。空調用の運転モードは、予め制御装置60に記憶された空調制御プログラムが実行されることによって決定される。 Next, the operation of the refrigeration cycle apparatus 10 according to the present embodiment having the above configuration will be described. As described above, the refrigeration cycle device 10 of the present embodiment can switch the refrigerant circuit according to the operation mode for air conditioning. The air-conditioning operation mode is determined by executing an air-conditioning control program stored in the control device 60 in advance.
 空調制御プログラムは、車両システムが起動している状態で、操作パネル61の空調作動スイッチが投入(ON)されると実行される。空調制御プログラムでは、制御用のセンサ群によって検出された検出信号及び操作パネル61から出力される操作信号に基づいて、車室内へ送風される送風空気の目標吹出温度TAOを算出する。 The air-conditioning control program is executed when the air-conditioning operation switch on the operation panel 61 is turned on (ON) while the vehicle system is running. In the air-conditioning control program, the target blowing temperature TAO of the air blown into the vehicle compartment is calculated based on the detection signal detected by the control sensor group and the operation signal output from the operation panel 61.
 目標吹出温度TAOは、以下数式F1によって算出される。TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは、温度設定スイッチによって設定された設定温度である。Trは、内気温センサ62aによって検出された内気温である。Tamは、外気温センサ62bによって検出された外気温である。Asは、日射センサ62cによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
The target outlet temperature TAO is calculated by the following equation F1. TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F1)
Tset is a set temperature set by a temperature setting switch. Tr is the inside air temperature detected by the inside air temperature sensor 62a. Tam is the outside air temperature detected by the outside air temperature sensor 62b. As is the amount of solar radiation detected by the solar radiation sensor 62c. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 そして、空調制御プログラムでは、目標吹出温度TAO、検出信号、及び操作信号に基づいて、運転モードを切り替える。 Then, in the air conditioning control program, the operation mode is switched based on the target outlet temperature TAO, the detection signal, and the operation signal.
 更に、本実施形態の制御装置60では、図6に示す制御ルーチンを実行することによって、開閉弁47の作動を制御し、暖房モード時に低温側ラジエータの着霜を防止している。なお、図6に示す制御ルーチンは、空調制御プログラムのメインルーチンのサブルーチンとして所定の周期毎に実行される。 Further, in the control device 60 of the present embodiment, the operation of the on-off valve 47 is controlled by executing the control routine shown in FIG. 6 to prevent frost formation on the low-temperature radiator in the heating mode. The control routine shown in FIG. 6 is executed at predetermined intervals as a subroutine of the main routine of the air conditioning control program.
 サブルーチンの、ステップS11にて、メインルーチンにて運転モードが暖房モードに切り替えられた際には、ステップS12へ進む。一方、ステップS11にて、運転モードが暖房モードに切り替えられていない際には、ステップS14へ進み、開閉弁制御部60bは、開閉弁47を閉じてメインルーチンへ戻る。 When the operation mode is switched to the heating mode in the main routine in step S11 of the subroutine, the process proceeds to step S12. On the other hand, when the operation mode is not switched to the heating mode in step S11, the process proceeds to step S14, where the on-off valve control unit 60b closes the on-off valve 47 and returns to the main routine.
 ステップS12において、以下に示す着霜条件(1)が成立した場合には、ステップS13へ進み、開閉弁制御部60bは、開閉弁47を開いてメインルーチンへ戻る。着霜条件(1)は、本実施形態における基準条件である。 In step S12, if the following frosting condition (1) is satisfied, the process proceeds to step S13, where the on-off valve controller 60b opens the on-off valve 47 and returns to the main routine. The frosting condition (1) is a reference condition in the present embodiment.
 着霜条件(1):低温側熱媒体温度センサ62hによって検出された、低温側ラジエータ33の入口側の低温側熱媒体の温度が、規定低温側熱媒体温度以下である場合。 (4) Frost formation condition (1): When the temperature of the low-temperature heat medium at the inlet side of the low-temperature radiator 33 detected by the low-temperature heat medium temperature sensor 62h is equal to or lower than the specified low-temperature heat medium temperature.
 着霜条件(1)は、低温側ラジエータ33に着霜が生じ得る運転条件であるか否かを判定する条件である。以下に、各運転モードの作動を説明する。 霜 The frosting condition (1) is a condition for determining whether or not the low-temperature side radiator 33 is an operating condition in which frost may occur. The operation of each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、制御装置60が、冷却用膨張弁14を冷媒減圧作用を発揮する絞り状態とし、吸熱用膨張弁15を全閉状態とする。
(A) Cooling Mode In the cooling mode, the control device 60 causes the cooling expansion valve 14 to be in the throttled state for exerting the refrigerant pressure reducing action, and the heat absorption expansion valve 15 to be in the fully closed state.
 これにより、冷房モードの冷凍サイクル装置10では、圧縮機11の吐出口→水-冷媒熱交換器12→分岐部13a→冷却用膨張弁14→室内蒸発器16→蒸発圧力調整弁18→合流部13b→圧縮機11の吸入口の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。そして、このサイクル構成で、制御装置60は、出力側に接続された各種制御対象機器の作動を制御する。 Thereby, in the refrigeration cycle device 10 in the cooling mode, the discharge port of the compressor 11 → the water-refrigerant heat exchanger 12 → the branch portion 13a → the cooling expansion valve 14 → the indoor evaporator 16 → the evaporation pressure regulating valve 18 → the junction portion A vapor compression refrigeration cycle in which the refrigerant circulates in the order of 13b → the suction port of the compressor 11 is configured. Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side.
 例えば、制御装置60は、蒸発器温度センサ62eによって検出された冷媒蒸発温度Tefinが目標蒸発温度TEOとなるように圧縮機11へ出力される制御信号を決定する。目標蒸発温度TEOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶された冷房モード用の制御マップを参照して決定される。 For example, the control device 60 determines a control signal to be output to the compressor 11 so that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62e becomes the target evaporation temperature TEO. The target evaporation temperature TEO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in the control device 60 in advance.
 具体的には、この制御マップでは、空調風温度センサ62fによって検出された送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標蒸発温度TEOを上昇させる。更に、目標蒸発温度TEOは、室内蒸発器16の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。 Specifically, in this control map, the target evaporation temperature TEO is increased with the increase of the target blowout temperature TAO so that the blown air temperature TAV detected by the air-conditioning wind temperature sensor 62f approaches the target blowout temperature TAO. Furthermore, the target evaporation temperature TEO is determined to a value within a range (specifically, 1 ° C. or more) in which frost formation on the indoor evaporator 16 can be suppressed.
 また、制御装置60は、室内蒸発器16の出口側の冷媒の過熱度が予め定めた基準過熱度(本実施形態では、3℃)に近づくように、冷却用膨張弁14へ出力される制御信号を決定する。 Further, the control device 60 controls the output to the cooling expansion valve 14 so that the superheat degree of the refrigerant at the outlet side of the indoor evaporator 16 approaches a predetermined reference superheat degree (3 ° C. in the present embodiment). Determine the signal.
 また、制御装置60は、予め定めた冷房モード時の圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。更に、制御装置60は、水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量が高温側ラジエータ23へ流入するように、高温側流量調整弁24へ出力される制御信号を決定する。 {Circle around (4)} The control device 60 activates the high-temperature side heat medium pump 21 so as to exhibit a predetermined pumping capacity in the cooling mode. Further, the control device 60 controls the control signal output to the high temperature side flow control valve 24 so that the entire flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23. To determine.
 また、制御装置60は、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して送風機52へ出力される制御電圧を決定する。具体的には、この制御マップでは、目標吹出温度TAOの極低温域(最大冷房域)及び極高温域(最大暖房域)で送風機52の送風量を最大とし、中間温度域に近づくに伴って送風量を減少させる。 {Circle around (5)} Control device 60 determines a control voltage to be output to blower 52 with reference to a control map stored in control device 60 in advance based on target outlet temperature TAO. Specifically, in this control map, the blowing amount of the blower 52 is maximized in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target outlet temperature TAO, and as the temperature approaches the intermediate temperature region. Reduce the air flow.
 また、制御装置60は、冷風バイパス通路55を全開としてヒータコア22側の通風路を閉塞するように、エアミックスドア駆動用の電動アクチュエータへ出力される制御信号を決定する。更に、制御装置60は、その他の各種制御対象機器へ出力される制御信号等を適宜決定する。 {Circle around (5)} The control device 60 determines a control signal to be output to the electric actuator for driving the air mix door such that the cold air bypass passage 55 is fully opened and the ventilation passage on the heater core 22 side is closed. Further, the control device 60 appropriately determines a control signal or the like to be output to other various control target devices.
 そして、制御装置60は、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車室内の空調の停止が要求されるまで、所定の制御周期毎に、上述の検出信号及び操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器へ出力される制御信号等の決定→制御信号等の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。 Then, the control device 60 outputs the control signals and the like determined as described above to various control target devices. Thereafter, until the stop of the air conditioning in the vehicle compartment is requested, the above-described detection signal and operation signal are read at every predetermined control cycle → calculation of the target outlet temperature TAO → control signals output to various control target devices, etc. A control routine such as determination → output of a control signal or the like is repeated. The repetition of such a control routine is similarly performed in other operation modes.
 従って、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, the high-temperature-side heat medium pump 21 is operating, so that the high-pressure refrigerant and the high-temperature side heat medium exchange heat, the high-pressure refrigerant is cooled and condensed, and the high-temperature side heat medium is heated. Is done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 In the high-temperature heat medium circuit 20, the high-temperature heat medium heated by the water-refrigerant heat exchanger 12 flows into the high-temperature radiator 23 through the high-temperature flow control valve 24. The high-temperature side heat medium that has flowed into the high-temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high-temperature side heat medium is cooled. The high-temperature-side heat medium cooled by the high-temperature-side radiator 23 is sucked into the high-temperature-side heat medium pump 21 and is again pumped to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路にて冷却された高圧冷媒は、分岐部13aを介して、冷却用膨張弁14へ流入して減圧される。この際、冷却用膨張弁14の絞り開度は、室内蒸発器16の出口側の冷媒の過熱度が基準過熱度に近づくように調整される。 (4) The high-pressure refrigerant cooled in the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the cooling expansion valve 14 via the branch portion 13a and is decompressed. At this time, the throttle opening of the cooling expansion valve 14 is adjusted such that the superheat degree of the refrigerant at the outlet side of the indoor evaporator 16 approaches the reference superheat degree.
 冷却用膨張弁14にて減圧されて気液二相状態となった低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却されて、送風空気温度TAVが目標吹出温度TAOに近づく。室内蒸発器16から流出した冷媒は、蒸発圧力調整弁18及び合流部13bを介して、圧縮機11へ吸入されて再び圧縮される。 (4) The low-pressure refrigerant that has been decompressed by the cooling expansion valve 14 and is in a gas-liquid two-phase state flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the blown air blown from the blower 52 and evaporates. As a result, the blown air is cooled, and the blown air temperature TAV approaches the target blowout temperature TAO. The refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure regulating valve 18 and the junction 13b, and is compressed again.
 従って、冷房モードでは、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the cooling mode, the air in the vehicle compartment can be cooled by blowing the blast air cooled by the indoor evaporator 16 into the vehicle compartment.
 ここで、冷房モードは、外気温Tamが比較的高くなっている時(例えば、外気温が25℃以上となっている時)に実行される運転モードである。このため、バッテリ32の温度が、自己発熱によって、適正な温度帯よりも上昇してしまうおそれがある。 Here, the cooling mode is an operation mode executed when the outside temperature Tam is relatively high (for example, when the outside temperature is 25 ° C. or higher). For this reason, there is a possibility that the temperature of the battery 32 may rise above an appropriate temperature range due to self-heating.
 そこで、制御装置60は、バッテリ温度センサ62gによって検出されたバッテリ32の温度Tbが予め定めた基準バッテリ温度以上となっている際には、予め定めた圧送能力を発揮するように、低温側熱媒体ポンプ31を作動させる。更に、制御装置60は、バッテリ32の温度Tbが適正な温度帯に維持されるように、低温側流量調整弁34の作動を制御する。 Therefore, when the temperature Tb of the battery 32 detected by the battery temperature sensor 62g is equal to or higher than a predetermined reference battery temperature, the control device 60 controls the low-temperature side heat so as to exhibit a predetermined pumping ability. The medium pump 31 is operated. Further, the control device 60 controls the operation of the low temperature side flow control valve 34 so that the temperature Tb of the battery 32 is maintained in an appropriate temperature zone.
 このような制御装置60による電気機器の温度調整は、冷房モードに限定されることなく、除湿暖房モード及び暖房モードにおいても、必要に応じて実行される。更に、車両システム全体が起動していれば、車室内の空調が行われているか否かを問わず(すなわち、空調制御プログラムが実行されているか否かを問わず)、必要に応じて実行される。 温度 The temperature adjustment of the electric device by the control device 60 is not limited to the cooling mode, but is performed as needed in the dehumidifying heating mode and the heating mode. Further, if the entire vehicle system is activated, it is executed as necessary regardless of whether or not air conditioning in the vehicle compartment is being performed (that is, whether or not the air conditioning control program is being executed). You.
 (b)除湿暖房モード
 除湿暖房モードでは、制御装置60が、冷却用膨張弁14を絞り状態とし、吸熱用膨張弁15を絞り状態とする。
(B) Dehumidifying and heating mode In the dehumidifying and heating mode, the control device 60 sets the cooling expansion valve 14 to a throttled state and sets the heat absorption expansion valve 15 to a throttled state.
 これにより、除湿暖房モードの冷凍サイクル装置10では、圧縮機11の吐出口→水-冷媒熱交換器12→分岐部13a→冷却用膨張弁14→室内蒸発器16→蒸発圧力調整弁18→合流部13b→圧縮機11の吸入口の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。同時に、圧縮機11の吐出口→水-冷媒熱交換器12→分岐部13a→吸熱用膨張弁15→チラー17→合流部13b→圧縮機11の吸入口の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10 in the dehumidifying and heating mode, the discharge port of the compressor 11 → the water-refrigerant heat exchanger 12 → the branch portion 13 a → the expansion valve for cooling 14 → the indoor evaporator 16 → the evaporating pressure regulating valve 18 → confluence A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the part 13b and the suction port of the compressor 11 is configured. At the same time, a vapor compression type in which the refrigerant circulates in the order of the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the branch portion 13a, the heat absorbing expansion valve 15, the chiller 17, the junction 13b, and the suction port of the compressor 11. Is configured.
 つまり、除湿暖房モードでは、室内蒸発器16及びチラー17が、並列的に接続される冷媒回路に切り替えられる。そして、このサイクル構成で、制御装置60は、出力側に接続された各種制御対象機器の作動を制御する。 In other words, in the dehumidifying and heating mode, the indoor evaporator 16 and the chiller 17 are switched to a refrigerant circuit connected in parallel. Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side.
 例えば、制御装置60は、高圧センサ62dによって検出された高圧冷媒圧力Pdが目標高圧PCOとなるように圧縮機11へ出力される制御信号を決定する。目標高圧PCOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶された除湿暖房モード用の制御マップを参照して決定される。 For example, the control device 60 determines a control signal to be output to the compressor 11 so that the high-pressure refrigerant pressure Pd detected by the high-pressure sensor 62d becomes the target high-pressure PCO. The target high pressure PCO is determined based on the target outlet temperature TAO with reference to a control map for the dehumidifying and heating mode stored in the control device 60 in advance.
 具体的には、この制御マップでは、送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標高圧PCOを上昇させる。 Specifically, in this control map, the target high-pressure PCO is increased with the increase of the target outlet temperature TAO such that the blown air temperature TAV approaches the target outlet temperature TAO.
 また、制御装置60は、目標吹出温度TAO及び外気温Tamに基づいて、予め制御装置60に記憶された除湿暖房モード用の制御マップを参照して、冷却用膨張弁14へ出力される制御信号及び吸熱用膨張弁15へ出力される制御信号を決定する。 Further, the control device 60 refers to the control map for the dehumidifying and heating mode stored in the control device 60 in advance based on the target outlet temperature TAO and the outside air temperature Tam, and outputs a control signal output to the cooling expansion valve 14. And the control signal output to the heat absorption expansion valve 15 is determined.
 具体的には、この制御マップでは、チラー17における冷媒蒸発温度が少なくとも外気温Tamより低い温度となるように吸熱用膨張弁15の絞り開度を決定する。また、冷却用膨張弁14の絞り開度については、吸熱用膨張弁15の絞り開度よりも大きくなる範囲で決定する。 Specifically, in this control map, the throttle opening of the heat absorption expansion valve 15 is determined so that the refrigerant evaporation temperature in the chiller 17 is at least lower than the outside temperature Tam. Further, the throttle opening of the cooling expansion valve 14 is determined in a range that is larger than the throttle opening of the heat absorption expansion valve 15.
 また、制御装置60は、予め定めた除湿暖房モード時の圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。更に、制御装置60は、水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量がヒータコア22へ流入するように、高温側流量調整弁24へ出力される制御信号を決定する。 {Circle around (4)} The control device 60 activates the high-temperature side heat medium pump 21 so as to exhibit a predetermined pumping capacity in the dehumidifying and heating mode. Further, the control device 60 determines a control signal output to the high-temperature side flow control valve 24 so that the entire flow rate of the high-temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 22. I do.
 また、制御装置60は、予め定めた除湿暖房モード時の圧送能力を発揮するように、低温側熱媒体ポンプ31を作動させる。 {Circle around (4)} The control device 60 activates the low-temperature side heat medium pump 31 so as to exhibit a predetermined pumping capacity in the dehumidifying and heating mode.
 また、制御装置60は、冷房モードと同様に、送風機52へ出力される制御電圧を決定する。また、制御装置60は、ヒータコア22側の通風路を全開として冷風バイパス通路55を閉塞するように、エアミックスドア駆動用の電動アクチュエータへ出力される制御信号を決定する。更に、制御装置60は、その他の各種制御対象機器へ出力される制御信号等を適宜決定する。 {Circle around (5)} Similarly to the cooling mode, the control device 60 determines the control voltage output to the blower 52. Further, control device 60 determines a control signal to be output to the electric actuator for driving the air mix door such that the ventilation passage on the side of heater core 22 is fully opened and the cooling air bypass passage 55 is closed. Further, the control device 60 appropriately determines a control signal or the like to be output to other various control target devices.
 従って、除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高温高圧の冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the dehumidifying and heating mode, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, the high-temperature-side heat medium pump 21 is operating, so that the high-pressure refrigerant and the high-temperature side heat medium exchange heat, the high-pressure refrigerant is cooled and condensed, and the high-temperature side heat medium is heated. Is done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。これにより、室内蒸発器16を通過した送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。 In the high-temperature heat medium circuit 20, the high-temperature heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high-temperature flow control valve 24. The high-temperature side heat medium that has flowed into the heater core 22 radiates heat by exchanging heat with the blast air that has passed through the indoor evaporator 16 because the air mix door 54 fully opens the ventilation path on the heater core 22 side. As a result, the blast air that has passed through the indoor evaporator 16 is heated, and the temperature of the blast air approaches the target blowing temperature TAO.
 ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 (4) The high-temperature-side heat medium flowing out of the heater core 22 is sucked into the high-temperature-side heat medium pump 21 and is again pumped to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、分岐部13aにて分岐される。分岐部13aにて分岐された一方の冷媒は、冷却用膨張弁14へ流入して減圧される。冷却用膨張弁14にて減圧されて気液二相状態となった低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却されて除湿される。 高 圧 The high-pressure refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12 is branched at the branch portion 13a. One of the refrigerants branched at the branch portion 13a flows into the cooling expansion valve 14 and is decompressed. The low-pressure refrigerant that has been decompressed by the cooling expansion valve 14 and is in a gas-liquid two-phase state flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the blown air blown from the blower 52 and evaporates. Thereby, the blown air is cooled and dehumidified.
 この際、室内蒸発器16における冷媒蒸発温度は、圧縮機11の冷媒吐出能力によらず、蒸発圧力調整弁18の作用によって、1℃以上に維持される。従って、室内蒸発器16に着霜が生じてしまうことはない。室内蒸発器16から流出した冷媒は、蒸発圧力調整弁18を介して合流部13bの一方の冷媒流入口へ流入する。 At this time, the refrigerant evaporation temperature in the indoor evaporator 16 is maintained at 1 ° C. or higher by the operation of the evaporation pressure regulating valve 18 irrespective of the refrigerant discharge capacity of the compressor 11. Therefore, frost does not occur on the indoor evaporator 16. The refrigerant flowing out of the indoor evaporator 16 flows into one refrigerant inlet of the junction 13b via the evaporation pressure regulating valve 18.
 分岐部13aにて分岐された他方の冷媒は、吸熱用膨張弁15へ流入して減圧される。この際、吸熱用膨張弁15の絞り開度は、チラー17における冷媒蒸発温度が少なくとも外気温Tamより低い温度となるように調整される。吸熱用膨張弁15にて減圧されて気液二相状態となった低圧冷媒は、チラー17へ流入する。チラー17へ流入した冷媒は、低温側熱媒体から吸熱して蒸発する。 他方 The other refrigerant branched at the branch portion 13a flows into the heat absorbing expansion valve 15 and is decompressed. At this time, the throttle opening of the heat absorbing expansion valve 15 is adjusted such that the refrigerant evaporation temperature in the chiller 17 is at least lower than the outside air temperature Tam. The low-pressure refrigerant that has been decompressed by the heat-absorbing expansion valve 15 and is in a gas-liquid two-phase state flows into the chiller 17. The refrigerant flowing into the chiller 17 absorbs heat from the low-temperature side heat medium and evaporates.
 低温側熱媒体回路30では、チラー17にて冷却された低温側熱媒体が、低温側ラジエータ33へ流入する。低温側ラジエータ33では、低温側熱媒体が外気から吸熱する。これにより、低温側熱媒体の温度は、外気温Tamに近づく。低温側ラジエータ33から流出した低温側熱媒体は、低温側熱媒体ポンプ31へ吸入されて、再びチラー17の水通路側へ圧送される。 (4) In the low-temperature side heat medium circuit 30, the low-temperature side heat medium cooled by the chiller 17 flows into the low-temperature side radiator 33. In the low-temperature radiator 33, the low-temperature heat medium absorbs heat from the outside air. Thereby, the temperature of the low-temperature side heat medium approaches the outside air temperature Tam. The low-temperature-side heat medium flowing out of the low-temperature-side radiator 33 is sucked into the low-temperature-side heat medium pump 31 and is again pressure-fed to the water passage side of the chiller 17.
 チラー17から流出した冷媒は、合流部13bの他方の冷媒流入口へ流入し、蒸発圧力調整弁18から流出した冷媒と合流する。合流部13bから流出した冷媒は、圧縮機へ吸入されて再び圧縮される。 The refrigerant flowing out of the chiller 17 flows into the other refrigerant inlet of the merging portion 13b, and merges with the refrigerant flowing out of the evaporation pressure regulating valve 18. The refrigerant flowing out of the junction 13b is sucked into the compressor and compressed again.
 従って、除湿暖房モードでは、室内蒸発器16にて冷却されて除湿された送風空気を、ヒータコア22で再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 Therefore, in the dehumidifying and heating mode, the blast air cooled and dehumidified by the indoor evaporator 16 is reheated by the heater core 22 and blown out into the vehicle interior, whereby dehumidification and heating in the vehicle interior can be performed.
 (c)暖房モード
 暖房モードでは、制御装置60が、冷却用膨張弁14を全閉状態とし、吸熱用膨張弁15を絞り状態とする。
(C) Heating Mode In the heating mode, the control device 60 sets the cooling expansion valve 14 to the fully closed state, and sets the heat absorption expansion valve 15 to the throttled state.
 これにより、暖房モードの冷凍サイクル装置10では、圧縮機11の吐出口→水-冷媒熱交換器12→分岐部13a→吸熱用膨張弁15→チラー17→合流部13b→圧縮機11の吸入口の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10 in the heating mode, the discharge port of the compressor 11 → the water-refrigerant heat exchanger 12 → the branch portion 13a → the heat absorbing expansion valve 15 → the chiller 17 → the junction portion 13b → the suction port of the compressor 11 The vapor compression refrigeration cycle in which the refrigerant circulates in this order is constructed.
 そして、このサイクル構成で、制御装置60は、出力側に接続された各種制御対象機器の作動を制御する。 {Circle around (5)} With this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side.
 例えば、制御装置60は、除湿暖房モードと同様に、圧縮機11へ出力される制御信号を決定する。また、制御装置60は、目標吹出温度TAO及び外気温Tamに基づいて、予め制御装置60に記憶された暖房モード用の制御マップを参照して、吸熱用膨張弁15へ出力される制御信号を決定する。具体的には、この制御マップでは、チラー17における冷媒蒸発温度が、少なくとも外気温Tam以下となるように決定される。 For example, the control device 60 determines a control signal to be output to the compressor 11 as in the dehumidifying and heating mode. Further, the control device 60 refers to a heating mode control map stored in the control device 60 in advance based on the target outlet temperature TAO and the outside air temperature Tam, and outputs a control signal output to the heat absorption expansion valve 15. decide. Specifically, in this control map, the refrigerant evaporation temperature in the chiller 17 is determined to be at least equal to or less than the outside temperature Tam.
 また、制御装置60は、予め定めた暖房モード時の圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。更に、制御装置60は、除湿暖房モードと同様に、水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量がヒータコア22へ流入するように、高温側流量調整弁24へ出力される制御信号を決定する。 {Circle around (4)} The control device 60 activates the high-temperature side heat medium pump 21 so as to exhibit a predetermined pumping capacity in the heating mode. Further, similarly to the dehumidifying and heating mode, the controller 60 controls the high-temperature side flow control valve 24 so that the entire flow rate of the high-temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 22. Determine the control signal to be output.
 また、制御装置60は、予め定めた暖房モード時の圧送能力を発揮するように、低温側熱媒体ポンプ31を作動させる。 {Circle around (5)} The control device 60 operates the low-temperature side heat transfer medium pump 31 so as to exhibit a predetermined pumping capacity in the heating mode.
 また、制御装置60は、冷房モード及び除湿暖房モードと同様に、送風機52へ出力される制御電圧を決定する。また、制御装置60は、除湿暖房モードと同様に、ヒータコア22側の通風路を全開として冷風バイパス通路55を閉塞するように、エアミックスドア駆動用の電動アクチュエータへ出力される制御信号を決定する。更に、制御装置60は、その他の各種制御対象機器へ出力される制御信号等を適宜決定する。 {Circle around (5)} Similarly to the cooling mode and the dehumidifying / heating mode, the control device 60 determines the control voltage output to the blower 52. Further, similarly to the dehumidifying and heating mode, the control device 60 determines a control signal to be output to the electric actuator for driving the air mix door so that the ventilation path on the heater core 22 side is fully opened and the cool air bypass passage 55 is closed. . Further, the control device 60 appropriately determines a control signal or the like to be output to other various control target devices.
 従って、暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, the high-temperature-side heat medium pump 21 is operating, so that the high-pressure refrigerant and the high-temperature side heat medium exchange heat, the high-pressure refrigerant is cooled and condensed, and the high-temperature side heat medium is heated. Is done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱されて、送風空気温度TAVが目標吹出温度TAOに近づく。 In the high-temperature heat medium circuit 20, the high-temperature heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high-temperature flow control valve 24. The high-temperature side heat medium that has flowed into the heater core 22 radiates heat by exchanging heat with the blast air that has passed through the indoor evaporator 16 because the air mix door 54 fully opens the ventilation path on the heater core 22 side. As a result, the blown air is heated, and the blown air temperature TAV approaches the target blowout temperature TAO.
 ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 (4) The high-temperature-side heat medium flowing out of the heater core 22 is sucked into the high-temperature-side heat medium pump 21 and is again pumped to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、分岐部13aを介して、吸熱用膨張弁15へ流入して減圧される。この際、吸熱用膨張弁15の絞り開度は、チラー17における冷媒蒸発温度が外気温Tamより低い温度となるように調整される。これにより、低温側熱媒体は、チラー17にて、圧縮部110の表面温度よりも低い温度に冷却される。 高 圧 The high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the heat absorbing expansion valve 15 through the branch portion 13a and is decompressed. At this time, the throttle opening of the heat absorbing expansion valve 15 is adjusted such that the refrigerant evaporation temperature in the chiller 17 is lower than the outside air temperature Tam. Thus, the low-temperature side heat medium is cooled by the chiller 17 to a temperature lower than the surface temperature of the compression unit 110.
 低温側熱媒体回路30では、除湿暖房モードと同様に、チラー17にて冷却された低温側熱媒体が、低温側ラジエータ33へ流入する。低温側ラジエータ33では、低温側熱媒体が外気から吸熱する。これにより、低温側熱媒体の温度は、外気温Tamに近づく。低温側ラジエータ33から流出した低温側熱媒体は、低温側熱媒体ポンプ31へ吸入されて、再びチラー17の水通路側へ圧送される。 In the low-temperature side heat medium circuit 30, the low-temperature side heat medium cooled by the chiller 17 flows into the low-temperature side radiator 33, similarly to the dehumidifying and heating mode. In the low-temperature radiator 33, the low-temperature heat medium absorbs heat from the outside air. Thereby, the temperature of the low-temperature side heat medium approaches the outside air temperature Tam. The low-temperature-side heat medium flowing out of the low-temperature-side radiator 33 is sucked into the low-temperature-side heat medium pump 31 and is again pressure-fed to the water passage side of the chiller 17.
 従って、暖房モードでは、ヒータコア22で加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 Therefore, in the heating mode, the air inside the vehicle compartment can be heated by blowing the blast air heated by the heater core 22 into the vehicle compartment.
 ここで、図7のタイムチャートを用いて、圧縮部110の放熱量と、カバー部120の蓄熱量、及び低温側ラジエータ33に流入する低温側熱媒体の温度との関係について説明する。図7では、冷凍サイクル装置10による空調が実行されていない状態から、冷凍サイクル装置10において暖房モードを開始した場合の、放熱量、蓄熱量、及び低温側熱媒体の温度との関係を示している。なお、図7における圧縮部110の放熱量及びカバー部120の蓄熱量は、単位時間当たりの熱量(W)であり、放熱量あるいは蓄熱量の積算値(J)を示すものではない。 Here, the relationship between the heat release amount of the compression unit 110, the heat storage amount of the cover unit 120, and the temperature of the low-temperature side heat medium flowing into the low-temperature side radiator 33 will be described with reference to the time chart of FIG. FIG. 7 shows the relationship between the heat release amount, the heat storage amount, and the temperature of the low-temperature side heat medium when the heating mode is started in the refrigeration cycle device 10 from the state in which the air conditioning by the refrigeration cycle device 10 is not executed. I have. In addition, the heat radiation amount of the compression part 110 and the heat storage amount of the cover part 120 in FIG. 7 are the heat amounts (W) per unit time, and do not indicate the heat radiation amount or the integrated value (J) of the heat storage amount.
 圧縮部110が作動を開始すると、圧縮部110が熱を発生させてハウジング111から伝熱促進部126を介してカバー部120に放熱する。圧縮部110の放熱に伴って、カバー部120に圧縮部110が発生させた熱が蓄熱される。なお、図7において、一点鎖線で示す蓄熱量は、伝熱促進部126を有していない比較用のカバー部を備える圧縮機における蓄熱量を示している。 When the compression unit 110 starts operating, the compression unit 110 generates heat and radiates heat from the housing 111 to the cover unit 120 via the heat transfer promoting unit 126. With the heat radiation of the compression unit 110, the heat generated by the compression unit 110 is stored in the cover unit 120. In FIG. 7, the amount of heat storage indicated by a dashed line indicates the amount of heat storage in a compressor provided with a comparative cover that does not include the heat transfer promoting unit 126.
 また、圧縮部110の作動開始時には、即効暖気のために圧縮部110の回転数を増加させるウォームアップ運転を行い、圧縮部110が高い回転数で運転される。このため、ウォームアップ運転が開始されてから通常運転に移行するまで、圧縮部110の放熱量は大きくなる。 (4) When the operation of the compression unit 110 is started, a warm-up operation is performed to increase the rotation speed of the compression unit 110 for immediate warm-up, and the compression unit 110 is operated at a high rotation speed. Therefore, the amount of heat radiation of the compression unit 110 increases from the start of the warm-up operation to the transition to the normal operation.
 一方で、圧縮部110の作動に伴って、低温側熱媒体回路30を流通する低温側熱媒体の温度は徐々に低下する。 On the other hand, with the operation of the compression unit 110, the temperature of the low-temperature heat medium flowing through the low-temperature heat medium circuit 30 gradually decreases.
 そして、低温側熱媒体温度センサ62hによって検出された低温側熱媒体の温度が、規定低温側熱媒体温度以下となると(t1)、着霜条件(1)が成立する。すると、図5のステップS12でYESと判断されて、ステップS13において、開閉弁47が開く。すると、低温側熱媒体が、第1接続流路45を流通して、カバー部120に流体流路120aに流入する。そして、低温側熱媒体は、カバー部120に流体流路120aを流通する際に、カバー部120に蓄熱された圧縮機11の排熱を吸熱して昇温する。 (4) When the temperature of the low-temperature heat medium detected by the low-temperature heat medium temperature sensor 62h becomes equal to or lower than the specified low-temperature heat medium temperature (t1), the frosting condition (1) is satisfied. Then, YES is determined in step S12 of FIG. 5, and the on-off valve 47 is opened in step S13. Then, the low-temperature side heat medium flows through the first connection flow channel 45 and flows into the cover portion 120 into the fluid flow channel 120a. When the low-temperature-side heat medium flows through the fluid passage 120 a through the cover 120, the low-temperature heat medium absorbs the exhaust heat of the compressor 11 stored in the cover 120 and increases its temperature.
 そして、カバー部120に流体流路120aを流通して昇温した低温側熱媒体は、第2接続流路46を流通して、低温側熱媒体回路30に流入し、低温側熱媒体回路30を流通する低温側熱媒体の更なる温度の低下が抑制される。よって、低温側ラジエータ33の着霜が予防される。なお、図7において、破線で示す低温側熱媒体の温度は、開閉弁47が閉じたままの状態の低温側熱媒体回路30を流通する低温側熱媒体の温度を表している。 Then, the low-temperature side heat medium which has flown through the fluid passage 120a to the cover portion 120 and has risen in temperature flows through the second connection flow path 46, flows into the low-temperature side heat medium circuit 30, and flows into the low-temperature side heat medium circuit 30. Further, the temperature of the low-temperature side heat medium flowing through is further reduced. Therefore, frost formation on the low-temperature side radiator 33 is prevented. In FIG. 7, the temperature of the low-temperature side heat medium indicated by the broken line represents the temperature of the low-temperature side heat medium flowing through the low-temperature side heat medium circuit 30 in a state where the on-off valve 47 remains closed.
 以上の如く、本実施形態の冷凍サイクル装置10によれば、冷凍サイクル装置10が冷媒回路を切り替えることによって、冷房モード、除湿暖房モード、暖房モードを切り替えることができ、車室内の快適な空調を実現することができる。 As described above, according to the refrigeration cycle apparatus 10 of the present embodiment, the refrigeration cycle apparatus 10 can switch between the cooling mode, the dehumidification heating mode, and the heating mode by switching the refrigerant circuit, thereby providing comfortable air conditioning in the vehicle compartment. Can be realized.
 ここで、本実施形態のように、運転モードに応じて、冷媒回路を切り替える冷凍サイクル装置10では、サイクル構成の複雑化を招きやすい。 Here, in the refrigeration cycle apparatus 10 that switches the refrigerant circuit according to the operation mode as in the present embodiment, the cycle configuration is likely to be complicated.
 これに対して、本実施形態の冷凍サイクル装置10では、同一の熱交換器へ高圧冷媒を流入させる冷媒回路と低圧冷媒を流入させる冷媒回路とを切り替えることがない。つまり、いずれの冷媒回路に切り替えても室内蒸発器16へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。 On the other hand, in the refrigeration cycle device 10 of the present embodiment, there is no switching between the refrigerant circuit for flowing the high-pressure refrigerant and the refrigerant circuit for flowing the low-pressure refrigerant into the same heat exchanger. That is, since it is not necessary to make the high-pressure refrigerant flow into the indoor evaporator 16 when switching to any of the refrigerant circuits, the refrigerant circuit can be switched with a simple configuration without complicating the cycle configuration.
 更に、本実施形態の冷凍サイクル装置10では、暖房モード時に、カバー部120において圧縮部110の排熱を蓄熱させて回収することができる。そして、カバー部120に低温側熱媒体を流通させて、カバー部120に蓄熱された排熱を低温側ラジエータ33に供給して、低温側ラジエータ33の着霜を予防することができる。 In addition, in the refrigeration cycle apparatus 10 of the present embodiment, in the heating mode, the cover 120 can store and recover the exhaust heat of the compressor 110 in the heating mode. Then, the low-temperature side heat medium is circulated through the cover section 120, and the exhaust heat stored in the cover section 120 is supplied to the low-temperature side radiator 33, so that frost formation on the low-temperature side radiator 33 can be prevented.
 そして、本実施形態の圧縮機11では、第1蓄熱部121及び第2蓄熱部122よりも熱伝導率の大きい伝熱促進部126が、圧縮部110と第1蓄熱部121及び第2蓄熱部122との間に配置されている。これによれば、圧縮部110と第1蓄熱部121や、圧縮部110と第2蓄熱部122との間の熱抵抗を低減することができる。 And in the compressor 11 of the present embodiment, the heat transfer promoting unit 126 having a higher thermal conductivity than the first heat storage unit 121 and the second heat storage unit 122 includes the compression unit 110, the first heat storage unit 121, and the second heat storage unit. 122. According to this, the thermal resistance between the compression part 110 and the first heat storage part 121 and between the compression part 110 and the second heat storage part 122 can be reduced.
 このため、図7に示すように、伝熱促進部126を有していない比較用のカバー部を備える圧縮機に対して、圧縮部110が発生させた熱を、短時間で充分に第1蓄熱部121及び第2蓄熱部122に蓄熱させることができる。よって、第1蓄熱部121及び第2蓄熱部122に蓄えられた熱を、効果的に利用することができる。つまり、暖房モード時に、低温側ラジエータ33の着霜を予防するために有効利用することができる。 For this reason, as shown in FIG. 7, the heat generated by the compression unit 110 is sufficiently transferred to the first compressor in a short time by a compressor having a comparative cover unit without the heat transfer promotion unit 126. Heat can be stored in the heat storage unit 121 and the second heat storage unit 122. Therefore, the heat stored in the first heat storage unit 121 and the second heat storage unit 122 can be effectively used. That is, in the heating mode, it can be effectively used to prevent frost formation on the low-temperature radiator 33.
 また、本実施形態の圧縮機11では、伝熱促進部126は、圧縮部110の外周側に、圧縮部110を覆うように配置されている。これによれば、圧縮部110の外周側に放熱される熱を伝熱促進部126が受熱することができる。このため、圧縮部110が発生させた熱を無駄なく、第1蓄熱部121及び第2蓄熱部122に伝熱させて、蓄熱させることができる。 で は Further, in the compressor 11 of the present embodiment, the heat transfer promoting section 126 is arranged on the outer peripheral side of the compression section 110 so as to cover the compression section 110. According to this, the heat transfer promoting unit 126 can receive the heat radiated to the outer peripheral side of the compression unit 110. Therefore, the heat generated by the compression unit 110 can be transferred to the first heat storage unit 121 and the second heat storage unit 122 without waste, and stored.
 また、本実施形態の圧縮機11では、伝熱促進部126は、圧縮部110の外周面、第1蓄熱部121の内周面、及び第2蓄熱部122の内周面と接触している。これによれば、伝熱促進部126が圧縮部110や、第1蓄熱部121、第2蓄熱部122と離れている場合と比較して、圧縮部110と第1蓄熱部121及び第2蓄熱部122との間の熱抵抗を低減することができる。このため、圧縮部110が発生させた熱を、より短時間で充分に第1蓄熱部121及び第2蓄熱部122に蓄熱させることができる。 In the compressor 11 of the present embodiment, the heat transfer promoting unit 126 is in contact with the outer peripheral surface of the compression unit 110, the inner peripheral surface of the first heat storage unit 121, and the inner peripheral surface of the second heat storage unit 122. . According to this, the compression unit 110, the first heat storage unit 121, and the second heat storage unit are compared with the case where the heat transfer promotion unit 126 is separated from the compression unit 110, the first heat storage unit 121, and the second heat storage unit 122. The thermal resistance between the portion 122 can be reduced. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
 また、本実施形態の圧縮機11では、伝熱促進部126は、第1蓄熱部121側及び第2蓄熱部122側に突出して、第1蓄熱部121及び第2蓄熱部122との接触面積を増大させる接触面積増大部126aを有している。これによれば、伝熱促進部126と第1蓄熱部121との間の熱抵抗、及び伝熱促進部126と第2蓄熱部122との間の熱抵抗をより低減させることができる。このため、圧縮部110が発生させた熱を、より短時間で充分に第1蓄熱部121及び第2蓄熱部122に蓄熱させることができる。 Further, in the compressor 11 of the present embodiment, the heat transfer promoting unit 126 protrudes toward the first heat storage unit 121 and the second heat storage unit 122, and has a contact area with the first heat storage unit 121 and the second heat storage unit 122. Is increased. According to this, the thermal resistance between the heat transfer promoting unit 126 and the first heat storage unit 121 and the thermal resistance between the heat transfer promoting unit 126 and the second heat storage unit 122 can be further reduced. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
 また、本実施形態の圧縮機11では、伝熱促進部126は、金属で構成されている。これによれば、伝熱促進部126の熱伝導率を容易に向上させることができる。このため、圧縮部110が発生させた熱を、より短時間で充分に第1蓄熱部121及び第2蓄熱部122に蓄熱させることができる。 で は In the compressor 11 of the present embodiment, the heat transfer promoting unit 126 is made of metal. According to this, the heat conductivity of the heat transfer promoting unit 126 can be easily improved. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
 また、本実施形態の圧縮機11では、図4に示すように、蓄熱材は、蓄熱時に相変化を伴う潜熱蓄熱材125d、及び潜熱蓄熱材125dを蓄熱時に相変化を伴わない顕熱蓄熱材であるカプセル125c及び骨格材料125bを有する。そして、潜熱蓄熱材125dは、顕熱蓄熱材であるカプセル125c及び骨格材料125bによって保持されている。 Further, in the compressor 11 of the present embodiment, as shown in FIG. 4, the heat storage material is a latent heat storage material 125d that undergoes a phase change during heat storage, and a sensible heat storage material that does not undergo a phase change during the heat storage. And a skeletal material 125b. The latent heat storage material 125d is held by a capsule 125c and a skeletal material 125b, which are sensible heat storage materials.
 これによれば、蓄熱材は、潜熱蓄熱材125dを含んでいるので、蓄熱材全体を顕熱蓄熱材で形成した場合に対して、効率的な蓄熱を実現することができる。このため、カバー部120に蓄熱できる蓄熱量を増大させることができる。この結果、低温側ラジエータ33の着霜をより予防することができる。 According to this, since the heat storage material includes the latent heat storage material 125d, efficient heat storage can be realized as compared with a case where the entire heat storage material is formed of the sensible heat storage material. Therefore, the amount of heat that can be stored in the cover 120 can be increased. As a result, frost formation on the low-temperature radiator 33 can be further prevented.
 また、本実施形態の圧縮機11では、顕熱蓄熱材であるカプセル125cは、相変化を伴わないため、固体の固定形状である。このため、顕熱蓄熱材であるカプセル125cは、液相状態となっている潜熱蓄熱材が流れ出てしまうことを抑制することができる。よって、カバー部120の蓄熱量を増大させつつ、カバー部120を容易に形成することができ、カバー部120の形状の自由度を向上させることができる。 In the compressor 11 of the present embodiment, the capsule 125c, which is a sensible heat storage material, has a solid fixed shape because it does not involve a phase change. Therefore, the capsule 125c, which is a sensible heat storage material, can prevent the latent heat storage material in the liquid phase from flowing out. Therefore, the cover part 120 can be easily formed while increasing the heat storage amount of the cover part 120, and the degree of freedom of the shape of the cover part 120 can be improved.
 また、本実施形態の圧縮機11では、潜熱蓄熱材125dの融点は、作動時の圧縮部110の表面温度よりも低く設定されている。これによれば、圧縮部110の作動時に、潜熱蓄熱材125dが固相から液相に相変化する。このため、潜熱蓄熱材125dの相変化に伴う潜熱蓄熱材125dの吸熱分だけ、カバー部120の蓄熱量を増大させることができる。 In addition, in the compressor 11 of the present embodiment, the melting point of the latent heat storage material 125d is set lower than the surface temperature of the compression section 110 during operation. According to this, when the compression unit 110 is operated, the latent heat storage material 125d changes its phase from a solid phase to a liquid phase. Therefore, the amount of heat stored in the cover unit 120 can be increased by the amount of heat absorbed by the latent heat storage material 125d due to the phase change of the latent heat storage material 125d.
 また、本実施形態の圧縮機11では、潜熱蓄熱材125dの融点は、蓄熱材であるカバー部120に蓄えられた熱を低温側熱媒体へ移動させる際の低温側熱媒体の温度よりも高く設定されている。これによれば、カバー部120に蓄えられた熱を流体へ移動させる際に、潜熱蓄熱材125dが液相から固相に相変化する。このため、潜熱蓄熱材125dの相変化に伴う潜熱蓄熱材125dの放熱分だけ、カバー部120の放熱量を増大させることができる。 Further, in the compressor 11 of the present embodiment, the melting point of the latent heat storage material 125d is higher than the temperature of the low-temperature side heat medium when the heat stored in the cover 120, which is the heat storage material, is transferred to the low-temperature side heat medium. Is set. According to this, when transferring the heat stored in the cover unit 120 to the fluid, the latent heat storage material 125d changes its phase from a liquid phase to a solid phase. For this reason, the heat radiation amount of the cover unit 120 can be increased by the heat radiation of the latent heat storage material 125d due to the phase change of the latent heat storage material 125d.
 このように、本実施形態の圧縮機11では、潜熱蓄熱材125dの相変化を利用して、圧縮部110の排熱を効率的に蓄熱させることができるとともに、カバー部120に蓄えられた熱を効率的に放熱させることができる。 As described above, in the compressor 11 of the present embodiment, the waste heat of the compression unit 110 can be efficiently stored by using the phase change of the latent heat storage material 125d, and the heat stored in the cover unit 120 can be stored. Can be efficiently dissipated.
 また、本実施形態の圧縮機11では、伝熱促進部126と圧縮部110の外周面との間には、伝熱促進部126と圧縮部110との間の熱抵抗を低減させる軟体材料で構成された熱抵抗低減部材127が配置されている。これによれば、圧縮部110の外周面と第1蓄熱部121及び第2蓄熱部122の内周面との熱抵抗を低減させることができる。このため、圧縮部110が発生させた熱を、より短時間で充分に第1蓄熱部121及び第2蓄熱部122に蓄熱させることができる。 In the compressor 11 of the present embodiment, a soft material that reduces the thermal resistance between the heat transfer promoting unit 126 and the compression unit 110 is provided between the heat transfer promoting unit 126 and the outer peripheral surface of the compression unit 110. The configured thermal resistance reducing member 127 is arranged. According to this, the thermal resistance between the outer peripheral surface of the compression unit 110 and the inner peripheral surfaces of the first heat storage unit 121 and the second heat storage unit 122 can be reduced. Therefore, the heat generated by the compression unit 110 can be sufficiently stored in the first heat storage unit 121 and the second heat storage unit 122 in a shorter time.
 また、本実施形態の圧縮機11では、流体流路120aは、第1蓄熱部121及び第2蓄熱部122に形成されている。これによれば、低温側熱媒体を第1蓄熱部121及び第2蓄熱部122と直接接触させることができる。このため、低温側熱媒体と第1蓄熱部121及び第2蓄熱部122との熱交換効率を向上させて、第1蓄熱部121及び第2蓄熱部122に蓄えられた熱を、低温側熱媒体に充分に移動させることができる。よって、第1蓄熱部121及び第2蓄熱部122に蓄えられた熱を、効果的に利用することができる。つまり、暖房モード時に、低温側ラジエータ33の着霜を予防するために有効利用することができる。 In addition, in the compressor 11 of the present embodiment, the fluid passage 120a is formed in the first heat storage unit 121 and the second heat storage unit 122. According to this, the low-temperature side heat medium can be brought into direct contact with the first heat storage section 121 and the second heat storage section 122. For this reason, the heat exchange efficiency between the low-temperature side heat medium and the first heat storage section 121 and the second heat storage section 122 is improved, and the heat stored in the first heat storage section 121 and the second heat storage section 122 is transferred to the low-temperature side heat medium. It can be sufficiently moved to the medium. Therefore, the heat stored in the first heat storage unit 121 and the second heat storage unit 122 can be effectively used. That is, in the heating mode, it can be effectively used to prevent frost formation on the low-temperature radiator 33.
 また、本実施形態の圧縮機11では、空間120b内に、蛇行状の流体流路120aが形成されるように、第1蓄熱部121及び第2蓄熱部122の空間120bを仕切る隔壁120cが形成されている。これによれば、隔壁120cによって、流体流路120aの流路長を増大させることができる。このため、低温側熱媒体と蓄熱材との接触面積を増大させることができる。よって、低温側熱媒体と蓄熱材との熱交換効率をより向上させて、蓄熱材に蓄えられた熱を、低温側熱媒体により充分に移動させることができる。この結果、蓄熱材に蓄えられた熱を、より効果的に利用することができる。つまり、暖房モード時に、低温側ラジエータ33の着霜を予防するために有効利用することができる。 In the compressor 11 of the present embodiment, the partition 120c that partitions the space 120b of the first heat storage unit 121 and the second heat storage unit 122 is formed in the space 120b so that the meandering fluid flow path 120a is formed. Have been. According to this, the flow path length of the fluid flow path 120a can be increased by the partition wall 120c. For this reason, the contact area between the low-temperature side heat medium and the heat storage material can be increased. Therefore, the heat exchange efficiency between the low-temperature side heat medium and the heat storage material can be further improved, and the heat stored in the heat storage material can be sufficiently transferred by the low-temperature side heat medium. As a result, the heat stored in the heat storage material can be used more effectively. That is, in the heating mode, it can be effectively used to prevent frost formation on the low-temperature radiator 33.
 また、本実施形態の冷凍サイクル装置10は、低温側熱媒体によって圧縮部110が発生させた熱を搬送可能に構成されている。このため、圧縮部110が発生させた熱を効果的に有効利用することができる。 冷凍 The refrigeration cycle device 10 of the present embodiment is configured to be able to convey the heat generated by the compression unit 110 by the low-temperature side heat medium. Therefore, the heat generated by the compression unit 110 can be effectively and effectively used.
 また、本実施形態の冷凍サイクル装置10は、冷媒を低温側熱媒体と熱交換させて蒸発させる蒸発器であるチラー17と、低温側熱媒体が循環し、低温側熱媒体によって加熱される加熱対象物である低温側ラジエータ33が配置されている低温側熱媒体回路30と、を有する。 In addition, the refrigeration cycle apparatus 10 of the present embodiment includes a chiller 17 which is an evaporator for evaporating the refrigerant by exchanging heat with the low-temperature side heat medium, and a heating apparatus in which the low-temperature side heat medium circulates and is heated by the low-temperature side heat medium. And a low-temperature side heat medium circuit 30 in which a low-temperature side radiator 33 as an object is disposed.
 これによれは、カバー部120に蓄熱された熱を、加熱対象物である低温側ラジエータ33の加熱に利用することができる。つまり、カバー部120に蓄熱された熱を低温側ラジエータ33に供給することにより、低温側ラジエータ33の着霜を予防することができる。また、低温側ラジエータ33が着霜している場合には、低温側ラジエータ33の除霜を行うことができる。 According to this, the heat stored in the cover unit 120 can be used for heating the low-temperature radiator 33 that is the object to be heated. That is, by supplying the heat stored in the cover unit 120 to the low-temperature radiator 33, frost formation on the low-temperature radiator 33 can be prevented. When the low-temperature radiator 33 is frosted, the low-temperature radiator 33 can be defrosted.
 また、上述した着霜条件(1)が成立した場合に、開閉弁47を開放させることにより、流体流路120aにて蓄熱材と熱交換して加熱された低温側熱媒体を、低温側熱媒体回路30に流通させている。 When the above-mentioned frosting condition (1) is satisfied, the on-off valve 47 is opened to exchange the heat with the heat storage material in the fluid flow path 120a and to heat the low-temperature side heat medium to the low-temperature side heat medium. It is distributed to the medium circuit 30.
 これによれば、上述した着霜条件(1)が成立し、低温側ラジエータ33が着霜し易い状況において、流体流路120aにて加熱された低温側熱媒体を、低温側熱媒体回路30に流通させることによって、カバー部120に蓄熱された熱を低温側ラジエータ33に供給することができる。このため、低温側ラジエータ33の着霜を予防することができる。 According to this, in the situation where the above-mentioned frosting condition (1) is satisfied and the low-temperature side radiator 33 is easily frosted, the low-temperature side heat medium heated in the fluid flow path 120a is transferred to the low-temperature side heat medium circuit 30. The heat stored in the cover section 120 can be supplied to the low-temperature radiator 33 by flowing the heat through the cover section 120. Therefore, frost formation on the low-temperature radiator 33 can be prevented.
 また、上述した着霜条件(1)が成立せず、低温側ラジエータ33が着霜し難い状況では、低温側熱媒体が低温側熱媒体回路30に流通しない。このため、低温側ラジエータ33が着霜し難い状況において、圧縮部110の排熱が無駄に低温側ラジエータ33に供給されることが防止される。よって、低温側ラジエータ33が着霜し易い状況に備えて、圧縮部110で発生した熱を確実にカバー部120に蓄熱させることができる。 {Circle around (4)} In a situation where the above-mentioned frosting condition (1) is not satisfied and the low-temperature side radiator 33 is hardly frosted, the low-temperature side heat medium does not flow through the low-temperature side heat medium circuit 30. Therefore, in a situation where the low-temperature side radiator 33 is hardly frosted, waste heat of the compression unit 110 is prevented from being supplied to the low-temperature side radiator 33 in vain. Therefore, the heat generated in the compression unit 110 can be reliably stored in the cover unit 120 in preparation for a situation in which the low-temperature side radiator 33 easily forms frost.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、本開示に係る冷凍サイクル装置10を電気自動車に適用した例を説明したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、内燃機関から車両走行用の駆動力を得る通常のエンジン車両や、内燃機関及び電動モータの双方から車両走行用の駆動力を得るハイブリッド車両用に適用してもよい。更に、車両用に限定されることなく、定置型の温度調整装置等に適用してもよい。 In the above embodiment, the example in which the refrigeration cycle device 10 according to the present disclosure is applied to an electric vehicle has been described, but the application of the refrigeration cycle device 10 is not limited to this. For example, the present invention may be applied to a normal engine vehicle that obtains a driving force for driving a vehicle from an internal combustion engine, or a hybrid vehicle that obtains driving force for driving a vehicle from both an internal combustion engine and an electric motor. Further, the present invention is not limited to a vehicle, and may be applied to a stationary temperature control device or the like.
 上述の実施形態では、空調用の運転モードを切替可能に構成された冷凍サイクル装置10について説明したが、空調用の運転モードの切替は必須ではない。少なくとも暖房モードを実行可能であれば、圧縮機11の排熱を充分に回収して有効に利用することができる。 In the above-described embodiment, the refrigeration cycle apparatus 10 configured to be able to switch the air-conditioning operation mode is described. However, the switching of the air-conditioning operation mode is not essential. If at least the heating mode can be executed, the exhaust heat of the compressor 11 can be sufficiently recovered and used effectively.
 上述の実施形態では、蓄熱材として、蓄熱時に相変化を伴う潜熱蓄熱材125dを採用した例を説明したが、蓄熱材はこれに限定されない。例えば、蓄熱材は、金属部材等で形成されていてもよい。更に、蓄熱材は、蓄熱時に化学変化を伴う化学蓄熱材であってもよい。このような化学蓄熱材としては、アルカリ金属塩化物とアンモニアとを化学反応させる蓄熱材、アルカリ土類金属塩化物とアンモニアとを化学反応させる蓄熱材、遷移金属元素塩化物とアンモニアとを化学反応させる蓄熱材を採用することができる。 In the above-described embodiment, an example is described in which the latent heat storage material 125d that undergoes a phase change during heat storage is used as the heat storage material, but the heat storage material is not limited to this. For example, the heat storage material may be formed of a metal member or the like. Further, the heat storage material may be a chemical heat storage material that undergoes a chemical change during heat storage. Examples of such a chemical heat storage material include a heat storage material for chemically reacting alkali metal chloride and ammonia, a heat storage material for chemically reacting alkaline earth metal chloride and ammonia, and a chemical reaction between transition metal element chloride and ammonia. The heat storage material to be used can be adopted.
 顕熱蓄熱材である骨格材料125bを、作動時の圧縮部110の振動を減衰させる減衰材料(例えば、ゴム、発砲ウレタン等)で構成してもよい。この実施形態では、圧縮部110の作動時に、圧縮部110の振動がカバー部120で減衰され、圧縮部110の振動に起因する騒音を低減させることができる。 (4) The skeletal material 125b, which is a sensible heat storage material, may be made of an attenuating material (for example, rubber, urethane foam, or the like) that attenuates vibration of the compression unit 110 during operation. In this embodiment, when the compression unit 110 operates, the vibration of the compression unit 110 is attenuated by the cover unit 120, and noise caused by the vibration of the compression unit 110 can be reduced.
 開閉弁47を設けず、暖房モードにおいて、常時、低温側熱媒体がカバー部120の流体流路120aに流通する実施形態であってもよい。上述したように、圧縮部110の作動開始時には、圧縮部110の放熱量が大きい。本実施形態では、圧縮部110の作動開始時に圧縮部110が発生した大量の熱を、カバー部120に蓄熱させて回収することができる。そして、カバー部120において蓄熱された圧縮部110の排熱を低温側熱媒体に移動させることによって、低温側ラジエータ33の着霜を予防することができる。 (4) The embodiment in which the on-off valve 47 is not provided and the low-temperature side heat medium always flows through the fluid flow path 120a of the cover 120 in the heating mode may be adopted. As described above, when the operation of the compression unit 110 is started, the heat radiation amount of the compression unit 110 is large. In the present embodiment, a large amount of heat generated by the compression unit 110 at the start of the operation of the compression unit 110 can be collected and stored in the cover unit 120. By moving the exhaust heat of the compression unit 110 stored in the cover unit 120 to the low-temperature heat medium, frost formation on the low-temperature radiator 33 can be prevented.
 暖房モードにおいて、冷凍サイクル装置10の暖房能力が不足する場合に、開閉弁47を開放させて、カバー部120において蓄熱された圧縮部110の排熱を低温側熱媒体に移動させる実施形態であってよい。この実施形態では、低温側熱媒体回路30を流通する低温側熱媒体が昇温することにより、チラー17における低圧冷媒の吸熱量が増大し、水-冷媒熱交換器12における高温側熱媒体の加熱量が増大する。その結果、暖房モードにおける冷凍サイクル装置10の暖房能力が向上する。 In the heating mode, when the heating capacity of the refrigeration cycle device 10 is insufficient, the on-off valve 47 is opened to move the exhaust heat of the compression unit 110 stored in the cover unit 120 to the low-temperature side heat medium. May be. In this embodiment, when the temperature of the low-temperature side heat medium flowing through the low-temperature side heat medium circuit 30 increases, the amount of heat absorbed by the low-pressure refrigerant in the chiller 17 increases, and the high-temperature side heat medium in the water-refrigerant heat exchanger 12 increases. The amount of heating increases. As a result, the heating capacity of the refrigeration cycle device 10 in the heating mode is improved.
 図6のステップS12で判断される基準条件としての着霜条件は、以下に示す着霜条件(2)、(3)であってもよい。 霜 The frosting condition as the reference condition determined in step S12 of FIG. 6 may be the following frosting condition (2) or (3).
 着霜条件(2):外気温センサ62bによって検出された外気温が、規定外気温以下である場合。 (4) Frost formation condition (2): when the outside air temperature detected by the outside air temperature sensor 62b is equal to or lower than the specified outside air temperature.
 この着霜条件(2)は、低温側ラジエータ33に着霜が生じ得る運転条件であるか否かを判断する条件である。 The frosting condition (2) is a condition for determining whether or not the low-temperature side radiator 33 is an operating condition under which frosting may occur.
 着霜条件(3):空調風温度センサ62fよって検出された送風空気温度TAVが、規定送風空気温度以下である場合。 霜 Defrosting condition (3): When the blast air temperature TAV detected by the air-conditioning air temperature sensor 62f is equal to or lower than the specified blast air temperature.
 この着霜条件(3)は、低温側ラジエータ33に着霜が生じているか否かを判定するための条件である。低温側ラジエータ33が着霜すると、冷凍サイクル装置10の暖房能力が低下し、空調風温度センサ62fよって検出された送風空気温度TAVが低下する。よって、暖房モードにおいて、空調風温度センサ62fよって検出された送風空気温度TAVを検出することによって、低温側ラジエータ33に着霜が生じているか否かを判断することができる。 The frosting condition (3) is a condition for determining whether or not frost has occurred on the low-temperature side radiator 33. When the low-temperature radiator 33 becomes frosted, the heating capacity of the refrigeration cycle device 10 decreases, and the blast air temperature TAV detected by the conditioned air temperature sensor 62f decreases. Therefore, in the heating mode, it is possible to determine whether or not frost has formed on the low-temperature radiator 33 by detecting the blast air temperature TAV detected by the conditioned air temperature sensor 62f.
 冷凍サイクル装置10の各構成は、上述の実施形態に開示されたものに限定されない。 各 Each configuration of the refrigeration cycle device 10 is not limited to the configuration disclosed in the above embodiment.
 例えば、上述の実施形態で説明した冷凍サイクル装置10では、圧縮機11として、電動圧縮機を採用した例に説明したが、これに限定されない。例えば、エンジン駆動式の圧縮機を採用してもよい。エンジン駆動式の圧縮機としては、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用してもよい。 For example, in the refrigeration cycle apparatus 10 described in the above-described embodiment, an example was described in which an electric compressor was employed as the compressor 11, but the present invention is not limited to this. For example, an engine-driven compressor may be employed. As the engine-driven compressor, a variable displacement compressor configured to adjust the refrigerant discharge capacity by changing the discharge capacity may be adopted.
 また、上述の実施形態で説明した冷凍サイクル装置10に対して、内部に流入した冷媒の気液を分離して、サイクルの余剰液相冷媒を貯える気液分離部を追加してもよい。例えば、合流部13bの冷媒流出口から圧縮機11の吸入口へ至る冷媒流路に気液分離部としてのアキュムレータを配置してもよい。 In addition, the gas-liquid separation unit that separates the gas-liquid of the refrigerant flowing into the inside and stores the excess liquid-phase refrigerant of the cycle may be added to the refrigeration cycle apparatus 10 described in the above embodiment. For example, an accumulator as a gas-liquid separation unit may be arranged in a refrigerant flow path from a refrigerant outlet of the junction 13b to a suction port of the compressor 11.
 更に、冷凍サイクル装置10に対して、水-冷媒熱交換器12の冷媒通路の出口から分岐部13aの冷媒流入口へ至る冷媒流路に気液分離部としてのレシーバを配置してもよい。 Further, in the refrigeration cycle apparatus 10, a receiver as a gas-liquid separation unit may be arranged in a refrigerant flow path from the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 to the refrigerant inlet of the branch part 13a.
 また、上述の実施形態で説明した冷凍サイクル装置10では、冷却用膨張弁14及び吸熱用膨張弁15として、全閉機能付きの電気式の可変絞り機構を採用した例を説明したが、これに限定されない。例えば、冷却用膨張弁14及び吸熱用膨張弁15の少なくとも一方に代えて、機械的機構で弁開度を調整する温度式膨張弁及び電気式の開閉弁を採用してもよい。 Further, in the refrigeration cycle apparatus 10 described in the above embodiment, an example in which an electric variable throttle mechanism with a fully closed function is employed as the cooling expansion valve 14 and the heat absorption expansion valve 15 has been described. Not limited. For example, in place of at least one of the cooling expansion valve 14 and the heat absorption expansion valve 15, a temperature-type expansion valve that adjusts the valve opening degree by a mechanical mechanism and an electric open / close valve may be employed.
 また、上述の実施形態では、第1接続流路45を流通する低温側熱媒体の流量を調整する流量調整部として開閉弁47を採用した例を説明したが、流量調整部はこれに限定されない。例えば、流量調整部として、冷却用膨張弁14や吸熱用膨張弁15と同様の可変絞り機構を採用してもよい。 Further, in the above-described embodiment, an example is described in which the on-off valve 47 is employed as the flow rate adjustment unit that adjusts the flow rate of the low-temperature side heat medium flowing through the first connection flow channel 45, but the flow rate adjustment unit is not limited to this. . For example, a variable throttle mechanism similar to the cooling expansion valve 14 or the heat absorption expansion valve 15 may be employed as the flow rate adjusting unit.
 また、上述の実施形態では、開閉弁47は、第1接続流路45と低温側熱媒体回路30との接続部に配置されている三方弁である。開閉弁47は、第1接続流路45又は第2接続流路46に配置され、第1接続流路45又は第2接続流路46を開放又は閉塞する弁であってもよい。 In the above-described embodiment, the on-off valve 47 is a three-way valve disposed at a connection between the first connection flow path 45 and the low-temperature side heat medium circuit 30. The on-off valve 47 may be a valve arranged in the first connection channel 45 or the second connection channel 46 to open or close the first connection channel 45 or the second connection channel 46.
 また、上述の実施形態では、冷凍サイクル装置10の冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 In the above embodiment, the example in which R134a is used as the refrigerant of the refrigeration cycle apparatus 10 has been described, but the refrigerant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Alternatively, a mixed refrigerant obtained by mixing a plurality of types of these refrigerants may be employed.
 また、上述の実施形態では、水-冷媒熱交換器12及び高温側熱媒体回路20によって送風空気を加熱する加熱部を構成した例を説明したが、加熱部はこれに限定されない。例えば、加熱部として、圧縮機11から吐出された冷媒と送風空気とを直接的に熱交換させる室内凝縮器を採用してもよい。 Also, in the above-described embodiment, an example has been described in which the heating unit configured to heat the blown air by the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 20 is configured, but the heating unit is not limited to this. For example, an indoor condenser that directly exchanges heat between the refrigerant discharged from the compressor 11 and the blown air may be employed as the heating unit.
 また、上述の実施形態では、バッテリ32の温度を調整可能な低温側熱媒体回路30を説明したが、低温側熱媒体回路30の温度調整対象物はこれに限定されない。例えば、温度調整対象物は、インバータ、充電器、モータジェネレータ等であってもよい。更に、温度調整対象物は、複数であってもよい。 In the above-described embodiment, the low-temperature heat medium circuit 30 capable of adjusting the temperature of the battery 32 has been described. However, the temperature adjustment target of the low-temperature heat medium circuit 30 is not limited to this. For example, the temperature adjustment target may be an inverter, a charger, a motor generator, or the like. Further, there may be a plurality of temperature adjustment objects.
 また、高温側ラジエータ23及び低温側ラジエータ33は、互いに独立した構成に限定されない。例えば、第1実施形態で説明した高温側ラジエータ23及び低温側ラジエータ33は、高温側熱媒体の有する熱と低温側熱媒体の有する熱が互いに熱移動可能に一体化されていてもよい。 The high-temperature radiator 23 and the low-temperature radiator 33 are not limited to independent configurations. For example, the high-temperature-side radiator 23 and the low-temperature-side radiator 33 described in the first embodiment may be integrated such that the heat of the high-temperature-side heat medium and the heat of the low-temperature-side heat medium can move mutually.
 具体的には、高温側ラジエータ23及び低温側ラジエータ33の一部の構成部品(例えば、熱交換フィン)を共通化することによって、熱媒体同士が熱移動可能に一体化されていてもよい。 Specifically, by sharing some components (for example, heat exchange fins) of the high-temperature side radiator 23 and the low-temperature side radiator 33, the heat mediums may be integrated so as to be heat-transferable.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.

Claims (13)

  1.  流体を圧縮して吐出する圧縮部(110)と、
     前記圧縮部の外周側に配置され、前記圧縮部を覆うカバー部(120)と、を備え、
     前記カバー部は、熱を蓄える蓄熱部(121、122)及び前記蓄熱部よりも熱伝導率の大きい伝熱促進部(126)を有し、
     前記カバー部には、前記蓄熱部と熱交換する流体が流通する流体流路(120a)が形成され、
     前記伝熱促進部は、前記圧縮部と前記蓄熱部との間に配置されている圧縮機。
    A compression unit (110) for compressing and discharging the fluid;
    A cover portion (120) disposed on an outer peripheral side of the compression portion and covering the compression portion;
    The cover unit has a heat storage unit (121, 122) for storing heat and a heat transfer promoting unit (126) having a higher thermal conductivity than the heat storage unit.
    A fluid channel (120a) through which a fluid that exchanges heat with the heat storage unit flows is formed in the cover unit,
    The compressor, wherein the heat transfer promotion unit is disposed between the compression unit and the heat storage unit.
  2.  前記伝熱促進部は、前記圧縮部の外周側に、前記圧縮部を覆うように配置されている請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the heat transfer promoting section is disposed on an outer peripheral side of the compression section so as to cover the compression section.
  3.  前記伝熱促進部は、前記圧縮部及び前記蓄熱部の双方と接触している請求項1又は2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the heat transfer promoting section is in contact with both the compression section and the heat storage section.
  4.  前記伝熱促進部は、前記蓄熱部側に突出して、前記蓄熱部との接触面積を増大させる接触面積増大部(126a)を有している請求項3に記載の圧縮機。 The compressor according to claim 3, wherein the heat transfer promoting section has a contact area increasing section (126a) that protrudes toward the heat storage section and increases a contact area with the heat storage section.
  5.  前記伝熱促進部は、金属である請求項1ないし4のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the heat transfer promoting section is made of metal.
  6.  前記蓄熱部は、蓄熱時に相変化を伴う潜熱蓄熱材(125d)及び前記潜熱蓄熱材を蓄熱時に相変化を伴わない顕熱蓄熱材(125c、125b)を有し、
     前記潜熱蓄熱材は、前記顕熱蓄熱材で保持されている請求項1ないし5のいずれか1つに記載の圧縮機。
    The heat storage unit includes a latent heat storage material that undergoes a phase change during heat storage (125d) and a sensible heat storage material (125c, 125b) that does not undergo a phase change when storing the latent heat storage material,
    The compressor according to any one of claims 1 to 5, wherein the latent heat storage material is held by the sensible heat storage material.
  7.  前記潜熱蓄熱材の融点は、作動時の前記圧縮部の表面温度よりも低く、且つ、前記蓄熱部に蓄えられた熱を前記流体へ移動させる際の前記流体の温度よりも高く設定されている請求項6に記載の圧縮機。 The melting point of the latent heat storage material is set lower than the surface temperature of the compression section during operation, and higher than the temperature of the fluid when transferring the heat stored in the heat storage section to the fluid. The compressor according to claim 6.
  8.  前記伝熱促進部と前記圧縮部の外周面との間には、前記伝熱促進部と前記圧縮部との間の熱抵抗を低減させる熱抵抗低減部材(127)が配置されている請求項1ないし7のいずれか1つに記載の圧縮機。 The thermal resistance reduction member (127) which reduces thermal resistance between the heat transfer promotion part and the compression part is arranged between the heat transfer promotion part and the outer peripheral surface of the compression part. 8. The compressor according to any one of 1 to 7.
  9.  前記流体流路は、前記蓄熱部に形成されている請求項1ないし8のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 8, wherein the fluid passage is formed in the heat storage unit.
  10.  冷媒を圧縮して吐出する圧縮機(11)を有する冷凍サイクル装置であって、
     前記圧縮機は、
     流体を圧縮して吐出する圧縮部(110)と、
     前記圧縮部の外周側に配置され、前記圧縮部を覆うカバー部(120)と、を備え、
     前記カバー部は、熱を蓄える蓄熱部(121、122)及び前記蓄熱部よりも熱伝導率の大きい伝熱促進部(126)を有し、
     前記カバー部には、前記蓄熱部と熱交換する流体が流通する流体流路(120a)が形成され、
     前記伝熱促進部は、前記圧縮部と前記蓄熱部との間に配置され、
     前記流体によって前記圧縮部が発生させた熱を搬送可能に構成されている冷凍サイクル装置。
    A refrigeration cycle device having a compressor (11) for compressing and discharging a refrigerant,
    The compressor is
    A compression unit (110) for compressing and discharging the fluid;
    A cover portion (120) disposed on an outer peripheral side of the compression portion and covering the compression portion;
    The cover unit has a heat storage unit (121, 122) for storing heat and a heat transfer promoting unit (126) having a higher thermal conductivity than the heat storage unit.
    A fluid channel (120a) through which a fluid that exchanges heat with the heat storage unit flows is formed in the cover unit,
    The heat transfer promoting unit is disposed between the compression unit and the heat storage unit,
    A refrigeration cycle apparatus configured to be able to transport heat generated by the compression unit by the fluid.
  11.  前記冷媒を熱媒体と熱交換させて蒸発させる蒸発器(17)と、
     前記熱媒体が循環し、前記熱媒体によって加熱される加熱対象物が配置されている熱媒体回路(30)と、を更に有し、
     前記流体は、前記熱媒体である請求項10に記載の冷凍サイクル装置。
    An evaporator (17) for evaporating the refrigerant by exchanging heat with a heat medium;
    A heating medium circuit (30) in which the heating medium is circulated and an object to be heated by the heating medium is arranged;
    The refrigeration cycle apparatus according to claim 10, wherein the fluid is the heat medium.
  12.  前記加熱対象物は、前記熱媒体と外気とを熱交換させる外気熱交換器(33)である請求項11に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 11, wherein the object to be heated is an outside air heat exchanger (33) for exchanging heat between the heat medium and outside air.
  13.  予め定めた基準条件を満たした際に、前記流体流路にて前記蓄熱部と熱交換して加熱された前記熱媒体を、前記熱媒体回路に流通させる請求項12に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 12, wherein, when a predetermined reference condition is satisfied, the heat medium heated by exchanging heat with the heat storage unit in the fluid flow path flows through the heat medium circuit.
PCT/JP2019/033285 2018-09-03 2019-08-26 Compressor and refrigeration cycle device WO2020050086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164673 2018-09-03
JP2018164673A JP2020037882A (en) 2018-09-03 2018-09-03 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020050086A1 true WO2020050086A1 (en) 2020-03-12

Family

ID=69722538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033285 WO2020050086A1 (en) 2018-09-03 2019-08-26 Compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2020037882A (en)
WO (1) WO2020050086A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837946A (en) * 2022-06-18 2022-08-02 华海(北京)科技股份有限公司 Energy-saving two-stage spiral air compressor control system
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023155791A (en) * 2022-04-11 2023-10-23 株式会社Soken Temperature regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367959A (en) * 1990-03-02 1991-03-22 Hitachi Ltd Air conditioner
JP2011144695A (en) * 2010-01-12 2011-07-28 Panasonic Corp Thermal storage device, and air conditioner with the same
WO2013099164A1 (en) * 2011-12-26 2013-07-04 パナソニック株式会社 Air conditioner
JP2015178939A (en) * 2014-03-19 2015-10-08 株式会社東芝 Heat storage device and air conditioner
EP3244141A1 (en) * 2016-05-09 2017-11-15 Vaillant GmbH Defrosting with heat generated by compressor driver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367959A (en) * 1990-03-02 1991-03-22 Hitachi Ltd Air conditioner
JP2011144695A (en) * 2010-01-12 2011-07-28 Panasonic Corp Thermal storage device, and air conditioner with the same
WO2013099164A1 (en) * 2011-12-26 2013-07-04 パナソニック株式会社 Air conditioner
JP2015178939A (en) * 2014-03-19 2015-10-08 株式会社東芝 Heat storage device and air conditioner
EP3244141A1 (en) * 2016-05-09 2017-11-15 Vaillant GmbH Defrosting with heat generated by compressor driver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
CN114837946A (en) * 2022-06-18 2022-08-02 华海(北京)科技股份有限公司 Energy-saving two-stage spiral air compressor control system

Also Published As

Publication number Publication date
JP2020037882A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6794964B2 (en) Refrigeration cycle equipment
US11498391B2 (en) Air conditioner
JP6015636B2 (en) Heat pump system
US20220032732A1 (en) Battery heating device for vehicle
JP5659925B2 (en) Air conditioner for vehicles
WO2020203150A1 (en) Refrigeration cycle device
JP2000161809A (en) Refrigerating cycle apparatus
JP6075058B2 (en) Refrigeration cycle equipment
CN110997369A (en) Refrigeration cycle device
WO2020050086A1 (en) Compressor and refrigeration cycle device
WO2020137233A1 (en) Vehicular air conditioner
WO2020050085A1 (en) Compressor and refrigeration cycle device
WO2019031221A1 (en) Refrigeration cycle device
CN113423596A (en) Refrigeration cycle device
JP2019104394A (en) Heat management system
WO2020213537A1 (en) Refrigeration cycle device
WO2019111621A1 (en) Heat pump system
CN113710519A (en) Refrigeration cycle device
WO2013145537A1 (en) Air conditioner device for vehicle
JP2020040429A (en) Refrigeration cycle device
WO2019026481A1 (en) Combined heat exchanger
JP6922856B2 (en) Refrigeration cycle equipment
JP5510374B2 (en) Heat exchange system
US20230364969A1 (en) Thermal management system
JP2020023224A (en) Heat pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857404

Country of ref document: EP

Kind code of ref document: A1