WO2019111621A1 - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
WO2019111621A1
WO2019111621A1 PCT/JP2018/041206 JP2018041206W WO2019111621A1 WO 2019111621 A1 WO2019111621 A1 WO 2019111621A1 JP 2018041206 W JP2018041206 W JP 2018041206W WO 2019111621 A1 WO2019111621 A1 WO 2019111621A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature side
high temperature
heat medium
low temperature
Prior art date
Application number
PCT/JP2018/041206
Other languages
French (fr)
Japanese (ja)
Inventor
侑樹 小中出
加藤 吉毅
卓哉 布施
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880078797.3A priority Critical patent/CN111448432A/en
Publication of WO2019111621A1 publication Critical patent/WO2019111621A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Definitions

  • the present disclosure relates to a heat pump system having a heat pump cycle.
  • a heat pump system has a heat pump cycle (i.e., a vapor compression refrigeration cycle), and controls the operation of the heat pump cycle to adjust the temperature of various heat transfer media.
  • a heat pump cycle i.e., a vapor compression refrigeration cycle
  • Such a heat pump cycle is applied to, for example, a vehicle air conditioner, and the comfort of the vehicle interior is improved by adjusting the temperature of the blowing air which is the fluid to be heat-exchanged.
  • a vehicle air conditioner for vehicles, there is known one configured to absorb heat from the cooling water of a cooling water circuit for cooling on-vehicle equipment etc. to the refrigerant of the refrigeration cycle in addition to heat absorption from the outside air.
  • Patent Document 1 is known as such a vehicle air conditioner.
  • the air conditioning apparatus which concerns on patent document 1 it is comprised so that the heat
  • the heat stored in the heat storage material is used for vaporization of the refrigerant toward the outdoor heat exchanger in the heat storage heat exchanger connected via the heat storage pipe during the defrost operation of the refrigeration cycle.
  • defrosting of an outdoor heat exchanger is performed by this gaseous-phase refrigerant
  • Patent Document 1 when storing heat generated by the compressor, the operation of the refrigeration cycle is switched to the heat storage operation, and when utilizing the heat stored in the heat storage material, the operation of the refrigeration cycle is defrosted It will be necessary to switch to driving. That is, in utilizing the heat generated by the compressor, the operation of the refrigeration cycle had to be switched sequentially.
  • a heat pump system includes a heat pump cycle, a recovery unit, and at least one of a high temperature side heat receiving unit and a low temperature side heat receiving unit.
  • the heat pump cycle includes a compressor that compresses and discharges a refrigerant, a radiator that releases the heat of the high-pressure refrigerant compressed by the compressor, a decompression unit that decompresses the high-pressure refrigerant flowing out of the radiator, and a decompression unit. And a heat absorber for evaporating and absorbing the low-pressure refrigerant that has been depressurized.
  • the recovery unit recovers the exhaust heat of the compressor.
  • the high temperature side heat receiving unit dissipates the heat recovered by the recovery unit to the high pressure refrigerant.
  • the low temperature side heat receiving unit absorbs the heat recovered by the recovery unit to the low pressure refrigerant.
  • the exhaust heat of the compressor in the heat pump cycle can be recovered by the recovery unit regardless of the operation control of the heat pump cycle. Then, the heat pump system effectively uses the exhaust heat of the compressor recovered by the recovery unit on the heat pump cycle side via any one of the high temperature side heat receiving unit and the low temperature side heat receiving unit. be able to. That is, the heat pump system can effectively utilize the exhaust heat of the compressor with a simple configuration regardless of the operation mode of the heat pump cycle.
  • the heat pump system 1 which concerns on this indication is applied to the electric vehicle which obtains the driving force for vehicle travel from the electric motor for travel.
  • the heat pump system 1 has a function of performing air conditioning of a vehicle interior which is a space to be air conditioned, and a function of adjusting the temperature of the on-vehicle device 32 including a battery or the like to an appropriate temperature.
  • the said heat pump system 1 can switch air conditioning mode, heating mode, and dehumidification heating mode as an operation mode which air-conditions a vehicle interior.
  • the cooling mode is an operation mode in which the blowing air blown into the vehicle compartment is cooled and blown out into the vehicle compartment.
  • the heating mode is an operation mode in which the blown air is heated and blown into the vehicle compartment.
  • the dehumidifying and heating mode is an operation mode in which the cooled and dehumidified blown air is reheated and blown into the vehicle compartment.
  • an HFC refrigerant (specifically, R134a) is employed as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • PAG oil polyalkylene glycol oil
  • a portion of the refrigerator oil circulates in the cycle with the refrigerant.
  • the heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, a low temperature side heat medium circuit 30, an indoor air conditioning unit 50, and a control device 60.
  • the heat pump cycle 10 is a vapor compression refrigeration cycle device.
  • the compressor 11 sucks, compresses and discharges the refrigerant in the heat pump cycle 10, and corresponds to the compressor in the present disclosure.
  • the compressor 11 is disposed in a vehicle bonnet.
  • the compressor 11 is an electric compressor which rotationally drives, by an electric motor, a fixed displacement type compression mechanism whose discharge displacement is fixed.
  • the rotation speed (i.e., the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from a control device 60 described later.
  • recovery part in this indication is arrange
  • the outlet side of the compressor 11 is connected to the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the water-refrigerant heat exchanger 12 is a heat exchanger that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant discharged from the compressor 11 and the high temperature side heat medium circulating the high temperature side heat medium circuit 20. .
  • the water-refrigerant heat exchanger 12 corresponds to the radiator in the present disclosure.
  • a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
  • the refrigerant inlet side of the refrigerant branch portion 14 a is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the refrigerant branch portion 14 a branches the flow of the high pressure refrigerant flowing out of the water-refrigerant heat exchanger 12.
  • the refrigerant branch portion 14a is formed to be a three-way joint structure having three refrigerant inlets and outlets communicating with one another, one of the three inlets and outlets being a refrigerant inlet and the remaining two being refrigerant flows. It is an exit.
  • the refrigerant inlet side of the indoor evaporator 16 is connected to one of the refrigerant outlets of the refrigerant branch portion 14 a via the cooling expansion valve 15 a.
  • the refrigerant inlet side of the chiller 18 is connected to the other refrigerant outlet of the refrigerant branch portion 14a via the heat absorption expansion valve 15b.
  • the cooling expansion valve 15a is a cooling decompression unit that decompresses the refrigerant that has flowed out from one refrigerant outlet of the refrigerant branching unit 14a at least in the cooling mode and the dehumidifying and heating mode.
  • the said cooling expansion valve 15a comprises the pressure reduction part in this indication.
  • the cooling expansion valve 15 a also functions as a cooling flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the indoor evaporator 16.
  • the cooling expansion valve 15a is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the cooling expansion valve 15a is configured by a so-called electric expansion valve.
  • the valve body of the cooling expansion valve 15a is configured to be able to change the passage opening degree of the refrigerant passage (in other words, the throttle opening degree).
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the operation of the cooling expansion valve 15 a is controlled by a control signal output from the controller 60.
  • the cooling expansion valve 15a is a variable throttling mechanism having a fully open function of fully opening the refrigerant passage when the throttling degree is fully opened and a fully closing function of closing the refrigerant passage when the throttling degree is fully closed. It is configured.
  • the cooling expansion valve 15a can prevent the pressure reducing action of the refrigerant from being exhibited by fully opening the refrigerant passage. Further, the cooling expansion valve 15 a can block the flow of the refrigerant into the indoor evaporator 16 by closing the refrigerant passage. That is, the cooling expansion valve 15a has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
  • the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a.
  • the indoor evaporator 16 performs heat exchange between the low pressure refrigerant decompressed by the cooling expansion valve 15a and the blown air at least in the cooling mode and the dehumidifying heating mode to evaporate the low pressure refrigerant and cool the blown air. It is an evaporator.
  • the indoor evaporator 16 is disposed in the casing 51 of the indoor air conditioning unit 50. That is, the indoor evaporator 16 constitutes a heat sink in the present disclosure, and corresponds to either one of the first heat sink or the second heat sink in the present disclosure.
  • the inlet side of the evaporation pressure control valve 17 is connected to the refrigerant outlet of the indoor evaporator 16.
  • the evaporation pressure adjustment valve 17 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at or above a predetermined reference pressure.
  • the evaporation pressure control valve 17 is configured by a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the outlet side of the indoor evaporator 16 increases.
  • the evaporation pressure control valve 17 is configured to maintain the refrigerant evaporation temperature in the indoor evaporator 16 at a reference temperature (1 ° C. in the present embodiment) that can suppress the formation of frost on the indoor evaporator 16. ing.
  • the refrigerant merging portion 14b has a three-way joint structure similar to that of the refrigerant branching portion 14a, with two of the three inflows and outlets being used as a refrigerant inlet and the remaining one being used as a refrigerant outlet. As shown in FIG. 1, the refrigerant merging portion 14 b merges the flow of the refrigerant flowing out of the evaporation pressure adjusting valve 17 and the flow of the refrigerant flowing out of the chiller 18.
  • the heat absorption expansion valve 15 b is connected to the other refrigerant outlet of the refrigerant branch portion 14 a.
  • the heat absorption expansion valve 15b is a heat absorption decompression unit that decompresses and expands the liquid phase refrigerant that has flowed out from the other refrigerant outlet in the refrigerant branch unit 14a at least in the heating mode and the dehumidifying heating mode.
  • the heat absorption expansion valve 15 b functions as a pressure reduction unit in the present disclosure.
  • the heat absorption expansion valve 15 b functions as a heat absorption flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the chiller 18.
  • the basic configuration of the heat absorption expansion valve 15b is the same as that of the cooling expansion valve 15a. That is, the heat absorption expansion valve 15b is an electric variable throttle mechanism, and has a valve body and an electric actuator. Then, the heat absorption expansion valve 15b has a full open function and a full close function, as with the cooling expansion valve 15a.
  • the heat absorption expansion valve 15b can prevent the refrigerant from exerting a pressure reducing action by fully opening the refrigerant passage, and can block the flow of the refrigerant to the chiller 18 by closing the refrigerant passage. . That is, the heat absorption expansion valve 15b has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
  • the refrigerant inlet side of the chiller 18 is connected to the outlet of the heat absorption expansion valve 15b.
  • the chiller 18 is a heat exchanger that exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15 b and the low temperature side heat medium circulating in the low temperature side heat medium circuit 30.
  • the chiller 18 has a refrigerant passage for circulating the low pressure refrigerant decompressed by the heat absorption expansion valve 15b, and a water passage for circulating the low temperature side heat medium circulating in the low temperature side heat medium circuit 30.
  • the chiller 18 is an evaporation unit that evaporates the low pressure refrigerant by heat exchange between the low pressure refrigerant flowing in the refrigerant passage and the low temperature side heat medium flowing in the water passage at least in the heating mode and the dehumidifying heating mode. That is, the chiller 18 is a heat exchanger for heat absorption which evaporates the low pressure refrigerant and absorbs the heat of the low temperature side heat medium to the refrigerant at least in the heating mode and the dehumidifying heating mode.
  • the chiller 18 constitutes a heat sink in the present disclosure, and corresponds to either the first heat sink or the second heat sink in the present disclosure.
  • the other refrigerant inlet side of the refrigerant merging portion 14 b is connected to the outlet of the refrigerant passage of the chiller 18.
  • the suction port side of the compressor 11 is connected to the refrigerant
  • the high temperature side heat medium circuit 20 is a circuit for circulating the high temperature side heat medium.
  • the high temperature side heat medium a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
  • the water passage of the water-refrigerant heat exchanger 12, the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, the high temperature side flow rate adjustment valve 24 and the like are arranged.
  • the high temperature side heat medium pump 21 is a water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 is an electric pump whose rotational speed (that is, pumping capacity) is controlled by a control voltage output from the control device 60.
  • the high temperature side flow control valve 24 is an electrical three-way flow control valve having three inlets and outlets, of which the passage area ratio of the two inlets and outlets can be continuously adjusted. The operation of the high temperature side flow control valve 24 is controlled by a control signal output from the controller 60.
  • the inlet side of the heater core 22 is connected to another inlet / outlet of the high temperature side flow control valve 24.
  • the inlet side of the high temperature side radiator 23 is connected to still another inlet and outlet of the high temperature side flow control valve 24.
  • the high temperature side flow rate adjustment valve 24 flows the high temperature side heat medium flowed into the heater core 22 and It has a function of continuously adjusting the flow rate ratio to the flow rate of the high temperature side heat medium to be flowed into the high temperature side radiator 23.
  • the heater core 22 is a heat exchanger that heats the blown air by heat exchange between the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the blown air having passed through the indoor evaporator 16.
  • the heater core 22 corresponds to the heater core in the present disclosure.
  • the heater core 22 is disposed in the casing 51 of the indoor air conditioning unit 50.
  • the inlet side of the high temperature side heat medium pump 21 is connected to the outlet side of the water passage in the heater core 22.
  • the high temperature side radiator 23 exchanges heat between the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the outside air blown from the outside air fan (not shown) to radiate the heat of the high temperature side heat medium to the outside air Heat exchanger.
  • the high temperature side radiator 23 is disposed on the front side in the vehicle bonnet. For this reason, when the vehicle is traveling, the traveling wind can be applied to the high temperature side radiator 23.
  • the high temperature side radiator 23 may be integrally formed with the water-refrigerant heat exchanger 12 and the like.
  • the outlet side of the high temperature side radiator 23 is connected to the inlet side of the high temperature side heat medium pump 21.
  • the heater core 22 and the high temperature side radiator 23 are connected in parallel to the flow of the high temperature side heat medium. Therefore, in the high temperature side heat medium circuit 20, the high temperature side flow rate adjustment valve 24 adjusts the flow rate of the high temperature side heat medium flowing into the heater core 22, so that the heat radiation amount of the high temperature side heat medium in the heater core 22 to the blast air. That is, the heating amount of the blowing air in the heater core 22 can be adjusted.
  • the high temperature side heat medium circuit 20 has a high temperature side recovery unit 25 for recovering and receiving the exhaust heat of the compressor 11 in the heat pump cycle 10. Accordingly, the high temperature side heat medium circuit 20 corresponds to the high temperature side heat receiving portion in the present disclosure and corresponds to the high temperature side heat medium circuit in the present disclosure. The specific configuration of the high temperature side recovery unit 25 will be described in detail later.
  • the low temperature side heat medium circuit 30 is a heat medium circulation circuit that circulates the low temperature side heat medium.
  • the low temperature side heat medium the same fluid as the high temperature side heat medium can be adopted.
  • the water passage of the chiller 18, the low temperature side heat medium pump 31, the on-vehicle device 32, the low temperature side radiator 33, the low temperature side flow rate adjustment valve 34 and the like are arranged.
  • the low temperature side heat medium pump 31 is a water pump that pumps the low temperature side heat medium to the inlet side of the water passage of the chiller 18.
  • the basic configuration of the low temperature side heat medium pump 31 is similar to that of the high temperature side heat medium pump 21.
  • one outlet / outlet of the low temperature side flow control valve 34 is connected to the outlet side of the water passage in the chiller 18.
  • the basic configuration of the low temperature side flow control valve 34 is similar to that of the high temperature side flow control valve 24. That is, the low temperature side flow control valve 34 is configured of an electric three-way flow control valve.
  • the inlet side of the water passage in the on-vehicle device 32 is connected to another inflow / outlet of the low temperature side flow control valve 34.
  • the inlet side of the low temperature side radiator 33 is connected to still another inlet and outlet of the low temperature side flow control valve 34.
  • the in-vehicle device 32 is mounted on the electric vehicle and is configured of a device that generates heat when activated.
  • the on-vehicle device 32 corresponds to the heat-generating device in the present disclosure.
  • the on-vehicle device 32 includes, for example, a battery, an inverter, a charger, a motor generator, and the like.
  • the battery supplies power to various electric devices mounted in a vehicle, and is configured of, for example, a chargeable / dischargeable secondary battery (in the present embodiment, a lithium ion battery).
  • the inverter is a power conversion unit that converts direct current into alternating current.
  • a charger is a charger which charges electric power to a battery.
  • the motor generator outputs driving power for traveling by being supplied with electric power, and generates regenerative electric power at the time of deceleration or the like.
  • the cooling water passage in the in-vehicle device 32 is formed so as to be able to cool each device by circulating the low temperature side heat medium.
  • the suction port side of the low temperature side heat medium pump 31 is connected to the outlet side of the cooling water passage in the in-vehicle device 32.
  • the temperature of each component included in the on-vehicle device 32 needs to be adjusted within the range of an appropriate temperature range in which sufficient performance can be exhibited. Therefore, the heat pump system 1 can adjust each device of the in-vehicle device 32 to an appropriate temperature range by adjusting the flow rate of the low-temperature side heat medium to the water passage of the in-vehicle device 32.
  • the low temperature side radiator 33 is a heat exchanger that exchanges heat between the low temperature side heat medium flowing out from the low temperature side flow rate adjustment valve 34 and the outside air blown from an outside air fan (not shown).
  • the low temperature side radiator 33 functions as a heat exchanger for radiating the heat of the low temperature side heat medium to the outside air when the temperature of the low temperature side heat medium is higher than the outside air.
  • the low temperature side flow control valve 34 functions as a heat exchanger for absorbing heat that absorbs the heat of the outside air to the low temperature side heat medium.
  • the outlet side of the low temperature side radiator 33 is connected to the inlet side of the low temperature side heat medium pump 31. That is, the low temperature side radiator 33 is disposed in parallel with the on-vehicle device 32 with respect to the flow of the low temperature side heat medium in the low temperature side heat medium circuit 30.
  • the heat pump system 1 can use the low-temperature side heat medium circuit 30 to cool the in-vehicle device 32 and adjust the temperature, and can use heat generated by the in-vehicle device 32 as a heat source. Moreover, the said heat pump system 1 can utilize external air as a heat source, or can thermally radiate external air by utilizing the low temperature side radiator 33 of the low temperature side heat-medium circuit 30. FIG.
  • the indoor air conditioning unit 50 which comprises the heat pump system 1 is demonstrated.
  • the indoor air conditioning unit 50 is a unit for blowing out the blowing air whose temperature has been adjusted by the heat pump cycle 10 in the heat pump system 1 to an appropriate place in the vehicle compartment.
  • the indoor air conditioning unit 50 is disposed inside the instrument panel (i.e., instrument panel) at the foremost part of the passenger compartment.
  • the indoor air conditioning unit 50 is configured by housing a blower 52, an indoor evaporator 16, a heater core 22 and the like in an air passage formed inside a casing 51 forming the outer shell thereof.
  • the casing 51 forms an air passage for blowing air blown into the vehicle compartment, and is molded of a resin (specifically, polypropylene) which has a certain degree of elasticity and is excellent in strength.
  • an internal / external air switching device 53 is disposed on the most upstream side of the flow of the blown air of the casing 51.
  • the inside / outside air switching device 53 switches and introduces inside air (air in the vehicle interior) and outside air (air outside the vehicle) into the casing 51.
  • the inside / outside air switching device 53 continuously adjusts the opening area of the inside air introduction port for introducing inside air into the casing 51 and the outside air introduction port for introducing outside air by means of the inside / outside air switching door.
  • the introduction rate with the introduction air volume can be changed.
  • the inside and outside air switching door is driven by an electric actuator for the inside and outside air switching door. The operation of the electric actuator is controlled by a control signal output from the controller 60.
  • a blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air.
  • the blower 52 is constituted by an electric blower which drives a centrifugal multi-blade fan by an electric motor, and functions to blow air taken in via the inside / outside air switching device 53 toward the vehicle interior for blowing.
  • the rotation speed (i.e., the blowing capacity) of the blower 52 is controlled by the control voltage output from the control device 60.
  • the indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blown air on the downstream side of the blown air flow of the blower 52. That is, the indoor evaporator 16 is disposed upstream of the heater core 22 in the flow of the blown air. Further, in the casing 51, a cold air bypass passage 55 is formed, in which the blown air having passed through the indoor evaporator 16 is allowed to bypass the heater core 22 and flow downstream.
  • An air mix door 54 is disposed on the downstream side of the air flow of the indoor evaporator 16 and on the upstream side of the air flow of the heater core 22.
  • the air mix door 54 adjusts the air volume ratio of the air volume passing through the heater core 22 and the air volume passing through the cold air bypass passage 55 in the blown air after passing through the indoor evaporator 16.
  • the air mix door 54 is driven by an electric actuator for driving the air mix door.
  • the operation of the electric actuator is controlled by a control signal output from the control device 60.
  • a mixing space 56 is provided downstream of the air flow of the heater core 22. In the mixing space 56, the blowing air heated by the heater core 22 and the blowing air which has passed the cold air bypass passage 55 and is not heated by the heater core 22 are mixed.
  • an opening for blowing the air (air-conditioned air) mixed in the mixing space into the vehicle compartment is disposed.
  • this opening hole a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided.
  • the face opening hole is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment.
  • the foot opening hole is an opening hole for blowing the conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing the conditioned air toward the inner side surface of the vehicle front windshield.
  • face opening holes, foot opening holes, and defroster opening holes are respectively provided in the passenger compartment via a duct that forms an air passage, face outlet, foot outlet, and defroster outlet (all not shown) )It is connected to the.
  • the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio of the air volume passing the heater core 22 and the air volume passing the cold air bypass passage 55 by the air mix door 54.
  • the temperature of the air (air-conditioned air) blown out from the outlets into the vehicle compartment is also adjusted.
  • a defroster door (not shown) is arranged to adjust the opening area of the hole.
  • These face door, foot door, and defroster door constitute an air outlet mode switching device that switches the air outlet from which the conditioned air is blown out.
  • the face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are operated to rotate in conjunction with each other.
  • the operation of the electric actuator is controlled by a control signal output from the controller 60.
  • the high temperature side heat medium circuit 20 has a high temperature side recovery unit 25 in order to recover the exhaust heat of the compressor 11 in the heat pump cycle 10.
  • the configuration of the high temperature side recovery unit 25 will be described with reference to FIGS.
  • the high temperature side recovery unit 25 recovers the exhaust heat of the compressor 11 by absorbing heat from the high temperature side heat medium circulating in the high temperature side heat medium circuit 20, and the exhaust heat of the compressor 11 is recovered by the high temperature side heat medium circuit Accept to 20.
  • the high temperature side recovery unit 25 includes a housing portion 25 a, a high temperature side inflow piping 26, and a high temperature side outflow piping 27.
  • the housing portion 25 a, the high temperature side inflow piping 26, and the high temperature side outflow piping 27 are connected to one another, and constitute a flow path through which the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 flows.
  • the high temperature side inflow pipe 26 is a pipe branched from the high temperature side branch portion 26 a disposed on the outlet side of the water passage in the water-refrigerant heat exchanger 12.
  • the said high temperature side inflow piping 26 is connected to the accommodating part 25a as mentioned above. Accordingly, in the high temperature side heat medium circuit 20, the flow of the high temperature side heat medium branched at the high temperature side branch portion 26a reaches the inside of the accommodation portion 25a.
  • the high temperature side outflow pipe 27 extends from the housing portion 25 a and is connected to the high temperature side joining portion 27 a disposed in the circulation circuit of the high temperature side heat medium circuit 20.
  • the high temperature side joining portion 27a is located downstream of the high temperature side branch portion 26a in the flow direction downstream of the high temperature side heat medium on the outlet side of the water passage in the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium flowing out of the storage portion 25a joins the high temperature side heat medium circulating in the heater core 22 and the like in the high temperature side heat medium circuit 20 on the outlet side of the water passage in the water-refrigerant heat exchanger 12. .
  • the housing portion 25 a in the high temperature side recovery portion 25 is formed so as to cover the outer surface of the compressor 11. That is, the housing portion 25 a houses a part of the refrigerant pipe connected to the compressor 11 and the compressor 11 inside.
  • the high temperature side heat medium that has flowed through the high temperature side inflow pipe 26 flows into the inside of the housing 25 a and flows along the outer surface of the compressor 11. At this time, the high temperature side heat medium absorbs and recovers the exhaust heat of the compressor 11.
  • the high temperature side heat medium flows out from the housing portion 25 a and joins the circulation circuit of the high temperature side heat medium circuit 20 via the high temperature side outflow piping 27.
  • the high temperature side heat medium circuit 20 can recover and receive the exhaust heat of the compressor 11 through the flow of the high temperature side heat medium in the high temperature side recovery unit 25.
  • a heat storage material 25 b is disposed inside the storage portion 25 a in the high temperature side recovery portion 25.
  • the heat storage material 25 b is a latent heat storage material with a phase change at the time of heat storage.
  • the phase change temperature of the heat storage material 25 b is determined within a range that is higher than the temperature of the high-temperature side heat medium flowing into the housing 25 a and lower than the temperature of the compressor 11.
  • the heat storage material 25 b stores the exhaust heat of the compressor 11 and dissipates the heat stored in the high temperature side heat medium when the temperature of the high temperature side heat medium is lower than a predetermined temperature. It is configured.
  • the said heat storage material 25b is arrange
  • the high temperature side heat medium flowing from the high temperature side inflow pipe 26 into the housing portion 25 a flows through the gap of the capsule and flows to the high temperature side outflow pipe 27.
  • heat storage material 25b in the high temperature side recovery unit 25 for example, (water-based heat storage material, paraffin wax-based heat storage material, higher alcohol-based heat storage material, inorganic salt-based heat storage material) can be employed.
  • a water-based heat storage material for example, sodium acetate trihydrate and magnesium chloride tetrahydrate can be adopted.
  • paraffin wax-based heat storage material for example, heptacosane, octacosan, nonacosane, stearyl stearate can be adopted.
  • a heat storage material of a higher alcohol type for example, xylitol can be used.
  • these mixed materials can be employ
  • the heat storage material 25b absorbs heat from the surroundings and changes in phase.
  • the exhaust heat of the compressor 11 is stored in the heat storage material 25b.
  • the thermal storage material 25b which stored heat changes sensible heat so that the temperature of the high temperature side heat carrier may be approached.
  • the heat storage material 25b dissipates the exhaust heat of the compressor 11 stored in the high temperature side heat medium to change the phase.
  • the heat storage section 40 can be configured by arranging the heat storage material 25 b in the storage section 25 a of the high temperature side recovery section 25.
  • the heat storage unit 40 stores the exhaust heat of the compressor 11 and dissipates the stored heat to the high temperature side heat medium when the temperature of the high temperature side heat medium becomes lower than a predetermined heat storage temperature. That is, the heat storage unit 40 corresponds to the heat storage unit in the present disclosure.
  • the control device 60 is composed of a known microcomputer including a CPU, a ROM, a RAM and the like, and peripheral circuits thereof.
  • control device 60 performs various operations and processes based on the control program stored in the ROM, and controls the operation of various control target devices connected to the output side.
  • the control target devices in the first embodiment include the compressor 11, the cooling expansion valve 15a, the heat absorption expansion valve 15b, the high temperature side heat medium pump 21, the high temperature side flow control valve 24, and the low temperature side heat medium
  • the pump 31, the low temperature side flow control valve 34, the blower 52 and the like are included.
  • a sensor group for air conditioning control is connected to the input side of the control device 60.
  • the air conditioning control sensor group includes an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, an evaporator temperature sensor 62e, and an air conditioning air temperature sensor 62f.
  • the control device 60 receives detection signals of these air conditioning control sensors.
  • the inside air temperature sensor 62a is an inside air temperature detection unit that detects a vehicle room temperature (inside air temperature) Tr.
  • the outside air temperature sensor 62b is an outside air temperature detection unit that detects the temperature outside the vehicle (outside air temperature) Tam.
  • the solar radiation sensor 62c is a solar radiation amount detection unit that detects the solar radiation amount As emitted to the vehicle interior.
  • the high pressure sensor 62 d is a refrigerant pressure detection unit that detects the high pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 15 a or the heat absorption expansion valve 15 b.
  • the evaporator temperature sensor 62 e is an evaporator temperature detection unit that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16.
  • the air conditioning air temperature sensor 62f is an air conditioning air temperature detection unit that detects the temperature of the air that is blown into the vehicle compartment.
  • an operation panel 61 disposed in the vicinity of the instrument panel at the front of the vehicle interior is connected.
  • a plurality of operation switches are arranged. Therefore, control signals from the plurality of operation switches are input to the control device 60.
  • an automatic switch for setting or canceling the automatic control operation of the heat pump system 1 a cooling switch for requesting cooling of the vehicle interior, and manually setting an air volume of the blower 52
  • an air volume setting switch for setting a target temperature Tset in the vehicle interior, and the like.
  • a control unit for controlling various control target devices connected to the output side is integrally configured, but a configuration for controlling the operation of each control target device (hardware and software) Constitute a control unit that controls the operation of each control target device.
  • the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 60a.
  • a circuit switching control unit 60b controls the operation of the cooling expansion valve 15a and the heat absorption expansion valve 15b as a circuit switching unit.
  • the operation mode can be appropriately switched from the plurality of operation modes. Switching of these operation modes is performed by executing a control program stored in advance in the control device 60.
  • the control program based on the detection signal detected by the air conditioning control sensor group and the operation signal output from the operation panel 61, the target blowout temperature TAO of the air blown into the vehicle compartment is calculated. Do. Then, the operation mode is switched based on the target blowout temperature TAO and the detection signal.
  • the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described.
  • the cooling mode is an operation mode in which the air, which is the fluid to be heat-exchanged, is cooled and blown into the vehicle compartment.
  • the control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully closed state.
  • the compressor 11 water-refrigerant heat exchanger 12 ⁇ refrigerant branch portion 14a ⁇ cooling expansion valve 15a ⁇ interior evaporator 16 ⁇ evaporation pressure control valve 17 ⁇ refrigerant merging portion 14b ⁇ compression
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the machine 11 is configured.
  • the refrigerant in the cooling mode, the refrigerant is made to flow into the indoor evaporator 16, and the refrigerant circuit is switched to the refrigerant circuit for cooling the blowing air by heat exchange with the blowing air.
  • control device 60 controls the operation of various control target devices connected to the output side.
  • control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62e becomes the target evaporation temperature TEO.
  • the target evaporation temperature TEO is determined based on the target blowing temperature TAO with reference to the control map for cooling mode stored in advance in the control device 60.
  • the target evaporation temperature TEO is raised along with the rise of the target blowout temperature TAO so that the blown air temperature TAV detected by the air conditioning air temperature sensor 62f approaches the target blowout temperature TAO. Furthermore, the target evaporation temperature TEO is determined to be a value in a range (specifically, 1 ° C. or more) in which frost formation of the indoor evaporator 16 can be suppressed.
  • control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the cooling mode determined in advance. Further, the control device 60 controls the operation of the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23.
  • the control device 60 operates the low temperature side heat medium pump 31 so as to exert the water pressure transfer capability in the cooling mode. At this time, the control device 60 controls the operation of the low temperature side flow control valve 34, and the flow balance of the low temperature side heat medium flowing out of the water passage of the chiller 18 is arbitrary between the on-vehicle device 32 side and the low temperature side radiator 33 side. Adjust to achieve a balance of
  • the control device 60 determines the control voltage (air blowing capacity) of the fan 52 with reference to the control map stored in advance in the control device 60 based on the target blowing temperature TAO. Specifically, in this control map, the air flow of the blower 52 is maximized in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO, and as the intermediate temperature region is approached. Reduce air flow.
  • control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the heater core 22 side is closed.
  • the control device 60 appropriately controls the operation of other various control target devices.
  • the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
  • the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
  • the throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
  • the low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16.
  • the refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
  • the refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the refrigerant merging portion 14 b and compressed again.
  • the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
  • the heating mode is an operation mode in which the chiller 18 absorbs heat from the low-temperature side heat medium of the low-temperature side heat medium circuit 30, and heats the blowing air which is the fluid to be heat exchanged to blow the air into the vehicle compartment .
  • the control device 60 fully closes the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree.
  • the refrigerant in the heating mode, the refrigerant is made to flow into the chiller 18, and the heat is absorbed by heat exchange with the low temperature side heat medium to be switched to the refrigerant circuit that heats the blown air.
  • the low temperature side heat medium in the low temperature side heat medium circuit 30 is heated by the exhaust heat generated in the in-vehicle device 32 when passing through the in-vehicle device 32. Further, when passing through the low temperature side radiator 33, the low temperature side heat medium is heated by heat exchange with the outside air. That is, the heat pump system 1 can use the on-vehicle device 32 or the outside air as a heat source for heating in the heating mode.
  • control device 60 controls the operation of various control target devices connected to the output side.
  • control device 60 controls the operation of the compressor 11 such that the high pressure refrigerant pressure Pd detected by the high pressure sensor 62d becomes the target high pressure PCO.
  • the target high pressure PCO is determined based on the target blowout temperature TAO with reference to the heating mode control map stored in advance in the control device 60.
  • the target high pressure PCO is raised with the rise of the target blowing temperature TAO so that the blowing air temperature TAV approaches the target blowing temperature TAO.
  • control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode.
  • the control device 60 controls the operation of the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 22.
  • the control device 60 operates the low temperature side heat medium pump 31 so as to exert the water pressure transfer capability in the heating mode. At this time, the control device 60 controls the operation of the low temperature side flow control valve 34, and the flow balance of the low temperature side heat medium flowing out of the water passage of the chiller 18 is arbitrary between the on-vehicle device 32 side and the low temperature side radiator 33 side. Adjust to achieve a balance of
  • control apparatus 60 determines the control voltage (blower capability) of the air blower 52 similarly to air conditioning mode. Further, the control device 60 controls the operation of the air mix door 54 so as to close the cold air bypass passage 55 by fully opening the air passage on the heater core 22 side. The control device 60 appropriately controls the operation of various other control target devices.
  • the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
  • blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO.
  • the high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
  • the throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the chiller 18 is in a gas-liquid two-phase state.
  • the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31.
  • the low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
  • the low temperature side heat medium when passing through the low temperature side radiator 33, absorbs heat from the outside air blown by the outside air fan.
  • the low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
  • the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the chiller 18.
  • the refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium flowing through the water passage of the chiller 18 and evaporates.
  • the refrigerant flowing out of the chiller 18 is sucked into the compressor 11 via the refrigerant merging portion 14b and compressed again.
  • heating of the vehicle interior can be performed by heating the blown air, which is the fluid to be heat-exchanged, with the heater core 22 and blowing it out into the vehicle interior. That is, in the heating mode, the heat pump system 1 pumps up the heat absorbed from the on-vehicle device 32 or the outside air in the low temperature side heat medium circuit 30 in the heat pump cycle 10, and sends the blown air through the high temperature side heat medium circuit 20. It can be used to heat the
  • the heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20.
  • a part of the high temperature side heat medium in the high temperature side heat medium circuit 20 branches from the circulation circuit in the high temperature side heat medium circuit 20 and enters the housing portion 25 a via the high temperature side inflow piping 26. To flow.
  • the high temperature side heat medium absorbs the exhaust heat of the compressor 11 and joins the circulation circuit of the high temperature side heat medium circuit 20 via the high temperature side outflow pipe 27. In this manner, the high temperature side heat medium circuit 20 can recover the exhaust heat of the compressor 11 and transport the exhaust heat of the compressor 11 to the circulation circuit side of the high temperature side heat medium circuit 20.
  • the exhaust heat of the compressor 11 is used to heat the high temperature side heat medium of the high temperature side heat medium circuit 20
  • the heater core 22 can dissipate heat to the blowing air.
  • the heat pump system 1 can dissipate heat to the high pressure refrigerant side using the exhaust heat of the compressor 11 in addition to the heat of the high pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the heating mode. Therefore, the heating capacity in the heat pump system 1 can be improved.
  • (C) Dehumidifying heating mode In the dehumidifying heating mode, the blown air cooled by the indoor evaporator 16 is heated by the chiller 18 using heat absorbed from the low temperature side heat medium of the low temperature side heat medium circuit 30 and the like. It is an operation mode for blowing air into the passenger compartment.
  • the control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at respective predetermined opening degrees.
  • the heat flows from the compressor 11 to the water-refrigerant heat exchanger 12 to the refrigerant branch portion 14a, and flows from one side of the refrigerant branch portion 14a to the cooling expansion valve 15a to the indoor evaporator 16. At the same time, it flows from the other side of the refrigerant branch portion 14a to the heat absorption expansion valve 15b to the chiller 18.
  • the refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the chiller 18 merge at the refrigerant merging portion 14b, and then flow in the order of the compressor 11 and circulate. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the chiller 18 is configured.
  • control device 60 controls the operation of various control target devices connected to the output side with reference to the control map for the dehumidifying and heating mode and the like stored in advance in the control device 60.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium that has flowed into the heater core 22 exchanges heat with the blowing air cooled by the indoor evaporator 16 and radiates heat since the air mixing door 54 fully opens the air passage on the heater core 22 side.
  • the blown air is reheated from the cooled state, and the temperature of the blown air approaches the target blowout temperature TAO.
  • the high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
  • the throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
  • the low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16.
  • the refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
  • the refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the refrigerant merging portion 14 b and compressed again.
  • the high pressure refrigerant branched at the refrigerant branch portion 14a flows into the heat absorption expansion valve 15b and is decompressed.
  • the throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the chiller 18 is in a gas-liquid two-phase state.
  • the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31.
  • the low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
  • the low temperature side heat medium when passing through the low temperature side radiator 33, absorbs heat from the outside air blown by the outside air fan.
  • the low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
  • the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the chiller 18.
  • the refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium flowing through the water passage of the chiller 18 and evaporates.
  • the refrigerant flowing out of the chiller 18 is sucked into the compressor 11 via the refrigerant merging portion 14b and compressed again.
  • the heater core 22 is disposed on the downstream side of the air flow of the indoor evaporator 16 inside the casing 51. Therefore, in the dehumidifying and heating mode, the air cooled by the indoor evaporator 16 is on the low temperature side.
  • the heat absorbed by the heat medium circuit 30 can be used to heat the heater core 22. Therefore, in the dehumidifying and heating mode, dehumidifying and heating the passenger compartment can be performed by heating the blown air cooled by the indoor evaporator 16 by the heater core 22 and blowing it out into the passenger compartment.
  • the heat pump system 1 pumps up the heat absorbed by the low-temperature side heat medium circuit 30 from the on-vehicle device 32 or the outside air in the heat pump cycle 10 and via the high temperature side heat medium circuit 20 It can be used to heat the blast air.
  • the heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20.
  • the high temperature side heat medium circuit 20 can recover the exhaust heat of the compressor 11 and transport the exhaust heat of the compressor 11 to the circulation circuit side of the high temperature side heat medium circuit 20 as in the heating mode.
  • the exhaust heat of the compressor 11 is used to heat the high temperature side heat medium of the high temperature side heat medium circuit 20
  • the air cooled by the indoor evaporator 16 can be heated by the heater core 22.
  • the heat pump system 1 can dissipate heat to the high pressure refrigerant side using the exhaust heat of the compressor 11 in addition to the heat of the high pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the dehumidifying heating mode. Since it can do, the heating capacity of heat pump system 1 at the time of dehumidification heating mode can be improved.
  • the cooling mode, the heating mode, and the dehumidifying heating mode are realized among the plurality of operation modes by switching the refrigerant circuit of the heat pump cycle 10. And can perform comfortable air conditioning of the vehicle interior.
  • the refrigerant circuit which makes a high pressure refrigerant flow in the same heat exchanger and the refrigerant circuit which makes a low pressure refrigerant flow. That is, since it is not necessary to cause the high pressure refrigerant to flow into the indoor evaporator 16 and the chiller 18 regardless of which refrigerant circuit is switched, the refrigerant circuit can be switched with a simple configuration without causing the complication of the cycle configuration.
  • the compressor 11 in the heat pump cycle 10 since the compressor 11 in the heat pump cycle 10 is operated, exhaust heat of the compressor 11 is generated. According to the heat pump system 1, the exhaust heat of the compressor 11 can be recovered via the high temperature side recovery section 25 of the high temperature side heat medium circuit 20 and can be used in the high temperature side heat medium circuit 20.
  • the high temperature side heat medium circuit 20 corresponds to the high temperature side heat receiving portion in the present disclosure
  • the high temperature side recovery portion 25 corresponds to the recovery portion in the present disclosure
  • the heat pump system 1 recovers the exhaust heat of the compressor 11 in the high temperature side recovery unit 25, transports the recovered heat, and uses the recovered heat in the high temperature side heat medium circuit 20, A high temperature side heat medium can be intervened, and the heat generation of the compressor 11 can be handled more efficiently.
  • the high temperature side heat medium circuit 20 has a heater core 22. Therefore, the heat pump system 1 can use the exhaust heat of the compressor 11 recovered through the high temperature side recovery unit 25 for heating the blowing air, which is the heat exchange object, in the heating mode or the dehumidifying heating mode.
  • the heating capacity for the heat exchange target fluid can be improved.
  • the high temperature side heat medium circuit 20 has the high temperature side radiator 23, so the heat of the high temperature side heat medium can be dissipated to the outside air. That is, the heat quantity of the high temperature side heat medium can be adjusted by the high temperature side radiator 23.
  • the heat pump system 1 can adjust the heating capacity (that is, the heating capacity) for the blowing air which is the heat exchange target fluid.
  • the heat pump system 1 can adjust it to a desired heating capacity while heating by effectively using the exhaust heat of the compressor 11.
  • the heat pump cycle 10 includes an indoor evaporator 16 and a chiller 18.
  • the indoor evaporator 16 evaporates by heat exchange between the refrigerant decompressed by the cooling expansion valve 15a and the blast air, and absorbs heat from the blast air to cool it.
  • the chiller 18 absorbs heat from the low temperature side heat medium by heat exchange between the refrigerant decompressed by the heat absorption expansion valve 15 b and the low temperature side heat medium of the low temperature side heat medium circuit 30.
  • heat pump system 1 by arranging these two heat sinks in the heat pump cycle 10, for example, heat exchange between the two different heat mediums such as the low temperature side heat medium and the blast air and the refrigerant is enabled.
  • the two different heat mediums such as the low temperature side heat medium and the blast air and the refrigerant.
  • the high temperature side recovery unit 25 is configured by arranging a plurality of heat storage materials 25 b in the housing portion 25 a. That is, the high temperature side recovery unit 25 has the function of the heat storage unit according to the present disclosure.
  • the exhaust heat of the compressor 11 can be stored in the heat storage material 25 b in the storage unit 25 a.
  • each thermal storage material 25b which comprises the thermal storage part 40 thermally radiates the heat stored thermally to the high temperature side heat medium, when the temperature of the high temperature side heat medium falls rather than the temperature defined beforehand.
  • the heat stored in the heat storage section 40 can be used in the high temperature side heat medium circuit 20 according to the temperature condition of the high temperature side heat medium. That is, the heat pump system 1 can flexibly utilize the exhaust heat of the compressor 11 according to the condition of the high temperature side heat medium.
  • the high temperature side branch portion 26 a and the high temperature side junction portion 27 a in the high temperature side heat medium circuit 20 are disposed on the outlet side of the water passage in the water-refrigerant heat exchanger 12. As shown, the high temperature side branch portion 26 a and the high temperature side junction portion 27 a may be disposed on the inlet side of the water passage in the water-refrigerant heat exchanger 12.
  • FIG. 4 the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
  • the high temperature side joining portion 27a is disposed downstream of the high temperature side branch portion 26a with respect to the flow of the high temperature side heat medium.
  • the arrangement of the high temperature side branch portion 26a and the high temperature side junction portion 27a corresponds to the difference from the first embodiment.
  • the heat pump system 1 recovers the exhaust heat of the compressor 11 in the high temperature side recovery unit 25 using the high temperature side heat medium before flowing into the water-refrigerant heat exchanger 12 can do. Then, in the heat pump system 1, the high temperature side heat medium after recovering the exhaust heat of the compressor 11 is heated by the water-refrigerant heat exchanger 12 with the high pressure refrigerant.
  • the same advantages as those of the first embodiment can be obtained from the same configuration and operation as those of the first embodiment described above. That is, the heat pump system 1 can recover exhaust heat of the compressor 11 and use it effectively by using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25.
  • the heat pump system 1 includes the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30, but the present invention is not limited to this configuration. . That is, as shown in FIG. 5, in the heat pump system 1 according to the first embodiment, the low temperature side heat medium circuit 30 can be eliminated.
  • the outdoor heat exchanger 18 a is disposed in place of the chiller 18 in the heat pump cycle 10.
  • the outdoor heat exchanger 18a is an evaporation unit which causes the low pressure refrigerant to evaporate by heat exchange between the low pressure refrigerant flowing through the refrigerant passage and the outside air at least in the heating mode and the dehumidifying and heating mode.
  • the outdoor heat exchanger 18a is a heat exchanger for absorbing heat that evaporates the low-pressure refrigerant and absorbs the heat of the outside air to the refrigerant at least in the heating mode and the dehumidifying and heating mode.
  • the outdoor heat exchanger 18 a functions as a heat absorber in the present disclosure, and corresponds to any one of the first heat absorber and the second heat absorber.
  • the heat pump system 1 according to the second modification does not have the low temperature side heat medium circuit 30
  • the heat pump system 1 does not have the temperature adjustment function of the in-vehicle device 32.
  • the control contents of the heat pump cycle 10 and the high temperature side heat medium circuit 20 in the second modification are the same as those in the first embodiment, and thus the description thereof will be omitted.
  • the heat pump system 1 according to the second modification can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment described above. That is, the heat pump system 1 can recover the exhaust heat of the compressor 11 and use it effectively by using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25.
  • the chiller 18 of the heat pump cycle 10 is replaced with an outdoor heat exchanger 18a, and the low temperature side heat medium circuit 30 is eliminated. That is, the third modification is a modification in which both the difference between the first modification and the difference between the second modification are applied to the first embodiment.
  • the heat pump system 1 according to the third modification is the same as the first modification and the second modification described above in terms of functions and effects exhibited from the configuration and operation common to the first embodiment, the first embodiment. Can be obtained in the same way. That is, the heat pump system 1 can recover the exhaust heat of the compressor 11 and use it effectively by using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25.
  • the heat pump system 1 which concerns on 2nd Embodiment is mounted in the electric vehicle similarly to 1st Embodiment. As shown in FIG. 7, the heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, and further, an indoor air conditioning unit 50 and a control device 60. Etc.
  • the configurations of the high temperature side heat medium circuit 20 and the low temperature side heat medium circuit 30 are different from those of the first embodiment. That is, in 2nd Embodiment, the structure which concerns on the heat pump cycle 10, the indoor air-conditioning unit 50, and the control apparatus 60 is the same as that of 1st Embodiment.
  • the high temperature side heat medium circuit 20 according to the second embodiment includes the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, and the high temperature side flow rate adjustment valve 24 as in the first embodiment.
  • the configuration related to the circulation circuit of the high temperature side heat medium circuit 20 is the same. However, unlike the first embodiment, the high temperature side heat medium circuit 20 according to the second embodiment does not have the high temperature side recovery unit 25.
  • the low temperature side heat medium circuit 30 includes the low temperature side heat medium pump 31, the on-vehicle device 32, the low temperature side radiator 33, and the low temperature side flow rate adjustment valve 34 as in the first embodiment.
  • the configuration of the low temperature side heat medium circuit 30 as a circulation circuit is the same.
  • the low temperature side heat medium circuit 30 has a low temperature side recovery unit 35 for recovering and utilizing the exhaust heat of the compressor 11 unlike the first embodiment.
  • the low temperature side recovery unit 35 has a low temperature side inflow piping 36 and a low temperature side outflow piping 37.
  • the low temperature side recovery unit 35 recovers the exhaust heat of the compressor 11 by absorbing heat from the low temperature side heat medium circulating through the low temperature side heat medium circuit 30, and the exhaust heat of the compressor 11 is recovered by the low temperature side heat medium circuit Accept to 30.
  • the low temperature side recovery unit 35 includes a storage unit (not shown), a low temperature side inflow piping 36, and a low temperature side outflow piping 37, which are mutually connected. Therefore, the storage portion in the low temperature side recovery unit 35, the low temperature side inflow piping 36, and the low temperature side outflow piping 37 constitute a flow path through which the low temperature side heat medium circulating in the low temperature side heat medium circuit 30 flows.
  • the low temperature side inflow pipe 36 is a pipe branched from the low temperature side branch portion 36 a disposed on the inlet side of the water passage in the chiller 18.
  • the low temperature side inflow piping 36 is connected to the housing portion of the low temperature side heat medium circuit 30. Therefore, in the low temperature side heat medium circuit 30, the flow of the low temperature side heat medium branched at the low temperature side branch portion 36a reaches the inside of the storage portion in the low temperature side recovery portion 35.
  • the low temperature side outflow piping 37 extends from the housing portion of the low temperature side recovery unit 35 and is connected to the low temperature side joining portion 37 a disposed in the circulation circuit of the low temperature side heat medium circuit 30.
  • the low temperature side merging portion 37 a is located downstream of the low temperature side branch portion 36 a in the flow direction downstream of the low temperature side heat medium on the inlet side of the water passage in the chiller 18.
  • the low temperature side heat medium flowing out from the storage portion of the low temperature side recovery unit 35 merges with the low temperature side heat medium circulating in the on-vehicle equipment 32 in the low temperature side heat medium circuit 30 at the inlet side of the water passage in the chiller 18 Do.
  • the housing portion of the low temperature side recovery portion 35 is formed to cover the outer surface of the compressor 11 similarly to the housing portion 25a of the high temperature side recovery portion 25 described with reference to FIG. A part of the refrigerant pipe connected to the compressor 11 is accommodated inside.
  • the low temperature side heat medium that has flowed through the low temperature side inflow pipe 36 flows into the inside of the storage portion of the low temperature side recovery unit 35 and flows along the outer surface of the compressor 11. At this time, the low temperature side heat medium absorbs and recovers the exhaust heat of the compressor 11.
  • the low temperature side heat medium flows out from the housing portion of the low temperature side recovery unit 35 and joins the circulation circuit of the low temperature side heat medium circuit 30 via the low temperature side outflow piping 37.
  • the low temperature side heat medium circuit 30 can recover and receive the exhaust heat of the compressor 11 through the flow of the low temperature side heat medium in the low temperature side recovery unit 35.
  • a heat storage material (not shown) is disposed in the storage portion of the low temperature side recovery portion 35.
  • the heat storage material is a latent heat storage material accompanied by a phase change at the time of heat storage, and is enclosed in a plurality of spherical resin or metal capsules.
  • the phase change temperature of the heat storage material in the low temperature side recovery unit 35 is determined to be higher than the temperature of the low temperature side heat medium flowing into the storage portion of the low temperature side recovery unit 35 with a predetermined temperature difference There is.
  • the heat storage material in the low temperature side recovery unit 35 stores the exhaust heat of the compressor 11, and when the temperature of the low temperature side heat medium is lower than a predetermined temperature, the heat storage material stores heat in the low temperature side heat medium It is configured to dissipate heat.
  • heat storage material in the low temperature side recovery unit 35 for example, (water-based heat storage material, paraffin wax-based heat storage material, high-alcohol-based heat storage material, inorganic salt-based heat storage material) can be adopted.
  • the water-based heat storage material contains water, hydrates and the like.
  • C12 dodecane, C14 tetradecane, C16 pentadecane can be employ
  • thermo storage material 25b As a heat storage material of a higher alcohol type, for example, Diethylene glycol, Triethylene glycol, Tetrahydrofuran can be used. And, as the heat storage material of the inorganic salt type, for example, Tetrahydrofuran clathrate hydrate, KCl (19.5 wt%) + H2O, Dioctyllammonium iodide etc. can be adopted. Moreover, these mixed materials can be employ
  • a heat storage material of a higher alcohol type for example, Diethylene glycol, Triethylene glycol, Tetrahydrofuran can be used.
  • the heat storage material of the inorganic salt type for example, Tetrahydrofuran clathrate hydrate, KCl (19.5 wt%) + H2O, Dioctyllammonium iodide etc. can be adopted. Moreover, these mixed materials can be employ
  • the heat storage material of the low temperature side recovery unit 35 absorbs heat from the surroundings and changes in phase.
  • the exhaust heat of the compressor 11 is stored in the heat storage material in the low temperature side recovery unit 35.
  • the heat storage material changes in sensible heat so as to approach the temperature of the low temperature side heat medium.
  • the heat storage material dissipates the waste heat of the stored compressor 11 to the low temperature side heat medium, and changes its phase.
  • the low temperature side recovery unit 35 is configured as the heat storage unit 40 by arranging the heat storage material in the storage unit of the low temperature side recovery unit 35.
  • the heat storage unit 40 in the second embodiment stores the exhaust heat of the compressor 11, and when the temperature of the low temperature side heat medium becomes lower than a predetermined heat storage temperature, the heat stored is stored on the low temperature side Heat is dissipated to the heat medium. That is, the heat storage unit 40 according to the second embodiment also functions as the heat storage unit in the present disclosure.
  • the operation mode can be appropriately switched among a plurality of operation modes. Switching of these operation modes is performed by executing a control program stored in advance in the control device 60.
  • the heat pump cycle 10 according to the second embodiment has a circuit configuration similar to that of the heat pump cycle 10 according to the first embodiment.
  • the high temperature side heat medium circuit 20 according to the second embodiment has the same circuit configuration as that of the first embodiment except that the high temperature side recovery unit 25 is not provided.
  • the low temperature side heat medium circuit 30 according to the second embodiment has the same circuit configuration as that of the first embodiment except that the low temperature side recovery unit 35 is included.
  • the heat pump system 1 according to the second embodiment can realize the cooling mode, the heating mode, and the dehumidifying heating mode by performing the same control as that of the first embodiment.
  • the compressor 11 when operating in the cooling mode, the heating mode, and the dehumidifying heating mode, the compressor 11 is operated.
  • the low temperature side heat medium absorbs the exhaust heat of the compressor 11 by the low temperature side heat medium and recovers it.
  • the exhaust heat of the compressor 11 can be stored by the heat storage material in the low temperature side recovery unit 35.
  • the exhaust heat of the compressor 11 is recovered and stored by the low temperature side heat medium or the heat storage material of the low temperature side recovery unit 35, and the exhaust heat of the compressor 11 is wasted. Can be effectively utilized through the heat pump cycle 10.
  • the low temperature side branch portion 36 a and the low temperature side joining portion 37 a are disposed on the inlet side of the water passage in the chiller 18. That is, the temperature of the low temperature side heat medium flowing into the chiller 18 can be raised by the exhaust heat of the compressor 11.
  • the heat pump system 1 according to the second embodiment, it is possible to effectively utilize the exhaust heat of the compressor 11 in the heating mode or the dehumidifying heating mode to increase the heat absorption amount in the chiller 18.
  • the cooling mode, the heating mode, and the dehumidifying heating mode are realized among the plurality of operation modes by switching the refrigerant circuit of the heat pump cycle 10. And can perform comfortable air conditioning of the vehicle interior.
  • the refrigerant circuit which makes a high pressure refrigerant flow in the same heat exchanger and the refrigerant circuit which makes a low pressure refrigerant flow. That is, since it is not necessary to cause the high pressure refrigerant to flow into the indoor evaporator 16 and the chiller 18 regardless of which refrigerant circuit is switched, the refrigerant circuit can be switched with a simple configuration without causing the complication of the cycle configuration.
  • the compressor 11 in the heat pump cycle 10 since the compressor 11 in the heat pump cycle 10 is operated, exhaust heat of the compressor 11 is generated. According to the heat pump system 1, the exhaust heat of the compressor 11 can be recovered via the low temperature side recovery unit 35 of the low temperature side heat medium circuit 30 and can be used in the low temperature side heat medium circuit 30.
  • the low temperature side heat medium circuit 30 corresponds to the low temperature side heat receiving portion in the present disclosure
  • the low temperature side recovery portion 35 corresponds to the recovery portion in the present disclosure
  • the heat pump system 1 recovers the exhaust heat of the compressor 11 in the low temperature side recovery unit 35, transports the recovered heat, and uses the recovered heat in the low temperature side heat medium circuit 30, A low temperature side heat medium can be interposed, and the heat generation of the compressor 11 can be handled more efficiently.
  • the low temperature side heat medium circuit 30 includes the in-vehicle device 32.
  • the low temperature side heat medium can absorb the heat of the in-vehicle device 32 generated along with the operation to cool the in-vehicle device 32. That is, according to the heat pump system 1, by using the heat pump cycle 10 and the low temperature side heat medium circuit 30, it is possible to effectively utilize the heat generated in the in-vehicle device 32 while adjusting the temperature of the in-vehicle device 32. .
  • the low temperature side heat medium circuit 30 has the low temperature side radiator 33, and can absorb the heat of the outside air to the low temperature side heat medium. Thereby, the heat pump system 1 can use outside air as a heat source.
  • the low temperature side recovery part 35 is in the water passage in the chiller 18 in the low temperature side heat medium circuit 30. It is located on the entrance side.
  • the low temperature side heat medium that has recovered the exhaust heat of the compressor 11 flows into the chiller 18, so the heat absorption amount in the chiller 18 can be increased.
  • the heat pump cycle 10 has an indoor evaporator 16 and a chiller 18.
  • the indoor evaporator 16 evaporates by heat exchange between the refrigerant decompressed by the cooling expansion valve 15a and the blast air, and absorbs heat from the blast air to cool it.
  • the chiller 18 absorbs heat from the low temperature side heat medium by heat exchange between the refrigerant decompressed by the heat absorption expansion valve 15 b and the low temperature side heat medium of the low temperature side heat medium circuit 30.
  • heat pump system 1 by arranging these two heat sinks in the heat pump cycle 10, for example, heat exchange between the two different heat mediums such as the low temperature side heat medium and the blast air and the refrigerant is enabled.
  • the two different heat mediums such as the low temperature side heat medium and the blast air and the refrigerant.
  • the low temperature side recovery unit 35 has a plurality of heat storage inside the storage unit, similar to the high temperature side recovery unit 25 according to the first embodiment.
  • the material is arranged. That is, the low temperature side recovery unit 35 according to the second embodiment has the function of the heat storage unit according to the present disclosure.
  • the exhaust heat of the compressor 11 can be stored in the heat storage material disposed in the storage portion of the low temperature side recovery unit 35, and the temperature of the low temperature side heat medium is predetermined.
  • the heat stored can be dissipated to the low temperature side heat medium.
  • the heat stored in the heat storage section 40 can be used in the low temperature side heat medium circuit 30 according to the temperature condition of the low temperature side heat medium. That is, the heat pump system 1 can flexibly utilize the exhaust heat of the compressor 11 according to the condition of the low temperature side heat medium.
  • the heat pump system 1 according to the second embodiment includes the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30, but is not limited to this configuration. That is, as shown in FIG. 8, in the heat pump system 1 according to the second embodiment, the high temperature side heat medium circuit 20 can be eliminated.
  • an indoor condenser 12a is disposed in place of the water-refrigerant heat exchanger 12 in the heat pump cycle 10.
  • the indoor condenser 12 a is disposed in the casing 51 of the indoor air conditioning unit 50 at the same position as the heater core 22 in the first embodiment.
  • the indoor condenser 12a is a heat exchanger that radiates the heat of the high-pressure refrigerant and heats the blowing air with respect to the blowing air blown by the blower 52 at least in the heating mode and the dehumidifying and heating mode.
  • the heat pump system 1 has a temperature adjustment function of the in-vehicle device 32 and can realize the heating mode and the dehumidifying heating mode among the air conditioning functions of the vehicle interior. .
  • the control contents of the heat pump cycle 10 and the low temperature side heat medium circuit 30 in the modified example have already been described, and thus the description thereof is omitted.
  • the heat pump system 1 which concerns on a modification can obtain the effect show
  • the heat pump system 1 which concerns on 3rd Embodiment is mounted in an electric vehicle similarly to each embodiment mentioned above. As shown in FIG. 9, the heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, and further, an indoor air conditioning unit 50 and a control device 60. Etc.
  • the configurations of the high temperature side heat medium circuit 20 and the low temperature side heat medium circuit 30 are different. That is, in the third embodiment, the configuration relating to the heat pump cycle 10, the indoor air conditioning unit 50, and the control device 60 is the same as that of the embodiment described above.
  • the high temperature side heat medium circuit 20 includes the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, and the high temperature side flow rate adjustment valve 24 as in the above-described embodiment.
  • the configuration related to the circulation circuit of the high temperature side heat medium circuit 20 is the same.
  • the high temperature side heat medium circuit 20 has the high temperature side recovery unit 25 as in the first embodiment.
  • the high temperature side recovery unit 25 has a housing portion 25 a, a high temperature side inflow piping 26, and a high temperature side outflow piping 27.
  • the storage portion 25a of the high temperature side recovery portion 25 according to the third embodiment is configured to cover about half of the outer surface of the compressor 11, and a plurality of heat storage materials 25b are provided therein. Is arranged.
  • the heat storage material of the high temperature side recovery unit 25 according to the third embodiment basically has the same configuration as the heat storage material 25 b in the first embodiment.
  • the high temperature side branch portion 26 a and the high temperature side junction portion 27 a are disposed on the high temperature side heat medium circuit 20 on the inlet side of the water passage in the water-refrigerant heat exchanger 12. Therefore, at the inlet side of the water passage in the water-refrigerant heat exchanger 12, the high temperature side heat medium flows into the storage portion of the high temperature side recovery unit 25 via the high temperature side inflow pipe 26 to discharge the exhaust heat of the compressor 11. Heat sink.
  • the high temperature side recovery unit 25 can recover a part of the exhaust heat of the compressor 11 via the high temperature side heat medium and can be received by the high temperature side heat medium circuit 20 .
  • the low temperature side heat medium circuit 30 includes the low temperature side heat medium pump 31, the on-vehicle device 32, the low temperature side radiator 33, and the low temperature side flow rate adjustment valve 34 as in the embodiment described above.
  • the configuration of the low temperature side heat medium circuit 30 as a circulation circuit is the same.
  • the low temperature side heat medium circuit 30 includes the low temperature side recovery unit 35 as in the second embodiment.
  • the low temperature side recovery unit 35 includes a storage unit, a low temperature side inflow piping 36, and a low temperature side outflow piping 37.
  • the housing portion of the low temperature side recovery portion 35 according to the third embodiment is a portion of the outer surface of the compressor 11 not covered by the housing portion 25 a of the high temperature side recovery portion 25 (ie, the outer surface of the compressor 11 The other half (about half) is covered, and a plurality of heat storage materials are arranged in the inside.
  • the heat storage material of the low temperature side recovery unit 35 according to the third embodiment has basically the same configuration as the heat storage material in the second embodiment.
  • the low temperature side branch portion 36 a and the low temperature side joining portion 37 a are disposed on the inlet side of the water passage in the chiller 18 in the low temperature side heat medium circuit 30. Therefore, on the inlet side of the water passage in the chiller 18, the low temperature side heat medium flows into the storage portion of the low temperature side recovery unit 35 via the low temperature side inflow pipe 36, and absorbs the exhaust heat of the compressor 11.
  • the low temperature side recovery unit 35 can recover a part of the exhaust heat of the compressor 11 via the low temperature side heat medium and can be received by the low temperature side heat medium circuit 30. .
  • the operation mode can be appropriately switched among the plurality of operation modes, as in the above-described embodiment.
  • the switching of these operation modes is performed by executing a control program stored in advance in the control device 60.
  • the heat pump cycle 10 according to the third embodiment has the same circuit configuration as the heat pump cycle 10 in the embodiment described above. Further, the high temperature side heat medium circuit 20 according to the third embodiment has the same circuit configuration as that of the first embodiment. The low temperature side heat medium circuit 30 according to the third embodiment has the same circuit configuration as that of the second embodiment.
  • the heat pump system 1 can realize the cooling mode, the heating mode, and the dehumidifying heating mode by performing the same control as that of the above-described embodiment.
  • the compressor 11 when operating in the cooling mode, the heating mode, and the dehumidifying heating mode, the compressor 11 is operated.
  • the exhaust heat of the compressor 11 is absorbed and recovered by the high temperature side heat medium in the high temperature side recovery unit 25 in any operation mode, and In the low temperature side recovery unit 35, the exhaust heat of the compressor 11 can be absorbed by the low temperature side heat medium and recovered.
  • the exhaust heat of the compressor 11 is stored by the heat storage material in the high temperature side recovery unit 25, and the heat stored in accordance with the temperature condition of the high temperature side heat medium Can be used.
  • the heat pump system 1 can store the exhaust heat of the compressor 11 with the heat storage material in the low temperature side recovery unit 35, and the heat stored in accordance with the temperature condition of the low temperature side heat medium It can be used.
  • the exhaust heat of the compressor 11 is not wasted in the high temperature side heat medium circuit 20 and the low temperature side heat medium circuit 30, respectively. Can be used effectively.
  • the temperature of the high temperature side heat medium is raised by the exhaust heat of the compressor 11 collected by the high temperature side collection unit 25. That is, according to the heat pump system 1, the exhaust heat of the compressor 11 can be used in addition to the heat of the high-pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the heating mode or the dehumidifying heating mode.
  • the heating capacity of the heat pump system 1 in the heating mode or the dehumidifying heating mode can be improved.
  • the temperature of the low temperature side heat medium flowing into the chiller 18 is raised by the exhaust heat of the compressor 11 recovered by the low temperature side recovery unit 35. According to the heat pump system 1, it is possible to effectively utilize the exhaust heat of the compressor 11 in the heating mode or the dehumidifying heating mode to increase the heat absorption amount in the chiller 18.
  • the heat pump system 1 can recover the exhaust heat of the compressor 11 using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25, and can effectively utilize the heat in the high temperature side heat medium circuit 20.
  • the heat pump system 1 can recover the exhaust heat of the compressor 11 using the low temperature side heat medium circuit 30 and the low temperature side recovery unit 35, and can effectively use the waste heat in the low temperature side heat medium circuit 30.
  • utilization of the exhaust heat of the compressor 11 on the high temperature side heat medium circuit 20 side and utilization of the exhaust heat of the compressor 11 on the low temperature side heat medium circuit 30 side are realized in parallel. Since the exhaust heat of the compressor 11 can be used more effectively.
  • the heat pump system 1 which concerns on 4th Embodiment is mounted in the electric vehicle similarly to each embodiment mentioned above. As shown in FIG. 10, the heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, and further, an indoor air conditioning unit 50 and a control device 60. Etc.
  • the configuration of the heat pump cycle 10 is different. That is, in the fourth embodiment, configurations relating to the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 30, the indoor air conditioning unit 50, and the control device 60 are the same as those in the first embodiment described above.
  • the arrangement of the cooling expansion valve 15a, the heat absorption expansion valve 15b, the indoor evaporator 16, and the chiller 18 is different from that of the first embodiment described above.
  • the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11.
  • a cooling expansion valve 15 a is connected to the refrigerant outlet side of the water-refrigerant heat exchanger 12. Similar to the first embodiment, the cooling expansion valve 15a is an electric expansion valve, and has a fully open function and a fully closed function. The cooling expansion valve 15a has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
  • the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a via the three-way valve 16b.
  • the indoor evaporator 16 is a cooling evaporator that exchanges heat between the low pressure refrigerant and the blowing air to evaporate the low pressure refrigerant and cool the blowing air.
  • a heat absorption expansion valve 15 b is connected to the refrigerant outlet of the indoor evaporator 16.
  • the heat absorption expansion valve 15b is an electric expansion valve, and has a fully open function and a fully closed function.
  • the heat absorption expansion valve 15 b has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
  • a three-way valve 16 b is disposed between the outlet of the cooling expansion valve 15 a and the refrigerant inlet side of the indoor evaporator 16.
  • a bypass passage 16a is connected to one outlet of the three-way valve 16b.
  • the other end side of the bypass flow passage 16 a is connected between the refrigerant outlet side of the indoor evaporator 16 and the inlet of the heat absorption expansion valve 15 b.
  • the three-way valve 16 b By controlling the operation of the three-way valve 16 b, it is possible to switch between the flow path through which the refrigerant passes through the indoor evaporator 16 and the flow path through which the refrigerant bypasses the indoor evaporator 16.
  • the three-way valve 16b is controlled by the circuit switching control unit 60b.
  • the refrigerant inlet side of the chiller 18 is connected to the outlet of the heat absorption expansion valve 15b.
  • the chiller 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the low temperature side heat medium of the low temperature side heat medium circuit 30 in the heating mode, the dehumidifying heating mode, etc. to evaporate the low pressure refrigerant. It is an endothermic evaporator that causes the refrigerant to exhibit an endothermic effect.
  • the suction port side of the compressor 11 is connected to the refrigerant outlet side of the chiller 18. That is, in the heat pump cycle 10 according to the fourth embodiment, the indoor evaporator 16 and the chiller 18 are connected in series.
  • the control system of the heat pump system 1 according to the fourth embodiment is basically the same as that of the first embodiment, and thus the description thereof is omitted.
  • the heat pump system 1 switches the cooling mode, the heating mode, and the dehumidifying heating mode according to the air conditioning control program stored in advance, as in the above-described embodiment.
  • (A) Cooling Mode In the cooling mode, the control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully open state. Also, the three-way valve 16b is controlled to close the bypass flow passage 16a. As a result, the refrigerant flowing out of the cooling expansion valve 15 a flows into the indoor evaporator 16.
  • the compressor 11 water-refrigerant heat exchanger 12 ⁇ cooling expansion valve 15a ⁇ three-way valve 16b ⁇ indoor evaporator 16 ⁇ heat absorption expansion valve 15b ⁇ chiller
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of 18 ⁇ compressor 11 is configured.
  • control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group.
  • control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment.
  • the control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment.
  • control device 60 also controls the low temperature side heat medium pump 31 and the low temperature side flow rate adjustment valve 34 in the low temperature side heat medium circuit 30 in the same manner as in the first embodiment.
  • the control device 60 appropriately controls the operation of other various control target devices.
  • the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
  • the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
  • the throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
  • the low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16.
  • the refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
  • the refrigerant flowing out of the indoor evaporator 16 flows into the chiller 18 without being decompressed by the heat absorption expansion valve 15b. Then, the refrigerant is sucked into the compressor 11 and compressed again, with little heat exchange in the chiller 18.
  • cooling of the vehicle interior can be performed by blowing out the blown air cooled by the indoor evaporator 16 into the vehicle interior.
  • the exhaust heat of the compressor 11 is generated. Similar to the above-described embodiment, in the high temperature side recovery unit 25, the exhaust heat of the compressor 11 can be absorbed by the high temperature side heat medium and recovered, and furthermore, the exhaust heat of the compressor 11 is obtained by the heat storage material 25b. It can be stored heat.
  • the exhaust heat of the compressor 11 can be recovered and stored by the high temperature side heat medium of the high temperature side recovery unit 25 and the heat storage material 25b, and can be used appropriately.
  • (B) Heating mode In the heating mode, the control device 60 fully opens the cooling expansion valve 15a, and opens the heat absorption expansion valve 15b at a predetermined opening degree. At this time, the three-way valve 16b is controlled to fully open the bypass flow passage 16a. As a result, the refrigerant that has passed through the cooling expansion valve 15a flows into the heat absorption expansion valve 15b via the bypass flow path 16a without flowing into the indoor evaporator 16.
  • the refrigerant circulates in the following order: compressor 11 ⁇ water-refrigerant heat exchanger 12 ⁇ three-way valve 16 b ⁇ bypass flow path 16 a ⁇ heat absorption expansion valve 15 b ⁇ chiller 18 ⁇ compressor 11
  • a vapor compression refrigeration cycle is configured. That is, in the heating mode, the refrigerant circuit is switched to a refrigerant circuit aiming to heat the blowing air using the heat absorbed by the chiller 18.
  • the control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group.
  • the throttle opening degree of the heat absorption expansion valve 15b is determined based on the target blowout temperature TAO or the like with reference to the control map regarding the heating mode.
  • control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment.
  • the control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment.
  • control device 60 also controls the low temperature side heat medium pump 31 and the low temperature side flow rate adjustment valve 34 in the low temperature side heat medium circuit 30 in the same manner as in the first embodiment.
  • the control device 60 appropriately controls the operation of other various control target devices.
  • the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
  • blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO.
  • the high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
  • the cooling expansion valve 15a since the cooling expansion valve 15a is fully open, the high pressure refrigerant flows into the three-way valve 16b and flows through the bypass flow passage 16a without being decompressed. Therefore, in the heating mode, the high pressure refrigerant bypasses the indoor evaporator 16 and flows into the heat absorption expansion valve 15b.
  • the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31.
  • the low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
  • the low temperature side heat medium absorbs heat from the outside air blown by the outside air fan. That is, the low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
  • the low pressure refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium having the heat of the on-vehicle device 32 and the heat of the outside air and evaporates.
  • the refrigerant flowing out of the chiller 18 is sucked into the compressor 11 as it is and compressed again.
  • heating the blown air to the vehicle interior by heating the blown air by the heater core 22 can heat the vehicle interior. That is, in the heating mode, the heat pump system 1 pumps up the heat absorbed from the on-vehicle device 32 or the outside air in the low temperature side heat medium circuit 30 in the heat pump cycle 10, and sends the blown air through the high temperature side heat medium circuit 20. It can be used to heat the
  • compressor 11 in heat pump cycle 10 becomes required, and exhaust heat of compressor 11 is generated.
  • the heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20.
  • the exhaust heat of the compressor 11 is used in addition to the heat of the high-pressure refrigerant including the heat pumped up from the low temperature side heat medium circuit 30 as in the first embodiment.
  • the high temperature side heat medium of the high temperature side heat medium circuit 20 can be heated, and the heat can be released to the blast air by the heater core 22.
  • the heat pump system 1 can utilize the exhaust heat of the compressor 11 in addition to the heat of the high-pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the heating mode.
  • Ability can be improved.
  • (C) Dehumidifying and heating mode In the dehumidifying and heating mode, the control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined opening degree. At this time, the three-way valve 16b is controlled to close the bypass flow passage 16a. Thus, the refrigerant that has passed through the cooling expansion valve 15a flows into the indoor evaporator 16 without flowing into the bypass flow passage 16a.
  • the compressor 11 water-refrigerant heat exchanger 12 ⁇ cooling expansion valve 15a ⁇ three-way valve 16b ⁇ indoor evaporator 16 ⁇ heat absorption expansion valve 15b ⁇ chiller 18 ⁇ compressor 11
  • a vapor compression type refrigeration cycle in which the refrigerant circulates is configured.
  • the blown air cooled by the indoor evaporator 16 is switched to a refrigerant circuit that is intended to heat using the heat absorbed by the chiller 18.
  • the control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group.
  • the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b is determined based on the target blowing temperature TAO or the like with reference to the control map related to the dehumidifying and heating mode.
  • control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment. Further, the control device 60 also controls the low temperature side heat medium pump 31 and the low temperature side flow rate adjustment valve 34 in the low temperature side heat medium circuit 30 in the same manner as in the first embodiment. The control device 60 appropriately controls the operation of other various control target devices.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
  • blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO.
  • the high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
  • part of the high temperature side heat medium flows into the high temperature side radiator 23 by the operation of the high temperature side flow control valve 24.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat.
  • the high temperature side heat medium is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
  • the low pressure refrigerant decompressed by the cooling expansion valve 15a passes through the three-way valve 16b, flows into the indoor evaporator 16, absorbs heat from the air blown from the blower 52, and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
  • the low pressure refrigerant flowing out of the indoor evaporator 16 flows into the heat absorption expansion valve 15b and is further depressurized.
  • the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15 b flows into the chiller 18.
  • the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31.
  • the low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
  • the low temperature side heat medium absorbs heat from the outside air blown by the outside air fan. That is, the low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
  • the low pressure refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium having the heat of the on-vehicle device 32 and the heat of the outside air and evaporates.
  • the refrigerant flowing out of the chiller 18 is sucked into the compressor 11 as it is and compressed again.
  • dehumidifying and heating the passenger compartment can be performed by heating the blown air cooled by the indoor evaporator 16 with the heater core 22 and blowing it out into the passenger compartment. That is, even in the dehumidifying and heating mode, the heat pump system 1 pumps up the heat absorbed by the low-temperature side heat medium circuit 30 from the on-vehicle device 32 or the outside air in the heat pump cycle 10 and via the high temperature side heat medium circuit 20 It can be used to heat the blast air.
  • the heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20.
  • the exhaust heat of the compressor 11 is used to heat the high temperature side heat medium of the high temperature side heat medium circuit 20
  • the air cooled by the indoor evaporator 16 can be heated by the heater core 22.
  • the heat pump system 1 can utilize the exhaust heat of the compressor 11 in addition to the heat of the high-pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the dehumidifying heating mode.
  • the heating capacity of the heat pump system 1 can be improved.
  • the same advantages as those of the first embodiment can be obtained from the configuration and operation common to those of the first embodiment described above. .
  • the heat pump system 1 has the high temperature side heat medium circuit 20 and the high temperature side even when the heat pump cycle 10 is configured such that the indoor evaporator 16 and the chiller 18 are connected in series.
  • the exhaust heat of the compressor 11 can be recovered and effectively used by using the recovery unit 25.
  • the bypass flow passage 16a and the three-way valve 16b are disposed to suppress heat exchange (that is, cooling of the blown air) in the indoor evaporator 16 in the heating mode or the like.
  • the indoor evaporator 16 is bypassed to flow the refrigerant, the present invention is not limited to this aspect.
  • the flow path of the blowing air may be switched so that the blowing air bypasses the indoor evaporator 16.
  • a shutter device that can be opened and closed can be disposed between the blower 52 and the indoor evaporator 16, and a bypass flow channel that bypasses the indoor evaporator 16 may be formed in the casing 51.
  • the heat pump system 1 which concerns on 4th Embodiment was an example which changed the structure of the heat pump cycle 10 in 1st Embodiment, the embodiment etc. which mentioned the structure of the heat pump cycle 10 which concerns on 4th Embodiment were mentioned. It is also possible to apply. That is, the heat pump cycle 10 according to the fourth embodiment may be applied to the heat pump cycle 10 in the first to third modifications of the first embodiment shown in FIGS. 4 to 6.
  • the heat pump cycle 10 according to the fourth embodiment is applied to the heat pump cycle 10 in the second embodiment shown in FIGS. 7 and 8 and its modification, or the heat pump cycle 10 according to the third embodiment shown in FIG. It is also possible to apply to In any case, the same advantages as those of the above-described embodiment can be obtained from the same configuration and operation as those of the above-described embodiment.
  • the high temperature side recovery unit 25 as a heat recovery unit includes the high temperature side inflow piping 26 that causes the high temperature side heat medium to branch at the high temperature side branch unit 26a, and the high temperature side junction unit 27a. And a high temperature side outflow pipe 27 for joining the high temperature side heat mediums.
  • the low temperature side recovery unit 35 further includes a low temperature side inflow pipe 36 for branching the low temperature side heat medium at the low temperature side branch portion 36a, and a low temperature side outflow pipe 37 for joining the low temperature side heat medium at the low temperature side merging portion 37a. have.
  • the flow of the heat medium for recovering the exhaust heat of the compressor 11 in the heat recovery unit and the flow of the heat medium circulating in the heat medium circuit are arranged in parallel.
  • the entire amount of the heat medium flowing in the heat medium circuit flows into the storage portion of the heat recovery unit, and after the exhaust heat of the compressor 11 is recovered in the storage portion, flows into the components of the heat medium circuit May be
  • FIG. 11 An example in which this configuration is applied to the second embodiment is shown in FIG.
  • a low temperature side inflow pipe 36 is connected to the discharge port side of the low temperature side heat medium pump 31.
  • the low temperature side branch portion 36 a is not disposed as in the second embodiment, the entire amount of the low temperature side heat medium flows into the low temperature side inflow pipe 36.
  • the low temperature side inflow piping 36 is connected to the housing portion of the low temperature side recovery unit 35, the low temperature side heat medium that has flowed into the housing portion absorbs the exhaust heat of the compressor 11 and flows out to the low temperature side outflow piping 37 Do.
  • the low temperature side outflow piping 37 is connected to the inlet side of the water passage in the chiller 18.
  • the entire low temperature side heat medium in the low temperature side heat medium circuit 30 is compressed by the low temperature side recovery unit 35 via the low temperature side inflow piping 36 and the low temperature side outflow piping 37 It absorbs the exhaust heat of the machine 11. Even in the case of such a configuration, the same effects as those of the above-described embodiments can be obtained.
  • the high temperature side heat medium circuit 20 in embodiment mentioned above connected the heater core 22 and the high temperature side radiator 23 in parallel regarding the flow of the high temperature side heat medium, it is not limited to this aspect.
  • the outlet side of the high temperature side heat medium pump 21 is connected to the inlet side of the water passage in the water-refrigerant heat exchanger 12.
  • the inlet side of the heater core 22 is connected to the outlet side of the water passage in the water-refrigerant heat exchanger 12.
  • the outlet side of the heater core 22 is connected to the inlet of the high temperature side flow control valve 24.
  • the inlet side of the high temperature side radiator 23 is connected to one of the outlets of the high temperature side flow control valve 24, and the high temperature side bypass flow path 24 a is connected to the other of the outlet of the high temperature side flow adjustment valve 24. There is.
  • the other end side of the high temperature side bypass flow passage 24 a is connected to the outlet side of the high temperature side radiator 23.
  • the other end side of the high temperature side bypass flow passage 24 a and the outlet side of the high temperature side radiator 23 are connected to the suction port side of the high temperature side heat medium pump 21.
  • each heat pump system 1 provides the same advantages as the above-described embodiments. Can be obtained in the same manner as each embodiment.
  • thermal storage part 40 is arrange
  • the present invention is not limited to this aspect.
  • the heat storage unit 40 in the present disclosure can adopt various modes as long as the heat exhaust from the compressor 11 can be stored.
  • the high temperature side recovery unit 25 will be described as an example.
  • the heat accumulator 45 may be disposed in the high temperature side outflow pipe 27 in the high temperature side recovery unit 25.
  • the heat storage unit 45 is configured of a container 45a to which the high temperature side outflow piping 27 is connected, and a plurality of heat storage materials 45b disposed in the container 45a.
  • the heat storage material 45 b has the same configuration as the heat storage material 25 b in the first embodiment.
  • the high temperature side heat medium flowing through the high temperature side inflow pipe 26 absorbs the exhaust heat of the compressor 11 by flowing around the compressor 11 in the housing portion 25a. . Then, the high temperature side heat medium flows out from the housing portion 25 a to the high temperature side outflow pipe 27.
  • the high temperature side heat medium flowing through the high temperature side outflow piping 27 flows into the inside of the container 45 a of the heat accumulator 45.
  • the high temperature side heat medium flows from the high temperature side outflow piping 27 to the high temperature side heat medium circuit 20 through the gap of the capsule-like heat storage material 45 b in the container 45 a of the heat accumulator 45.
  • each heat storage material 45b in the heat accumulator 45 can be replaced by the heat storage material 45b if the heat storage temperature condition is satisfied. Exhaust heat can be stored. That is, the heat storage unit 45 illustrated in FIG. 11 functions as a heat storage unit in the present disclosure.
  • FIG. 11 describes the case where the heat storage unit 45 is adopted as the heat storage portion in the high temperature side heat medium circuit 20, it is also possible to adopt it as the heat storage portion in the low temperature side heat medium circuit 30.
  • the container 45 a of the heat accumulator 45 is desirably disposed in the low temperature side outflow pipe 37.
  • the heat storage material 45b in this case the heat storage material according to the second embodiment is employed.
  • the high temperature side heat medium circuit 20 is adopted as the high temperature side heat receiving portion according to the present disclosure
  • the low temperature side heat medium circuit 30 is adopted as the low temperature side heat receiving portion according to the present disclosure.
  • the present invention is not limited to this aspect.
  • the high temperature side heat receiving unit and the low temperature side heat receiving unit according to the present disclosure may be capable of receiving the exhaust heat of the compressor 11 recovered by the recovery unit, and is not limited to the heat medium circuit.
  • a metal block or the like can be used as the high temperature side heat receiving portion or the low temperature side heat receiving portion.
  • At least one part of the compressor 11 is arrange
  • the heat medium pipe is disposed in contact with the outer surface of the compressor 11, and the exhaust heat of the compressor 11 is used as the heat medium via the heat medium pipe. It is also possible to make it collect
  • the heat medium pipe may be arranged to be wound around the outer surface of the compressor 11 or may be arranged in a serpentine shape with respect to the outer surface of the compressor 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This heat pump system has: a heat pump cycle (10); recovery parts (25, 35); and a high-temperature side heat reception part (20) and/or a low-temperature side heat reception part (30). The heat pump cycle has a compressor (11) that compresses and discharges a refrigerant, a radiator (12) that radiates heat of a high-pressure refrigerant compressed by the compressor, pressure reduction parts (15a, 15b) that reduce the pressure of the high-pressure refrigerant flowing out from the radiator, and heat sinks (16, 18) that evaporate a low-pressure refrigerant the pressure of which is reduced by the pressure reduction parts and sink heat. The recovery parts recover exhaust heat discharged from the compressor. The high-temperature side heat reception part causes the high-pressure refrigerant to radiate the heat recovered by the recovery parts. The low-temperature side heat reception part causes the low-pressure refrigerant to sink the heat recovered by the recovery parts.

Description

ヒートポンプシステムHeat pump system 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年12月8日に出願された日本特許出願番号2017-235997号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-235997 filed on Dec. 8, 2017, the contents of which are incorporated herein by reference.
 本開示は、ヒートポンプサイクルを有するヒートポンプシステムに関する。 The present disclosure relates to a heat pump system having a heat pump cycle.
 従来、ヒートポンプシステムは、ヒートポンプサイクル(即ち、蒸気圧縮式の冷凍サイクル)を有しており、ヒートポンプサイクルの作動を制御することで、種々の熱媒体の温度を調整している。 BACKGROUND ART Conventionally, a heat pump system has a heat pump cycle (i.e., a vapor compression refrigeration cycle), and controls the operation of the heat pump cycle to adjust the temperature of various heat transfer media.
 このようなヒートポンプサイクルは、例えば、車両用空調装置に適用されており、熱交換対象流体である送風空気の温度を調整することで、車室内の快適性を向上させている。当該車両用空調装置において、外気からの吸熱の他に、車載機器等を冷却する為の冷却水回路の冷却水から冷凍サイクルの冷媒へ吸熱するように構成されたものが知られている。 Such a heat pump cycle is applied to, for example, a vehicle air conditioner, and the comfort of the vehicle interior is improved by adjusting the temperature of the blowing air which is the fluid to be heat-exchanged. Among the air conditioners for vehicles, there is known one configured to absorb heat from the cooling water of a cooling water circuit for cooling on-vehicle equipment etc. to the refrigerant of the refrigeration cycle in addition to heat absorption from the outside air.
 このような車両用空調装置として、例えば、特許文献1が知られている。特許文献1に係る空気調和装置では、冷凍サイクルの蓄熱運転時に、圧縮機で発生した熱を、その周囲に配置された蓄熱材に蓄熱するように構成されている。 For example, Patent Document 1 is known as such a vehicle air conditioner. In the air conditioning apparatus which concerns on patent document 1, it is comprised so that the heat | fever which generate | occur | produced with the compressor may be thermally stored in the thermal storage material arrange | positioned around the time of the thermal storage driving | operation of a refrigerating cycle.
 特許文献1では、冷凍サイクルのデフロスト運転時には、蓄熱材に蓄熱された熱が、蓄熱配管を介して接続された蓄熱熱交換器にて、室外熱交換器へ向かう冷媒の気化に用いられる。当該空気調和装置では、この気相冷媒が室外熱交換器に送られることで、室外熱交換器の除霜が行われる。 In patent document 1, the heat stored in the heat storage material is used for vaporization of the refrigerant toward the outdoor heat exchanger in the heat storage heat exchanger connected via the heat storage pipe during the defrost operation of the refrigeration cycle. In the said air conditioning apparatus, defrosting of an outdoor heat exchanger is performed by this gaseous-phase refrigerant | coolant being sent to an outdoor heat exchanger.
特開2008-241127号公報JP, 2008-241127, A
 しかしながら、特許文献1の場合、圧縮機で生じた熱を蓄熱する際には、冷凍サイクルの作動を蓄熱運転に切り替え、蓄熱材に蓄熱した熱を利用する場合には、冷凍サイクルの作動をデフロスト運転に切り替える必要が生じる。即ち、圧縮機で生じた熱を活用する際に、冷凍サイクルの作動を逐次切り替えなければならなかった。 However, in the case of Patent Document 1, when storing heat generated by the compressor, the operation of the refrigeration cycle is switched to the heat storage operation, and when utilizing the heat stored in the heat storage material, the operation of the refrigeration cycle is defrosted It will be necessary to switch to driving. That is, in utilizing the heat generated by the compressor, the operation of the refrigeration cycle had to be switched sequentially.
 又、特許文献1に記載された空気調和装置では、蓄熱運転やデフロスト運転等の運転態様を切り替える際に、サイクル構成を切り替えている。このサイクル構成の切り替えを実現するために、四方切替弁や複数の電磁弁等が配置されており、冷凍サイクルの構成として複雑になってしまっていた。 Moreover, in the air conditioning apparatus described in Patent Document 1, when switching the operation mode such as the heat storage operation and the defrost operation, the cycle configuration is switched. In order to realize this switching of the cycle configuration, a four-way switching valve, a plurality of solenoid valves, and the like are disposed, and the configuration of the refrigeration cycle has been complicated.
 本開示は、これらの点に鑑みてなされており、ヒートポンプサイクルの作動制御による影響を抑えつつ、圧縮機の排熱を簡易な構成で有効に活用可能なヒートポンプシステムを提供することを目的とする。 This indication is made in view of these points, and it aims at providing a heat pump system which can effectively utilize exhaust heat of a compressor with simple composition, controlling influence by operation control of a heat pump cycle. .
 本開示の一態様によるヒートポンプシステムは、ヒートポンプサイクルと、回収部、および、高温側熱受容部と低温側熱受容部の少なくとも一方を有する。ヒートポンプサイクルは、冷媒を圧縮して吐出する圧縮機と、圧縮機にて圧縮された高圧冷媒の熱を放熱する放熱器と、放熱器から流出した高圧冷媒を減圧させる減圧部と、減圧部にて減圧された低圧冷媒を蒸発させて吸熱する吸熱器と、を有する。回収部は、圧縮機の排熱を回収する。高温側熱受容部は、回収部で回収された熱を高圧冷媒に放熱させる。低温側熱受容部は、回収部で回収された熱を低圧冷媒に吸熱させる。 A heat pump system according to an aspect of the present disclosure includes a heat pump cycle, a recovery unit, and at least one of a high temperature side heat receiving unit and a low temperature side heat receiving unit. The heat pump cycle includes a compressor that compresses and discharges a refrigerant, a radiator that releases the heat of the high-pressure refrigerant compressed by the compressor, a decompression unit that decompresses the high-pressure refrigerant flowing out of the radiator, and a decompression unit. And a heat absorber for evaporating and absorbing the low-pressure refrigerant that has been depressurized. The recovery unit recovers the exhaust heat of the compressor. The high temperature side heat receiving unit dissipates the heat recovered by the recovery unit to the high pressure refrigerant. The low temperature side heat receiving unit absorbs the heat recovered by the recovery unit to the low pressure refrigerant.
 当該ヒートポンプシステムによれば、ヒートポンプサイクルの作動制御に関わらず、ヒートポンプサイクルにおける圧縮機の排熱を回収部にて回収することができる。そして、当該ヒートポンプシステムは、回収部にて回収された圧縮機の排熱を、高温側熱受容部、及び、低温側熱受容部の何れか一方を介して、ヒートポンプサイクル側にて有効活用することができる。即ち、当該ヒートポンプシステムは、ヒートポンプサイクルの作動モードに関わらず、簡易な構成で圧縮機の排熱を有効に活用することができる。 According to the heat pump system, the exhaust heat of the compressor in the heat pump cycle can be recovered by the recovery unit regardless of the operation control of the heat pump cycle. Then, the heat pump system effectively uses the exhaust heat of the compressor recovered by the recovery unit on the heat pump cycle side via any one of the high temperature side heat receiving unit and the low temperature side heat receiving unit. be able to. That is, the heat pump system can effectively utilize the exhaust heat of the compressor with a simple configuration regardless of the operation mode of the heat pump cycle.
本開示の少なくともひとつの実施形態に係るヒートポンプシステムの全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the heat pump system which concerns on at least one embodiment of this indication. 少なくともひとつの実施形態における高温側回収部の構成を示す説明図である。It is an explanatory view showing the composition of the high temperature side recovery part in at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの制御系を示すブロック図である。It is a block diagram showing a control system of a heat pump system concerning at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの第1変形例を示す構成図である。It is a block diagram which shows the 1st modification of the heat pump system which concerns on at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの第2変形例を示す構成図である。It is a block diagram which shows the 2nd modification of the heat pump system which concerns on at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの第3変形例を示す構成図である。It is a block diagram which shows the 3rd modification of the heat pump system which concerns on at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの構成図である。It is a block diagram of the heat pump system which concerns on at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの変形例を示す構成図である。It is a block diagram which shows the modification of the heat pump system which concerns on at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの構成図である。It is a block diagram of the heat pump system which concerns on at least one embodiment. 少なくともひとつの実施形態に係るヒートポンプシステムの構成図である。It is a block diagram of the heat pump system which concerns on at least one embodiment. 本開示における熱回収部の変形例を示す構成図である。It is a block diagram which shows the modification of the heat recovery part in this indication. 本開示における高温側熱媒体回路の変形例を示す構成図である。It is a block diagram which shows the modification of the high temperature side heat-medium circuit in this indication. 本開示における蓄熱部の変形例を示す構成図である。It is a block diagram which shows the modification of the thermal storage part in this indication.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. The same referential mark may be attached | subjected to the part corresponding to the matter demonstrated by the form preceded in each form, and the overlapping description may be abbreviate | omitted. When only a part of the configuration is described in each form, the other forms described above can be applied to other parts of the configuration. Not only combinations of parts which clearly indicate that combinations are possible in each embodiment, but also combinations of embodiments even if they are not specified unless there is a problem with the combination. Is also possible.
 以下、本開示の実施形態について図に基づいて説明する。以下の実施形態において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts which are the same as or equivalent to each other are given the same reference numerals in the drawings.
 (第1実施形態)
 先ず、本開示の第1実施形態について、図1~図3を参照しつつ説明する。第1実施形態では、本開示に係るヒートポンプシステム1を、車両走行用の駆動力を走行用電動モータから得る電気自動車に適用している。当該ヒートポンプシステム1は、電気自動車において、空調対象空間である車室内の空調を行う機能や、バッテリ等を含む車載機器32の温度を適切な温度に調整する機能を果たす。
First Embodiment
First, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. In 1st Embodiment, the heat pump system 1 which concerns on this indication is applied to the electric vehicle which obtains the driving force for vehicle travel from the electric motor for travel. The heat pump system 1 has a function of performing air conditioning of a vehicle interior which is a space to be air conditioned, and a function of adjusting the temperature of the on-vehicle device 32 including a battery or the like to an appropriate temperature.
 そして、当該ヒートポンプシステム1は、車室内の空調を行う運転モードとして、冷房モードと、暖房モードと、除湿暖房モードとを切り替えることができる。冷房モードは、車室内へ送風される送風空気を冷却して車室内へ吹き出す運転モードである。暖房モードは、送風空気を加熱して車室内へ吹き出す運転モードである。除湿暖房モードは、冷却して除湿された送風空気を再加熱して車室内へ吹き出す運転モードである。 And the said heat pump system 1 can switch air conditioning mode, heating mode, and dehumidification heating mode as an operation mode which air-conditions a vehicle interior. The cooling mode is an operation mode in which the blowing air blown into the vehicle compartment is cooled and blown out into the vehicle compartment. The heating mode is an operation mode in which the blown air is heated and blown into the vehicle compartment. The dehumidifying and heating mode is an operation mode in which the cooled and dehumidified blown air is reheated and blown into the vehicle compartment.
 尚、当該ヒートポンプサイクル10では、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑する為の冷凍機油が混入されている。冷凍機油としては、液相冷媒に相溶性を有するPAGオイル(ポリアルキレングリコールオイル)が採用されている。冷凍機油の一部は、冷媒と共にサイクルを循環している。 In the heat pump cycle 10, an HFC refrigerant (specifically, R134a) is employed as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure refrigerant pressure does not exceed the critical pressure of the refrigerant is configured. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. As refrigeration oil, PAG oil (polyalkylene glycol oil) compatible with liquid phase refrigerant is adopted. A portion of the refrigerator oil circulates in the cycle with the refrigerant.
 次に、第1実施形態に係るヒートポンプシステム1の具体的構成について、図1を参照しつつ説明する。当該ヒートポンプシステム1は、ヒートポンプサイクル10と、高温側熱媒体回路20と、低温側熱媒体回路30と、室内空調ユニット50と、制御装置60を有している。 Next, a specific configuration of the heat pump system 1 according to the first embodiment will be described with reference to FIG. The heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, a low temperature side heat medium circuit 30, an indoor air conditioning unit 50, and a control device 60.
 初めに、ヒートポンプシステム1におけるヒートポンプサイクル10を構成する各構成機器について説明する。当該ヒートポンプサイクル10は、蒸気圧縮式の冷凍サイクル装置である。 First, each component which comprises the heat pump cycle 10 in the heat pump system 1 is demonstrated. The heat pump cycle 10 is a vapor compression refrigeration cycle device.
 圧縮機11は、ヒートポンプサイクル10において、冷媒を吸入し、圧縮して吐出するものであり、本開示における圧縮機に相当する。圧縮機11は、車両ボンネット内に配置されている。 The compressor 11 sucks, compresses and discharges the refrigerant in the heat pump cycle 10, and corresponds to the compressor in the present disclosure. The compressor 11 is disposed in a vehicle bonnet.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する制御装置60から出力される制御信号によって、回転数(即ち、冷媒吐出能力)が制御される。尚、圧縮機11の外側には、圧縮機11の排熱を回収する為に、本開示における回収部に相当する構成が配置されている。この点については後に詳細に説明する。 The compressor 11 is an electric compressor which rotationally drives, by an electric motor, a fixed displacement type compression mechanism whose discharge displacement is fixed. The rotation speed (i.e., the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from a control device 60 described later. In addition, in order to collect | recover the exhaust heat of the compressor 11 in the outer side of the compressor 11, the structure corresponded to the collection | recovery part in this indication is arrange | positioned. This point will be described in detail later.
 当該圧縮機11の吐出口には、水-冷媒熱交換器12の冷媒通路の入口側が接続されている。水-冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒と高温側熱媒体回路20を循環する高温側熱媒体とを熱交換させ、高温側熱媒体を加熱する熱交換器である。 The outlet side of the compressor 11 is connected to the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12. The water-refrigerant heat exchanger 12 is a heat exchanger that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant discharged from the compressor 11 and the high temperature side heat medium circulating the high temperature side heat medium circuit 20. .
 当該水-冷媒熱交換器12は、本開示における放熱器に相当する。そして、高温側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。 The water-refrigerant heat exchanger 12 corresponds to the radiator in the present disclosure. As the high temperature side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
 水-冷媒熱交換器12の冷媒通路の出口には、冷媒分岐部14aの冷媒流入口側が接続されている。冷媒分岐部14aは、水-冷媒熱交換器12から流出した高圧冷媒の流れを分岐するものである。冷媒分岐部14aは、互いに連通する3つの冷媒流入出口を有する三方継手構造となるように形成されており、3つの流入出口の内の1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。 The refrigerant inlet side of the refrigerant branch portion 14 a is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12. The refrigerant branch portion 14 a branches the flow of the high pressure refrigerant flowing out of the water-refrigerant heat exchanger 12. The refrigerant branch portion 14a is formed to be a three-way joint structure having three refrigerant inlets and outlets communicating with one another, one of the three inlets and outlets being a refrigerant inlet and the remaining two being refrigerant flows. It is an exit.
 冷媒分岐部14aの一方の冷媒流出口には、冷却用膨張弁15aを介して、室内蒸発器16の冷媒入口側が接続されている。冷媒分岐部14aの他方の冷媒流出口には、吸熱用膨張弁15bを介して、チラー18の冷媒入口側が接続されている。 The refrigerant inlet side of the indoor evaporator 16 is connected to one of the refrigerant outlets of the refrigerant branch portion 14 a via the cooling expansion valve 15 a. The refrigerant inlet side of the chiller 18 is connected to the other refrigerant outlet of the refrigerant branch portion 14a via the heat absorption expansion valve 15b.
 冷却用膨張弁15aは、少なくとも冷房モード時及び除湿暖房モード時に、冷媒分岐部14aの一方の冷媒流出口から流出した冷媒を減圧させる冷却用減圧部である。当該冷却用膨張弁15aは、本開示における減圧部を構成する。又、冷却用膨張弁15aは、室内蒸発器16へ流入する冷媒の流量を調整する冷却用流量調整部としても機能する。 The cooling expansion valve 15a is a cooling decompression unit that decompresses the refrigerant that has flowed out from one refrigerant outlet of the refrigerant branching unit 14a at least in the cooling mode and the dehumidifying and heating mode. The said cooling expansion valve 15a comprises the pressure reduction part in this indication. The cooling expansion valve 15 a also functions as a cooling flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the indoor evaporator 16.
 冷却用膨張弁15aは、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。即ち、冷却用膨張弁15aは、いわゆる電気式膨張弁によって構成されている。当該冷却用膨張弁15aの弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。 The cooling expansion valve 15a is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the cooling expansion valve 15a is configured by a so-called electric expansion valve. The valve body of the cooling expansion valve 15a is configured to be able to change the passage opening degree of the refrigerant passage (in other words, the throttle opening degree). The electric actuator has a stepping motor that changes the throttle opening of the valve body.
 当該冷却用膨張弁15aは、制御装置60から出力される制御信号によって、その作動が制御される。そして、当該冷却用膨張弁15aは、絞り開度を全開した際に冷媒通路を全開する全開機能と、絞り開度を全閉した際に冷媒通路を閉塞する全閉機能を有する可変絞り機構で構成されている。 The operation of the cooling expansion valve 15 a is controlled by a control signal output from the controller 60. The cooling expansion valve 15a is a variable throttling mechanism having a fully open function of fully opening the refrigerant passage when the throttling degree is fully opened and a fully closing function of closing the refrigerant passage when the throttling degree is fully closed. It is configured.
 つまり、冷却用膨張弁15aは、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。又、当該冷却用膨張弁15aは、冷媒通路を閉塞することで、室内蒸発器16に対する冷媒の流入を遮断することができる。即ち、冷却用膨張弁15aは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。 That is, the cooling expansion valve 15a can prevent the pressure reducing action of the refrigerant from being exhibited by fully opening the refrigerant passage. Further, the cooling expansion valve 15 a can block the flow of the refrigerant into the indoor evaporator 16 by closing the refrigerant passage. That is, the cooling expansion valve 15a has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
 冷却用膨張弁15aの出口には、室内蒸発器16の冷媒入口側が接続されている。室内蒸発器16は、少なくとも冷房モード時及び除湿暖房モード時に、冷却用膨張弁15aにて減圧された低圧冷媒と送風空気とを熱交換させて低圧冷媒を蒸発させ、送風空気を冷却する冷却用蒸発器である。 The refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a. The indoor evaporator 16 performs heat exchange between the low pressure refrigerant decompressed by the cooling expansion valve 15a and the blown air at least in the cooling mode and the dehumidifying heating mode to evaporate the low pressure refrigerant and cool the blown air. It is an evaporator.
 そして、室内蒸発器16は、室内空調ユニット50のケーシング51内に配置されている。即ち、室内蒸発器16は、本開示における吸熱器を構成し、本開示における第1吸熱器又は第2吸熱器の何れか一方に相当する。 The indoor evaporator 16 is disposed in the casing 51 of the indoor air conditioning unit 50. That is, the indoor evaporator 16 constitutes a heat sink in the present disclosure, and corresponds to either one of the first heat sink or the second heat sink in the present disclosure.
 当該室内蒸発器16の冷媒出口には、蒸発圧力調整弁17の入口側が接続されている。蒸発圧力調整弁17は、室内蒸発器16における冷媒蒸発圧力を予め定めた基準圧力以上に維持する蒸発圧力調整部である。蒸発圧力調整弁17は、室内蒸発器16の出口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構によって構成されている。 The inlet side of the evaporation pressure control valve 17 is connected to the refrigerant outlet of the indoor evaporator 16. The evaporation pressure adjustment valve 17 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at or above a predetermined reference pressure. The evaporation pressure control valve 17 is configured by a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the outlet side of the indoor evaporator 16 increases.
 尚、当該蒸発圧力調整弁17は、室内蒸発器16における冷媒蒸発温度を、室内蒸発器16の着霜を抑制可能な基準温度(本実施形態では、1℃)以上に維持するように構成されている。 The evaporation pressure control valve 17 is configured to maintain the refrigerant evaporation temperature in the indoor evaporator 16 at a reference temperature (1 ° C. in the present embodiment) that can suppress the formation of frost on the indoor evaporator 16. ing.
 当該蒸発圧力調整弁17の出口には、冷媒合流部14bの一方の冷媒流入口側が接続されている。冷媒合流部14bは、冷媒分岐部14aと同様の三方継手構造のもので、3つの流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。図1に示すように、当該冷媒合流部14bは、蒸発圧力調整弁17から流出した冷媒の流れとチラー18から流出した冷媒の流れとを合流させるものである。 One refrigerant inlet side of the refrigerant merging portion 14 b is connected to the outlet of the evaporation pressure adjusting valve 17. The refrigerant merging portion 14b has a three-way joint structure similar to that of the refrigerant branching portion 14a, with two of the three inflows and outlets being used as a refrigerant inlet and the remaining one being used as a refrigerant outlet. As shown in FIG. 1, the refrigerant merging portion 14 b merges the flow of the refrigerant flowing out of the evaporation pressure adjusting valve 17 and the flow of the refrigerant flowing out of the chiller 18.
 ここで、冷媒分岐部14aにおける他方の冷媒流出口には、吸熱用膨張弁15bが接続されている。吸熱用膨張弁15bは、少なくとも暖房モード時及び除湿暖房モードに、冷媒分岐部14aにおける他方の冷媒流出口から流出した液相冷媒を減圧膨張させる吸熱用減圧部である。当該吸熱用膨張弁15bは、本開示における減圧部として機能する。 Here, the heat absorption expansion valve 15 b is connected to the other refrigerant outlet of the refrigerant branch portion 14 a. The heat absorption expansion valve 15b is a heat absorption decompression unit that decompresses and expands the liquid phase refrigerant that has flowed out from the other refrigerant outlet in the refrigerant branch unit 14a at least in the heating mode and the dehumidifying heating mode. The heat absorption expansion valve 15 b functions as a pressure reduction unit in the present disclosure.
 そして、吸熱用膨張弁15bは、チラー18へ流入する冷媒の流量を調整する吸熱用流量調整部として機能する。当該吸熱用膨張弁15bの基本的構成は、冷却用膨張弁15aと同様である。つまり、吸熱用膨張弁15bは、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。そして、吸熱用膨張弁15bは、冷却用膨張弁15aと同様に、全開機能と全閉機能を有している。 The heat absorption expansion valve 15 b functions as a heat absorption flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the chiller 18. The basic configuration of the heat absorption expansion valve 15b is the same as that of the cooling expansion valve 15a. That is, the heat absorption expansion valve 15b is an electric variable throttle mechanism, and has a valve body and an electric actuator. Then, the heat absorption expansion valve 15b has a full open function and a full close function, as with the cooling expansion valve 15a.
 つまり、吸熱用膨張弁15bは、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができ、冷媒通路を閉塞することでチラー18に対する冷媒の流入を遮断することができる。即ち、吸熱用膨張弁15bは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。 That is, the heat absorption expansion valve 15b can prevent the refrigerant from exerting a pressure reducing action by fully opening the refrigerant passage, and can block the flow of the refrigerant to the chiller 18 by closing the refrigerant passage. . That is, the heat absorption expansion valve 15b has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
 吸熱用膨張弁15bの出口には、チラー18の冷媒入口側が接続されている。チラー18は、吸熱用膨張弁15bにて減圧された低圧冷媒と低温側熱媒体回路30を循環する低温側熱媒体とを熱交換させる熱交換器である。チラー18は、吸熱用膨張弁15bにて減圧された低圧冷媒を流通させる冷媒通路と、低温側熱媒体回路30を循環する低温側熱媒体を流通させる水通路とを有している。 The refrigerant inlet side of the chiller 18 is connected to the outlet of the heat absorption expansion valve 15b. The chiller 18 is a heat exchanger that exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15 b and the low temperature side heat medium circulating in the low temperature side heat medium circuit 30. The chiller 18 has a refrigerant passage for circulating the low pressure refrigerant decompressed by the heat absorption expansion valve 15b, and a water passage for circulating the low temperature side heat medium circulating in the low temperature side heat medium circuit 30.
 チラー18は、少なくとも暖房モード及び除湿暖房モード時に、冷媒通路を流通する低圧冷媒と水通路を流通する低温側熱媒体とを熱交換させて、低圧冷媒を蒸発させる蒸発部である。つまり、チラー18は、少なくとも暖房モード及び除湿暖房モード時に、低圧冷媒を蒸発させて低温側熱媒体の有する熱を冷媒に吸熱させる吸熱用の熱交換器である。 The chiller 18 is an evaporation unit that evaporates the low pressure refrigerant by heat exchange between the low pressure refrigerant flowing in the refrigerant passage and the low temperature side heat medium flowing in the water passage at least in the heating mode and the dehumidifying heating mode. That is, the chiller 18 is a heat exchanger for heat absorption which evaporates the low pressure refrigerant and absorbs the heat of the low temperature side heat medium to the refrigerant at least in the heating mode and the dehumidifying heating mode.
 即ち、チラー18は、本開示における吸熱器を構成し、本開示における第1吸熱器又は第2吸熱器の何れか他方に相当する。そして、チラー18の冷媒通路の出口には、冷媒合流部14bにおける他方の冷媒流入口側が接続されている。そして、冷媒合流部14bの冷媒流出口には、圧縮機11の吸入口側が接続されている。 That is, the chiller 18 constitutes a heat sink in the present disclosure, and corresponds to either the first heat sink or the second heat sink in the present disclosure. The other refrigerant inlet side of the refrigerant merging portion 14 b is connected to the outlet of the refrigerant passage of the chiller 18. And the suction port side of the compressor 11 is connected to the refrigerant | coolant outflow port of the refrigerant | coolant confluence | merging part 14b.
 次に、当該ヒートポンプシステム1における高温側熱媒体回路20について説明する。高温側熱媒体回路20は、高温側熱媒体を循環させる回路である。高温側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。高温側熱媒体回路20には、水-冷媒熱交換器12の水通路、高温側熱媒体ポンプ21、ヒータコア22、高温側ラジエータ23、高温側流量調整弁24等が配置されている。 Next, the high temperature side heat medium circuit 20 in the heat pump system 1 will be described. The high temperature side heat medium circuit 20 is a circuit for circulating the high temperature side heat medium. As the high temperature side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted. In the high temperature side heat medium circuit 20, the water passage of the water-refrigerant heat exchanger 12, the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, the high temperature side flow rate adjustment valve 24 and the like are arranged.
 高温側熱媒体ポンプ21は、高温側熱媒体を水-冷媒熱交換器12の水通路の入口側へ圧送する水ポンプである。高温側熱媒体ポンプ21は、制御装置60から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動ポンプである。 The high temperature side heat medium pump 21 is a water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12. The high temperature side heat medium pump 21 is an electric pump whose rotational speed (that is, pumping capacity) is controlled by a control voltage output from the control device 60.
 水-冷媒熱交換器12の水通路の出口には、高温側流量調整弁24の1つの流入出口が接続されている。高温側流量調整弁24は、3つの流入出口を有し、そのうち2つの流入出口の通路面積比を連続的に調整可能な電気式の三方流量調整弁である。高温側流量調整弁24は、制御装置60から出力される制御信号によって、その作動が制御される。 One inlet / outlet of the high temperature side flow control valve 24 is connected to the outlet of the water passage of the water-refrigerant heat exchanger 12. The high temperature side flow control valve 24 is an electrical three-way flow control valve having three inlets and outlets, of which the passage area ratio of the two inlets and outlets can be continuously adjusted. The operation of the high temperature side flow control valve 24 is controlled by a control signal output from the controller 60.
 高温側流量調整弁24の別の流入出口には、ヒータコア22の流入口側が接続されている。高温側流量調整弁24のさらに別の流入出口には、高温側ラジエータ23の流入口側が接続されている。 The inlet side of the heater core 22 is connected to another inlet / outlet of the high temperature side flow control valve 24. The inlet side of the high temperature side radiator 23 is connected to still another inlet and outlet of the high temperature side flow control valve 24.
 そして、高温側流量調整弁24は、高温側熱媒体回路20において、水-冷媒熱交換器12の水通路から流出した高温側熱媒体のうち、ヒータコア22へ流入させる高温側熱媒体の流量と高温側ラジエータ23へ流入させる高温側熱媒体の流量との流量比を連続的に調整する機能を果たす。 Then, among the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 in the high temperature side heat medium circuit 20, the high temperature side flow rate adjustment valve 24 flows the high temperature side heat medium flowed into the heater core 22 and It has a function of continuously adjusting the flow rate ratio to the flow rate of the high temperature side heat medium to be flowed into the high temperature side radiator 23.
 ヒータコア22は、水-冷媒熱交換器12にて加熱された高温側熱媒体と室内蒸発器16を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。当該ヒータコア22は、本開示におけるヒータコアに相当する。そして、ヒータコア22は、室内空調ユニット50のケーシング51内に配置されている。ヒータコア22における水通路の出口側には、高温側熱媒体ポンプ21の吸入口側が接続されている。 The heater core 22 is a heat exchanger that heats the blown air by heat exchange between the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the blown air having passed through the indoor evaporator 16. The heater core 22 corresponds to the heater core in the present disclosure. The heater core 22 is disposed in the casing 51 of the indoor air conditioning unit 50. The inlet side of the high temperature side heat medium pump 21 is connected to the outlet side of the water passage in the heater core 22.
 高温側ラジエータ23は、水-冷媒熱交換器12にて加熱された高温側熱媒体と図示しない外気ファンから送風された外気とを熱交換させて、高温側熱媒体の有する熱を外気に放熱させる熱交換器である。 The high temperature side radiator 23 exchanges heat between the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the outside air blown from the outside air fan (not shown) to radiate the heat of the high temperature side heat medium to the outside air Heat exchanger.
 高温側ラジエータ23は、車両ボンネット内の前方側に配置されている。このため、車両走行時には、高温側ラジエータ23に走行風を当てることができる。高温側ラジエータ23は、水-冷媒熱交換器12等と一体的に形成されていてもよい。高温側ラジエータ23の流出口側には、高温側熱媒体ポンプ21の吸入口側が接続されている。 The high temperature side radiator 23 is disposed on the front side in the vehicle bonnet. For this reason, when the vehicle is traveling, the traveling wind can be applied to the high temperature side radiator 23. The high temperature side radiator 23 may be integrally formed with the water-refrigerant heat exchanger 12 and the like. The outlet side of the high temperature side radiator 23 is connected to the inlet side of the high temperature side heat medium pump 21.
 図1に示すように、高温側熱媒体回路20において、ヒータコア22と高温側ラジエータ23は、高温側熱媒体の流れに対して並列に接続されている。従って、高温側熱媒体回路20では、高温側流量調整弁24が、ヒータコア22へ流入する高温側熱媒体の流量を調整することによって、ヒータコア22における高温側熱媒体の送風空気への放熱量、すなわち、ヒータコア22における送風空気の加熱量を調整することができる。 As shown in FIG. 1, in the high temperature side heat medium circuit 20, the heater core 22 and the high temperature side radiator 23 are connected in parallel to the flow of the high temperature side heat medium. Therefore, in the high temperature side heat medium circuit 20, the high temperature side flow rate adjustment valve 24 adjusts the flow rate of the high temperature side heat medium flowing into the heater core 22, so that the heat radiation amount of the high temperature side heat medium in the heater core 22 to the blast air. That is, the heating amount of the blowing air in the heater core 22 can be adjusted.
 又、高温側熱媒体回路20は、ヒートポンプサイクル10における圧縮機11の排熱を回収して受容する為の高温側回収部25を有している。従って、当該高温側熱媒体回路20は、本開示における高温側熱受容部に相当すると共に、本開示における高温側熱媒体回路に相当する。高温側回収部25の具体的構成については、後に詳細に説明する。 Further, the high temperature side heat medium circuit 20 has a high temperature side recovery unit 25 for recovering and receiving the exhaust heat of the compressor 11 in the heat pump cycle 10. Accordingly, the high temperature side heat medium circuit 20 corresponds to the high temperature side heat receiving portion in the present disclosure and corresponds to the high temperature side heat medium circuit in the present disclosure. The specific configuration of the high temperature side recovery unit 25 will be described in detail later.
 続いて、ヒートポンプシステム1における低温側熱媒体回路30について説明する。低温側熱媒体回路30は、低温側熱媒体を循環させる熱媒体循環回路である。低温側熱媒体としては、高温側熱媒体と同様の流体を採用することができる。低温側熱媒体回路30には、チラー18の水通路、低温側熱媒体ポンプ31、車載機器32、低温側ラジエータ33、低温側流量調整弁34等が配置されている。 Subsequently, the low temperature side heat medium circuit 30 in the heat pump system 1 will be described. The low temperature side heat medium circuit 30 is a heat medium circulation circuit that circulates the low temperature side heat medium. As the low temperature side heat medium, the same fluid as the high temperature side heat medium can be adopted. In the low temperature side heat medium circuit 30, the water passage of the chiller 18, the low temperature side heat medium pump 31, the on-vehicle device 32, the low temperature side radiator 33, the low temperature side flow rate adjustment valve 34 and the like are arranged.
 低温側熱媒体ポンプ31は、低温側熱媒体をチラー18の水通路の入口側へ圧送する水ポンプである。低温側熱媒体ポンプ31の基本的構成は、高温側熱媒体ポンプ21と同様である。 The low temperature side heat medium pump 31 is a water pump that pumps the low temperature side heat medium to the inlet side of the water passage of the chiller 18. The basic configuration of the low temperature side heat medium pump 31 is similar to that of the high temperature side heat medium pump 21.
 そして、チラー18における水通路の出口側には、低温側流量調整弁34の流出入口の一つが接続されている。低温側流量調整弁34の基本的構成は、高温側流量調整弁24と同様である。即ち、低温側流量調整弁34は、電気式の三方流量調整弁によって構成されている。 Then, one outlet / outlet of the low temperature side flow control valve 34 is connected to the outlet side of the water passage in the chiller 18. The basic configuration of the low temperature side flow control valve 34 is similar to that of the high temperature side flow control valve 24. That is, the low temperature side flow control valve 34 is configured of an electric three-way flow control valve.
 低温側流量調整弁34の別の流入出口には、車載機器32における水通路の入口側が接続されている。低温側流量調整弁34のさらに別の流入出口には、低温側ラジエータ33の流入口側が接続されている。 The inlet side of the water passage in the on-vehicle device 32 is connected to another inflow / outlet of the low temperature side flow control valve 34. The inlet side of the low temperature side radiator 33 is connected to still another inlet and outlet of the low temperature side flow control valve 34.
 車載機器32は、当該電気自動車に搭載され、作動時に発熱する機器によって構成されている。当該車載機器32は、本開示における発熱機器に相当する。車載機器32は、例えば、バッテリ、インバータ、充電器、モータジェネレータ等を含んでいる。 The in-vehicle device 32 is mounted on the electric vehicle and is configured of a device that generates heat when activated. The on-vehicle device 32 corresponds to the heat-generating device in the present disclosure. The on-vehicle device 32 includes, for example, a battery, an inverter, a charger, a motor generator, and the like.
 バッテリは、車両に搭載された各種電気機器に電力を供給するものであり、例えば、充放電可能な二次電池(本実施形態では、リチウムイオン電池)によって構成されている。インバータは、直流電流を交流電流に変換する電力変換部である。 The battery supplies power to various electric devices mounted in a vehicle, and is configured of, for example, a chargeable / dischargeable secondary battery (in the present embodiment, a lithium ion battery). The inverter is a power conversion unit that converts direct current into alternating current.
 そして、充電器は、バッテリに電力を充電する充電器である。モータジェネレータは、電力を供給されることによって走行用の駆動力を出力すると共に、減速時等には回生電力を発生させるものである。 And a charger is a charger which charges electric power to a battery. The motor generator outputs driving power for traveling by being supplied with electric power, and generates regenerative electric power at the time of deceleration or the like.
 この為、車載機器32における冷却水通路は、低温側熱媒体を流通させることで、それぞれの機器を冷却できるように形成されている。そして、車載機器32における冷却水通路の出口側には、低温側熱媒体ポンプ31の吸入口側が接続されている。 For this reason, the cooling water passage in the in-vehicle device 32 is formed so as to be able to cool each device by circulating the low temperature side heat medium. The suction port side of the low temperature side heat medium pump 31 is connected to the outlet side of the cooling water passage in the in-vehicle device 32.
 当該車載機器32に含まれる各構成機器の温度は、それぞれ充分な性能を発揮できる適正な温度帯の範囲内に調整されている必要がある。この為、当該ヒートポンプシステム1は、車載機器32の水通路に対する低温側熱媒体の流量を調整することで、車載機器32の各機器を適正な温度帯に調整することができる。 The temperature of each component included in the on-vehicle device 32 needs to be adjusted within the range of an appropriate temperature range in which sufficient performance can be exhibited. Therefore, the heat pump system 1 can adjust each device of the in-vehicle device 32 to an appropriate temperature range by adjusting the flow rate of the low-temperature side heat medium to the water passage of the in-vehicle device 32.
 そして、低温側ラジエータ33は、低温側流量調整弁34から流出した低温側熱媒体と図示しない外気ファンから送風された外気とを熱交換させる熱交換器である。低温側ラジエータ33は、低温側熱媒体の温度が外気よりも高くなっている場合には、低温側熱媒体の有する熱を外気に放熱させる放熱用の熱交換器として機能する。 The low temperature side radiator 33 is a heat exchanger that exchanges heat between the low temperature side heat medium flowing out from the low temperature side flow rate adjustment valve 34 and the outside air blown from an outside air fan (not shown). The low temperature side radiator 33 functions as a heat exchanger for radiating the heat of the low temperature side heat medium to the outside air when the temperature of the low temperature side heat medium is higher than the outside air.
 又、低温側流量調整弁34は、低温側熱媒体の温度が外気よりも低くなっている場合には、外気の有する熱を低温側熱媒体に吸熱させる吸熱用の熱交換器として機能する。当該低温側ラジエータ33の流出口側には、低温側熱媒体ポンプ31の吸入口側が接続されている。つまり、低温側ラジエータ33は、低温側熱媒体回路30における低温側熱媒体の流れに関して、車載機器32と並列に配置されている。 Further, when the temperature of the low temperature side heat medium is lower than the outside air, the low temperature side flow control valve 34 functions as a heat exchanger for absorbing heat that absorbs the heat of the outside air to the low temperature side heat medium. The outlet side of the low temperature side radiator 33 is connected to the inlet side of the low temperature side heat medium pump 31. That is, the low temperature side radiator 33 is disposed in parallel with the on-vehicle device 32 with respect to the flow of the low temperature side heat medium in the low temperature side heat medium circuit 30.
 当該ヒートポンプシステム1は、低温側熱媒体回路30を利用することで、車載機器32の冷却や温度調整を行うと共に、車載機器32で生じた熱を熱源として活用することができる。又、当該ヒートポンプシステム1は、低温側熱媒体回路30の低温側ラジエータ33を利用することで、外気を熱源として利用したり、外気に放熱したりすることができる。 The heat pump system 1 can use the low-temperature side heat medium circuit 30 to cool the in-vehicle device 32 and adjust the temperature, and can use heat generated by the in-vehicle device 32 as a heat source. Moreover, the said heat pump system 1 can utilize external air as a heat source, or can thermally radiate external air by utilizing the low temperature side radiator 33 of the low temperature side heat-medium circuit 30. FIG.
 次に、ヒートポンプシステム1を構成する室内空調ユニット50について説明する。室内空調ユニット50は、ヒートポンプシステム1において、ヒートポンプサイクル10によって温度調整された送風空気を車室内の適切な箇所へ吹き出すためのユニットである。室内空調ユニット50は、車室内最前部の計器盤(即ち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 50 which comprises the heat pump system 1 is demonstrated. The indoor air conditioning unit 50 is a unit for blowing out the blowing air whose temperature has been adjusted by the heat pump cycle 10 in the heat pump system 1 to an appropriate place in the vehicle compartment. The indoor air conditioning unit 50 is disposed inside the instrument panel (i.e., instrument panel) at the foremost part of the passenger compartment.
 室内空調ユニット50は、その外殻を形成するケーシング51の内部に形成される空気通路に、送風機52、室内蒸発器16、ヒータコア22等を収容して構成されている。ケーシング51は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて成形されている。 The indoor air conditioning unit 50 is configured by housing a blower 52, an indoor evaporator 16, a heater core 22 and the like in an air passage formed inside a casing 51 forming the outer shell thereof. The casing 51 forms an air passage for blowing air blown into the vehicle compartment, and is molded of a resin (specifically, polypropylene) which has a certain degree of elasticity and is excellent in strength.
 図1に示すように、ケーシング51の送風空気流れ最上流側には、内外気切替装置53が配置されている。内外気切替装置53は、ケーシング51内へ内気(車室内空気)と外気(車室外空気)とを切替導入するものである。 As shown in FIG. 1, an internal / external air switching device 53 is disposed on the most upstream side of the flow of the blown air of the casing 51. The inside / outside air switching device 53 switches and introduces inside air (air in the vehicle interior) and outside air (air outside the vehicle) into the casing 51.
 内外気切替装置53は、ケーシング51内へ内気を導入させる内気導入口及び外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させることができる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 53 continuously adjusts the opening area of the inside air introduction port for introducing inside air into the casing 51 and the outside air introduction port for introducing outside air by means of the inside / outside air switching door. The introduction rate with the introduction air volume can be changed. The inside and outside air switching door is driven by an electric actuator for the inside and outside air switching door. The operation of the electric actuator is controlled by a control signal output from the controller 60.
 内外気切替装置53の送風空気流れ下流側には、送風機52が配置されている。送風機52は、遠心多翼ファンを電動モータにて駆動する電動送風機によって構成されており、内外気切替装置53を介して吸入した空気を車室内へ向けて送風する機能を果たす。当該送風機52は、制御装置60から出力される制御電圧によって、回転数(即ち、送風能力)が制御される。 A blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air. The blower 52 is constituted by an electric blower which drives a centrifugal multi-blade fan by an electric motor, and functions to blow air taken in via the inside / outside air switching device 53 toward the vehicle interior for blowing. The rotation speed (i.e., the blowing capacity) of the blower 52 is controlled by the control voltage output from the control device 60.
 送風機52の送風空気流れ下流側には、室内蒸発器16及びヒータコア22が、送風空気の流れに対して、この順に配置されている。つまり、室内蒸発器16は、ヒータコア22よりも送風空気流れ上流側に配置されている。又、ケーシング51内には、室内蒸発器16を通過した送風空気を、ヒータコア22を迂回させて下流側へ流す冷風バイパス通路55が形成されている。 The indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blown air on the downstream side of the blown air flow of the blower 52. That is, the indoor evaporator 16 is disposed upstream of the heater core 22 in the flow of the blown air. Further, in the casing 51, a cold air bypass passage 55 is formed, in which the blown air having passed through the indoor evaporator 16 is allowed to bypass the heater core 22 and flow downstream.
 室内蒸発器16の送風空気流れ下流側であって、かつ、ヒータコア22の送風空気流れ上流側には、エアミックスドア54が配置されている。エアミックスドア54は、室内蒸発器16を通過後の送風空気のうち、ヒータコア22を通過させる風量と冷風バイパス通路55を通過させる風量との風量割合を調整するものである。 An air mix door 54 is disposed on the downstream side of the air flow of the indoor evaporator 16 and on the upstream side of the air flow of the heater core 22. The air mix door 54 adjusts the air volume ratio of the air volume passing through the heater core 22 and the air volume passing through the cold air bypass passage 55 in the blown air after passing through the indoor evaporator 16.
 エアミックスドア54は、エアミックスドア駆動用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置60から出力される制御信号により、その作動が制御される。 The air mix door 54 is driven by an electric actuator for driving the air mix door. The operation of the electric actuator is controlled by a control signal output from the control device 60.
 ヒータコア22の送風空気流れ下流側には、混合空間56が設けられている。混合空間56では、ヒータコア22にて加熱された送風空気と冷風バイパス通路55を通過してヒータコア22にて加熱されていない送風空気とが混合される。 A mixing space 56 is provided downstream of the air flow of the heater core 22. In the mixing space 56, the blowing air heated by the heater core 22 and the blowing air which has passed the cold air bypass passage 55 and is not heated by the heater core 22 are mixed.
 更に、ケーシング51の送風空気流れ最下流部には、混合空間にて混合された送風空気(空調風)を車室内へ吹き出す開口穴が配置されている。この開口穴としては、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)が設けられている。 Further, at the most downstream portion of the air flow of the casing 51, an opening for blowing the air (air-conditioned air) mixed in the mixing space into the vehicle compartment is disposed. As this opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided.
 フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 The face opening hole is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment. The foot opening hole is an opening hole for blowing the conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing the conditioned air toward the inner side surface of the vehicle front windshield.
 これらのフェイス開口穴、フット開口穴、及びデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 These face opening holes, foot opening holes, and defroster opening holes are respectively provided in the passenger compartment via a duct that forms an air passage, face outlet, foot outlet, and defroster outlet (all not shown) )It is connected to the.
 従って、エアミックスドア54が、ヒータコア22を通過させる風量と冷風バイパス通路55を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。 Therefore, the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio of the air volume passing the heater core 22 and the air volume passing the cold air bypass passage 55 by the air mix door 54. As a result, the temperature of the air (air-conditioned air) blown out from the outlets into the vehicle compartment is also adjusted.
 そして、フェイス開口穴、フット開口穴、及びデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 The face door for adjusting the opening area of the face opening hole, the foot door for adjusting the opening area of the foot opening hole, and the defroster opening on the upstream side of the air flow of the face opening hole, the foot opening hole, and the defroster opening hole, respectively. A defroster door (not shown) is arranged to adjust the opening area of the hole.
 これらのフェイスドア、フットドア、デフロスタドアは、空調風が吹き出される吹出口を切り替える吹出モード切替装置を構成する。フェイスドア、フットドア、デフロスタドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 These face door, foot door, and defroster door constitute an air outlet mode switching device that switches the air outlet from which the conditioned air is blown out. The face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are operated to rotate in conjunction with each other. The operation of the electric actuator is controlled by a control signal output from the controller 60.
 ここで、第1実施形態に係るヒートポンプシステム1において、高温側熱媒体回路20は、ヒートポンプサイクル10における圧縮機11の排熱を回収する為に、高温側回収部25を有している。この高温側回収部25の構成について、図1、2を参照しつつ説明する。 Here, in the heat pump system 1 according to the first embodiment, the high temperature side heat medium circuit 20 has a high temperature side recovery unit 25 in order to recover the exhaust heat of the compressor 11 in the heat pump cycle 10. The configuration of the high temperature side recovery unit 25 will be described with reference to FIGS.
 高温側回収部25は、高温側熱媒体回路20を循環する高温側熱媒体に対して圧縮機11の排熱を吸熱させることで回収し、当該圧縮機11の排熱を高温側熱媒体回路20に受容させる。 The high temperature side recovery unit 25 recovers the exhaust heat of the compressor 11 by absorbing heat from the high temperature side heat medium circulating in the high temperature side heat medium circuit 20, and the exhaust heat of the compressor 11 is recovered by the high temperature side heat medium circuit Accept to 20.
 図2に示すように、高温側回収部25は、収容部25aと、高温側流入配管26と、高温側流出配管27とを有している。収容部25a、高温側流入配管26、高温側流出配管27は、相互に接続されており、高温側熱媒体回路20を循環する高温側熱媒体が流れる流路を構成している。 As shown in FIG. 2, the high temperature side recovery unit 25 includes a housing portion 25 a, a high temperature side inflow piping 26, and a high temperature side outflow piping 27. The housing portion 25 a, the high temperature side inflow piping 26, and the high temperature side outflow piping 27 are connected to one another, and constitute a flow path through which the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 flows.
 図1に示すように、高温側流入配管26は、水-冷媒熱交換器12における水通路の出口側に配置された高温側分岐部26aから分岐する配管である。当該高温側流入配管26は、上述したように、収容部25aに接続されている。従って、高温側熱媒体回路20において、高温側分岐部26aで分岐した高温側熱媒体の流れは収容部25aの内部に到達する。 As shown in FIG. 1, the high temperature side inflow pipe 26 is a pipe branched from the high temperature side branch portion 26 a disposed on the outlet side of the water passage in the water-refrigerant heat exchanger 12. The said high temperature side inflow piping 26 is connected to the accommodating part 25a as mentioned above. Accordingly, in the high temperature side heat medium circuit 20, the flow of the high temperature side heat medium branched at the high temperature side branch portion 26a reaches the inside of the accommodation portion 25a.
 又、高温側流出配管27は、収容部25aから伸びており、高温側熱媒体回路20における循環回路に配置された高温側合流部27aに接続されている。当該高温側合流部27aは、水-冷媒熱交換器12における水通路の出口側において、高温側分岐部26aよりも高温側熱媒体の流れ方向下流側に位置している。 The high temperature side outflow pipe 27 extends from the housing portion 25 a and is connected to the high temperature side joining portion 27 a disposed in the circulation circuit of the high temperature side heat medium circuit 20. The high temperature side joining portion 27a is located downstream of the high temperature side branch portion 26a in the flow direction downstream of the high temperature side heat medium on the outlet side of the water passage in the water-refrigerant heat exchanger 12.
 従って、収容部25aから流出した高温側熱媒体は、水-冷媒熱交換器12における水通路の出口側において、高温側熱媒体回路20にてヒータコア22等を循環する高温側熱媒体と合流する。 Accordingly, the high temperature side heat medium flowing out of the storage portion 25a joins the high temperature side heat medium circulating in the heater core 22 and the like in the high temperature side heat medium circuit 20 on the outlet side of the water passage in the water-refrigerant heat exchanger 12. .
 ここで、図2に示すように、高温側回収部25における収容部25aは、圧縮機11の外表面を覆うように形成されている。即ち、収容部25aは、圧縮機11及び圧縮機11に接続された冷媒配管の一部を内部に収容している。 Here, as shown in FIG. 2, the housing portion 25 a in the high temperature side recovery portion 25 is formed so as to cover the outer surface of the compressor 11. That is, the housing portion 25 a houses a part of the refrigerant pipe connected to the compressor 11 and the compressor 11 inside.
 従って、高温側流入配管26を流れた高温側熱媒体は、収容部25aの内部に流入し、圧縮機11の外表面に沿って流れる。この時、高温側熱媒体は、圧縮機11の排熱を吸熱して回収する。 Therefore, the high temperature side heat medium that has flowed through the high temperature side inflow pipe 26 flows into the inside of the housing 25 a and flows along the outer surface of the compressor 11. At this time, the high temperature side heat medium absorbs and recovers the exhaust heat of the compressor 11.
 その後、高温側熱媒体は、収容部25aから流出して、高温側流出配管27を介して、高温側熱媒体回路20の循環回路に合流する。これにより、高温側熱媒体回路20は、高温側回収部25における高温側熱媒体の流れを介して、圧縮機11の排熱を回収して受容することができる。 Thereafter, the high temperature side heat medium flows out from the housing portion 25 a and joins the circulation circuit of the high temperature side heat medium circuit 20 via the high temperature side outflow piping 27. Thus, the high temperature side heat medium circuit 20 can recover and receive the exhaust heat of the compressor 11 through the flow of the high temperature side heat medium in the high temperature side recovery unit 25.
 図2に示すように、当該高温側回収部25における収容部25aの内部には、蓄熱材25bが配置されている。当該蓄熱材25bは、蓄熱時に相変化を伴う潜熱蓄熱材である。当該蓄熱材25bの相変化温度は、収容部25aに流入する高温側熱媒体の温度よりも高く、圧縮機11の温度よりも低い範囲内にて定められる。 As shown in FIG. 2, a heat storage material 25 b is disposed inside the storage portion 25 a in the high temperature side recovery portion 25. The heat storage material 25 b is a latent heat storage material with a phase change at the time of heat storage. The phase change temperature of the heat storage material 25 b is determined within a range that is higher than the temperature of the high-temperature side heat medium flowing into the housing 25 a and lower than the temperature of the compressor 11.
 当該蓄熱材25bは、圧縮機11の排熱を蓄え、高温側熱媒体の温度が予め定められた温度よりも低下した場合に、当該高温側熱媒体に対して蓄熱した熱を放熱するように構成されている。 The heat storage material 25 b stores the exhaust heat of the compressor 11 and dissipates the heat stored in the high temperature side heat medium when the temperature of the high temperature side heat medium is lower than a predetermined temperature. It is configured.
 そして、当該蓄熱材25bは、球状の樹脂製或いは金属製の複数のカプセルに封入された状態で、収容部25a内の圧縮機11の周囲に配置されている。高温側流入配管26から収容部25aに流入した高温側熱媒体は、カプセルの隙間を流通して、高温側流出配管27へ流れる。 And the said heat storage material 25b is arrange | positioned around the compressor 11 in the accommodating part 25a in the state enclosed with several spherical resin-made or metal-made capsules. The high temperature side heat medium flowing from the high temperature side inflow pipe 26 into the housing portion 25 a flows through the gap of the capsule and flows to the high temperature side outflow pipe 27.
 高温側回収部25における蓄熱材25bとしては、例えば、(水系の蓄熱材、パラフィンワックス系の蓄熱材、高級アルコール系の蓄熱材、無機塩系の蓄熱材)等を採用することができる。水系の蓄熱材としては、例えば、酢酸ナトリウム三水塩、塩化マグネシウム四水塩を採用することができる。 As the heat storage material 25b in the high temperature side recovery unit 25, for example, (water-based heat storage material, paraffin wax-based heat storage material, higher alcohol-based heat storage material, inorganic salt-based heat storage material) can be employed. As a water-based heat storage material, for example, sodium acetate trihydrate and magnesium chloride tetrahydrate can be adopted.
 そして、パラフィンワックス系の蓄熱材としては、例えば、ヘプタコサン、オクタコサン、ノナコサン、ステアリン酸ステアリルを採用することができる。又、高級アルコール系の蓄熱材としては、例えば、キシリトールを用いることができる。又、蓄熱材25bとして、これらの混合材料を採用することができる。 And, as a paraffin wax-based heat storage material, for example, heptacosane, octacosan, nonacosane, stearyl stearate can be adopted. Moreover, as a heat storage material of a higher alcohol type, for example, xylitol can be used. Moreover, these mixed materials can be employ | adopted as the thermal storage material 25b.
 従って、圧縮機11の排熱によって周囲が蓄熱温度よりも高くなると、蓄熱材25bは周囲から吸熱して相変化する。これにより、蓄熱材25bに圧縮機11の排熱が蓄えられる。そして、熱を蓄えた蓄熱材25bは、高温側熱媒体の温度に近づくように顕熱変化する。又、高温側熱媒体の温度が蓄熱温度よりも低くなると、蓄熱材25bは、高温側熱媒体に対して、蓄えていた圧縮機11の排熱を放熱して相変化する。 Therefore, when the surroundings become higher than the heat storage temperature by the exhaust heat of the compressor 11, the heat storage material 25b absorbs heat from the surroundings and changes in phase. Thus, the exhaust heat of the compressor 11 is stored in the heat storage material 25b. And the thermal storage material 25b which stored heat changes sensible heat so that the temperature of the high temperature side heat carrier may be approached. In addition, when the temperature of the high temperature side heat medium becomes lower than the heat storage temperature, the heat storage material 25b dissipates the exhaust heat of the compressor 11 stored in the high temperature side heat medium to change the phase.
 つまり、第1実施形態においては、高温側回収部25の収容部25a内に、蓄熱材25bを配置することにより、蓄熱部40を構成することができる。当該蓄熱部40は、圧縮機11の排熱を蓄熱しておき、高温側熱媒体の温度が予め定められた蓄熱温度よりも低くなると、蓄熱していた熱を高温側熱媒体に放熱する。即ち、蓄熱部40は、本開示における蓄熱部に相当する。 That is, in the first embodiment, the heat storage section 40 can be configured by arranging the heat storage material 25 b in the storage section 25 a of the high temperature side recovery section 25. The heat storage unit 40 stores the exhaust heat of the compressor 11 and dissipates the stored heat to the high temperature side heat medium when the temperature of the high temperature side heat medium becomes lower than a predetermined heat storage temperature. That is, the heat storage unit 40 corresponds to the heat storage unit in the present disclosure.
 次に、第1実施形態に係るヒートポンプシステム1の制御系について、図3を参照しつつ説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。 Next, a control system of the heat pump system 1 according to the first embodiment will be described with reference to FIG. The control device 60 is composed of a known microcomputer including a CPU, a ROM, a RAM and the like, and peripheral circuits thereof.
 そして、当該制御装置60は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器の作動を制御する。第1実施形態における制御対象機器には、圧縮機11と、冷却用膨張弁15aと、吸熱用膨張弁15bと、高温側熱媒体ポンプ21と、高温側流量調整弁24と、低温側熱媒体ポンプ31、低温側流量調整弁34と、送風機52等が含まれている。 Then, the control device 60 performs various operations and processes based on the control program stored in the ROM, and controls the operation of various control target devices connected to the output side. The control target devices in the first embodiment include the compressor 11, the cooling expansion valve 15a, the heat absorption expansion valve 15b, the high temperature side heat medium pump 21, the high temperature side flow control valve 24, and the low temperature side heat medium The pump 31, the low temperature side flow control valve 34, the blower 52 and the like are included.
 図3に示すように、制御装置60の入力側には、空調制御用のセンサ群が接続されている。当該空調制御用のセンサ群は、内気温センサ62a、外気温センサ62b、日射センサ62c、高圧センサ62d、蒸発器温度センサ62e、空調風温度センサ62fを含んでいる。制御装置60には、これらの空調制御用のセンサ群の検出信号が入力される。 As shown in FIG. 3, a sensor group for air conditioning control is connected to the input side of the control device 60. The air conditioning control sensor group includes an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, an evaporator temperature sensor 62e, and an air conditioning air temperature sensor 62f. The control device 60 receives detection signals of these air conditioning control sensors.
 内気温センサ62aは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62bは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ62cは、車室内へ照射される日射量Asを検出する日射量検出部である。高圧センサ62dは、圧縮機11の吐出口側から冷却用膨張弁15a或いは吸熱用膨張弁15bの入口側へ至る冷媒流路の高圧冷媒圧力Pdを検出する冷媒圧力検出部である。 The inside air temperature sensor 62a is an inside air temperature detection unit that detects a vehicle room temperature (inside air temperature) Tr. The outside air temperature sensor 62b is an outside air temperature detection unit that detects the temperature outside the vehicle (outside air temperature) Tam. The solar radiation sensor 62c is a solar radiation amount detection unit that detects the solar radiation amount As emitted to the vehicle interior. The high pressure sensor 62 d is a refrigerant pressure detection unit that detects the high pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 15 a or the heat absorption expansion valve 15 b.
 蒸発器温度センサ62eは、室内蒸発器16における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。空調風温度センサ62fは、車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The evaporator temperature sensor 62 e is an evaporator temperature detection unit that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16. The air conditioning air temperature sensor 62f is an air conditioning air temperature detection unit that detects the temperature of the air that is blown into the vehicle compartment.
 更に、制御装置60の入力側には、車室内前部の計器盤付近に配置された操作パネル61が接続されている。当該操作パネル61には、複数の操作スイッチが配置されている。従って、制御装置60には、この複数の操作スイッチからの操作信号が入力される。 Furthermore, on the input side of the control device 60, an operation panel 61 disposed in the vicinity of the instrument panel at the front of the vehicle interior is connected. On the operation panel 61, a plurality of operation switches are arranged. Therefore, control signals from the plurality of operation switches are input to the control device 60.
 操作パネル61における各種操作スイッチとしては、具体的に、ヒートポンプシステム1の自動制御運転を設定或いは解除するオートスイッチ、車室内の冷房を行うことを要求する冷房スイッチ、送風機52の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ等がある。 Specifically, as various operation switches in the operation panel 61, an automatic switch for setting or canceling the automatic control operation of the heat pump system 1, a cooling switch for requesting cooling of the vehicle interior, and manually setting an air volume of the blower 52 There are an air volume setting switch, a temperature setting switch for setting a target temperature Tset in the vehicle interior, and the like.
 尚、当該制御装置60では、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されているが、それぞれの制御対象機器の作動を制御する構成(ハードウェア及びソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 In the control device 60, a control unit for controlling various control target devices connected to the output side is integrally configured, but a configuration for controlling the operation of each control target device (hardware and software) Constitute a control unit that controls the operation of each control target device.
 例えば、制御装置60のうち、圧縮機11の作動を制御する構成は、吐出能力制御部60aである。制御装置60のうち、回路切替部として、冷却用膨張弁15a及び吸熱用膨張弁15bの作動を制御する構成は、回路切替制御部60bである。 For example, in the control device 60, the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 60a. In the control device 60, a circuit switching control unit 60b controls the operation of the cooling expansion valve 15a and the heat absorption expansion valve 15b as a circuit switching unit.
 続いて、第1実施形態におけるヒートポンプシステム1の作動について説明する。上述したように、第1実施形態に係るヒートポンプシステム1では、複数の運転モードから適宜運転モードを切り替えることができる。これらの運転モードの切り替えは、制御装置60に予め記憶された制御プログラムが実行されることによって行われる。 Subsequently, the operation of the heat pump system 1 in the first embodiment will be described. As described above, in the heat pump system 1 according to the first embodiment, the operation mode can be appropriately switched from the plurality of operation modes. Switching of these operation modes is performed by executing a control program stored in advance in the control device 60.
 より具体的には、制御プログラムでは、空調制御用のセンサ群によって検出された検出信号および操作パネル61から出力される操作信号に基づいて、車室内へ送風させる送風空気の目標吹出温度TAOを算出する。そして、目標吹出温度TAOおよび検出信号に基づいて、運転モードを切り替える。以下に、複数の運転モードの内、冷房モードにおける作動と、暖房モードにおける作動と、除湿暖房モードにおける作動を説明する。 More specifically, in the control program, based on the detection signal detected by the air conditioning control sensor group and the operation signal output from the operation panel 61, the target blowout temperature TAO of the air blown into the vehicle compartment is calculated. Do. Then, the operation mode is switched based on the target blowout temperature TAO and the detection signal. Hereinafter, among the plurality of operation modes, the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described.
 (a)冷房モード
 冷房モードは、熱交換対象流体である送風空気を冷却して車室内に送風する運転モードである。当該冷房モードでは、制御装置60が、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全閉状態とする。
(A) Cooling Mode The cooling mode is an operation mode in which the air, which is the fluid to be heat-exchanged, is cooled and blown into the vehicle compartment. In the cooling mode, the control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully closed state.
 従って、冷房モードのヒートポンプサイクル10では、圧縮機11→水-冷媒熱交換器12→冷媒分岐部14a→冷却用膨張弁15a→室内蒸発器16→蒸発圧力調整弁17→冷媒合流部14b→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the heat pump cycle 10 in the cooling mode, the compressor 11 → water-refrigerant heat exchanger 12 → refrigerant branch portion 14a → cooling expansion valve 15a → interior evaporator 16 → evaporation pressure control valve 17 → refrigerant merging portion 14b → compression A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the machine 11 is configured.
 つまり、冷房モードでは、室内蒸発器16へ冷媒を流入させ、送風空気との熱交換により送風空気を冷却する冷媒回路に切り替えられる。 That is, in the cooling mode, the refrigerant is made to flow into the indoor evaporator 16, and the refrigerant circuit is switched to the refrigerant circuit for cooling the blowing air by heat exchange with the blowing air.
 そして、このサイクル構成で、制御装置60は、出力側に接続された各種制御対象機器の作動を制御する。 Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side.
 例えば、制御装置60は、蒸発器温度センサ62eによって検出された冷媒蒸発温度Tefinが目標蒸発温度TEOとなるように圧縮機11の作動を制御する。目標蒸発温度TEOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶された冷房モード用の制御マップを参照して決定される。 For example, the control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62e becomes the target evaporation temperature TEO. The target evaporation temperature TEO is determined based on the target blowing temperature TAO with reference to the control map for cooling mode stored in advance in the control device 60.
 具体的には、この制御マップでは、空調風温度センサ62fによって検出された送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標蒸発温度TEOを上昇させる。さらに、目標蒸発温度TEOは、室内蒸発器16の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。 Specifically, in this control map, the target evaporation temperature TEO is raised along with the rise of the target blowout temperature TAO so that the blown air temperature TAV detected by the air conditioning air temperature sensor 62f approaches the target blowout temperature TAO. Furthermore, the target evaporation temperature TEO is determined to be a value in a range (specifically, 1 ° C. or more) in which frost formation of the indoor evaporator 16 can be suppressed.
 又、制御装置60は、予め定めた冷房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。又、制御装置60は、水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量が高温側ラジエータ23へ流入するように、高温側流量調整弁24の作動を制御する。 Further, the control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the cooling mode determined in advance. Further, the control device 60 controls the operation of the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23.
 当該制御装置60は、冷房モード時の水圧送能力を発揮するように、低温側熱媒体ポンプ31を作動させる。この時、制御装置60は、低温側流量調整弁34の作動を制御し、チラー18の水通路から流出した低温側熱媒体の流量バランスが、車載機器32側と低温側ラジエータ33側とで任意のバランスとなるように調整する。 The control device 60 operates the low temperature side heat medium pump 31 so as to exert the water pressure transfer capability in the cooling mode. At this time, the control device 60 controls the operation of the low temperature side flow control valve 34, and the flow balance of the low temperature side heat medium flowing out of the water passage of the chiller 18 is arbitrary between the on-vehicle device 32 side and the low temperature side radiator 33 side. Adjust to achieve a balance of
 そして、当該制御装置60は、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して送風機52の制御電圧(送風能力)を決定する。具体的には、この制御マップでは、目標吹出温度TAOの極低温域(最大冷房域)及び極高温域(最大暖房域)で送風機52の送風量を最大とし、中間温度域に近づくに伴って送風量を減少させる。 Then, the control device 60 determines the control voltage (air blowing capacity) of the fan 52 with reference to the control map stored in advance in the control device 60 based on the target blowing temperature TAO. Specifically, in this control map, the air flow of the blower 52 is maximized in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO, and as the intermediate temperature region is approached. Reduce air flow.
 又、制御装置60は、冷風バイパス通路55を全開としてヒータコア22側の通風路を閉塞するように、エアミックスドア54の作動を制御する。尚、当該制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。 Further, the control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the heater core 22 side is closed. The control device 60 appropriately controls the operation of other various control target devices.
 従って、冷房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the heat pump cycle 10 in the cooling mode, the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled. The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路にて冷却された高圧冷媒は、冷媒分岐部14aを介して、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aの絞り開度は、室内蒸発器16の出口側の冷媒の過熱度が概ね3℃となるように調整される。 The high pressure refrigerant cooled in the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a via the refrigerant branch portion 14a and is decompressed. The throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
 冷却用膨張弁15aにて減圧された低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。室内蒸発器16から流出した冷媒は、蒸発圧力調整弁17及び冷媒合流部14bを介して、圧縮機11へ吸入されて再び圧縮される。 The low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled. The refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the refrigerant merging portion 14 b and compressed again.
 従って、冷房モードでは、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the cooling mode, the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
 この冷房モードにおいても、圧縮機11の作動に伴い、圧縮機11の排熱が発生する。上述したように、高温側回収部25では、圧縮機11の排熱を高温側熱媒体で吸熱して回収することができ、更に、蓄熱材25bにて圧縮機11の排熱を蓄熱しておくことができる。つまり、当該ヒートポンプシステム1によれば、高温側回収部25の高温側熱媒体や蓄熱材25bによって、圧縮機11の排熱を回収して蓄熱しておき、高圧冷媒側に放熱して適宜利用することができる。 Also in this cooling mode, with the operation of the compressor 11, exhaust heat of the compressor 11 is generated. As described above, in the high temperature side recovery unit 25, the exhaust heat of the compressor 11 can be absorbed by the high temperature side heat medium and recovered, and the exhaust heat of the compressor 11 is stored by the heat storage material 25b. Can be That is, according to the heat pump system 1, the exhaust heat of the compressor 11 is recovered and stored by the high temperature side heat medium of the high temperature side recovery unit 25 and the heat storage material 25b, and dissipated to the high pressure refrigerant side for appropriate use can do.
 (b)暖房モード
 暖房モードは、チラー18にて低温側熱媒体回路30の低温側熱媒体から吸熱して、熱交換対象流体である送風空気を加熱して車室内に送風する運転モードである。当該暖房モードでは、制御装置60が、冷却用膨張弁15aを全閉状態とし、吸熱用膨張弁15bを所定の絞り開度で開く。
(B) Heating mode The heating mode is an operation mode in which the chiller 18 absorbs heat from the low-temperature side heat medium of the low-temperature side heat medium circuit 30, and heats the blowing air which is the fluid to be heat exchanged to blow the air into the vehicle compartment . In the heating mode, the control device 60 fully closes the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree.
 暖房モードのヒートポンプサイクル10では、圧縮機11→水-冷媒熱交換器12→冷媒分岐部14a→吸熱用膨張弁15b→チラー18→冷媒合流部14b→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 In the heat pump cycle 10 in the heating mode, steam in which the refrigerant circulates in the following order: compressor 11 → water-refrigerant heat exchanger 12 → refrigerant branch unit 14 a → expansion valve for heat absorption 15 b → chiller 18 → refrigerant merging unit 14 b → compressor 11 A compression type refrigeration cycle is configured.
 つまり、暖房モードでは、チラー18へ冷媒を流入させ、低温側熱媒体との熱交換により吸熱した熱を利用して、送風空気を加熱する冷媒回路に切り替えられる。 That is, in the heating mode, the refrigerant is made to flow into the chiller 18, and the heat is absorbed by heat exchange with the low temperature side heat medium to be switched to the refrigerant circuit that heats the blown air.
 ここで、低温側熱媒体回路30における低温側熱媒体は、車載機器32を通過する場合には車載機器32に生じた排熱によって加熱される。又、当該低温側熱媒体は、低温側ラジエータ33を通過する場合、外気との熱交換によって加熱される。つまり、当該ヒートポンプシステム1は、暖房モードにおいて、車載機器32や外気を暖房用の熱源として利用することができる。 Here, the low temperature side heat medium in the low temperature side heat medium circuit 30 is heated by the exhaust heat generated in the in-vehicle device 32 when passing through the in-vehicle device 32. Further, when passing through the low temperature side radiator 33, the low temperature side heat medium is heated by heat exchange with the outside air. That is, the heat pump system 1 can use the on-vehicle device 32 or the outside air as a heat source for heating in the heating mode.
 そして、このサイクル構成で、制御装置60は、出力側に接続された各種制御対象機器の作動を制御する。 Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side.
 例えば、制御装置60は、高圧センサ62dによって検出された高圧冷媒圧力Pdが目標高圧PCOとなるように圧縮機11の作動を制御する。目標高圧PCOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶された暖房モード用の制御マップを参照して決定される。 For example, the control device 60 controls the operation of the compressor 11 such that the high pressure refrigerant pressure Pd detected by the high pressure sensor 62d becomes the target high pressure PCO. The target high pressure PCO is determined based on the target blowout temperature TAO with reference to the heating mode control map stored in advance in the control device 60.
 具体的には、この制御マップでは、送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標高圧PCOを上昇させる。 Specifically, in this control map, the target high pressure PCO is raised with the rise of the target blowing temperature TAO so that the blowing air temperature TAV approaches the target blowing temperature TAO.
 又、制御装置60は、予め定めた暖房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。当該制御装置60は、水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量がヒータコア22へ流入するように、高温側流量調整弁24の作動を制御する。 Further, the control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode. The control device 60 controls the operation of the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 22.
 当該制御装置60は、暖房モード時の水圧送能力を発揮するように、低温側熱媒体ポンプ31を作動させる。この時、制御装置60は、低温側流量調整弁34の作動を制御し、チラー18の水通路から流出した低温側熱媒体の流量バランスが、車載機器32側と低温側ラジエータ33側とで任意のバランスとなるように調整する。 The control device 60 operates the low temperature side heat medium pump 31 so as to exert the water pressure transfer capability in the heating mode. At this time, the control device 60 controls the operation of the low temperature side flow control valve 34, and the flow balance of the low temperature side heat medium flowing out of the water passage of the chiller 18 is arbitrary between the on-vehicle device 32 side and the low temperature side radiator 33 side. Adjust to achieve a balance of
 そして、当該制御装置60は、冷房モードと同様に、送風機52の制御電圧(送風能力)を決定する。又、制御装置60は、ヒータコア22側の通風路を全開として冷風バイパス通路55を閉塞するように、エアミックスドア54の作動を制御する。尚、制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。 And the said control apparatus 60 determines the control voltage (blower capability) of the air blower 52 similarly to air conditioning mode. Further, the control device 60 controls the operation of the air mix door 54 so as to close the cold air bypass passage 55 by fully opening the air passage on the heater core 22 side. The control device 60 appropriately controls the operation of various other control target devices.
 従って、暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the heat pump cycle 10 in the heating mode, the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
 これにより、熱交換対象流体である送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 Thereby, the blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO. The high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、冷媒分岐部14aを介して、吸熱用膨張弁15bへ流入して減圧される。吸熱用膨張弁15bの絞り開度は、チラー18の出口側の冷媒が気液二相状態となるように調整される。 The high pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the heat absorption expansion valve 15b via the refrigerant branch portion 14a and is reduced in pressure. The throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the chiller 18 is in a gas-liquid two-phase state.
 この時、低温側熱媒体回路30では、低温側熱媒体ポンプ31の作動によって、低温側熱媒体が循環回路を循環している。当該低温側熱媒体は、車載機器32の水通路を通過する際に、車載機器32に生じている熱を吸熱する。 At this time, in the low temperature side heat medium circuit 30, the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31. The low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
 又、低温側熱媒体は、低温側ラジエータ33を通過する際に、外気ファンによって送風される外気から吸熱する。低温側熱媒体は、車載機器32や低温側ラジエータ33にて吸熱した状態で、チラー18の水通路に流入している。 Further, when passing through the low temperature side radiator 33, the low temperature side heat medium absorbs heat from the outside air blown by the outside air fan. The low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
 ヒートポンプサイクル10において、吸熱用膨張弁15bにて減圧された低圧冷媒はチラー18へ流入する。チラー18へ流入した冷媒は、当該チラー18の水通路を流通する低温側熱媒体から吸熱して蒸発する。チラー18から流出した冷媒は、冷媒合流部14bを介して、圧縮機11へ吸入されて再び圧縮される。 In the heat pump cycle 10, the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the chiller 18. The refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium flowing through the water passage of the chiller 18 and evaporates. The refrigerant flowing out of the chiller 18 is sucked into the compressor 11 via the refrigerant merging portion 14b and compressed again.
 従って、暖房モードでは、熱交換対象流体である送風空気を、ヒータコア22で加熱して車室内へ吹き出すことによって、車室内の暖房を行うことができる。即ち、当該ヒートポンプシステム1は、暖房モードにおいて、低温側熱媒体回路30にて車載機器32又は外気から吸熱した熱を、ヒートポンプサイクル10で汲み上げて、高温側熱媒体回路20を介して、送風空気の加熱に利用することができる。 Therefore, in the heating mode, heating of the vehicle interior can be performed by heating the blown air, which is the fluid to be heat-exchanged, with the heater core 22 and blowing it out into the vehicle interior. That is, in the heating mode, the heat pump system 1 pumps up the heat absorbed from the on-vehicle device 32 or the outside air in the low temperature side heat medium circuit 30 in the heat pump cycle 10, and sends the blown air through the high temperature side heat medium circuit 20. It can be used to heat the
 そして、当該暖房モードにおいても、ヒートポンプサイクル10における圧縮機11の作動が必要となる。この為、暖房モードにおいても、圧縮機11の排熱が発生する。当該ヒートポンプシステム1は、高温側熱媒体回路20の高温側回収部25にて、高温側熱媒体を介して、圧縮機11の排熱を回収することができる。 And also in the heating mode concerned, operation of compressor 11 in heat pump cycle 10 is needed. For this reason, the exhaust heat of the compressor 11 is generated also in the heating mode. The heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20.
 具体的に説明すると、高温側熱媒体回路20における高温側熱媒体の一部は、高温側熱媒体回路20における循環回路から分岐して、高温側流入配管26を介して、収容部25a内に流入する。収容部25a内において、高温側熱媒体は、圧縮機11の排熱を吸熱して、高温側流出配管27を介して、高温側熱媒体回路20の循環回路に合流する。このようにして、高温側熱媒体回路20は、圧縮機11の排熱を回収し、圧縮機11の排熱を高温側熱媒体回路20の循環回路側に輸送することができる。 Specifically, a part of the high temperature side heat medium in the high temperature side heat medium circuit 20 branches from the circulation circuit in the high temperature side heat medium circuit 20 and enters the housing portion 25 a via the high temperature side inflow piping 26. To flow. In the housing portion 25 a, the high temperature side heat medium absorbs the exhaust heat of the compressor 11 and joins the circulation circuit of the high temperature side heat medium circuit 20 via the high temperature side outflow pipe 27. In this manner, the high temperature side heat medium circuit 20 can recover the exhaust heat of the compressor 11 and transport the exhaust heat of the compressor 11 to the circulation circuit side of the high temperature side heat medium circuit 20.
 当該ヒートポンプシステム1によれば、低温側熱媒体回路30から汲み上げた熱を含む高圧冷媒の熱に加え、圧縮機11の排熱を用いて、高温側熱媒体回路20の高温側熱媒体を加熱し、ヒータコア22にて送風空気へ放熱させることができる。 According to the heat pump system 1, in addition to the heat of the high pressure refrigerant including the heat pumped up from the low temperature side heat medium circuit 30, the exhaust heat of the compressor 11 is used to heat the high temperature side heat medium of the high temperature side heat medium circuit 20 The heater core 22 can dissipate heat to the blowing air.
 これにより、当該ヒートポンプシステム1は、暖房モードにおける熱源として、水-冷媒熱交換器12における高圧冷媒の熱に加えて、圧縮機11の排熱を利用して高圧冷媒側に放熱させることができるので、ヒートポンプシステム1における暖房能力を向上させることができる。 Accordingly, the heat pump system 1 can dissipate heat to the high pressure refrigerant side using the exhaust heat of the compressor 11 in addition to the heat of the high pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the heating mode. Therefore, the heating capacity in the heat pump system 1 can be improved.
 (c)除湿暖房モード
 除湿暖房モードは、室内蒸発器16にて冷却された送風空気を、チラー18にて低温側熱媒体回路30の低温側熱媒体から吸熱した熱等を用いて加熱して車室内に送風する運転モードである。当該除湿暖房モードでは、制御装置60が、冷却用膨張弁15a及び吸熱用膨張弁15bを、それぞれ所定の絞り開度で開く。
(C) Dehumidifying heating mode In the dehumidifying heating mode, the blown air cooled by the indoor evaporator 16 is heated by the chiller 18 using heat absorbed from the low temperature side heat medium of the low temperature side heat medium circuit 30 and the like. It is an operation mode for blowing air into the passenger compartment. In the dehumidifying and heating mode, the control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at respective predetermined opening degrees.
 従って、除湿暖房モードのヒートポンプサイクル10では、圧縮機11→水-冷媒熱交換器12→冷媒分岐部14aまで流れ、冷媒分岐部14aの一方側→冷却用膨張弁15a→室内蒸発器16へ流れると共に、冷媒分岐部14aの他方側→吸熱用膨張弁15b→チラー18へ流れる。そして、室内蒸発器16から流出した冷媒及びチラー18から流出した冷媒は冷媒合流部14bにて合流した後、圧縮機11の順で流れて循環する。即ち、除湿暖房モードでは、室内蒸発器16及びチラー18に冷媒が並列に流れる蒸気圧縮式の冷凍サイクルが構成される。 Accordingly, in the heat pump cycle 10 in the dehumidifying heating mode, the heat flows from the compressor 11 to the water-refrigerant heat exchanger 12 to the refrigerant branch portion 14a, and flows from one side of the refrigerant branch portion 14a to the cooling expansion valve 15a to the indoor evaporator 16. At the same time, it flows from the other side of the refrigerant branch portion 14a to the heat absorption expansion valve 15b to the chiller 18. The refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the chiller 18 merge at the refrigerant merging portion 14b, and then flow in the order of the compressor 11 and circulate. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the chiller 18 is configured.
 そして、このサイクル構成で、制御装置60は、出力側に接続された各種制御対象機器の作動を、予め制御装置60に記憶された除湿暖房モード用の制御マップ等を参照して制御する。 Then, with this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side with reference to the control map for the dehumidifying and heating mode and the like stored in advance in the control device 60.
 除湿暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 In the heat pump cycle 10 in the dehumidifying and heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16にて冷却された送風空気と熱交換して放熱する。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium that has flowed into the heater core 22 exchanges heat with the blowing air cooled by the indoor evaporator 16 and radiates heat since the air mixing door 54 fully opens the air passage on the heater core 22 side.
 これにより、送風空気が冷却された状態から再加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 Thus, the blown air is reheated from the cooled state, and the temperature of the blown air approaches the target blowout temperature TAO. The high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、冷媒分岐部14aを介して、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aの絞り開度は、室内蒸発器16の出口側の冷媒の過熱度が概ね3℃となるように調整される。 The high pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a via the refrigerant branch portion 14a and is decompressed. The throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
 冷却用膨張弁15aにて減圧された低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。室内蒸発器16から流出した冷媒は、蒸発圧力調整弁17及び冷媒合流部14bを介して、圧縮機11へ吸入されて再び圧縮される。 The low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled. The refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the refrigerant merging portion 14 b and compressed again.
 冷媒分岐部14aにて分岐した高圧冷媒は、吸熱用膨張弁15bへ流入して減圧される。吸熱用膨張弁15bの絞り開度は、チラー18の出口側の冷媒が気液二相状態となるように調整される。 The high pressure refrigerant branched at the refrigerant branch portion 14a flows into the heat absorption expansion valve 15b and is decompressed. The throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the chiller 18 is in a gas-liquid two-phase state.
 除湿暖房モードにおいても、低温側熱媒体回路30では、低温側熱媒体ポンプ31の作動によって、低温側熱媒体が循環回路を循環している。当該低温側熱媒体は、車載機器32の水通路を通過する際に、車載機器32に生じている熱を吸熱する。 Also in the dehumidifying and heating mode, in the low temperature side heat medium circuit 30, the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31. The low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
 又、低温側熱媒体は、低温側ラジエータ33を通過する際に、外気ファンによって送風される外気から吸熱する。低温側熱媒体は、車載機器32や低温側ラジエータ33にて吸熱した状態で、チラー18の水通路に流入している。 Further, when passing through the low temperature side radiator 33, the low temperature side heat medium absorbs heat from the outside air blown by the outside air fan. The low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
 ヒートポンプサイクル10において、吸熱用膨張弁15bにて減圧された低圧冷媒はチラー18へ流入する。チラー18へ流入した冷媒は、当該チラー18の水通路を流通する低温側熱媒体から吸熱して蒸発する。チラー18から流出した冷媒は、冷媒合流部14bを介して、圧縮機11へ吸入されて再び圧縮される。 In the heat pump cycle 10, the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the chiller 18. The refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium flowing through the water passage of the chiller 18 and evaporates. The refrigerant flowing out of the chiller 18 is sucked into the compressor 11 via the refrigerant merging portion 14b and compressed again.
 上述したように、ケーシング51内部において、室内蒸発器16の送風空気流れ下流側にヒータコア22が配置されている為、除湿暖房モードでは、室内蒸発器16にて冷却された送風空気を、低温側熱媒体回路30にて吸熱した熱を利用してヒータコア22で加熱することができる。従って、除湿暖房モードでは、室内蒸発器16に冷却された送風空気を、ヒータコア22で加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 As described above, the heater core 22 is disposed on the downstream side of the air flow of the indoor evaporator 16 inside the casing 51. Therefore, in the dehumidifying and heating mode, the air cooled by the indoor evaporator 16 is on the low temperature side. The heat absorbed by the heat medium circuit 30 can be used to heat the heater core 22. Therefore, in the dehumidifying and heating mode, dehumidifying and heating the passenger compartment can be performed by heating the blown air cooled by the indoor evaporator 16 by the heater core 22 and blowing it out into the passenger compartment.
 即ち、当該ヒートポンプシステム1は、除湿暖房モードにおいても、低温側熱媒体回路30にて車載機器32又は外気から吸熱した熱を、ヒートポンプサイクル10で汲み上げて、高温側熱媒体回路20を介して、送風空気の加熱に利用することができる。 That is, even in the dehumidifying and heating mode, the heat pump system 1 pumps up the heat absorbed by the low-temperature side heat medium circuit 30 from the on-vehicle device 32 or the outside air in the heat pump cycle 10 and via the high temperature side heat medium circuit 20 It can be used to heat the blast air.
 そして、当該除湿暖房モードにおいても、ヒートポンプサイクル10における圧縮機11の作動が必要となる。この為、除湿暖房モードにおいても、圧縮機11の排熱が発生する。当該ヒートポンプシステム1は、高温側熱媒体回路20の高温側回収部25にて、高温側熱媒体を介して、圧縮機11の排熱を回収することができる。当該高温側熱媒体回路20は、暖房モード時と同様に、圧縮機11の排熱を回収し、圧縮機11の排熱を高温側熱媒体回路20の循環回路側に輸送することができる。 And in the said dehumidification heating mode, operation of compressor 11 in heat pump cycle 10 is needed. For this reason, the exhaust heat of the compressor 11 is generated also in the dehumidifying and heating mode. The heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20. The high temperature side heat medium circuit 20 can recover the exhaust heat of the compressor 11 and transport the exhaust heat of the compressor 11 to the circulation circuit side of the high temperature side heat medium circuit 20 as in the heating mode.
 当該ヒートポンプシステム1によれば、低温側熱媒体回路30から汲み上げた熱を含む高圧冷媒の熱に加え、圧縮機11の排熱を用いて、高温側熱媒体回路20の高温側熱媒体を加熱し、室内蒸発器16にて冷却された空気をヒータコア22にて加熱することができる。 According to the heat pump system 1, in addition to the heat of the high pressure refrigerant including the heat pumped up from the low temperature side heat medium circuit 30, the exhaust heat of the compressor 11 is used to heat the high temperature side heat medium of the high temperature side heat medium circuit 20 The air cooled by the indoor evaporator 16 can be heated by the heater core 22.
 これにより、当該ヒートポンプシステム1は、除湿暖房モードにおける熱源として、水-冷媒熱交換器12における高圧冷媒の熱に加えて、圧縮機11の排熱を利用して高圧冷媒側に放熱させることができるので、除湿暖房モード時におけるヒートポンプシステム1の暖房能力を向上させることができる。 Accordingly, the heat pump system 1 can dissipate heat to the high pressure refrigerant side using the exhaust heat of the compressor 11 in addition to the heat of the high pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the dehumidifying heating mode. Since it can do, the heating capacity of heat pump system 1 at the time of dehumidification heating mode can be improved.
 以上説明したように、第1実施形態に係るヒートポンプシステム1によれば、ヒートポンプサイクル10の冷媒回路を切り替えることによって、複数の運転モードの内、冷房モード、暖房モード、除湿暖房モードを実現することができ、車室内の快適な空調を行うことができる。 As described above, according to the heat pump system 1 according to the first embodiment, the cooling mode, the heating mode, and the dehumidifying heating mode are realized among the plurality of operation modes by switching the refrigerant circuit of the heat pump cycle 10. And can perform comfortable air conditioning of the vehicle interior.
 そして、当該ヒートポンプサイクル10では、同一の熱交換器へ高圧冷媒を流入させる冷媒回路と低圧冷媒を流入させる冷媒回路とを切り替えることがない。つまり、いずれの冷媒回路に切り替えても室内蒸発器16及びチラー18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。 And in the said heat pump cycle 10, it does not switch with the refrigerant circuit which makes a high pressure refrigerant flow in the same heat exchanger, and the refrigerant circuit which makes a low pressure refrigerant flow. That is, since it is not necessary to cause the high pressure refrigerant to flow into the indoor evaporator 16 and the chiller 18 regardless of which refrigerant circuit is switched, the refrigerant circuit can be switched with a simple configuration without causing the complication of the cycle configuration.
 この運転モードの何れにおいても、ヒートポンプサイクル10における圧縮機11が作動される為、圧縮機11の排熱が発生する。当該ヒートポンプシステム1によれば、高温側熱媒体回路20の高温側回収部25を介して、圧縮機11の排熱を回収して、高温側熱媒体回路20にて利用することができる。 In any of the operation modes, since the compressor 11 in the heat pump cycle 10 is operated, exhaust heat of the compressor 11 is generated. According to the heat pump system 1, the exhaust heat of the compressor 11 can be recovered via the high temperature side recovery section 25 of the high temperature side heat medium circuit 20 and can be used in the high temperature side heat medium circuit 20.
 当該ヒートポンプシステム1において、高温側熱媒体回路20は、本開示における高温側熱受容部に相当し、高温側回収部25は、本開示における回収部に相当している。 In the heat pump system 1, the high temperature side heat medium circuit 20 corresponds to the high temperature side heat receiving portion in the present disclosure, and the high temperature side recovery portion 25 corresponds to the recovery portion in the present disclosure.
 このように構成することで、当該ヒートポンプシステム1は、高温側回収部25における圧縮機11の排熱の回収、回収した熱の輸送や、高温側熱媒体回路20における回収した熱の利用に際して、高温側熱媒体を介在させることができ、より効率良く、圧縮機11の発熱を取り扱うことができる。 With this configuration, the heat pump system 1 recovers the exhaust heat of the compressor 11 in the high temperature side recovery unit 25, transports the recovered heat, and uses the recovered heat in the high temperature side heat medium circuit 20, A high temperature side heat medium can be intervened, and the heat generation of the compressor 11 can be handled more efficiently.
 又、高温側熱媒体回路20は、ヒータコア22を有している。従って、ヒートポンプシステム1は、暖房モード時や除湿暖房モード時において、高温側回収部25を介して回収した圧縮機11の排熱を、熱交換対象流体である送風空気の加熱に用いることができ、熱交換対象流体に対する加熱能力を向上させることができる。 Further, the high temperature side heat medium circuit 20 has a heater core 22. Therefore, the heat pump system 1 can use the exhaust heat of the compressor 11 recovered through the high temperature side recovery unit 25 for heating the blowing air, which is the heat exchange object, in the heating mode or the dehumidifying heating mode. The heating capacity for the heat exchange target fluid can be improved.
 尚、当該ヒートポンプシステム1において、当該高温側熱媒体回路20は、高温側ラジエータ23を有している為、高温側熱媒体が有する熱を外気に放熱させることができる。即ち、高温側ラジエータ23により、高温側熱媒体の熱量を調整することができる。 In the heat pump system 1, the high temperature side heat medium circuit 20 has the high temperature side radiator 23, so the heat of the high temperature side heat medium can be dissipated to the outside air. That is, the heat quantity of the high temperature side heat medium can be adjusted by the high temperature side radiator 23.
 従って、当該ヒートポンプシステム1は、熱交換対象流体である送風空気に対する加熱能力(即ち、暖房能力)を調整できる。当該ヒートポンプシステム1は、圧縮機11の排熱を有効に活用して暖房を行いつつ、所望の暖房能力に調整することができる。 Therefore, the heat pump system 1 can adjust the heating capacity (that is, the heating capacity) for the blowing air which is the heat exchange target fluid. The heat pump system 1 can adjust it to a desired heating capacity while heating by effectively using the exhaust heat of the compressor 11.
 図1に示すように、当該ヒートポンプシステム1において、ヒートポンプサイクル10は、室内蒸発器16と、チラー18とを有している。室内蒸発器16は、冷却用膨張弁15aで減圧された冷媒と送風空気との熱交換により蒸発させ、送風空気から吸熱して冷却する。チラー18は、吸熱用膨張弁15bで減圧された冷媒と低温側熱媒体回路30の低温側熱媒体との熱交換により、低温側熱媒体から吸熱する。 As shown in FIG. 1, in the heat pump system 1, the heat pump cycle 10 includes an indoor evaporator 16 and a chiller 18. The indoor evaporator 16 evaporates by heat exchange between the refrigerant decompressed by the cooling expansion valve 15a and the blast air, and absorbs heat from the blast air to cool it. The chiller 18 absorbs heat from the low temperature side heat medium by heat exchange between the refrigerant decompressed by the heat absorption expansion valve 15 b and the low temperature side heat medium of the low temperature side heat medium circuit 30.
 当該ヒートポンプシステム1によれば、ヒートポンプサイクル10にこれらの2つの吸熱器を配置することで、例えば、低温側熱媒体と送風空気のような異なる2つの熱媒体と冷媒との熱交換を可能にすることができ、種々の用途に対応することができる。 According to the heat pump system 1, by arranging these two heat sinks in the heat pump cycle 10, for example, heat exchange between the two different heat mediums such as the low temperature side heat medium and the blast air and the refrigerant is enabled. Can be adapted to various applications.
 更に、図2に示すように、当該ヒートポンプシステム1の高温側熱媒体回路20において、高温側回収部25は、複数の蓄熱材25bを収容部25a内に配置して構成されている。即ち、高温側回収部25は、本開示に係る蓄熱部の機能を有している。 Furthermore, as shown in FIG. 2, in the high temperature side heat medium circuit 20 of the heat pump system 1, the high temperature side recovery unit 25 is configured by arranging a plurality of heat storage materials 25 b in the housing portion 25 a. That is, the high temperature side recovery unit 25 has the function of the heat storage unit according to the present disclosure.
 当該ヒートポンプシステム1によれば、収容部25aにおいて、圧縮機11の排熱を蓄熱材25bに蓄熱することができる。そして、蓄熱部40を構成する各蓄熱材25bは、高温側熱媒体の温度が予め定められていた温度よりも低下すると、蓄熱していた熱を高温側熱媒体に放熱する。 According to the heat pump system 1, the exhaust heat of the compressor 11 can be stored in the heat storage material 25 b in the storage unit 25 a. And each thermal storage material 25b which comprises the thermal storage part 40 thermally radiates the heat stored thermally to the high temperature side heat medium, when the temperature of the high temperature side heat medium falls rather than the temperature defined beforehand.
 従って、当該ヒートポンプシステム1によれば、高温側熱媒体の温度状況に応じて、蓄熱部40に蓄えられていた熱を、高温側熱媒体回路20にて利用することができる。つまり、当該ヒートポンプシステム1は、高温側熱媒体の状況に応じて、圧縮機11の排熱を柔軟に活用することができる。 Therefore, according to the heat pump system 1, the heat stored in the heat storage section 40 can be used in the high temperature side heat medium circuit 20 according to the temperature condition of the high temperature side heat medium. That is, the heat pump system 1 can flexibly utilize the exhaust heat of the compressor 11 according to the condition of the high temperature side heat medium.
 (第1変形例)
 第1実施形態においては、高温側熱媒体回路20における高温側分岐部26a及び高温側合流部27aを、水-冷媒熱交換器12における水通路の出口側に配置していたが、図4に示すように、高温側分岐部26a及び高温側合流部27aを、水-冷媒熱交換器12における水通路の入口側に配置してもよい。尚、図4では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(First modification)
In the first embodiment, the high temperature side branch portion 26 a and the high temperature side junction portion 27 a in the high temperature side heat medium circuit 20 are disposed on the outlet side of the water passage in the water-refrigerant heat exchanger 12. As shown, the high temperature side branch portion 26 a and the high temperature side junction portion 27 a may be disposed on the inlet side of the water passage in the water-refrigerant heat exchanger 12. In FIG. 4, the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 図4に示すように、水-冷媒熱交換器12の水通路の入口側にて、高温側合流部27aは、高温側熱媒体の流れに関して高温側分岐部26aよりも下流側に配置される。この第1変形例において、高温側分岐部26a及び高温側合流部27aの配置が第1実施形態との相違点にあたる。 As shown in FIG. 4, on the inlet side of the water passage of the water-refrigerant heat exchanger 12, the high temperature side joining portion 27a is disposed downstream of the high temperature side branch portion 26a with respect to the flow of the high temperature side heat medium. . In the first modification, the arrangement of the high temperature side branch portion 26a and the high temperature side junction portion 27a corresponds to the difference from the first embodiment.
 従って、この点を除いた他の構成は、第1実施形態と同様である。そして、第1変形例におけるヒートポンプサイクル10、高温側熱媒体回路20、低温側熱媒体回路30の作動は、上述した実施形態と同様である。 Therefore, the other configuration except this point is the same as that of the first embodiment. And operation of heat pump cycle 10 in the 1st modification, high temperature side heat carrier circuit 20, and low temperature side heat carrier circuit 30 is the same as that of an embodiment mentioned above.
 これにより、第1変形例においては、ヒートポンプシステム1は、水-冷媒熱交換器12に流入する前の高温側熱媒体を用いて、高温側回収部25にて圧縮機11の排熱を回収することができる。そして、当該ヒートポンプシステム1では、圧縮機11の排熱を回収した後の高温側熱媒体が、水-冷媒熱交換器12にて高圧冷媒で加熱される。 Thus, in the first modification, the heat pump system 1 recovers the exhaust heat of the compressor 11 in the high temperature side recovery unit 25 using the high temperature side heat medium before flowing into the water-refrigerant heat exchanger 12 can do. Then, in the heat pump system 1, the high temperature side heat medium after recovering the exhaust heat of the compressor 11 is heated by the water-refrigerant heat exchanger 12 with the high pressure refrigerant.
 当該第1変形例に係るヒートポンプシステム1によれば、上述した第1実施形態と共通の構成及び作動から奏される作用効果を、第1実施形態と同様に得ることができる。つまり、当該ヒートポンプシステム1は、高温側熱媒体回路20及び高温側回収部25を用いて、圧縮機11の排熱を回収して有効に活用することができる。 According to the heat pump system 1 according to the first modification, the same advantages as those of the first embodiment can be obtained from the same configuration and operation as those of the first embodiment described above. That is, the heat pump system 1 can recover exhaust heat of the compressor 11 and use it effectively by using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25.
 又、第1実施形態と第1変形例については、圧縮機11から吐出される高圧冷媒の温度や高温側合流部27aにて合流する際の高温側熱媒体の温度等の条件に応じて、適宜選択することができる。これらの条件に応じて選択することで、圧縮機11の排熱を更に有効に活用することが可能となる。 In the first embodiment and the first modification, depending on conditions such as the temperature of the high pressure refrigerant discharged from the compressor 11 and the temperature of the high temperature side heat medium at the time of joining at the high temperature side junction 27a, It can be selected appropriately. By selecting in accordance with these conditions, it is possible to more effectively utilize the exhaust heat of the compressor 11.
 (第2変形例)
 又、第1実施形態においては、ヒートポンプシステム1は、ヒートポンプサイクル10と、高温側熱媒体回路20と、低温側熱媒体回路30とを有していたが、この構成に限定されるものではない。即ち、図5に示すように、第1実施形態に係るヒートポンプシステム1にて、低温側熱媒体回路30を廃止した構成にすることができる。
(2nd modification)
Further, in the first embodiment, the heat pump system 1 includes the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30, but the present invention is not limited to this configuration. . That is, as shown in FIG. 5, in the heat pump system 1 according to the first embodiment, the low temperature side heat medium circuit 30 can be eliminated.
 この場合、ヒートポンプサイクル10におけるチラー18に替えて、室外熱交換器18aが配置される。当該室外熱交換器18aは、少なくとも暖房モード及び除湿暖房モード時に、冷媒通路を流通する低圧冷媒と外気とを熱交換させて、低圧冷媒を蒸発させる蒸発部である。 In this case, the outdoor heat exchanger 18 a is disposed in place of the chiller 18 in the heat pump cycle 10. The outdoor heat exchanger 18a is an evaporation unit which causes the low pressure refrigerant to evaporate by heat exchange between the low pressure refrigerant flowing through the refrigerant passage and the outside air at least in the heating mode and the dehumidifying and heating mode.
 つまり、室外熱交換器18aは、少なくとも暖房モード及び除湿暖房モード時に、低圧冷媒を蒸発させて外気の有する熱を冷媒に吸熱させる吸熱用の熱交換器である。この室外熱交換器18aは、本開示における吸熱器として機能し、第1吸熱器と第2吸熱器の何れか一方に相当する。 That is, the outdoor heat exchanger 18a is a heat exchanger for absorbing heat that evaporates the low-pressure refrigerant and absorbs the heat of the outside air to the refrigerant at least in the heating mode and the dehumidifying and heating mode. The outdoor heat exchanger 18 a functions as a heat absorber in the present disclosure, and corresponds to any one of the first heat absorber and the second heat absorber.
 図5に示すように、第2変形例に係るヒートポンプシステム1は、低温側熱媒体回路30を有していない為、車載機器32の温度調整機能を有していないが、車室内の空調機能を保持している。第2変形例におけるヒートポンプサイクル10及び高温側熱媒体回路20の制御内容については、第1実施形態と同様である為、その説明を省略する。 As shown in FIG. 5, since the heat pump system 1 according to the second modification does not have the low temperature side heat medium circuit 30, the heat pump system 1 does not have the temperature adjustment function of the in-vehicle device 32. Hold The control contents of the heat pump cycle 10 and the high temperature side heat medium circuit 20 in the second modification are the same as those in the first embodiment, and thus the description thereof will be omitted.
 従って、第2変形例に係るヒートポンプシステム1は、上述した第1実施形態と共通の構成及び作動から奏される作用効果を、第1実施形態と同様に得ることができる。即ち、当該ヒートポンプシステム1は、高温側熱媒体回路20及び高温側回収部25を用いて、圧縮機11の排熱を回収して有効に活用することができる。 Therefore, the heat pump system 1 according to the second modification can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment described above. That is, the heat pump system 1 can recover the exhaust heat of the compressor 11 and use it effectively by using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25.
 (第3変形例)
 続いて、第1実施形態の第3変形例について説明する。図6に示すように、第3変形例では、高温側分岐部26a及び高温側合流部27aが水-冷媒熱交換器12における水通路の入口側に配置されている。
(Third modification)
Subsequently, a third modification of the first embodiment will be described. As shown in FIG. 6, in the third modification, the high temperature side branch portion 26a and the high temperature side junction portion 27a are disposed on the inlet side of the water passage in the water-refrigerant heat exchanger 12.
 更に、第3変形例においては、ヒートポンプサイクル10のチラー18に替えて室外熱交換器18aが配置され、低温側熱媒体回路30が廃止されている。つまり、第3変形例は、第1実施形態に対して、第1変形例の相違点と第2変形例の相違点の両者を適用した変形例である。 Furthermore, in the third modification, the chiller 18 of the heat pump cycle 10 is replaced with an outdoor heat exchanger 18a, and the low temperature side heat medium circuit 30 is eliminated. That is, the third modification is a modification in which both the difference between the first modification and the difference between the second modification are applied to the first embodiment.
 従って、第3変形例に係るヒートポンプシステム1は、上述した第1変形例及び第2変形例と同様に、第1実施形態と共通の構成及び作動から奏される作用効果を、第1実施形態と同様に得ることができる。即ち、当該ヒートポンプシステム1は、高温側熱媒体回路20及び高温側回収部25を用いて、圧縮機11の排熱を回収して有効に活用することができる。 Therefore, the heat pump system 1 according to the third modification is the same as the first modification and the second modification described above in terms of functions and effects exhibited from the configuration and operation common to the first embodiment, the first embodiment. Can be obtained in the same way. That is, the heat pump system 1 can recover the exhaust heat of the compressor 11 and use it effectively by using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25.
 (第2実施形態)
 続いて、上述した第1実施形態とは異なる第2実施形態について、図7を参照しつつ説明する。
Second Embodiment
Subsequently, a second embodiment different from the above-described first embodiment will be described with reference to FIG.
 第2実施形態に係るヒートポンプシステム1は、第1実施形態と同様に、電気自動車に搭載されている。図7に示すように、当該ヒートポンプシステム1は、ヒートポンプサイクル10と、高温側熱媒体回路20と、低温側熱媒体回路30とを有しており、更に、室内空調ユニット50と、制御装置60等を有している。 The heat pump system 1 which concerns on 2nd Embodiment is mounted in the electric vehicle similarly to 1st Embodiment. As shown in FIG. 7, the heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, and further, an indoor air conditioning unit 50 and a control device 60. Etc.
 第2実施形態においては、高温側熱媒体回路20及び低温側熱媒体回路30の構成が第1実施形態と相違している。即ち、第2実施形態において、ヒートポンプサイクル10、室内空調ユニット50、制御装置60に係る構成は第1実施形態と同様である。 In the second embodiment, the configurations of the high temperature side heat medium circuit 20 and the low temperature side heat medium circuit 30 are different from those of the first embodiment. That is, in 2nd Embodiment, the structure which concerns on the heat pump cycle 10, the indoor air-conditioning unit 50, and the control apparatus 60 is the same as that of 1st Embodiment.
 第2実施形態に係る高温側熱媒体回路20は、第1実施形態と同様に、高温側熱媒体ポンプ21と、ヒータコア22と、高温側ラジエータ23と、高温側流量調整弁24とを有しており、高温側熱媒体回路20の循環回路に係る構成は同様である。しかしながら、第2実施形態に係る高温側熱媒体回路20は、第1実施形態と異なり、高温側回収部25を有していない。 The high temperature side heat medium circuit 20 according to the second embodiment includes the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, and the high temperature side flow rate adjustment valve 24 as in the first embodiment. The configuration related to the circulation circuit of the high temperature side heat medium circuit 20 is the same. However, unlike the first embodiment, the high temperature side heat medium circuit 20 according to the second embodiment does not have the high temperature side recovery unit 25.
 一方、第2実施形態に係る低温側熱媒体回路30は、第1実施形態と同様に、低温側熱媒体ポンプ31と、車載機器32と、低温側ラジエータ33と、低温側流量調整弁34とを有しており、低温側熱媒体回路30の循環回路としての構成は同様である。 On the other hand, the low temperature side heat medium circuit 30 according to the second embodiment includes the low temperature side heat medium pump 31, the on-vehicle device 32, the low temperature side radiator 33, and the low temperature side flow rate adjustment valve 34 as in the first embodiment. The configuration of the low temperature side heat medium circuit 30 as a circulation circuit is the same.
 図7に示すように、当該低温側熱媒体回路30は、第1実施形態と異なり、圧縮機11の排熱を回収して利用する為の低温側回収部35を有している。低温側回収部35は、低温側流入配管36と、低温側流出配管37を有している。 As shown in FIG. 7, the low temperature side heat medium circuit 30 has a low temperature side recovery unit 35 for recovering and utilizing the exhaust heat of the compressor 11 unlike the first embodiment. The low temperature side recovery unit 35 has a low temperature side inflow piping 36 and a low temperature side outflow piping 37.
 低温側回収部35は、低温側熱媒体回路30を循環する低温側熱媒体に対して圧縮機11の排熱を吸熱させることで回収し、当該圧縮機11の排熱を低温側熱媒体回路30に受容させる。 The low temperature side recovery unit 35 recovers the exhaust heat of the compressor 11 by absorbing heat from the low temperature side heat medium circulating through the low temperature side heat medium circuit 30, and the exhaust heat of the compressor 11 is recovered by the low temperature side heat medium circuit Accept to 30.
 当該低温側回収部35は、図示しない収容部と、低温側流入配管36と、低温側流出配管37とを有しており、相互に接続されている。従って、低温側回収部35における収容部、低温側流入配管36、低温側流出配管37は、低温側熱媒体回路30を循環する低温側熱媒体が流れる流路を構成している。 The low temperature side recovery unit 35 includes a storage unit (not shown), a low temperature side inflow piping 36, and a low temperature side outflow piping 37, which are mutually connected. Therefore, the storage portion in the low temperature side recovery unit 35, the low temperature side inflow piping 36, and the low temperature side outflow piping 37 constitute a flow path through which the low temperature side heat medium circulating in the low temperature side heat medium circuit 30 flows.
 図7に示すように、低温側流入配管36は、チラー18における水通路の入口側に配置された低温側分岐部36aから分岐する配管である。当該低温側流入配管36は、低温側熱媒体回路30の収容部に接続されている。従って、低温側熱媒体回路30において、低温側分岐部36aで分岐した低温側熱媒体の流れは、低温側回収部35における収容部の内部に到達する。 As shown in FIG. 7, the low temperature side inflow pipe 36 is a pipe branched from the low temperature side branch portion 36 a disposed on the inlet side of the water passage in the chiller 18. The low temperature side inflow piping 36 is connected to the housing portion of the low temperature side heat medium circuit 30. Therefore, in the low temperature side heat medium circuit 30, the flow of the low temperature side heat medium branched at the low temperature side branch portion 36a reaches the inside of the storage portion in the low temperature side recovery portion 35.
 そして、低温側流出配管37は、低温側回収部35の収容部から伸びており、低温側熱媒体回路30の循環回路に配置された低温側合流部37aに接続されている。当該低温側合流部37aは、チラー18における水通路の入口側において、低温側分岐部36aよりも低温側熱媒体の流れ方向下流側に位置している。 The low temperature side outflow piping 37 extends from the housing portion of the low temperature side recovery unit 35 and is connected to the low temperature side joining portion 37 a disposed in the circulation circuit of the low temperature side heat medium circuit 30. The low temperature side merging portion 37 a is located downstream of the low temperature side branch portion 36 a in the flow direction downstream of the low temperature side heat medium on the inlet side of the water passage in the chiller 18.
 従って、低温側回収部35の収容部から流出した低温側熱媒体は、チラー18における水通路の入口側において、低温側熱媒体回路30にて車載機器32等を循環する低温側熱媒体と合流する。 Therefore, the low temperature side heat medium flowing out from the storage portion of the low temperature side recovery unit 35 merges with the low temperature side heat medium circulating in the on-vehicle equipment 32 in the low temperature side heat medium circuit 30 at the inlet side of the water passage in the chiller 18 Do.
 当該低温側回収部35の収容部は、図2を用いて説明した高温側回収部25の収容部25aと同様に、圧縮機11の外表面を覆うように形成されており、圧縮機11及び圧縮機11に接続された冷媒配管の一部を内部に収容している。 The housing portion of the low temperature side recovery portion 35 is formed to cover the outer surface of the compressor 11 similarly to the housing portion 25a of the high temperature side recovery portion 25 described with reference to FIG. A part of the refrigerant pipe connected to the compressor 11 is accommodated inside.
 従って、低温側流入配管36を流れた低温側熱媒体は、低温側回収部35の収容部の内部に流入して、圧縮機11の外表面に沿って流れる。この時、低温側熱媒体は、圧縮機11の排熱を吸熱して回収する。 Therefore, the low temperature side heat medium that has flowed through the low temperature side inflow pipe 36 flows into the inside of the storage portion of the low temperature side recovery unit 35 and flows along the outer surface of the compressor 11. At this time, the low temperature side heat medium absorbs and recovers the exhaust heat of the compressor 11.
 その後、低温側熱媒体は、低温側回収部35の収容部から流出して、低温側流出配管37を介して、低温側熱媒体回路30の循環回路に合流する。これにより、低温側熱媒体回路30は、低温側回収部35における低温側熱媒体の流れを介して、圧縮機11の排熱を回収して受容することができる。 Thereafter, the low temperature side heat medium flows out from the housing portion of the low temperature side recovery unit 35 and joins the circulation circuit of the low temperature side heat medium circuit 30 via the low temperature side outflow piping 37. Thus, the low temperature side heat medium circuit 30 can recover and receive the exhaust heat of the compressor 11 through the flow of the low temperature side heat medium in the low temperature side recovery unit 35.
 ここで、低温側回収部35の収容部には、図示しない蓄熱材が配置されている。当該蓄熱材は、蓄熱時に相変化を伴う潜熱蓄熱材であり、球状の樹脂製或いは金属製の複数のカプセルに封入されている。 Here, a heat storage material (not shown) is disposed in the storage portion of the low temperature side recovery portion 35. The heat storage material is a latent heat storage material accompanied by a phase change at the time of heat storage, and is enclosed in a plurality of spherical resin or metal capsules.
 当該低温側回収部35における蓄熱材の相変化温度は、所定の温度差を有した状態で、低温側回収部35の収容部に流入する低温側熱媒体の温度より高くなるように定められている。 The phase change temperature of the heat storage material in the low temperature side recovery unit 35 is determined to be higher than the temperature of the low temperature side heat medium flowing into the storage portion of the low temperature side recovery unit 35 with a predetermined temperature difference There is.
 そして、低温側回収部35における蓄熱材は、圧縮機11の排熱を蓄え、低温側熱媒体の温度が予め定められた温度よりも低下した場合に、当該低温側熱媒体に対して蓄熱した熱を放熱するように構成されている。 Then, the heat storage material in the low temperature side recovery unit 35 stores the exhaust heat of the compressor 11, and when the temperature of the low temperature side heat medium is lower than a predetermined temperature, the heat storage material stores heat in the low temperature side heat medium It is configured to dissipate heat.
 低温側回収部35における収容部の内部では、収容部の外殻と圧縮機11の外表面の間に、カプセルに封入された蓄冷材が多数配置されている。この為、低温側熱媒体は、低温側回収部35の収容部内部において、カプセルの隙間を流通して低温側流出配管37へ流れる。 In the inside of the storage unit in the low temperature side recovery unit 35, a large number of regenerator materials sealed in a capsule are disposed between the outer shell of the storage unit and the outer surface of the compressor 11. For this reason, the low temperature side heat medium flows through the gap of the capsule and flows to the low temperature side outflow piping 37 inside the storage portion of the low temperature side recovery unit 35.
 低温側回収部35における蓄熱材としては、例えば、(水系の蓄熱材、パラフィンワックス系の蓄熱材、高級アルコール系の蓄熱材、無機塩系の蓄熱材)等を採用できる。水系の蓄熱材は、水や水和物等を含んでいる。そして、パラフィンワックス系の蓄熱材としては、例えば、C12ドデカン、C14テトラデカン、C16ペンタデカンを採用することができる。 As the heat storage material in the low temperature side recovery unit 35, for example, (water-based heat storage material, paraffin wax-based heat storage material, high-alcohol-based heat storage material, inorganic salt-based heat storage material) can be adopted. The water-based heat storage material contains water, hydrates and the like. And as a paraffin wax type heat storage material, C12 dodecane, C14 tetradecane, C16 pentadecane can be employ | adopted, for example.
 又、高級アルコール系の蓄熱材としては、例えば、Diethylene glycol、Triethylene glycol、Tetrahydrofuranを用いることができる。そして、無機塩系の蓄熱材としては、例えば、Tetrahydrofuran clathrate hydrate、KCl (19.5 wt%) + H2O、Dioctylammonium iodide等を採用することができる。又、蓄熱材25bとして、これらの混合材料を採用することができる。 Moreover, as a heat storage material of a higher alcohol type, for example, Diethylene glycol, Triethylene glycol, Tetrahydrofuran can be used. And, as the heat storage material of the inorganic salt type, for example, Tetrahydrofuran clathrate hydrate, KCl (19.5 wt%) + H2O, Dioctyllammonium iodide etc. can be adopted. Moreover, these mixed materials can be employ | adopted as the thermal storage material 25b.
 従って、圧縮機11の排熱によって周囲が蓄熱温度よりも高くなると、低温側回収部35の蓄熱材は、周囲から吸熱して相変化する。これにより、低温側回収部35における蓄熱材に対して、圧縮機11の排熱が蓄えられる。そして、当該蓄熱材は、低温側熱媒体の温度に近づくように顕熱変化する。低温側熱媒体の温度が蓄熱温度よりも低くなると、当該蓄熱材は、低温側熱媒体に対して、蓄えていた圧縮機11の排熱を放熱し相変化する。 Therefore, when the surroundings become higher than the heat storage temperature due to the exhaust heat of the compressor 11, the heat storage material of the low temperature side recovery unit 35 absorbs heat from the surroundings and changes in phase. Thus, the exhaust heat of the compressor 11 is stored in the heat storage material in the low temperature side recovery unit 35. Then, the heat storage material changes in sensible heat so as to approach the temperature of the low temperature side heat medium. When the temperature of the low temperature side heat medium becomes lower than the heat storage temperature, the heat storage material dissipates the waste heat of the stored compressor 11 to the low temperature side heat medium, and changes its phase.
 従って、第2実施形態においては、低温側回収部35の収容部内に蓄熱材を配置することによって、当該低温側回収部35を蓄熱部40として構成している。第2実施形態におおける蓄熱部40は、圧縮機11の排熱を蓄熱しておき、低温側熱媒体の温度が予め定められた蓄熱温度よりも低くなると、蓄熱していた熱を低温側熱媒体に放熱する。つまり、第2実施形態に係る蓄熱部40も、本開示における蓄熱部として機能する。 Therefore, in the second embodiment, the low temperature side recovery unit 35 is configured as the heat storage unit 40 by arranging the heat storage material in the storage unit of the low temperature side recovery unit 35. The heat storage unit 40 in the second embodiment stores the exhaust heat of the compressor 11, and when the temperature of the low temperature side heat medium becomes lower than a predetermined heat storage temperature, the heat stored is stored on the low temperature side Heat is dissipated to the heat medium. That is, the heat storage unit 40 according to the second embodiment also functions as the heat storage unit in the present disclosure.
 続いて、第2実施形態におけるヒートポンプシステム1の作動について説明する。第2実施形態に係るヒートポンプシステム1においても、第1実施形態と同様に、複数の運転モードから適宜運転モードを切り替えることができる。これらの運転モードの切り替えは、制御装置60に予め記憶された制御プログラムが実行されることによって行われる。 Subsequently, the operation of the heat pump system 1 according to the second embodiment will be described. Also in the heat pump system 1 according to the second embodiment, as in the first embodiment, the operation mode can be appropriately switched among a plurality of operation modes. Switching of these operation modes is performed by executing a control program stored in advance in the control device 60.
 図1、図7からわかるように、第2実施形態に係るヒートポンプサイクル10は、第1実施形態におけるヒートポンプサイクル10と同様の回路構成である。又、第2実施形態に係る高温側熱媒体回路20は、高温側回収部25を有していない点を除き、第1実施形態と同様の回路構成である。そして、第2実施形態に係る低温側熱媒体回路30は、低温側回収部35を有している点を除き、第1実施形態と同様の回路構成である。 As can be seen from FIGS. 1 and 7, the heat pump cycle 10 according to the second embodiment has a circuit configuration similar to that of the heat pump cycle 10 according to the first embodiment. Further, the high temperature side heat medium circuit 20 according to the second embodiment has the same circuit configuration as that of the first embodiment except that the high temperature side recovery unit 25 is not provided. The low temperature side heat medium circuit 30 according to the second embodiment has the same circuit configuration as that of the first embodiment except that the low temperature side recovery unit 35 is included.
 従って、第2実施形態に係るヒートポンプシステム1は、第1実施形態と同様の制御を行うことで、冷房モード、暖房モード、除湿暖房モードを実現することができる。当該ヒートポンプシステム1において、冷房モード、暖房モード、除湿暖房モードで作動する際に、圧縮機11が作動される。 Therefore, the heat pump system 1 according to the second embodiment can realize the cooling mode, the heating mode, and the dehumidifying heating mode by performing the same control as that of the first embodiment. In the heat pump system 1, when operating in the cooling mode, the heating mode, and the dehumidifying heating mode, the compressor 11 is operated.
 これにより、第2実施形態に係るヒートポンプシステム1によれば、何れの運転モードにおいても、低温側回収部35にて、圧縮機11の排熱を低温側熱媒体で吸熱して回収することができ、低温側回収部35内の蓄熱材にて圧縮機11の排熱を蓄熱することができる。 Thereby, according to the heat pump system 1 according to the second embodiment, in any operation mode, the low temperature side heat medium absorbs the exhaust heat of the compressor 11 by the low temperature side heat medium and recovers it. Thus, the exhaust heat of the compressor 11 can be stored by the heat storage material in the low temperature side recovery unit 35.
 つまり、当該ヒートポンプシステム1によれば、低温側回収部35の低温側熱媒体や蓄熱材によって、圧縮機11の排熱を回収して蓄熱しておくことで、圧縮機11の排熱を無駄にすることなく、ヒートポンプサイクル10を介して有効に活用することができる。 That is, according to the heat pump system 1, the exhaust heat of the compressor 11 is recovered and stored by the low temperature side heat medium or the heat storage material of the low temperature side recovery unit 35, and the exhaust heat of the compressor 11 is wasted. Can be effectively utilized through the heat pump cycle 10.
 低温側熱媒体回路30において、低温側分岐部36a及び低温側合流部37aが、チラー18における水通路の入口側に配置されている。即ち、チラー18に流入する低温側熱媒体の温度を圧縮機11の排熱によって高めることができる。 In the low temperature side heat medium circuit 30, the low temperature side branch portion 36 a and the low temperature side joining portion 37 a are disposed on the inlet side of the water passage in the chiller 18. That is, the temperature of the low temperature side heat medium flowing into the chiller 18 can be raised by the exhaust heat of the compressor 11.
 この結果、第2実施形態に係るヒートポンプシステム1によれば、暖房モードや除湿暖房モードにおいて、圧縮機11の排熱を有効に活用して、チラー18における吸熱量を増加させることができる。 As a result, according to the heat pump system 1 according to the second embodiment, it is possible to effectively utilize the exhaust heat of the compressor 11 in the heating mode or the dehumidifying heating mode to increase the heat absorption amount in the chiller 18.
 以上説明したように、第2実施形態に係るヒートポンプシステム1によれば、ヒートポンプサイクル10の冷媒回路を切り替えることによって、複数の運転モードの内、冷房モード、暖房モード、除湿暖房モードを実現することができ、車室内の快適な空調を行うことができる。 As described above, according to the heat pump system 1 according to the second embodiment, the cooling mode, the heating mode, and the dehumidifying heating mode are realized among the plurality of operation modes by switching the refrigerant circuit of the heat pump cycle 10. And can perform comfortable air conditioning of the vehicle interior.
 そして、当該ヒートポンプサイクル10では、同一の熱交換器へ高圧冷媒を流入させる冷媒回路と低圧冷媒を流入させる冷媒回路とを切り替えることがない。つまり、いずれの冷媒回路に切り替えても室内蒸発器16及びチラー18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。 And in the said heat pump cycle 10, it does not switch with the refrigerant circuit which makes a high pressure refrigerant flow in the same heat exchanger, and the refrigerant circuit which makes a low pressure refrigerant flow. That is, since it is not necessary to cause the high pressure refrigerant to flow into the indoor evaporator 16 and the chiller 18 regardless of which refrigerant circuit is switched, the refrigerant circuit can be switched with a simple configuration without causing the complication of the cycle configuration.
 この運転モードの何れにおいても、ヒートポンプサイクル10における圧縮機11が作動される為、圧縮機11の排熱が発生する。当該ヒートポンプシステム1によれば、低温側熱媒体回路30の低温側回収部35を介して、圧縮機11の排熱を回収して、低温側熱媒体回路30にて利用することができる。 In any of the operation modes, since the compressor 11 in the heat pump cycle 10 is operated, exhaust heat of the compressor 11 is generated. According to the heat pump system 1, the exhaust heat of the compressor 11 can be recovered via the low temperature side recovery unit 35 of the low temperature side heat medium circuit 30 and can be used in the low temperature side heat medium circuit 30.
 当該ヒートポンプシステム1において、低温側熱媒体回路30は、本開示における低温側熱受容部に相当し、低温側回収部35は、本開示における回収部に相当している。 In the heat pump system 1, the low temperature side heat medium circuit 30 corresponds to the low temperature side heat receiving portion in the present disclosure, and the low temperature side recovery portion 35 corresponds to the recovery portion in the present disclosure.
 このように構成することで、当該ヒートポンプシステム1は、低温側回収部35における圧縮機11の排熱の回収、回収した熱の輸送や、低温側熱媒体回路30における回収した熱の利用に際して、低温側熱媒体を介在させることができ、より効率良く、圧縮機11の発熱を取り扱うことができる。 With this configuration, the heat pump system 1 recovers the exhaust heat of the compressor 11 in the low temperature side recovery unit 35, transports the recovered heat, and uses the recovered heat in the low temperature side heat medium circuit 30, A low temperature side heat medium can be interposed, and the heat generation of the compressor 11 can be handled more efficiently.
 そして、低温側熱媒体回路30は、車載機器32を有しており、作動に伴い生じる車載機器32の熱を低温側熱媒体に吸熱させ、車載機器32を冷却することができる。即ち、当該ヒートポンプシステム1によれば、ヒートポンプサイクル10及び低温側熱媒体回路30を用いることで、車載機器32の温度調整を行いつつ、車載機器32に生じた熱を有効に活用することができる。 The low temperature side heat medium circuit 30 includes the in-vehicle device 32. The low temperature side heat medium can absorb the heat of the in-vehicle device 32 generated along with the operation to cool the in-vehicle device 32. That is, according to the heat pump system 1, by using the heat pump cycle 10 and the low temperature side heat medium circuit 30, it is possible to effectively utilize the heat generated in the in-vehicle device 32 while adjusting the temperature of the in-vehicle device 32. .
 又、低温側熱媒体回路30は、低温側ラジエータ33を有しており、外気の有する熱を低温側熱媒体に吸熱させることができる。これにより、当該ヒートポンプシステム1は、外気を熱源として利用することができる。 Further, the low temperature side heat medium circuit 30 has the low temperature side radiator 33, and can absorb the heat of the outside air to the low temperature side heat medium. Thereby, the heat pump system 1 can use outside air as a heat source.
 そして、チラー18における水通路の入口側に低温側分岐部36a及び低温側合流部37aが配置されている為、低温側回収部35は、低温側熱媒体回路30において、チラー18における水通路の入口側に配置されている。 And since the low temperature side branch part 36a and the low temperature side junction part 37a are arranged on the inlet side of the water passage in the chiller 18, the low temperature side recovery part 35 is in the water passage in the chiller 18 in the low temperature side heat medium circuit 30. It is located on the entrance side.
 これにより、当該ヒートポンプシステム1によれば、圧縮機11の排熱を回収した低温側熱媒体がチラー18に流入することになる為、チラー18における吸熱量を増大させることができる。 As a result, according to the heat pump system 1, the low temperature side heat medium that has recovered the exhaust heat of the compressor 11 flows into the chiller 18, so the heat absorption amount in the chiller 18 can be increased.
 図7に示すように、第2実施形態に係るヒートポンプシステム1において、ヒートポンプサイクル10は、室内蒸発器16と、チラー18とを有している。室内蒸発器16は、冷却用膨張弁15aで減圧された冷媒と送風空気との熱交換により蒸発させ、送風空気から吸熱して冷却する。チラー18は、吸熱用膨張弁15bで減圧された冷媒と低温側熱媒体回路30の低温側熱媒体との熱交換により、低温側熱媒体から吸熱する。 As shown in FIG. 7, in the heat pump system 1 according to the second embodiment, the heat pump cycle 10 has an indoor evaporator 16 and a chiller 18. The indoor evaporator 16 evaporates by heat exchange between the refrigerant decompressed by the cooling expansion valve 15a and the blast air, and absorbs heat from the blast air to cool it. The chiller 18 absorbs heat from the low temperature side heat medium by heat exchange between the refrigerant decompressed by the heat absorption expansion valve 15 b and the low temperature side heat medium of the low temperature side heat medium circuit 30.
 当該ヒートポンプシステム1によれば、ヒートポンプサイクル10にこれらの2つの吸熱器を配置することで、例えば、低温側熱媒体と送風空気のような異なる2つの熱媒体と冷媒との熱交換を可能にすることができ、種々の用途に対応することができる。 According to the heat pump system 1, by arranging these two heat sinks in the heat pump cycle 10, for example, heat exchange between the two different heat mediums such as the low temperature side heat medium and the blast air and the refrigerant is enabled. Can be adapted to various applications.
 更に、第2実施形態に係るヒートポンプシステム1の低温側熱媒体回路30において、低温側回収部35は、第1実施形態に係る高温側回収部25と同様に、収容部の内部に複数の蓄熱材を配置して構成されている。即ち、第2実施形態に係る低温側回収部35は、本開示に係る蓄熱部の機能を有している。 Furthermore, in the low temperature side heat medium circuit 30 of the heat pump system 1 according to the second embodiment, the low temperature side recovery unit 35 has a plurality of heat storage inside the storage unit, similar to the high temperature side recovery unit 25 according to the first embodiment. The material is arranged. That is, the low temperature side recovery unit 35 according to the second embodiment has the function of the heat storage unit according to the present disclosure.
 当該ヒートポンプシステム1によれば、低温側回収部35の収容部に配置された蓄熱材に対して、圧縮機11の排熱を蓄熱しておくことができ、低温側熱媒体の温度が予め定められていた温度よりも低下すると、蓄熱していた熱を低温側熱媒体に放熱させることができる。 According to the heat pump system 1, the exhaust heat of the compressor 11 can be stored in the heat storage material disposed in the storage portion of the low temperature side recovery unit 35, and the temperature of the low temperature side heat medium is predetermined. When the temperature is lower than the temperature which has been stored, the heat stored can be dissipated to the low temperature side heat medium.
 従って、当該ヒートポンプシステム1によれば、低温側熱媒体の温度状況に応じて、蓄熱部40に蓄えられていた熱を、低温側熱媒体回路30にて利用することができる。つまり、当該ヒートポンプシステム1は、低温側熱媒体の状況に応じて、圧縮機11の排熱を柔軟に活用することができる。 Therefore, according to the heat pump system 1, the heat stored in the heat storage section 40 can be used in the low temperature side heat medium circuit 30 according to the temperature condition of the low temperature side heat medium. That is, the heat pump system 1 can flexibly utilize the exhaust heat of the compressor 11 according to the condition of the low temperature side heat medium.
 (変形例)
 第2実施形態に係るヒートポンプシステム1は、ヒートポンプサイクル10と、高温側熱媒体回路20と、低温側熱媒体回路30とを有していたが、この構成に限定されるものではない。即ち、図8に示すように、第2実施形態に係るヒートポンプシステム1にて、高温側熱媒体回路20を廃止した構成にすることができる。
(Modification)
The heat pump system 1 according to the second embodiment includes the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30, but is not limited to this configuration. That is, as shown in FIG. 8, in the heat pump system 1 according to the second embodiment, the high temperature side heat medium circuit 20 can be eliminated.
 この場合、ヒートポンプサイクル10における水-冷媒熱交換器12に替えて、室内凝縮器12aが配置される。当該室内凝縮器12aは、室内空調ユニット50のケーシング51内であって、第1実施形態におけるヒータコア22と同様の位置に配置されている。 In this case, in place of the water-refrigerant heat exchanger 12 in the heat pump cycle 10, an indoor condenser 12a is disposed. The indoor condenser 12 a is disposed in the casing 51 of the indoor air conditioning unit 50 at the same position as the heater core 22 in the first embodiment.
 当該室内凝縮器12aは、少なくとも暖房モード及び除湿暖房モード時に、送風機52にて送風された送風空気に対して、高圧冷媒の有する熱を放熱し送風空気を加熱する熱交換器である。 The indoor condenser 12a is a heat exchanger that radiates the heat of the high-pressure refrigerant and heats the blowing air with respect to the blowing air blown by the blower 52 at least in the heating mode and the dehumidifying and heating mode.
 図8に示すように、当該変形例に係るヒートポンプシステム1は、車載機器32の温度調整機能を有しており、車室内の空調機能のうち、暖房モード及び除湿暖房モードを実現することができる。当該変形例におけるヒートポンプサイクル10及び低温側熱媒体回路30の制御内容については、既に説明済みである為、その説明を省略する。 As shown in FIG. 8, the heat pump system 1 according to the modification has a temperature adjustment function of the in-vehicle device 32 and can realize the heating mode and the dehumidifying heating mode among the air conditioning functions of the vehicle interior. . The control contents of the heat pump cycle 10 and the low temperature side heat medium circuit 30 in the modified example have already been described, and thus the description thereof is omitted.
 従って、変形例に係るヒートポンプシステム1は、上述した第2実施形態と共通の構成及び作動から奏される作用効果を、第2実施形態と同様に得ることができる。即ち、当該ヒートポンプシステム1は、低温側熱媒体回路30及び低温側回収部35を用いて、圧縮機11の排熱を回収して有効に活用することができる。 Therefore, the heat pump system 1 which concerns on a modification can obtain the effect show | played from a structure and operation | movement common to 2nd Embodiment mentioned above similarly to 2nd Embodiment. That is, the heat pump system 1 can recover exhaust heat of the compressor 11 and use it effectively by using the low temperature side heat medium circuit 30 and the low temperature side recovery unit 35.
 (第3実施形態)
 次に、上述した各実施形態とは異なる第3実施形態について、図9を参照しつつ説明する。
Third Embodiment
Next, a third embodiment different from the above-described embodiments will be described with reference to FIG.
 第3実施形態に係るヒートポンプシステム1は、上述した各実施形態と同様に、電気自動車に搭載されている。図9に示すように、当該ヒートポンプシステム1は、ヒートポンプサイクル10と、高温側熱媒体回路20と、低温側熱媒体回路30とを有しており、更に、室内空調ユニット50と、制御装置60等を有している。 The heat pump system 1 which concerns on 3rd Embodiment is mounted in an electric vehicle similarly to each embodiment mentioned above. As shown in FIG. 9, the heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, and further, an indoor air conditioning unit 50 and a control device 60. Etc.
 第3実施形態においては、高温側熱媒体回路20及び低温側熱媒体回路30の構成が相違している。即ち、第3実施形態において、ヒートポンプサイクル10、室内空調ユニット50、制御装置60に係る構成は上述した実施形態と同様である。 In the third embodiment, the configurations of the high temperature side heat medium circuit 20 and the low temperature side heat medium circuit 30 are different. That is, in the third embodiment, the configuration relating to the heat pump cycle 10, the indoor air conditioning unit 50, and the control device 60 is the same as that of the embodiment described above.
 第3実施形態に係る高温側熱媒体回路20は、上述した実施形態と同様に、高温側熱媒体ポンプ21と、ヒータコア22と、高温側ラジエータ23と、高温側流量調整弁24とを有しており、高温側熱媒体回路20の循環回路に係る構成は同様である。 The high temperature side heat medium circuit 20 according to the third embodiment includes the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, and the high temperature side flow rate adjustment valve 24 as in the above-described embodiment. The configuration related to the circulation circuit of the high temperature side heat medium circuit 20 is the same.
 第3実施形態に係る高温側熱媒体回路20は、第1実施形態と同様に、高温側回収部25を有している。当該高温側回収部25は、収容部25aと、高温側流入配管26と、高温側流出配管27とを有している。 The high temperature side heat medium circuit 20 according to the third embodiment has the high temperature side recovery unit 25 as in the first embodiment. The high temperature side recovery unit 25 has a housing portion 25 a, a high temperature side inflow piping 26, and a high temperature side outflow piping 27.
 図9に示すように、第3実施形態に係る高温側回収部25の収容部25aは、圧縮機11の外表面の半分程を覆うように構成されており、その内部に複数の蓄熱材25bが配置されている。第3実施形態に係る高温側回収部25の蓄熱材は、基本的に、第1実施形態における蓄熱材25bと同様の構成である。 As shown in FIG. 9, the storage portion 25a of the high temperature side recovery portion 25 according to the third embodiment is configured to cover about half of the outer surface of the compressor 11, and a plurality of heat storage materials 25b are provided therein. Is arranged. The heat storage material of the high temperature side recovery unit 25 according to the third embodiment basically has the same configuration as the heat storage material 25 b in the first embodiment.
 そして、第3実施形態において、高温側分岐部26a及び高温側合流部27aは、高温側熱媒体回路20において、水-冷媒熱交換器12における水通路の入口側に配置されている。従って、水-冷媒熱交換器12における水通路の入口側において、高温側熱媒体が高温側流入配管26を介して、高温側回収部25の収容部へ流入し、圧縮機11の排熱を吸熱する。 In the third embodiment, the high temperature side branch portion 26 a and the high temperature side junction portion 27 a are disposed on the high temperature side heat medium circuit 20 on the inlet side of the water passage in the water-refrigerant heat exchanger 12. Therefore, at the inlet side of the water passage in the water-refrigerant heat exchanger 12, the high temperature side heat medium flows into the storage portion of the high temperature side recovery unit 25 via the high temperature side inflow pipe 26 to discharge the exhaust heat of the compressor 11. Heat sink.
 そして、圧縮機11の排熱を吸熱した高温側熱媒体は、高温側流出配管27を介して流出し、高温側合流部27aにて合流して水-冷媒熱交換器12へ流入する。従って、第3実施形態においても、高温側回収部25は、高温側熱媒体を介して、圧縮機11の排熱の一部を回収して、高温側熱媒体回路20に受容させることができる。 Then, the high temperature side heat medium which absorbed the exhaust heat of the compressor 11 flows out through the high temperature side outflow pipe 27, merges at the high temperature side joining portion 27a, and flows into the water-refrigerant heat exchanger 12. Therefore, also in the third embodiment, the high temperature side recovery unit 25 can recover a part of the exhaust heat of the compressor 11 via the high temperature side heat medium and can be received by the high temperature side heat medium circuit 20 .
 又、第3実施形態に係る低温側熱媒体回路30は、上述した実施形態と同様に、低温側熱媒体ポンプ31と、車載機器32と、低温側ラジエータ33と、低温側流量調整弁34とを有しており、低温側熱媒体回路30の循環回路としての構成は同様である。 Further, the low temperature side heat medium circuit 30 according to the third embodiment includes the low temperature side heat medium pump 31, the on-vehicle device 32, the low temperature side radiator 33, and the low temperature side flow rate adjustment valve 34 as in the embodiment described above. The configuration of the low temperature side heat medium circuit 30 as a circulation circuit is the same.
 そして、第3実施形態に係る低温側熱媒体回路30は、第2実施形態と同様に、低温側回収部35を有している。当該低温側回収部35は、収容部と、低温側流入配管36と、低温側流出配管37とを有している。 The low temperature side heat medium circuit 30 according to the third embodiment includes the low temperature side recovery unit 35 as in the second embodiment. The low temperature side recovery unit 35 includes a storage unit, a low temperature side inflow piping 36, and a low temperature side outflow piping 37.
 第3実施形態に係る低温側回収部35の収容部は、圧縮機11の外表面のうち、高温側回収部25の収容部25aで覆われていない部分(即ち、圧縮機11の外表面における残りの半分程)を覆うように構成されており、その内部に複数の蓄熱材が配置されている。第3実施形態に係る低温側回収部35の蓄熱材は、基本的に、第2実施形態における蓄熱材と同様の構成である。 The housing portion of the low temperature side recovery portion 35 according to the third embodiment is a portion of the outer surface of the compressor 11 not covered by the housing portion 25 a of the high temperature side recovery portion 25 (ie, the outer surface of the compressor 11 The other half (about half) is covered, and a plurality of heat storage materials are arranged in the inside. The heat storage material of the low temperature side recovery unit 35 according to the third embodiment has basically the same configuration as the heat storage material in the second embodiment.
 そして、第3実施形態において、低温側分岐部36a及び低温側合流部37aは、低温側熱媒体回路30において、チラー18における水通路の入口側に配置されている。従って、チラー18における水通路の入口側において、低温側熱媒体が低温側流入配管36を介して、低温側回収部35の収容部へ流入し、圧縮機11の排熱を吸熱する。 In the third embodiment, the low temperature side branch portion 36 a and the low temperature side joining portion 37 a are disposed on the inlet side of the water passage in the chiller 18 in the low temperature side heat medium circuit 30. Therefore, on the inlet side of the water passage in the chiller 18, the low temperature side heat medium flows into the storage portion of the low temperature side recovery unit 35 via the low temperature side inflow pipe 36, and absorbs the exhaust heat of the compressor 11.
 そして、圧縮機11の排熱を吸熱した低温側熱媒体は、低温側流出配管37を介して流出し、低温側合流部37aにて合流してチラー18へ流入する。従って、第3実施形態においても、低温側回収部35は、低温側熱媒体を介して、圧縮機11の排熱の一部を回収して、低温側熱媒体回路30に受容させることができる。 Then, the low temperature side heat medium which absorbs the exhaust heat of the compressor 11 flows out through the low temperature side outflow pipe 37, joins at the low temperature side joining portion 37a and flows into the chiller 18. Therefore, also in the third embodiment, the low temperature side recovery unit 35 can recover a part of the exhaust heat of the compressor 11 via the low temperature side heat medium and can be received by the low temperature side heat medium circuit 30. .
 続いて、第3実施形態におけるヒートポンプシステム1の作動について説明する。第3実施形態に係るヒートポンプシステム1においても、上述した実施形態と同様に、複数の運転モードから適宜運転モードを切り替えることができる。これらの運転モードの切り替えは、制御装置60に予め記憶された制御プログラムが実行されることで行われる。 Subsequently, the operation of the heat pump system 1 according to the third embodiment will be described. Also in the heat pump system 1 according to the third embodiment, the operation mode can be appropriately switched among the plurality of operation modes, as in the above-described embodiment. The switching of these operation modes is performed by executing a control program stored in advance in the control device 60.
 図9からわかるように、第3実施形態に係るヒートポンプサイクル10は、上述した実施形態におけるヒートポンプサイクル10と同様の回路構成である。又、第3実施形態に係る高温側熱媒体回路20は、第1実施形態と同様の回路構成である。そして、第3実施形態に係る低温側熱媒体回路30は、第2実施形態と同様の回路構成である。 As can be seen from FIG. 9, the heat pump cycle 10 according to the third embodiment has the same circuit configuration as the heat pump cycle 10 in the embodiment described above. Further, the high temperature side heat medium circuit 20 according to the third embodiment has the same circuit configuration as that of the first embodiment. The low temperature side heat medium circuit 30 according to the third embodiment has the same circuit configuration as that of the second embodiment.
 従って、第3実施形態に係るヒートポンプシステム1は、上述した実施形態と同様の制御を行うことで、冷房モード、暖房モード、除湿暖房モードを実現することができる。当該ヒートポンプシステム1において、冷房モード、暖房モード、除湿暖房モードで作動する際に、圧縮機11が作動される。 Therefore, the heat pump system 1 according to the third embodiment can realize the cooling mode, the heating mode, and the dehumidifying heating mode by performing the same control as that of the above-described embodiment. In the heat pump system 1, when operating in the cooling mode, the heating mode, and the dehumidifying heating mode, the compressor 11 is operated.
 これにより、第3実施形態に係るヒートポンプシステム1によれば、何れの運転モードにおいても、高温側回収部25にて、圧縮機11の排熱を高温側熱媒体で吸熱して回収すると共に、低温側回収部35にて、圧縮機11の排熱を低温側熱媒体で吸熱して回収することができる。 Thereby, according to the heat pump system 1 according to the third embodiment, the exhaust heat of the compressor 11 is absorbed and recovered by the high temperature side heat medium in the high temperature side recovery unit 25 in any operation mode, and In the low temperature side recovery unit 35, the exhaust heat of the compressor 11 can be absorbed by the low temperature side heat medium and recovered.
 そして、当該ヒートポンプシステム1によれば、高温側回収部25内の蓄熱材にて、圧縮機11の排熱を蓄熱しておき、高温側熱媒体の温度状況に応じて、蓄熱していた熱を活用することができる。同時に、当該ヒートポンプシステム1は、低温側回収部35内の蓄熱材にて、圧縮機11の排熱を蓄熱することができ、低温側熱媒体の温度状況に応じて、蓄熱していた熱を活用することができる。 Then, according to the heat pump system 1, the exhaust heat of the compressor 11 is stored by the heat storage material in the high temperature side recovery unit 25, and the heat stored in accordance with the temperature condition of the high temperature side heat medium Can be used. At the same time, the heat pump system 1 can store the exhaust heat of the compressor 11 with the heat storage material in the low temperature side recovery unit 35, and the heat stored in accordance with the temperature condition of the low temperature side heat medium It can be used.
 つまり、第3実施形態に係るヒートポンプシステム1によれば、高温側熱媒体回路20と低温側熱媒体回路30において、圧縮機11の排熱を無駄にすることなく、それぞれ、ヒートポンプサイクル10を介して有効に活用することができる。 That is, according to the heat pump system 1 according to the third embodiment, the exhaust heat of the compressor 11 is not wasted in the high temperature side heat medium circuit 20 and the low temperature side heat medium circuit 30, respectively. Can be used effectively.
 高温側熱媒体回路20側では、高温側熱媒体の温度は、高温側回収部25にて回収した圧縮機11の排熱によって上昇する。つまり、当該ヒートポンプシステム1によれば、暖房モードや除湿暖房モードにおける熱源として、水-冷媒熱交換器12における高圧冷媒の熱に加えて、圧縮機11の排熱を利用することができるので、暖房モードや除湿暖房モード時におけるヒートポンプシステム1の暖房能力を向上させることができる。 On the high temperature side heat medium circuit 20 side, the temperature of the high temperature side heat medium is raised by the exhaust heat of the compressor 11 collected by the high temperature side collection unit 25. That is, according to the heat pump system 1, the exhaust heat of the compressor 11 can be used in addition to the heat of the high-pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the heating mode or the dehumidifying heating mode. The heating capacity of the heat pump system 1 in the heating mode or the dehumidifying heating mode can be improved.
 又、低温側熱媒体回路30側においては、チラー18に流入する低温側熱媒体の温度が低温側回収部35で回収された圧縮機11の排熱によって高められる。当該ヒートポンプシステム1によれば、暖房モードや除湿暖房モードにおいて、圧縮機11の排熱を有効に活用して、チラー18における吸熱量を増加させることができる。 Further, on the low temperature side heat medium circuit 30 side, the temperature of the low temperature side heat medium flowing into the chiller 18 is raised by the exhaust heat of the compressor 11 recovered by the low temperature side recovery unit 35. According to the heat pump system 1, it is possible to effectively utilize the exhaust heat of the compressor 11 in the heating mode or the dehumidifying heating mode to increase the heat absorption amount in the chiller 18.
 以上説明したように、第3実施形態に係るヒートポンプシステム1によれば、上述した第1実施形態及び第2実施形態と共通の構成及び作動から奏される作用効果を、第1実施形態及び第2実施形態と同様に得ることができる。 As described above, according to the heat pump system 1 according to the third embodiment, the effects and advantages exhibited from the configuration and operation common to the first embodiment and the second embodiment described above are described. It can be obtained in the same manner as in the second embodiment.
 即ち、当該ヒートポンプシステム1は、高温側熱媒体回路20及び高温側回収部25を用いて圧縮機11の排熱を回収して、高温側熱媒体回路20にて有効に活用することができる。同時に、当該ヒートポンプシステム1は、低温側熱媒体回路30及び低温側回収部35を用いて圧縮機11の排熱を回収して、低温側熱媒体回路30にて有効に活用することができる。 That is, the heat pump system 1 can recover the exhaust heat of the compressor 11 using the high temperature side heat medium circuit 20 and the high temperature side recovery unit 25, and can effectively utilize the heat in the high temperature side heat medium circuit 20. At the same time, the heat pump system 1 can recover the exhaust heat of the compressor 11 using the low temperature side heat medium circuit 30 and the low temperature side recovery unit 35, and can effectively use the waste heat in the low temperature side heat medium circuit 30.
 又、当該ヒートポンプシステム1によれば、高温側熱媒体回路20側における圧縮機11の排熱の活用と、低温側熱媒体回路30側における圧縮機11の排熱の活用とを並行して実現することができるので、圧縮機11の排熱をより有効に活用することができる。 Further, according to the heat pump system 1, utilization of the exhaust heat of the compressor 11 on the high temperature side heat medium circuit 20 side and utilization of the exhaust heat of the compressor 11 on the low temperature side heat medium circuit 30 side are realized in parallel. Since the exhaust heat of the compressor 11 can be used more effectively.
 (第4実施形態)
 次に、上述した各実施形態とは異なる第4実施形態について、図10を参照しつつ説明する。
Fourth Embodiment
Next, a fourth embodiment different from the above-described embodiments will be described with reference to FIG.
 第4実施形態に係るヒートポンプシステム1は、上述した各実施形態と同様に、電気自動車に搭載されている。図10に示すように、当該ヒートポンプシステム1は、ヒートポンプサイクル10と、高温側熱媒体回路20と、低温側熱媒体回路30とを有しており、更に、室内空調ユニット50と、制御装置60等を有している。 The heat pump system 1 which concerns on 4th Embodiment is mounted in the electric vehicle similarly to each embodiment mentioned above. As shown in FIG. 10, the heat pump system 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, and further, an indoor air conditioning unit 50 and a control device 60. Etc.
 第4実施形態においては、ヒートポンプサイクル10の構成が相違している。即ち、第4実施形態において、高温側熱媒体回路20、低温側熱媒体回路30、室内空調ユニット50、制御装置60に係る構成は上述した第1実施形態と同様である。 In the fourth embodiment, the configuration of the heat pump cycle 10 is different. That is, in the fourth embodiment, configurations relating to the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 30, the indoor air conditioning unit 50, and the control device 60 are the same as those in the first embodiment described above.
 図10に示すように、第4実施形態に係るヒートポンプサイクル10においては、冷却用膨張弁15a、吸熱用膨張弁15b、室内蒸発器16、チラー18の配置が上述した第1実施形態と異なっている。即ち、第4実施形態においても、圧縮機11の吐出口には、水-冷媒熱交換器12の冷媒通路の入口側が接続されている。 As shown in FIG. 10, in the heat pump cycle 10 according to the fourth embodiment, the arrangement of the cooling expansion valve 15a, the heat absorption expansion valve 15b, the indoor evaporator 16, and the chiller 18 is different from that of the first embodiment described above. There is. That is, also in the fourth embodiment, the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11.
 水-冷媒熱交換器12の冷媒出口側には、冷却用膨張弁15aが接続されている。冷却用膨張弁15aは、第1実施形態と同様に、電気式膨張弁によって構成されており、全開機能と全閉機能とを有している。当該冷却用膨張弁15aは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。 A cooling expansion valve 15 a is connected to the refrigerant outlet side of the water-refrigerant heat exchanger 12. Similar to the first embodiment, the cooling expansion valve 15a is an electric expansion valve, and has a fully open function and a fully closed function. The cooling expansion valve 15a has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
 第4実施形態において、冷却用膨張弁15aの出口には、三方弁16bを介して、室内蒸発器16の冷媒入口側が接続されている。室内蒸発器16は、低圧冷媒と送風空気とを熱交換させて低圧冷媒を蒸発させ、送風空気を冷却する冷却用蒸発器である。 In the fourth embodiment, the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a via the three-way valve 16b. The indoor evaporator 16 is a cooling evaporator that exchanges heat between the low pressure refrigerant and the blowing air to evaporate the low pressure refrigerant and cool the blowing air.
 図10に示すように、室内蒸発器16の冷媒出口には、吸熱用膨張弁15bが接続されている。当該吸熱用膨張弁15bは、第1実施形態と同様に、電気式膨張弁によって構成されており、全開機能と全閉機能とを有している。吸熱用膨張弁15bは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。 As shown in FIG. 10, a heat absorption expansion valve 15 b is connected to the refrigerant outlet of the indoor evaporator 16. As in the first embodiment, the heat absorption expansion valve 15b is an electric expansion valve, and has a fully open function and a fully closed function. The heat absorption expansion valve 15 b has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
 ここで、冷却用膨張弁15aの出口から室内蒸発器16の冷媒入口側の間には、三方弁16bが配置されている。三方弁16bにおける一つの流出口には、バイパス流路16aが接続されている。当該バイパス流路16aの他端側は、室内蒸発器16の冷媒出口側から吸熱用膨張弁15bの入口までの間に接続されている。 Here, a three-way valve 16 b is disposed between the outlet of the cooling expansion valve 15 a and the refrigerant inlet side of the indoor evaporator 16. A bypass passage 16a is connected to one outlet of the three-way valve 16b. The other end side of the bypass flow passage 16 a is connected between the refrigerant outlet side of the indoor evaporator 16 and the inlet of the heat absorption expansion valve 15 b.
 従って、三方弁16bの作動を制御することによって、冷媒が室内蒸発器16を通過する流路と、冷媒が室内蒸発器16を迂回する流路とを切り替えることができる。当該三方弁16bは、回路切替制御部60bによって制御される。 Therefore, by controlling the operation of the three-way valve 16 b, it is possible to switch between the flow path through which the refrigerant passes through the indoor evaporator 16 and the flow path through which the refrigerant bypasses the indoor evaporator 16. The three-way valve 16b is controlled by the circuit switching control unit 60b.
 そして、吸熱用膨張弁15bの出口には、チラー18の冷媒入口側が接続されている。チラー18は、暖房モード時や除湿暖房モード時等において、吸熱用膨張弁15bにて減圧された低圧冷媒と、低温側熱媒体回路30の低温側熱媒体とを熱交換させ、低圧冷媒を蒸発させて冷媒に吸熱作用を発揮させる吸熱用蒸発器である。 The refrigerant inlet side of the chiller 18 is connected to the outlet of the heat absorption expansion valve 15b. The chiller 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the low temperature side heat medium of the low temperature side heat medium circuit 30 in the heating mode, the dehumidifying heating mode, etc. to evaporate the low pressure refrigerant. It is an endothermic evaporator that causes the refrigerant to exhibit an endothermic effect.
 そして、チラー18の冷媒出口側には、圧縮機11の吸入口側が接続されている。つまり、第4実施形態に係るヒートポンプサイクル10では、室内蒸発器16とチラー18が直列的に接続されている。尚、第4実施形態に係るヒートポンプシステム1の制御系についても、基本的に第1実施形態と同様である為、その説明を省略する。 The suction port side of the compressor 11 is connected to the refrigerant outlet side of the chiller 18. That is, in the heat pump cycle 10 according to the fourth embodiment, the indoor evaporator 16 and the chiller 18 are connected in series. The control system of the heat pump system 1 according to the fourth embodiment is basically the same as that of the first embodiment, and thus the description thereof is omitted.
 続いて、第4実施形態におけるヒートポンプシステム1の作動について説明する。当該ヒートポンプシステム1は、上述した実施形態と同様に、予め記憶された空調制御プログラムに従って、冷房モード、暖房モード、除湿暖房モードを切り替える。 Subsequently, the operation of the heat pump system 1 in the fourth embodiment will be described. The heat pump system 1 switches the cooling mode, the heating mode, and the dehumidifying heating mode according to the air conditioning control program stored in advance, as in the above-described embodiment.
 以下に、第4実施形態に係る冷房モードにおける作動、暖房モードにおける作動、除湿暖房モードにおける作動について説明する。 The operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode according to the fourth embodiment will be described below.
 (a)冷房モード
 当該冷房モードでは、制御装置60が、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全開状態とする。又、三方弁16bは、バイパス流路16aを閉塞するように制御される。この結果、冷却用膨張弁15aから流出した冷媒は室内蒸発器16に流入する。
(A) Cooling Mode In the cooling mode, the control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully open state. Also, the three-way valve 16b is controlled to close the bypass flow passage 16a. As a result, the refrigerant flowing out of the cooling expansion valve 15 a flows into the indoor evaporator 16.
 従って、第4実施形態に係る冷房モードのヒートポンプサイクル10では、圧縮機11→水-冷媒熱交換器12→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→チラー18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Accordingly, in the heat pump cycle 10 in the cooling mode according to the fourth embodiment, the compressor 11 → water-refrigerant heat exchanger 12 → cooling expansion valve 15a → three-way valve 16b → indoor evaporator 16 → heat absorption expansion valve 15b → chiller A vapor compression refrigeration cycle in which the refrigerant circulates in the order of 18 → compressor 11 is configured.
 そして、このサイクル構成で、制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を制御する。 Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group.
 例えば、制御装置60は、第1実施形態と同様に、高温側熱媒体回路20における高温側熱媒体ポンプ21及び高温側流量調整弁24の作動を制御する。これにより、高温側熱媒体回路20では、水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量が高温側ラジエータ23へ流入する状態となる。 For example, the control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment. As a result, in the high temperature side heat medium circuit 20, the entire flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 enters the high temperature side radiator 23.
 又、当該制御装置60は、低温側熱媒体回路30における低温側熱媒体ポンプ31及び低温側流量調整弁34についても、第1実施形態と同様に制御する。尚、当該制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。 Further, the control device 60 also controls the low temperature side heat medium pump 31 and the low temperature side flow rate adjustment valve 34 in the low temperature side heat medium circuit 30 in the same manner as in the first embodiment. The control device 60 appropriately controls the operation of other various control target devices.
 従って、第4実施形態においても、冷房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, also in the fourth embodiment, in the heat pump cycle 10 in the cooling mode, the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled. The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路にて冷却された高圧冷媒は、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aの絞り開度は、室内蒸発器16の出口側の冷媒の過熱度が概ね3℃となるように調整される。 The high pressure refrigerant cooled in the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a and is decompressed. The throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
 冷却用膨張弁15aにて減圧された低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。 The low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
 室内蒸発器16から流出した冷媒は、吸熱用膨張弁15bで減圧されることなく、チラー18へ流入する。そして、当該冷媒は、チラー18においてほとんど熱交換することなく、圧縮機11へ吸入されて再び圧縮される。 The refrigerant flowing out of the indoor evaporator 16 flows into the chiller 18 without being decompressed by the heat absorption expansion valve 15b. Then, the refrigerant is sucked into the compressor 11 and compressed again, with little heat exchange in the chiller 18.
 従って、第4実施形態における冷房モードでは、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the cooling mode in the fourth embodiment, cooling of the vehicle interior can be performed by blowing out the blown air cooled by the indoor evaporator 16 into the vehicle interior.
 第4実施形態に係る冷房モードにおいても、圧縮機11の作動に伴い、圧縮機11の排熱が発生する。上述した実施形態と同様に、高温側回収部25では、圧縮機11の排熱を高温側熱媒体で吸熱して回収することができ、更に、蓄熱材25bにて圧縮機11の排熱を蓄熱しておくことができる。 Also in the cooling mode according to the fourth embodiment, with the operation of the compressor 11, the exhaust heat of the compressor 11 is generated. Similar to the above-described embodiment, in the high temperature side recovery unit 25, the exhaust heat of the compressor 11 can be absorbed by the high temperature side heat medium and recovered, and furthermore, the exhaust heat of the compressor 11 is obtained by the heat storage material 25b. It can be stored heat.
 つまり、当該ヒートポンプシステム1によれば、高温側回収部25の高温側熱媒体や蓄熱材25bによって、圧縮機11の排熱を回収して蓄熱しておき、適宜利用することができる。 That is, according to the heat pump system 1, the exhaust heat of the compressor 11 can be recovered and stored by the high temperature side heat medium of the high temperature side recovery unit 25 and the heat storage material 25b, and can be used appropriately.
 (b)暖房モード
 暖房モードにおいて、当該制御装置60は、冷却用膨張弁15aを全開とし、吸熱用膨張弁15bを所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを全開にするように制御される。これにより、冷却用膨張弁15aを通過した冷媒は、室内蒸発器16に流入することなく、バイパス流路16aを介して、吸熱用膨張弁15bに流入する。
(B) Heating mode In the heating mode, the control device 60 fully opens the cooling expansion valve 15a, and opens the heat absorption expansion valve 15b at a predetermined opening degree. At this time, the three-way valve 16b is controlled to fully open the bypass flow passage 16a. As a result, the refrigerant that has passed through the cooling expansion valve 15a flows into the heat absorption expansion valve 15b via the bypass flow path 16a without flowing into the indoor evaporator 16.
 従って、暖房モードのヒートポンプサイクル10では、圧縮機11→水-冷媒熱交換器12→三方弁16b→バイパス流路16a→吸熱用膨張弁15b→チラー18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、暖房モードでは、チラー18で吸熱した熱を利用して送風空気を加熱することを目的とした冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the heating mode, the refrigerant circulates in the following order: compressor 11 → water-refrigerant heat exchanger 12 → three-way valve 16 b → bypass flow path 16 a → heat absorption expansion valve 15 b → chiller 18 → compressor 11 A vapor compression refrigeration cycle is configured. That is, in the heating mode, the refrigerant circuit is switched to a refrigerant circuit aiming to heat the blowing air using the heat absorbed by the chiller 18.
 そして、このサイクル構成で、制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を制御する。例えば、吸熱用膨張弁15bの絞り開度は、目標吹出温度TAO等に基づいて、暖房モードに関する制御マップを参照して定められる。 Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. For example, the throttle opening degree of the heat absorption expansion valve 15b is determined based on the target blowout temperature TAO or the like with reference to the control map regarding the heating mode.
 又、制御装置60は、第1実施形態と同様に、高温側熱媒体回路20における高温側熱媒体ポンプ21及び高温側流量調整弁24の作動を制御する。これにより、高温側熱媒体回路20では、水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量がヒータコア22へ流入する状態となる。 Further, the control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment. As a result, in the high temperature side heat medium circuit 20, the entire flow rate of the high temperature side heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 22.
 又、当該制御装置60は、低温側熱媒体回路30における低温側熱媒体ポンプ31及び低温側流量調整弁34についても、第1実施形態と同様に制御する。尚、当該制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。 Further, the control device 60 also controls the low temperature side heat medium pump 31 and the low temperature side flow rate adjustment valve 34 in the low temperature side heat medium circuit 30 in the same manner as in the first embodiment. The control device 60 appropriately controls the operation of other various control target devices.
 暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 In the heat pump cycle 10 in the heating mode, the high pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
 これにより、熱交換対象流体である送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 Thereby, the blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO. The high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、冷却用膨張弁15aへ流入する。この時、冷却用膨張弁15aが全開となっている為、高圧冷媒は減圧されることなく、三方弁16bに流入してバイパス流路16aを流通する。従って、暖房モードにおいて、高圧冷媒は、室内蒸発器16を迂回して吸熱用膨張弁15bに流入する。 The high pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a. At this time, since the cooling expansion valve 15a is fully open, the high pressure refrigerant flows into the three-way valve 16b and flows through the bypass flow passage 16a without being decompressed. Therefore, in the heating mode, the high pressure refrigerant bypasses the indoor evaporator 16 and flows into the heat absorption expansion valve 15b.
 そして、吸熱用膨張弁15bに流入した高圧冷媒は、所定の絞り開度に制御されている為、低圧冷媒となるまで減圧される。吸熱用膨張弁15bにて減圧された低圧冷媒は、チラー18へ流入する。 Then, since the high pressure refrigerant flowing into the heat absorption expansion valve 15b is controlled to a predetermined throttle opening degree, the pressure is reduced until it becomes a low pressure refrigerant. The low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15 b flows into the chiller 18.
 ここで、低温側熱媒体回路30では、低温側熱媒体ポンプ31の作動によって、低温側熱媒体が循環回路を循環している。当該低温側熱媒体は、車載機器32の水通路を通過する際に、車載機器32に生じている熱を吸熱している。 Here, in the low temperature side heat medium circuit 30, the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31. The low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
 又、低温側熱媒体は、低温側ラジエータ33を通過する際に、外気ファンによって送風される外気から吸熱している。つまり、低温側熱媒体は、車載機器32や低温側ラジエータ33にて吸熱した状態で、チラー18の水通路に流入している。 Further, when passing through the low temperature side radiator 33, the low temperature side heat medium absorbs heat from the outside air blown by the outside air fan. That is, the low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
 従って、チラー18に流入した低圧冷媒は、車載機器32の熱や外気の熱を有する低温側熱媒体から吸熱して蒸発する。チラー18から流出した冷媒は、そのまま圧縮機11へ吸入されて再び圧縮される。 Therefore, the low pressure refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium having the heat of the on-vehicle device 32 and the heat of the outside air and evaporates. The refrigerant flowing out of the chiller 18 is sucked into the compressor 11 as it is and compressed again.
 従って、暖房モードでは、ヒータコア22で送風空気を加熱して車室内へ吹き出すことによって、車室内の暖房を行うことができる。即ち、当該ヒートポンプシステム1は、暖房モードにおいて、低温側熱媒体回路30にて車載機器32又は外気から吸熱した熱を、ヒートポンプサイクル10で汲み上げて、高温側熱媒体回路20を介して、送風空気の加熱に利用することができる。 Therefore, in the heating mode, heating the blown air to the vehicle interior by heating the blown air by the heater core 22 can heat the vehicle interior. That is, in the heating mode, the heat pump system 1 pumps up the heat absorbed from the on-vehicle device 32 or the outside air in the low temperature side heat medium circuit 30 in the heat pump cycle 10, and sends the blown air through the high temperature side heat medium circuit 20. It can be used to heat the
 そして、第4実施形態に係る暖房モードにおいても、ヒートポンプサイクル10における圧縮機11の作動が必要となり、圧縮機11の排熱が発生する。当該ヒートポンプシステム1は、高温側熱媒体回路20の高温側回収部25にて、高温側熱媒体を介して、圧縮機11の排熱を回収することができる。 And also in heating mode concerning a 4th embodiment, operation of compressor 11 in heat pump cycle 10 becomes required, and exhaust heat of compressor 11 is generated. The heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20.
 第4実施形態に係るヒートポンプシステム1によれば、第1実施形態と同様に、低温側熱媒体回路30から汲み上げた熱を含む高圧冷媒の熱に加え、圧縮機11の排熱を利用して、高温側熱媒体回路20の高温側熱媒体を加熱し、ヒータコア22にて送風空気へ放熱させることができる。 According to the heat pump system 1 according to the fourth embodiment, the exhaust heat of the compressor 11 is used in addition to the heat of the high-pressure refrigerant including the heat pumped up from the low temperature side heat medium circuit 30 as in the first embodiment. The high temperature side heat medium of the high temperature side heat medium circuit 20 can be heated, and the heat can be released to the blast air by the heater core 22.
 これにより、当該ヒートポンプシステム1は、暖房モードにおける熱源として、水-冷媒熱交換器12における高圧冷媒の熱に加えて、圧縮機11の排熱を利用することができるので、ヒートポンプシステム1における暖房能力を向上させることができる。 Thereby, the heat pump system 1 can utilize the exhaust heat of the compressor 11 in addition to the heat of the high-pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the heating mode. Ability can be improved.
 (c)除湿暖房モード
 除湿暖房モードにおいて、当該制御装置60は、冷却用膨張弁15a及び吸熱用膨張弁15bをそれぞれ所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを閉塞するように制御される。これにより、冷却用膨張弁15aを通過した冷媒は、バイパス流路16aに流入することなく、室内蒸発器16に流入する。
(C) Dehumidifying and heating mode In the dehumidifying and heating mode, the control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined opening degree. At this time, the three-way valve 16b is controlled to close the bypass flow passage 16a. Thus, the refrigerant that has passed through the cooling expansion valve 15a flows into the indoor evaporator 16 without flowing into the bypass flow passage 16a.
 従って、除湿暖房モードのヒートポンプサイクル10では、圧縮機11→水-冷媒熱交換器12→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→チラー18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Accordingly, in the heat pump cycle 10 in the dehumidifying and heating mode, the compressor 11 → water-refrigerant heat exchanger 12 → cooling expansion valve 15a → three-way valve 16b → indoor evaporator 16 → heat absorption expansion valve 15b → chiller 18 → compressor 11 In this order, a vapor compression type refrigeration cycle in which the refrigerant circulates is configured.
 つまり、除湿暖房モードでは、室内蒸発器16にて冷却された送風空気を、チラー18で吸熱した熱を利用して加熱することを目的とした冷媒回路に切り替えられる。 That is, in the dehumidifying and heating mode, the blown air cooled by the indoor evaporator 16 is switched to a refrigerant circuit that is intended to heat using the heat absorbed by the chiller 18.
 そして、このサイクル構成で、制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を制御する。例えば、冷却用膨張弁15a、吸熱用膨張弁15bの絞り開度は、目標吹出温度TAO等に基づいて、それぞれ除湿暖房モードに関する制御マップを参照して定められる。 Then, in this cycle configuration, the control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. For example, the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b is determined based on the target blowing temperature TAO or the like with reference to the control map related to the dehumidifying and heating mode.
 又、制御装置60は、第1実施形態と同様に、高温側熱媒体回路20における高温側熱媒体ポンプ21及び高温側流量調整弁24の作動を制御する。又、当該制御装置60は、低温側熱媒体回路30における低温側熱媒体ポンプ31及び低温側流量調整弁34についても、第1実施形態と同様に制御する。尚、当該制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。 Further, the control device 60 controls the operation of the high temperature side heat medium pump 21 and the high temperature side flow rate adjustment valve 24 in the high temperature side heat medium circuit 20 as in the first embodiment. Further, the control device 60 also controls the low temperature side heat medium pump 31 and the low temperature side flow rate adjustment valve 34 in the low temperature side heat medium circuit 30 in the same manner as in the first embodiment. The control device 60 appropriately controls the operation of other various control target devices.
 除湿暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12へ流入する。水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 In the heat pump cycle 10 in the dehumidifying and heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the water-refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. Be done.
 高温側熱媒体回路20では、水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
 これにより、熱交換対象流体である送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 Thereby, the blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO. The high temperature side heat medium which has flowed out of the heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
 又、高温側流量調整弁24の作動によって、高温側熱媒体の一部は、高温側ラジエータ23に流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。当該高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び水-冷媒熱交換器12の水通路へ圧送される。 Further, part of the high temperature side heat medium flows into the high temperature side radiator 23 by the operation of the high temperature side flow control valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. The high temperature side heat medium is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aにて減圧された低圧冷媒は、三方弁16bを通過して室内蒸発器16へ流入し、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。 The high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a and is decompressed. The low pressure refrigerant decompressed by the cooling expansion valve 15a passes through the three-way valve 16b, flows into the indoor evaporator 16, absorbs heat from the air blown from the blower 52, and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
 そして、室内蒸発器16から流出した低圧冷媒は、吸熱用膨張弁15bへ流入して更に減圧される。吸熱用膨張弁15bにて減圧された低圧冷媒は、チラー18へ流入する。 Then, the low pressure refrigerant flowing out of the indoor evaporator 16 flows into the heat absorption expansion valve 15b and is further depressurized. The low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15 b flows into the chiller 18.
 ここで、除湿暖房モードにおいても、低温側熱媒体回路30では、低温側熱媒体ポンプ31の作動によって、低温側熱媒体が循環回路を循環している。当該低温側熱媒体は、車載機器32の水通路を通過する際に、車載機器32に生じている熱を吸熱している。 Here, also in the dehumidifying and heating mode, in the low temperature side heat medium circuit 30, the low temperature side heat medium circulates in the circulation circuit by the operation of the low temperature side heat medium pump 31. The low temperature side heat medium absorbs heat generated in the in-vehicle device 32 when passing through the water passage of the in-vehicle device 32.
 又、低温側熱媒体は、低温側ラジエータ33を通過する際に、外気ファンによって送風される外気から吸熱している。つまり、低温側熱媒体は、車載機器32や低温側ラジエータ33にて吸熱した状態で、チラー18の水通路に流入している。 Further, when passing through the low temperature side radiator 33, the low temperature side heat medium absorbs heat from the outside air blown by the outside air fan. That is, the low temperature side heat medium flows into the water passage of the chiller 18 in a state where the heat is absorbed by the on-vehicle device 32 and the low temperature side radiator 33.
 従って、チラー18に流入した低圧冷媒は、車載機器32の熱や外気の熱を有する低温側熱媒体から吸熱して蒸発する。チラー18から流出した冷媒は、そのまま圧縮機11へ吸入されて再び圧縮される。 Therefore, the low pressure refrigerant flowing into the chiller 18 absorbs heat from the low temperature side heat medium having the heat of the on-vehicle device 32 and the heat of the outside air and evaporates. The refrigerant flowing out of the chiller 18 is sucked into the compressor 11 as it is and compressed again.
 従って、除湿暖房モードでは、室内蒸発器16で冷却された送風空気を、ヒータコア22で加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。即ち、当該ヒートポンプシステム1は、除湿暖房モードにおいても、低温側熱媒体回路30にて車載機器32又は外気から吸熱した熱を、ヒートポンプサイクル10で汲み上げて、高温側熱媒体回路20を介して、送風空気の加熱に利用することができる。 Therefore, in the dehumidifying and heating mode, dehumidifying and heating the passenger compartment can be performed by heating the blown air cooled by the indoor evaporator 16 with the heater core 22 and blowing it out into the passenger compartment. That is, even in the dehumidifying and heating mode, the heat pump system 1 pumps up the heat absorbed by the low-temperature side heat medium circuit 30 from the on-vehicle device 32 or the outside air in the heat pump cycle 10 and via the high temperature side heat medium circuit 20 It can be used to heat the blast air.
 そして、当該除湿暖房モードにおいても、ヒートポンプサイクル10における圧縮機11の作動が必要となり、圧縮機11の排熱が発生する。当該ヒートポンプシステム1は、高温側熱媒体回路20の高温側回収部25にて、高温側熱媒体を介して、圧縮機11の排熱を回収することができる。 And also in the said dehumidification heating mode, the action | operation of the compressor 11 in the heat pump cycle 10 is needed, and the exhaust heat of the compressor 11 generate | occur | produces. The heat pump system 1 can recover the exhaust heat of the compressor 11 through the high temperature side heat medium in the high temperature side recovery unit 25 of the high temperature side heat medium circuit 20.
 当該ヒートポンプシステム1によれば、低温側熱媒体回路30から汲み上げた熱を含む高圧冷媒の熱に加え、圧縮機11の排熱を用いて、高温側熱媒体回路20の高温側熱媒体を加熱し、室内蒸発器16にて冷却された空気をヒータコア22にて加熱することができる。 According to the heat pump system 1, in addition to the heat of the high pressure refrigerant including the heat pumped up from the low temperature side heat medium circuit 30, the exhaust heat of the compressor 11 is used to heat the high temperature side heat medium of the high temperature side heat medium circuit 20 The air cooled by the indoor evaporator 16 can be heated by the heater core 22.
 これにより、当該ヒートポンプシステム1は、除湿暖房モードにおける熱源として、水-冷媒熱交換器12における高圧冷媒の熱に加えて、圧縮機11の排熱を利用することができるので、除湿暖房モード時におけるヒートポンプシステム1の暖房能力を向上させることができる。 As a result, the heat pump system 1 can utilize the exhaust heat of the compressor 11 in addition to the heat of the high-pressure refrigerant in the water-refrigerant heat exchanger 12 as a heat source in the dehumidifying heating mode. The heating capacity of the heat pump system 1 can be improved.
 以上説明したように、第4実施形態に係るヒートポンプシステム1によれば、上述した第1実施形態と共通の構成及び作動から奏される作用効果を、第1実施形態と同様に得ることができる。 As described above, according to the heat pump system 1 of the fourth embodiment, the same advantages as those of the first embodiment can be obtained from the configuration and operation common to those of the first embodiment described above. .
 即ち、第4実施形態に係るヒートポンプシステム1は、ヒートポンプサイクル10の構成を室内蒸発器16とチラー18が直列に接続された構成とした場合であっても、高温側熱媒体回路20及び高温側回収部25を用いて、圧縮機11の排熱を回収して有効に活用することができる。 That is, the heat pump system 1 according to the fourth embodiment has the high temperature side heat medium circuit 20 and the high temperature side even when the heat pump cycle 10 is configured such that the indoor evaporator 16 and the chiller 18 are connected in series. The exhaust heat of the compressor 11 can be recovered and effectively used by using the recovery unit 25.
 尚、第4実施形態におけるヒートポンプサイクル10では、暖房モード時等において室内蒸発器16での熱交換(即ち、送風空気の冷却)を抑制する為に、バイパス流路16a及び三方弁16bを配置して、室内蒸発器16を迂回させて冷媒を流す構成であったが、この態様に限定されるものではない。 In the heat pump cycle 10 in the fourth embodiment, the bypass flow passage 16a and the three-way valve 16b are disposed to suppress heat exchange (that is, cooling of the blown air) in the indoor evaporator 16 in the heating mode or the like. Although the indoor evaporator 16 is bypassed to flow the refrigerant, the present invention is not limited to this aspect.
 例えば、室内蒸発器16における送風空気との熱交換を防止することができればよく、送風空気の流路を切り替えて、送風空気が室内蒸発器16を迂回するように構成しても良い。具体的には、送風機52と室内蒸発器16の間に開閉可能なシャッター装置を配置すると共に、ケーシング51において室内蒸発器16を迂回するバイパス流路を形成しても良い。 For example, as long as heat exchange with the blowing air in the indoor evaporator 16 can be prevented, the flow path of the blowing air may be switched so that the blowing air bypasses the indoor evaporator 16. Specifically, a shutter device that can be opened and closed can be disposed between the blower 52 and the indoor evaporator 16, and a bypass flow channel that bypasses the indoor evaporator 16 may be formed in the casing 51.
 又、第4実施形態に係るヒートポンプシステム1は、第1実施形態におけるヒートポンプサイクル10の構成を変更した例であったが、第4実施形態に係るヒートポンプサイクル10の構成を上述した実施形態等に適用することも可能である。即ち、第4実施形態に係るヒートポンプサイクル10を、図4~図6に示す第1実施形態の第1変形例~第3変形例におけるヒートポンプサイクル10に適用しても良い。 Moreover, although the heat pump system 1 which concerns on 4th Embodiment was an example which changed the structure of the heat pump cycle 10 in 1st Embodiment, the embodiment etc. which mentioned the structure of the heat pump cycle 10 which concerns on 4th Embodiment were mentioned. It is also possible to apply. That is, the heat pump cycle 10 according to the fourth embodiment may be applied to the heat pump cycle 10 in the first to third modifications of the first embodiment shown in FIGS. 4 to 6.
 又、第4実施形態に係るヒートポンプサイクル10を、図7、図8に示す第2実施形態及びその変形例におけるヒートポンプサイクル10に適用したり、図9に示す第3実施形態に係るヒートポンプサイクル10に適用したりすることも可能である。何れの場合についても、上述した実施形態と共通の構成及び作動から奏される作用効果を、上述した実施形態と同様に得ることができる。 Further, the heat pump cycle 10 according to the fourth embodiment is applied to the heat pump cycle 10 in the second embodiment shown in FIGS. 7 and 8 and its modification, or the heat pump cycle 10 according to the third embodiment shown in FIG. It is also possible to apply to In any case, the same advantages as those of the above-described embodiment can be obtained from the same configuration and operation as those of the above-described embodiment.
 以上、実施形態に基づき本開示を説明したが、本開示は上述した実施形態に何ら限定されるものではない。即ち、本開示の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。 Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments. That is, various improvements and modifications are possible without departing from the scope of the present disclosure. For example, the above-described embodiments may be combined as appropriate, or various modifications of the above-described embodiments may be made.
 上述した実施形態においては、本開示における熱回収部としての高温側回収部25は、高温側分岐部26aにて高温側熱媒体を分岐させる高温側流入配管26と、高温側合流部27aにて高温側熱媒体を合流させる高温側流出配管27とを有している。 In the embodiment described above, the high temperature side recovery unit 25 as a heat recovery unit according to the present disclosure includes the high temperature side inflow piping 26 that causes the high temperature side heat medium to branch at the high temperature side branch unit 26a, and the high temperature side junction unit 27a. And a high temperature side outflow pipe 27 for joining the high temperature side heat mediums.
 又、低温側回収部35は、低温側分岐部36aにて低温側熱媒体を分岐させる低温側流入配管36と、低温側合流部37aにて低温側熱媒体を合流させる低温側流出配管37とを有している。 The low temperature side recovery unit 35 further includes a low temperature side inflow pipe 36 for branching the low temperature side heat medium at the low temperature side branch portion 36a, and a low temperature side outflow pipe 37 for joining the low temperature side heat medium at the low temperature side merging portion 37a. have.
 即ち、上述した実施形態においては、熱回収部にて圧縮機11の排熱を回収する為の熱媒体の流れと、熱媒体回路を循環する熱媒体の流れが並列になるように構成していたが、この態様に限定されるものではない。例えば、熱媒体回路を流れる熱媒体の全量が熱回収部の収容部に流入し、収容部にて圧縮機11の排熱を回収した後、熱媒体回路の構成機器に流入するように構成してもよい。 That is, in the embodiment described above, the flow of the heat medium for recovering the exhaust heat of the compressor 11 in the heat recovery unit and the flow of the heat medium circulating in the heat medium circuit are arranged in parallel. However, it is not limited to this aspect. For example, the entire amount of the heat medium flowing in the heat medium circuit flows into the storage portion of the heat recovery unit, and after the exhaust heat of the compressor 11 is recovered in the storage portion, flows into the components of the heat medium circuit May be
 この構成を第2実施形態に適用した例を図11に示す。図11に示すように、低温側熱媒体ポンプ31の吐出口側には、低温側流入配管36が接続されている。この時、第2実施形態のように、低温側分岐部36aは配置されていない為、低温側熱媒体の全量が低温側流入配管36に流入する。 An example in which this configuration is applied to the second embodiment is shown in FIG. As shown in FIG. 11, a low temperature side inflow pipe 36 is connected to the discharge port side of the low temperature side heat medium pump 31. At this time, since the low temperature side branch portion 36 a is not disposed as in the second embodiment, the entire amount of the low temperature side heat medium flows into the low temperature side inflow pipe 36.
 低温側流入配管36は、低温側回収部35の収容部に接続されている為、収容部に流入した低温側熱媒体は圧縮機11の排熱を吸熱して、低温側流出配管37へ流出する。当該低温側流出配管37は、チラー18における水通路の入口側に接続されている。 Since the low temperature side inflow piping 36 is connected to the housing portion of the low temperature side recovery unit 35, the low temperature side heat medium that has flowed into the housing portion absorbs the exhaust heat of the compressor 11 and flows out to the low temperature side outflow piping 37 Do. The low temperature side outflow piping 37 is connected to the inlet side of the water passage in the chiller 18.
 つまり、図11に示す例によれば、低温側熱媒体回路30における低温側熱媒体の全量が、低温側流入配管36、低温側流出配管37を経由して、低温側回収部35にて圧縮機11の排熱を吸熱する。このように構成した場合であっても、上述した各実施形態と同様の効果を発揮する。 That is, according to the example shown in FIG. 11, the entire low temperature side heat medium in the low temperature side heat medium circuit 30 is compressed by the low temperature side recovery unit 35 via the low temperature side inflow piping 36 and the low temperature side outflow piping 37 It absorbs the exhaust heat of the machine 11. Even in the case of such a configuration, the same effects as those of the above-described embodiments can be obtained.
 尚、図11では、図7に示す第2実施形態に対して適用した場合について説明したが、この態様に限定されるものではない、上述した各実施形態及び各変形例に対して適用することも可能である。 In addition, although the case where it applied to 2nd Embodiment shown in FIG. 7 was demonstrated in FIG. 11, applying to each embodiment and each modification which were not limited to this aspect and was mentioned above Is also possible.
 又、上述した実施形態における高温側熱媒体回路20は、高温側熱媒体の流れに関して、ヒータコア22と高温側ラジエータ23とを並列に接続していたが、この態様に限定されるものではない。 Moreover, although the high temperature side heat medium circuit 20 in embodiment mentioned above connected the heater core 22 and the high temperature side radiator 23 in parallel regarding the flow of the high temperature side heat medium, it is not limited to this aspect.
 例えば、高温側熱媒体回路20として、図12に示す構成を採用することも可能である。図12に示す高温側熱媒体回路20において、高温側熱媒体ポンプ21の吐出口側には、水-冷媒熱交換器12における水通路の入口側が接続されている。水-冷媒熱交換器12における水通路の出口側には、ヒータコア22の入口側が接続されている。 For example, as the high temperature side heat medium circuit 20, it is also possible to adopt the configuration shown in FIG. In the high temperature side heat medium circuit 20 shown in FIG. 12, the outlet side of the high temperature side heat medium pump 21 is connected to the inlet side of the water passage in the water-refrigerant heat exchanger 12. The inlet side of the heater core 22 is connected to the outlet side of the water passage in the water-refrigerant heat exchanger 12.
 ヒータコア22の出口側には、高温側流量調整弁24の流入口が接続されている。高温側流量調整弁24における流出口の一方には、高温側ラジエータ23の入口側が接続されており、高温側流量調整弁24における流出口の他方には、高温側バイパス流路24aが接続されている。 The outlet side of the heater core 22 is connected to the inlet of the high temperature side flow control valve 24. The inlet side of the high temperature side radiator 23 is connected to one of the outlets of the high temperature side flow control valve 24, and the high temperature side bypass flow path 24 a is connected to the other of the outlet of the high temperature side flow adjustment valve 24. There is.
 高温側バイパス流路24aの他端側は、高温側ラジエータ23の出口側に接続されている。高温側バイパス流路24aの他端側と高温側ラジエータ23の出口側は、高温側熱媒体ポンプ21の吸入口側に接続されている。 The other end side of the high temperature side bypass flow passage 24 a is connected to the outlet side of the high temperature side radiator 23. The other end side of the high temperature side bypass flow passage 24 a and the outlet side of the high temperature side radiator 23 are connected to the suction port side of the high temperature side heat medium pump 21.
 つまり、図12に示すように、高温側熱媒体回路20として、ヒータコア22及び高温側ラジエータ23を直列的に接続した構成を採用することができる。上述した各実施形態に係る高温側熱媒体回路20を、図12に示す構成とした場合であっても、各ヒートポンプシステム1は、上述した実施形態と共通の構成及び作動から奏される作用効果を、各実施形態と同様に得ることができる。 That is, as shown in FIG. 12, a configuration in which the heater core 22 and the high temperature side radiator 23 are connected in series can be adopted as the high temperature side heat medium circuit 20. Even when the high temperature side heat medium circuit 20 according to each of the above-described embodiments is configured as shown in FIG. 12, each heat pump system 1 provides the same advantages as the above-described embodiments. Can be obtained in the same manner as each embodiment.
 そして、上述した実施形態においては、例えば、図2に示す高温側回収部25のように、熱回収部を構成する収容部の内部に対して、複数の蓄熱材を配置することで蓄熱部40を構成していたが、この態様に限定されるものではない。本開示における蓄熱部40は、圧縮機11の排熱を蓄熱可能であれば様々な態様を採用することができる。 And in embodiment mentioned above, thermal storage part 40 is arrange | positioned with respect to the inside of the accommodating part which comprises a heat recovery part like the high temperature side collection part 25 shown, for example in FIG. However, the present invention is not limited to this aspect. The heat storage unit 40 in the present disclosure can adopt various modes as long as the heat exhaust from the compressor 11 can be stored.
 例えば、図2と同様に高温側回収部25を例に挙げて説明する。図13に示すように、高温側回収部25における高温側流出配管27に蓄熱器45を配置しても良い。当該蓄熱器45は、高温側流出配管27が接続された容器45aと、容器45a内に配置された複数の蓄熱材45bによって構成されている。当該蓄熱材45bは、第1実施形態における蓄熱材25bと同様の構成である。 For example, as in FIG. 2, the high temperature side recovery unit 25 will be described as an example. As shown in FIG. 13, the heat accumulator 45 may be disposed in the high temperature side outflow pipe 27 in the high temperature side recovery unit 25. The heat storage unit 45 is configured of a container 45a to which the high temperature side outflow piping 27 is connected, and a plurality of heat storage materials 45b disposed in the container 45a. The heat storage material 45 b has the same configuration as the heat storage material 25 b in the first embodiment.
 従って、図11に示す構成によれば、高温側流入配管26を流通した高温側熱媒体は、収容部25a内において、圧縮機11の周囲を流れることで、圧縮機11の排熱を吸熱する。そして、当該高温側熱媒体は、収容部25aから高温側流出配管27へ流出する。 Therefore, according to the configuration shown in FIG. 11, the high temperature side heat medium flowing through the high temperature side inflow pipe 26 absorbs the exhaust heat of the compressor 11 by flowing around the compressor 11 in the housing portion 25a. . Then, the high temperature side heat medium flows out from the housing portion 25 a to the high temperature side outflow pipe 27.
 高温側流出配管27を流通した高温側熱媒体は、蓄熱器45の容器45a内部に流入する。高温側熱媒体は、蓄熱器45の容器45aにおいて、カプセル状の蓄熱材45bの隙間を通過して、高温側流出配管27から高温側熱媒体回路20へ流れていく。 The high temperature side heat medium flowing through the high temperature side outflow piping 27 flows into the inside of the container 45 a of the heat accumulator 45. The high temperature side heat medium flows from the high temperature side outflow piping 27 to the high temperature side heat medium circuit 20 through the gap of the capsule-like heat storage material 45 b in the container 45 a of the heat accumulator 45.
 この時、当該高温側熱媒体は、収容部25a内にて圧縮機11の排熱で加熱されている為、蓄熱温度の条件を満たせば、蓄熱器45における各蓄熱材45bに圧縮機11の排熱を蓄熱させることができる。つまり、図11に示す蓄熱器45は、本開示における蓄熱部として機能する。 At this time, since the high temperature side heat medium is heated by the exhaust heat of the compressor 11 in the housing portion 25a, each heat storage material 45b in the heat accumulator 45 can be replaced by the heat storage material 45b if the heat storage temperature condition is satisfied. Exhaust heat can be stored. That is, the heat storage unit 45 illustrated in FIG. 11 functions as a heat storage unit in the present disclosure.
 尚、図11では、蓄熱器45を、高温側熱媒体回路20における蓄熱部として採用した場合について説明しているが、低温側熱媒体回路30における蓄熱部として採用することも可能である。この場合、蓄熱器45の容器45aは、低温側流出配管37に配置することが望ましい。又、この場合における蓄熱材45bとしては、第2実施形態に係る蓄熱材が採用される。 Although FIG. 11 describes the case where the heat storage unit 45 is adopted as the heat storage portion in the high temperature side heat medium circuit 20, it is also possible to adopt it as the heat storage portion in the low temperature side heat medium circuit 30. In this case, the container 45 a of the heat accumulator 45 is desirably disposed in the low temperature side outflow pipe 37. Further, as the heat storage material 45b in this case, the heat storage material according to the second embodiment is employed.
 又、上述した実施形態においては、本開示に係る高温側熱受容部として、高温側熱媒体回路20を採用すると共に、本開示に係る低温側熱受容部として、低温側熱媒体回路30を採用していたが、この態様に限定されるものではない。 In the embodiment described above, the high temperature side heat medium circuit 20 is adopted as the high temperature side heat receiving portion according to the present disclosure, and the low temperature side heat medium circuit 30 is adopted as the low temperature side heat receiving portion according to the present disclosure. However, the present invention is not limited to this aspect.
 本開示に係る高温側熱受容部及び低温側熱受容部は、回収部によって回収された圧縮機11の排熱を受容可能であればよく、熱媒体回路に限定されるものではない。例えば、高温側熱受容部や低温側熱受容部として、金属ブロック等を用いることも可能である。 The high temperature side heat receiving unit and the low temperature side heat receiving unit according to the present disclosure may be capable of receiving the exhaust heat of the compressor 11 recovered by the recovery unit, and is not limited to the heat medium circuit. For example, a metal block or the like can be used as the high temperature side heat receiving portion or the low temperature side heat receiving portion.
 そして、上述した実施形態においては、図2、図13に示すように、回収部を構成する収容部25aの内部に、圧縮機11の少なくとも一部を配置して、当該圧縮機11の周囲を流れる熱媒体によって圧縮機11の排熱を回収していたが、この態様に限定されるものではない。 And in embodiment mentioned above, as shown to FIG. 2, FIG. 13, at least one part of the compressor 11 is arrange | positioned inside the accommodating part 25a which comprises a collection | recovery part, and the circumference of the said compressor 11 is Although the exhaust heat of the compressor 11 is recovered by the flowing heat medium, it is not limited to this aspect.
 例えば、本開示に係る回収部の構成として、圧縮機11の外表面に対して熱媒体配管を接触させるように配置して、熱媒体配管を介して、圧縮機11の排熱を熱媒体に回収させるように構成することも可能である。 For example, as a configuration of the recovery unit according to the present disclosure, the heat medium pipe is disposed in contact with the outer surface of the compressor 11, and the exhaust heat of the compressor 11 is used as the heat medium via the heat medium pipe. It is also possible to make it collect | recover.
 この時、圧縮機11の排熱をより多く回収する為に、圧縮機11の外表面と熱媒体配管との接触面積を大きくすることが望ましい。例えば、圧縮機11の外表面に対して熱媒体配管を巻きつけるように配置しても良いし、圧縮機11の外表面に対してサーペンタイン状に熱媒体配管を配置しても良い。 At this time, in order to recover more exhaust heat of the compressor 11, it is desirable to increase the contact area between the outer surface of the compressor 11 and the heat medium pipe. For example, the heat medium pipe may be arranged to be wound around the outer surface of the compressor 11 or may be arranged in a serpentine shape with respect to the outer surface of the compressor 11.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more than or less than the above, are also included in the category and the scope of the present disclosure. It is a thing.

Claims (9)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、前記圧縮機にて圧縮された高圧冷媒の熱を放熱する放熱器(12)と、前記放熱器から流出した高圧冷媒を減圧させる減圧部(15a、15b)と、前記減圧部にて減圧された低圧冷媒を蒸発させて吸熱する吸熱器(16、18)と、を有するヒートポンプサイクル(10)と、
     前記圧縮機の排熱を回収する回収部(25、35)と、
     前記回収部で回収された熱を前記高圧冷媒に放熱させる高温側熱受容部(20)、及び、前記回収部で回収された熱を前記低圧冷媒に吸熱させる低温側熱受容部(30)の少なくとも一方を有するヒートポンプシステム。
    A compressor (11) for compressing and discharging the refrigerant, a radiator (12) for radiating the heat of the high-pressure refrigerant compressed by the compressor, and a pressure reduction unit for reducing the pressure of the high-pressure refrigerant flowing out of the radiator A heat pump cycle (10) comprising: 15a, 15b), and a heat sink (16, 18) which evaporates and absorbs heat from the low pressure refrigerant decompressed in the decompression section;
    A recovery unit (25, 35) for recovering the exhaust heat of the compressor;
    The high temperature side heat receiving part (20) which radiates the heat collected in the collecting part to the high pressure refrigerant, and the low temperature side heat receiving part (30) absorbing the heat collected in the collecting part to the low pressure refrigerant Heat pump system having at least one.
  2.  前記高温側熱受容部は、前記放熱器にて高圧冷媒と熱交換する高温側熱媒体が循環する高温側熱媒体回路(20)であり、
     前記回収部は、前記圧縮機の排熱を前記高温側熱媒体と熱交換させて回収する高温側回収部(25)を有する請求項1に記載のヒートポンプシステム。
    The high temperature side heat receiving portion is a high temperature side heat medium circuit (20) in which a high temperature side heat medium that exchanges heat with the high pressure refrigerant in the radiator is circulated;
    The heat pump system according to claim 1, wherein the recovery unit has a high temperature side recovery unit (25) which recovers the exhaust heat of the compressor by heat exchange with the high temperature side heat medium.
  3.  前記高温側熱媒体回路は、
     前記高温側熱媒体を熱交換対象流体と熱交換させて、前記熱交換対象流体を加熱するヒータコア(22)と、を有する請求項2に記載のヒートポンプシステム。
    The high temperature side heat medium circuit is
    The heat pump system according to claim 2, further comprising: a heater core (22) that heats the heat exchange target fluid by heat exchange between the high temperature side heat medium and the heat exchange target fluid.
  4.  前記低温側熱受容部は、前記吸熱器における低圧冷媒の蒸発にて吸熱される低温側熱媒体が循環する低温側熱媒体回路(30)であり、
     前記回収部は、前記圧縮機の排熱を前記低温側熱媒体と熱交換させて回収する低温側回収部(35)を有する請求項1ないし3の何れか1つに記載のヒートポンプシステム。
    The low temperature side heat receiving portion is a low temperature side heat medium circuit (30) in which a low temperature side heat medium which is absorbed by evaporation of the low pressure refrigerant in the heat absorber circulates,
    The heat pump system according to any one of claims 1 to 3, wherein the recovery unit has a low temperature side recovery unit (35) which recovers the exhaust heat of the compressor by heat exchange with the low temperature side heat medium.
  5.  前記低温側熱媒体回路は、作動に伴い発熱する発熱機器(32)の熱を前記低温側熱媒体に吸熱させて冷却する請求項4に記載のヒートポンプシステム。 The heat pump system according to claim 4, wherein the low temperature side heat medium circuit cools the low temperature side heat medium by absorbing heat of a heat generating device (32) which generates heat with operation.
  6.  前記低温側熱媒体回路は、前記低温側熱媒体と外気とを熱交換させる低温側ラジエータ(33)を有する請求項4又は5に記載のヒートポンプシステム。 The heat pump system according to claim 4 or 5, wherein the low temperature side heat medium circuit has a low temperature side radiator (33) that exchanges heat between the low temperature side heat medium and the outside air.
  7.  前記低温側回収部は、前記低温側熱媒体回路において、前記吸熱器における入口側に配置されている請求項4ないし6の何れか1つに記載のヒートポンプシステム。 The heat pump system according to any one of claims 4 to 6, wherein the low temperature side recovery unit is disposed on the inlet side of the heat absorber in the low temperature side heat medium circuit.
  8.  前記ヒートポンプサイクルは、
     前記減圧部にて減圧された冷媒を蒸発させて吸熱させる第1吸熱器(18)と、
     前記第1吸熱器とは異なる位置において、前記減圧部にて減圧された冷媒を蒸発させて吸熱させる第2吸熱器(16)と、を有する請求項1ないし7の何れか1つに記載のヒートポンプシステム。
    The heat pump cycle is
    A first heat absorber (18) that evaporates and absorbs heat from the refrigerant decompressed by the decompression unit;
    The heat sink according to any one of claims 1 to 7, further comprising: a second heat sink (16) that evaporates and absorbs heat from the refrigerant decompressed in the pressure reducing unit at a position different from the first heat sink. Heat pump system.
  9.  前記圧縮機の排熱を蓄熱する蓄熱部(40)を有し、
     前記回収部は、前記蓄熱部に蓄熱された熱を回収する請求項1ないし8の何れか1つに記載のヒートポンプシステム。
    A heat storage section (40) for storing the exhaust heat of the compressor;
    The heat pump system according to any one of claims 1 to 8, wherein the recovery unit recovers the heat stored in the heat storage unit.
PCT/JP2018/041206 2017-12-08 2018-11-06 Heat pump system WO2019111621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880078797.3A CN111448432A (en) 2017-12-08 2018-11-06 Heat pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235997A JP2019100688A (en) 2017-12-08 2017-12-08 Heat pump system
JP2017-235997 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019111621A1 true WO2019111621A1 (en) 2019-06-13

Family

ID=66751535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041206 WO2019111621A1 (en) 2017-12-08 2018-11-06 Heat pump system

Country Status (3)

Country Link
JP (1) JP2019100688A (en)
CN (1) CN111448432A (en)
WO (1) WO2019111621A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137775A (en) * 2021-03-31 2021-07-20 青岛海尔空调电子有限公司 Auxiliary heat recovery system for refrigeration system and refrigeration system with auxiliary heat recovery system
CN113432325A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Cascade compression refrigeration system and refrigeration equipment with same
CN113432364A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Refrigerator with a door
CN113432327A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Cascade compression refrigeration system and refrigeration equipment with same
US20220349627A1 (en) * 2018-08-21 2022-11-03 Hanon Systems Heat management system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779109B (en) * 2019-10-14 2021-03-19 江西清华泰豪三波电机有限公司 Air conditioning system with fan waste heat recovery function and control method thereof
JP2023155791A (en) * 2022-04-11 2023-10-23 株式会社Soken Temperature regulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308344A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006321389A (en) * 2005-05-19 2006-11-30 Denso Corp Waste heat using device for vehicle
JP2014148295A (en) * 2013-02-04 2014-08-21 Panasonic Corp Air conditioner for vehicle
CN206247684U (en) * 2016-11-17 2017-06-13 广东美的暖通设备有限公司 A kind of anti-system and the air-conditioning of blowing a cold wind over that defrost of air-conditioning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183780A (en) * 1989-01-10 1990-07-18 Tanaka Kenichi Cooling and heating device
CN2926916Y (en) * 2006-07-25 2007-07-25 江苏天银电器有限公司 Hot pump system of water heater
CN105026195B (en) * 2013-03-06 2017-04-26 松下知识产权经营株式会社 Vehicle air conditioning device
JP6186998B2 (en) * 2013-07-31 2017-08-30 株式会社デンソー Air conditioner for vehicles
JP6277888B2 (en) * 2014-06-27 2018-02-14 株式会社デンソー Refrigeration cycle equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308344A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006321389A (en) * 2005-05-19 2006-11-30 Denso Corp Waste heat using device for vehicle
JP2014148295A (en) * 2013-02-04 2014-08-21 Panasonic Corp Air conditioner for vehicle
CN206247684U (en) * 2016-11-17 2017-06-13 广东美的暖通设备有限公司 A kind of anti-system and the air-conditioning of blowing a cold wind over that defrost of air-conditioning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220349627A1 (en) * 2018-08-21 2022-11-03 Hanon Systems Heat management system
US12061031B2 (en) * 2018-08-21 2024-08-13 Hanon Systems Heat management system
CN113432325A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Cascade compression refrigeration system and refrigeration equipment with same
CN113432364A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Refrigerator with a door
CN113432327A (en) * 2020-03-23 2021-09-24 青岛海尔智能技术研发有限公司 Cascade compression refrigeration system and refrigeration equipment with same
CN113137775A (en) * 2021-03-31 2021-07-20 青岛海尔空调电子有限公司 Auxiliary heat recovery system for refrigeration system and refrigeration system with auxiliary heat recovery system

Also Published As

Publication number Publication date
CN111448432A (en) 2020-07-24
JP2019100688A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6838527B2 (en) Vehicle air conditioner
WO2019111621A1 (en) Heat pump system
CN108369042B (en) Refrigeration cycle device
JP6791052B2 (en) Air conditioner
JP6838535B2 (en) Refrigeration cycle equipment
JP6794964B2 (en) Refrigeration cycle equipment
JP6398764B2 (en) Thermal management system for vehicles
CN107636401B (en) Refrigeration cycle device
CN113226814B (en) Air conditioner for vehicle
JP6838518B2 (en) Refrigeration cycle equipment
JP7176405B2 (en) temperature controller
JP2019104394A (en) Heat management system
JP2013217631A (en) Refrigeration cycle device
JP6075058B2 (en) Refrigeration cycle equipment
JP7516761B2 (en) Refrigeration Cycle Equipment
JP2019034587A (en) Air conditioner
JP2011152808A (en) Air conditioner of vehicle
WO2019065013A1 (en) Refrigeration cycle device
WO2020050085A1 (en) Compressor and refrigeration cycle device
WO2020050086A1 (en) Compressor and refrigeration cycle device
JP2019034716A (en) Refrigeration cycle device
JP2020023224A (en) Heat pump system
JP2019105409A (en) Heat pump cycle
WO2023182106A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885558

Country of ref document: EP

Kind code of ref document: A1