WO2019031221A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2019031221A1
WO2019031221A1 PCT/JP2018/027593 JP2018027593W WO2019031221A1 WO 2019031221 A1 WO2019031221 A1 WO 2019031221A1 JP 2018027593 W JP2018027593 W JP 2018027593W WO 2019031221 A1 WO2019031221 A1 WO 2019031221A1
Authority
WO
WIPO (PCT)
Prior art keywords
high temperature
temperature side
refrigerant
air
heat
Prior art date
Application number
PCT/JP2018/027593
Other languages
French (fr)
Japanese (ja)
Inventor
康介 白鳥
加藤 吉毅
徹 岡村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018124604A external-priority patent/JP6922856B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019031221A1 publication Critical patent/WO2019031221A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus and is effective when applied to an air conditioner.
  • Patent Document 1 discloses a vapor compression refrigeration cycle apparatus applied to a vehicle air conditioner.
  • the refrigeration cycle apparatus of Patent Document 1 includes a refrigerant circuit in a cooling mode that cools air blown into a vehicle compartment that is a space to be air-conditioned, a refrigerant circuit in a heating mode that heats blast air, and air that has been cooled and dehumidified. It is comprised so that switching of the refrigerant circuit of the dehumidification heating mode which reheats air is possible.
  • the refrigeration cycle apparatus of Patent Document 1 includes a first outdoor heat exchanger that exchanges heat between the refrigerant and the heat medium, a second outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and the refrigerant and the air.
  • the indoor heat exchanger which exchanges heat with air is provided.
  • the high pressure refrigerant is made to flow in the order of the first outdoor heat exchanger ⁇ the second outdoor heat exchanger, and the first outdoor heat exchanger and the second outdoor While making a heat exchanger function as a radiator, low pressure refrigerant is made to flow into an indoor heat exchanger, and it switches to a refrigerant circuit which makes an indoor heat exchanger function as an evaporator.
  • the first outdoor heat exchanger functions as a heating unit that heats the blowing air.
  • the high pressure refrigerant is made to flow in the order of the first outdoor heat exchanger ⁇ the indoor heat exchanger, and the first outdoor heat exchanger and the indoor heat exchanger function as a radiator and the second outdoor heat exchange
  • the low pressure refrigerant is caused to flow into the unit, and the second outdoor heat exchanger is switched to a refrigerant circuit that functions as an evaporator.
  • both the first outdoor heat exchanger and the indoor heat exchanger function as a heating unit that heats the blown air.
  • the refrigerant circuit and the low pressure refrigerant that cause the high pressure refrigerant to flow into the heat exchanger that functions as the heating unit according to the operation mode.
  • the cycle configuration may be easily complicated.
  • the heat of the refrigerant is used to heat the heat exchanger itself that functions as the heating unit.
  • the heating capacity of the blowing air in the heating unit may be reduced.
  • An object of this indication is to provide a refrigerating cycle device which can control a fall of heating capability of blowing air in view of the above-mentioned point.
  • a refrigeration cycle apparatus is applied to an air conditioner.
  • the refrigeration cycle apparatus includes a compressor, a first heating unit, and a second heating unit.
  • the compressor compresses and discharges the refrigerant.
  • the first heating unit uses the refrigerant discharged from the compressor as a heat source to heat the air that is blown to the space to be air-conditioned.
  • the second heating unit heats the blowing air using the refrigerant flowing out of the first heating unit as a heat source.
  • the second heating unit is disposed so as to heat the blown air and cause it to flow out to the first heating unit side. In the heating mode for heating the blowing air, the blowing air is heated in both of the first heating unit and the second heating unit.
  • the refrigerant discharged from the compressor is made to flow in the order of the first heating unit ⁇ the second heating unit, and the second heating unit ⁇ even if the air is relatively low temperature ⁇
  • the heating can be performed stepwise and efficiently in the order of the first heating unit.
  • the enthalpy of the refrigerant flowing out of the second heating unit can be sufficiently reduced by the air which is relatively low in temperature. Therefore, the heat absorption amount of the refrigerant in the heat exchanger that functions as an evaporator can be increased, and a decrease in the heating capacity of the blowing air in the first heating unit and the second heating unit can be suppressed.
  • the apparatus includes a pressure reducing unit that reduces the pressure of the refrigerant flowing out of the second heating unit, and a cooling evaporation unit that causes the refrigerant reduced in the pressure reducing unit to heat exchange with the blowing air and evaporates the refrigerant.
  • the second heating unit is disposed so as to heat the blown air cooled by the cooling evaporation unit to flow out toward the first heating unit side, and the blown air cooled and dehumidified by the cooling evaporation unit In the dehumidifying and heating mode of reheating, the blowing air may be heated by at least the second heating unit.
  • the high pressure refrigerant can be made to flow at least into the second heating unit, and the blowing air cooled and dehumidified by the cooling evaporation unit can be reheated by the second heating unit. . Therefore, the operation mode can be switched with a simple configuration in which the low pressure refrigerant does not flow into the first heating unit and the second heating unit.
  • the enthalpy of the refrigerant flowing out of the second heating unit can be sufficiently reduced by the blowing air cooled by the cooling evaporation unit. Therefore, the amount of heat absorption of the refrigerant in the cooling evaporation portion can be increased, and a decrease in the heating capacity of the blowing air in the second heating portion can be suppressed.
  • FIG. 7 is a partial cross-sectional view of an indoor air conditioning unit of at least one embodiment of the present disclosure. It is a block diagram showing an electric control part of a vehicular air-conditioning system of at least one embodiment of the present disclosure. It is an explanatory view for explaining a control mode of dehumidification heating mode.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
  • FIG. 7 is a partial cross-sectional view of an indoor air conditioning unit of at least one embodiment of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
  • the refrigeration cycle apparatus 10 of the present embodiment is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains driving power for traveling a vehicle from a traveling electric motor.
  • the refrigeration cycle apparatus 10 has a function of adjusting the temperature of the blowing air blown into the vehicle compartment, which is a space to be air conditioned, in the vehicle air conditioner 1.
  • the operation in the cooling mode, the operation in the heating mode, and the operation in the first and second dehumidifying and heating modes can be switched.
  • the cooling mode is an operation mode for cooling the inside of the vehicle by cooling the blown air.
  • the heating mode is an operation mode in which the blowing air is heated to heat the vehicle interior.
  • the first and second dehumidifying and heating modes are operation modes for reheating the cooled and dehumidified air to dehumidify and heat the passenger compartment.
  • an HFC refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • refrigerator oil for lubricating the compressor 11 is mixed, and a part of the refrigerator oil circulates in the cycle together with the refrigerant.
  • each component which comprises the refrigerating-cycle apparatus 10 is demonstrated using the whole block diagram of FIG.
  • the compressor 11 sucks, compresses and discharges the refrigerant in the refrigeration cycle apparatus 10.
  • the compressor 11 is disposed in a vehicle bonnet.
  • the compressor 11 is an electric compressor which rotationally drives, by an electric motor, a fixed displacement type compression mechanism whose discharge displacement is fixed.
  • the rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from an air conditioning control device 60 described later.
  • the outlet side of the compressor 11 is connected to the inlet side of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side water-refrigerant heat exchanger 12 performs heat exchange between the high pressure refrigerant discharged from the compressor 11 and the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 to heat the high temperature side heat medium. It is As the high temperature side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
  • the high temperature side heat medium circuit 20 is a high temperature side water circuit that circulates the high temperature side heat medium.
  • the high temperature side heat medium circuit 20 the water passage of the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium pump 21, the high temperature side heater core 22, the high temperature side radiator 23, the high temperature side flow control valve 24 etc. There is.
  • the high temperature side heat medium pump 21 is a high temperature side water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the high temperature side water-refrigerant heat exchanger 12 in the high temperature side heat medium circuit 20.
  • the high temperature side heat medium pump 21 is an electric pump whose rotational speed (that is, water pressure transfer capacity) is controlled by a control voltage output from the air conditioning controller 60.
  • the high temperature side heater core 22 is disposed in a casing 51 of an indoor air conditioning unit 50 described later.
  • the high temperature side heater core 22 exchanges heat between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the air which has passed through the subcooling side indoor condenser 14 or the indoor evaporator 17 described later. , Is a heat exchanger for heating the blowing air.
  • the high temperature side radiator 23 is disposed on the front side in the vehicle bonnet.
  • the high temperature side radiator 23 may be integrally formed with the high temperature side water-refrigerant heat exchanger 12 or the like.
  • the high temperature side radiator 23 performs heat exchange between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the outside air blown from the outside air fan (not shown) to obtain the heat of the high temperature side heat medium as the outside air. Is a heat exchanger that dissipates heat.
  • the high temperature side heater core 22 and the high temperature side radiator 23 are connected in parallel to the flow of the high temperature side heat medium in the high temperature side heat medium circuit 20, as shown in FIG.
  • the high temperature side flow control valve 24 includes a high temperature side heater core flow rate Qa1 which is a flow rate of the high temperature side heat medium flowing into the high temperature side heater core 22, and a high temperature side radiator flow rate Qb1 which is a flow rate of the high temperature side heat medium flowing into the high temperature side radiator 23. It is a high temperature side flow ratio adjustment part which adjusts the high temperature side flow ratio (Qb1 / Qa1).
  • the high temperature side flow control valve 24 is a three-system flow control valve capable of continuously adjusting the high temperature flow rate ratio (Qb1 / Qa1). The operation of the high temperature side flow control valve 24 is controlled by a control signal output from the air conditioning controller 60.
  • the high temperature side flow control valve 24 is disposed at the connection between the heat medium inlet side of the high temperature side heater core 22 and the heat medium inlet side of the high temperature side radiator 23.
  • the inlet side of the high temperature side flow control valve 24 is connected to the outlet of the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the heat medium inlet side of the high temperature side heater core 22 is connected to one outlet of the high temperature side flow control valve 24.
  • the heat medium inlet side of the high temperature side radiator 23 is connected to the other outlet of the high temperature side flow control valve 24.
  • the high temperature side flow control valve 24 adjusts the high temperature side flow ratio (Qb1 / Qa1), the flow rate of the high temperature side heat medium flowing into the high temperature side heater core 22 changes. Thereby, the amount of heat radiation to the blast air of the high temperature side heat medium in high temperature type heater core 22, ie, the amount of heating of blast air, is adjusted.
  • the compressor is constituted by the high temperature side heat medium pump 21 disposed in the high temperature side heat medium circuit 20, the high temperature side water-refrigerant heat exchanger 12, the high temperature side heater core 22, the high temperature side flow control valve 24 etc.
  • a first heating unit is configured to heat the blown air by using the refrigerant discharged from 11 as a heat source.
  • the inlet side of the receiver (receiver) is connected to the outlet of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the receiver 13 separates the gas phase of the high pressure refrigerant flowing out from the high temperature side water-refrigerant heat exchanger 12 and allows the separated liquid phase refrigerant to flow out to the downstream side, and stores the excess refrigerant of the cycle as the liquid phase refrigerant. It is a liquid separation part.
  • the receiver 13 is a cylindrical container with a bottom, and may be integrally formed with the high temperature side water-refrigerant heat exchanger 12 or the like.
  • the refrigerant inlet side of the subcooling side indoor condenser 14 is connected to the liquid phase refrigerant outlet of the receiver 13.
  • the supercooling side indoor condenser 14 is disposed in the casing 51 of the indoor air conditioning unit 50 together with the high temperature side heater core 22. More specifically, the supercooling side indoor condenser 14 is disposed upstream of the high temperature side heater core 22 in the flow of the blast air.
  • the supercooling side indoor condenser 14 exchanges heat between the high pressure refrigerant flowing out of the receiver 13 and the air blowing through the indoor evaporator 17 described later to heat the air blowing, and the high pressure refrigerant flowing out of the receiver 13 It is a heat exchanger that overcools. Therefore, in the present embodiment, the subcooling side indoor condenser 14 configures a second heating unit that heats the blown air by using the refrigerant flowing out of the first heating unit as a heat source.
  • the outlet side of the supercooling side indoor condenser 14 is connected to the inlet side of the branch portion 15a.
  • the branch portion 15 a branches the flow of the refrigerant flowing out of the supercooling side indoor condenser 14.
  • the branch portion 15a is a three-way joint structure having three inlets and outlets communicating with each other, one of the three inlets and outlets being a refrigerant inlet and the remaining two being a refrigerant outlet.
  • the inlet side of the cooling expansion valve 16a is connected to one outlet of the branch portion 15a.
  • the inlet side of the heat absorption expansion valve 16b is connected to the other outlet of the branch portion 15a.
  • the cooling expansion valve 16a is a pressure reducing unit that reduces the pressure of the refrigerant flowing out of the supercooling side indoor condenser 14 at least in the cooling mode and the dehumidifying heating mode, and adjusts the flow rate of the refrigerant flowing into the indoor evaporator 17. It is a flow control unit for cooling.
  • the cooling expansion valve 16a includes a valve body configured to be able to change the throttle opening degree, and an electric actuator (specifically, a stepping motor) that changes the opening degree of the valve body. Is a variable stop mechanism of the formula.
  • the operation of the cooling expansion valve 16 a is controlled by a control signal (control pulse) output from the air conditioning control device 60.
  • the cooling expansion valve 16a has a fully closing function of closing the refrigerant passage by fully closing the valve opening degree.
  • the refrigerant inlet side of the indoor evaporator 17 is connected to the outlet of the cooling expansion valve 16a.
  • the indoor evaporator 17 is disposed in the casing 51 of the indoor air conditioning unit 50. More specifically, the indoor evaporator 17 is disposed upstream of the supercooled side indoor condenser 14 and the high temperature side heater core 22 in the flow of the blast air.
  • the indoor evaporator 17 performs a heat exchange between the low pressure refrigerant decompressed by the cooling expansion valve 16a and the blast air at least in the cooling mode and the dehumidifying heating mode to evaporate the low pressure refrigerant and cool the blast air. It is an evaporation part.
  • the inlet side of the evaporation pressure control valve 19 is connected to the refrigerant outlet of the indoor evaporator 17.
  • the evaporation pressure adjustment valve 19 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 17 at or above a predetermined reference pressure.
  • the evaporation pressure control valve 19 is configured by a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the outlet side of the indoor evaporator 17 increases.
  • the evaporation pressure adjusting valve 19 one that maintains the refrigerant evaporation temperature in the indoor evaporator 17 at a reference temperature (1.degree. C. in the present embodiment) or more that can suppress the formation of frost on the indoor evaporator 17. It is adopted.
  • One outlet side of the merging portion 15 b is connected to the outlet of the evaporating pressure regulating valve 19.
  • the merging portion 15 b merges the flow of the refrigerant flowing out of the evaporation pressure adjusting valve 19 and the flow of the refrigerant flowing out of the chiller 18.
  • the basic configuration of the merging portion 15b is the same as that of the branching portion 15a. That is, the junction portion is of a three-way joint structure, in which two of the three inflow / outlet ports are used as the refrigerant inlet and the remaining one is used as the refrigerant outlet.
  • the heat absorption expansion valve 16 b is a pressure reduction unit that reduces the pressure of the refrigerant flowing out of the supercooling side indoor condenser 14 at least in the heating mode, and is a heat absorption flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the chiller 18. .
  • the basic configuration of the heat absorption expansion valve 16b is the same as that of the cooling expansion valve 16a.
  • the inlet side of the refrigerant passage of the chiller 18 is connected to the outlet of the heat absorption expansion valve 16b.
  • the chiller 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 16b and the low temperature side heat medium circulating in the low temperature side heat medium circuit 30 at least in the heating mode, evaporates the low pressure refrigerant, and absorbs heat to the refrigerant. It is a heat absorption evaporator that exerts an action.
  • As the low temperature side heat medium a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
  • the low temperature side heat medium circuit 30 is a low temperature side water circuit for circulating the low temperature side heat medium.
  • a low temperature side heat medium pump 31 a cooling unit of the on-vehicle device 32, a low temperature side radiator 33, a low temperature side flow rate adjustment valve 34 and the like are arranged.
  • the low temperature side heat medium pump 31 and the low temperature side heat medium circuit 30 are low temperature side water pumps for pumping the low temperature side heat medium to the inlet side of the water passage of the chiller 18.
  • the basic configuration of the low temperature side heat medium pump 31 is similar to that of the high temperature side heat medium pump 21.
  • the in-vehicle device 32 is a heat generating device that generates heat when it is activated, and the in-vehicle device of the present embodiment is a battery that supplies an electric quantity to the traveling electric motor. Further, the cooling unit of the on-vehicle device 32 means a heat medium passage formed in the battery in order to absorb the heat generated by the battery at the time of operation such as charging and discharging to the low-pressure side heat medium. .
  • the low temperature side radiator 33 is integrally formed with the chiller 18 and the like, and is disposed on the front side in the vehicle bonnet.
  • the low temperature side radiator 33 is a heat exchanger which causes the low temperature side heat medium to absorb heat from the outside air by heat exchange between the low temperature side heat medium cooled by the chiller 18 and the outside air blown from the outside air fan.
  • the cooling unit of the on-vehicle device 32 and the low temperature side radiator 33 are connected in parallel to the flow of the low temperature side heat medium in the low temperature side heat medium circuit 30, as shown in FIG.
  • the low temperature side flow control valve 34 is a device side flow Qa2 which is a flow of the low temperature side heat medium flowing into the cooling unit of the in-vehicle device 32 and a low temperature side radiator side flow which is a flow of the low temperature side heat medium flowing into the low temperature side radiator 33 It is a low temperature side flow ratio adjustment part which adjusts the low temperature side flow ratio (Qb2 / Qa2) with Qb2.
  • the basic configuration of the low temperature side flow control valve 34 is similar to that of the high temperature side flow control valve 24.
  • the low temperature side flow control valve 34 is disposed at a connection portion between the heat medium inlet side of the cooling unit of the on-vehicle device 32 and the heat medium inlet side of the low temperature side radiator 33. That is, the inlet side of the low temperature side flow control valve 34 is connected to the outlet of the water passage of the chiller 18.
  • the heat medium inlet side of the cooling unit of the on-vehicle device 32 is connected to one outlet of the low temperature side flow rate adjustment valve 34.
  • the heat medium inlet side of the low temperature side radiator 33 is connected to the other outlet of the low temperature side flow rate adjustment valve 34.
  • the low temperature side flow rate adjustment valve 34 adjusts the low temperature side flow ratio (Qb2 / Qa2) to obtain the heat absorption amount from the in-vehicle device 32 of the low temperature side heat medium in the cooling unit of the in-vehicle device 32;
  • the heat absorption amount from the outside air of the low temperature side heat medium in the low temperature side radiator 33 can be adjusted.
  • the other inlet side of the merging portion 15 b is connected to the outlet of the refrigerant passage of the chiller 18.
  • the suction port side of the compressor 11 is connected to the outlet of the merging portion 15b.
  • FIG. 2 is a cross-sectional view of a portion of the indoor air conditioning unit 50 that is positioned downstream of the air flow from the fan 52 described later. Arrows in the upper, lower, front, and back directions in FIG. 2 indicate directions when the indoor air conditioning unit 50 is mounted on a vehicle.
  • the indoor air conditioning unit 50 is disposed inside the instrument panel (i.e., the instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 50 forms an air passage for blowing out the temperature-controlled blowing air to an appropriate place in the vehicle compartment.
  • the indoor air conditioning unit 50 is one in which the blower 52, the indoor evaporator 17, the overcooling side indoor condenser 14, the high temperature side heater core 22 and the like are housed in an air passage formed inside the casing 51 forming the outer shell thereof. is there.
  • the casing 51 forms an air passage for blowing air blown into the vehicle compartment, and is formed of a resin (specifically, polypropylene) which has a certain degree of elasticity and is excellent in strength.
  • a partitioning member 51a is disposed in the casing 51.
  • the air passage in the casing 51 is divided into a first air passage 50a formed on the upper side in the vertical direction and a second air passage 50b formed on the lower side in the vertical direction.
  • An internal / external air switching device 53 is disposed on the most upstream side of the blowing air flow of the casing 51.
  • the inside / outside air switching device 53 changes the introduction ratio of inside air (air in the vehicle compartment) and outside air (air outside the vehicle) introduced into the casing 51.
  • the inside / outside air switching device 53 has an inside / outside air switching door formed of a plate door.
  • the inside / outside air switching device 53 displaces the inside / outside air switching door to continuously change the opening area ratio between the opening area of the inside air inlet and the opening area of the outside air inlet, thereby introducing the inside air to the outside air. Change
  • the inside and outside air switching door is driven by an electric actuator 61a for the inside and outside air switching door.
  • the operation of the electric actuator 61a is controlled by a control signal output from the air conditioning controller 60.
  • an inside / outside air introduction mode switched by the inside / outside air switching door there are a inside air mode, an outside air mode, and an inside / outside air double layer mode.
  • the inside air mode is an introduction mode in which inside air is introduced into both the first air passage 50a and the second air passage 50b.
  • the outside air mode is an introduction mode in which the outside air is introduced into both the first air passage 50a and the second air passage 50b.
  • the inside / outside air double-layer mode is an introduction mode in which outside air is introduced into the first air passage 50a and inside air is introduced into the second air passage 50b.
  • a blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air.
  • the blower 52 drives the first centrifugal multi-blade fan for blowing the blown air toward the first air passage 50a and the second centrifugal multi-blade fan for blowing the blown air toward the second air passage 50b with a common electric motor. It is a two-stage electric blower.
  • the rotation speed (that is, the blowing capacity) of the blower 52 is controlled by the control voltage output from the air conditioning control device 60.
  • An indoor evaporator 17, an overcooling side indoor condenser 14, and a high temperature side heater core 22 are arranged in this order with respect to the flow of the blowing air, on the downstream side of the blowing air flow of the blower 52. Therefore, the supercooling side indoor condenser 14 is arranged so as to heat the blown air cooled by the indoor evaporator 17 and to discharge it to the high temperature side heater core 22 side.
  • the indoor evaporator 17 and the high temperature side heater core 22 are disposed across the first air passage 50a and the second air passage 50b through the attachment holes formed in the dividing member 51a.
  • the refrigerant flowing through the indoor evaporator 17 is disposed so as to be able to exchange heat with both the blown air flowing through the first air passage 50a and the blown air flowing through the second air passage 50b.
  • the high temperature side heat medium flowing through the high temperature side heater core 22 is disposed so as to be able to exchange heat with both the blown air flowing through the first air passage 50 a and the blown air flowing through the second air passage 50 b.
  • the supercooling side indoor condenser 14 is disposed on the first air passage 50a side. That is, the refrigerant flowing through the supercooling side indoor condenser 14 is disposed so as to be able to exchange heat with the blowing air flowing through the first air passage 50a.
  • first cold air bypass passage 55a for flowing the blown air which has passed through the indoor evaporator 17 to the downstream side by bypassing the overcooling side indoor condenser 14 and the high temperature side heater core 22.
  • second cold air bypass passage 55b is provided which allows the blown air that has passed through the indoor evaporator 17 to bypass the high temperature side heater core 22 and flow downstream.
  • the first air mix door 54a is on the downstream side of the blown air flow of the indoor evaporator 17 of the first air passage 50a and on the upstream side of the blown air flow of the supercooling side indoor condenser 14 and the high temperature side heater core 22. It is arranged.
  • the first air mix door 54a is configured such that the volume of air passing through the supercooling side indoor condenser 14 and the high temperature side heater core 22 and the first cold air bypass of the blown air after passing through the indoor evaporator 17 flowing through the first air passage 50a.
  • the ratio of the air volume to the air volume passing through the passage 55a is adjusted.
  • a second air mix door 54b is disposed on the downstream side of the flow of the blown air of the indoor evaporator 17 of the second air passage 50b and on the upstream side of the flow of the blown air of the high temperature side heater core 22.
  • the second air mix door 54b includes, among the blown air after passing through the indoor evaporator 17 flowing through the second air passage 50b, an air volume for passing the high temperature side heater core 22 and an air volume for passing the second cold air bypass passage 55b. It adjusts the air volume ratio.
  • Each of the first air mix door 54 a and the second air mix door 54 b is a slide door that slides in a direction substantially parallel to the heat exchange surface of the high temperature side heater core 22 to adjust the air volume ratio.
  • the first air mix door 54a and the second air mix door 54b are operated in conjunction with each other by a common electric mix door electric actuator 61b via a link mechanism or the like. Therefore, the opening degree at which the first air mix door 54a opens the first cold air bypass passage 55a and the opening degree at which the second air mix door 54b opens the second cold air bypass passage 55b are substantially equal.
  • the operation of the electric actuator 61 b for the air mix door is controlled by a control signal output from the air conditioning controller 60.
  • a first mixing space 56a is provided to mix with the air not being supplied.
  • a second mixing space 56b is provided on the downstream side of the flow of the blown air of the high temperature side heater core 22 of the second air passage 50b.
  • the partition member 51a positioned on the downstream side of the air flow of the high temperature side heater core 22 is provided with a communication port 57d for communicating the air flowing into the first mixing space 56a with the air flowing into the second mixing space 56b. ing.
  • a communication port opening / closing door 58d for opening and closing the communication port 57d is disposed inside the casing 51.
  • the communication opening and closing door 58d is driven by an electric actuator 61c for the communication opening and closing door.
  • the operation of the electric actuator 61 c is controlled by a control signal output from the air conditioning controller 60.
  • a foot opening hole 57b is provided at the most downstream portion of the air flow on the second air passage 50b side of the casing 51 for blowing air (air-conditioned air) mixed in the second mixing space 56b into the vehicle compartment.
  • the face opening hole 57a is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment.
  • the foot opening hole 57b is an opening hole for blowing the conditioned air toward the feet of the occupant.
  • the defroster opening hole 57c is an opening hole for blowing the conditioned air toward the inner side surface of the vehicle front windshield.
  • the face opening hole 57a, the foot opening hole 57b, and the defroster opening hole 57c are respectively provided with a face outlet, a foot outlet, and a defroster outlet provided in the vehicle compartment via a duct that forms an air passage (all shown) Not connected).
  • the air volume ratio of the air volume of the blown air which the first air mix door 54a passes the supercooling side indoor condenser 14 and the high temperature side heater core 22 and the air volume which passes the first cold air bypass passage 55a The temperature of the conditioned air mixed in the first mixing space 56a is adjusted. As a result, the temperature of the air (air-conditioned air) blown out from the defroster outlet and the face outlet into the vehicle compartment is also adjusted.
  • the second air mixing door 54b adjusts the air volume ratio between the air volume of the blown air passing through the high temperature side heater core 22 and the air volume passing through the second cold air bypass passage 55b.
  • the temperature of the conditioned air to be mixed is adjusted.
  • the temperature of the air (air-conditioned air) blown out from the foot outlet into the vehicle compartment is also adjusted.
  • the first air mix door 54a adjusts the amount of air blown through the supercooled side indoor condenser 14 to adjust the amount of heat released to the blown air in the supercooled side indoor condenser 14. be able to. Therefore, the first air mix door 54a of the present embodiment constitutes a heat release amount adjustment unit.
  • a face defroster door for adjusting the opening area of the defroster opening hole 57c and the face opening hole 57a is disposed on the upstream side of the blast air flow of the defroster opening hole 57c and the face opening hole 57a.
  • the face defroster door 58a is a slide door which increases the opening area of one of the defroster opening hole 57c and the face opening hole 57a and at the same time reduces the other opening area.
  • a foot door 58b for adjusting the opening area of the foot opening hole 57b is disposed on the upstream side of the air flow of the foot opening hole 57b.
  • the foot door 58b is a plate door that changes the opening area of the foot opening hole 57b.
  • the face defroster door 58a and the foot door 58b constitute an air outlet mode switching device for switching the air outlet from which the conditioned air is blown out.
  • the face defroster door 58a and the foot door 58b are connected to an electric actuator 61d for driving the air outlet mode door via a link mechanism or the like, and are rotationally operated in conjunction with each other.
  • the operation of the electric actuator 61 d is controlled by a control signal output from the air conditioning controller 60.
  • the air conditioning control device 60 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like, and peripheral circuits thereof. Then, various calculations and processing are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 16a, 16b, 21, 24, 31, 34, 52, 61a connected to the output side Control the operation of.
  • an inside air temperature sensor 62a on the input side of the air conditioning control device 60, an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, a supercooling sensor 62e, and an evaporator temperature sensor
  • a group of sensors for air conditioning control such as 62 f, superheat degree sensor 62 g, air conditioning air temperature sensor 62 h and the like are connected.
  • the air conditioning control device 60 receives detection signals of these air conditioning control sensors.
  • the inside air temperature sensor 62a is an inside air temperature detection unit that detects a vehicle room temperature (inside air temperature) Tr.
  • the outside air temperature sensor 62b is an outside air temperature detection unit that detects the temperature outside the vehicle (outside air temperature) Tam.
  • the solar radiation sensor 62c is a solar radiation amount detection unit that detects the solar radiation amount As emitted to the vehicle interior.
  • the high pressure sensor 62d is a refrigerant pressure detection unit that detects the high pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 16a or the heat absorption expansion valve 16b.
  • the subcooling degree sensor 62 e is a subcooling degree detection unit that detects the subcooling degree SC of the refrigerant based on the temperature and the pressure of the refrigerant flowing out of the subcooling side indoor condenser 14.
  • the evaporator temperature sensor 62 f is an evaporator temperature detection unit that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 17.
  • the superheat degree sensor 62g is a superheat degree detection unit that detects the superheat degree SH of the refrigerant based on the temperature and pressure of the refrigerant on the suction port side of the compressor 11.
  • the air conditioning air temperature sensor 62 h is an air conditioning air temperature detection unit that detects the temperature of the air supplied from the first mixing space 56 a and the second mixing space 56 b into the vehicle compartment.
  • an operation panel 63 disposed near the instrument panel at the front of the vehicle compartment is connected to the input side of the air conditioning control device 60, and various operation switches provided on the operation panel 63 The operation signal of is input.
  • the various operation switches provided on the operation panel 63 include an auto switch for setting or canceling the automatic control operation of the air conditioning system for a vehicle, a cooling switch for requesting cooling of the vehicle interior, and an air volume of the blower 52 There are an air volume setting switch for manually setting the temperature setting switch and a temperature setting switch for setting the target temperature Tset in the vehicle compartment.
  • the air-conditioning control apparatus 60 of this embodiment controls the operation
  • movement of each control object apparatus constitute a control unit that controls the operation of each control target device.
  • the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 60a.
  • the configuration for controlling the operation of the high temperature side heat medium pump 21 is a high temperature side pressure feeding capacity control unit 60b.
  • the configuration for controlling the operation of the high temperature side flow control valve 24 is the high temperature side flow ratio control unit 60c.
  • the configuration for controlling the operation of the low temperature side heat medium pump 31 is the low temperature side pressure feeding capacity control unit 60d.
  • the configuration for controlling the operation of the low temperature side flow control valve 34 is the low temperature side flow ratio control unit 60 e.
  • the configuration for controlling the operation of the first and second air mix doors 54a and 54b (specifically, the electric actuator 61b for the air mix door) is an air mix control unit 60f.
  • the first air mix door 54a of the present embodiment constitutes a heat release amount adjustment unit, so the air mix control unit 60f is a heat release amount control unit.
  • the operation mode can be switched.
  • the switching of these operation modes is performed by executing the air conditioning control program stored in advance in the air conditioning control device 60.
  • the target blowout temperature TAO of the air to be blown into the vehicle compartment is calculated. calculate.
  • the operation mode is switched based on the target blowout temperature TAO and the detection signal. Then, according to the operation mode, the operation of various control target devices connected to the output side is controlled. The operation of each operation mode will be described below.
  • the air-conditioning control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62f becomes the target evaporation temperature TEO.
  • the target evaporation temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
  • the target evaporation temperature TEO is increased along with the increase of the target outlet temperature TAO so that the blown air temperature TAV detected by the air conditioning air temperature sensor 62h approaches the target outlet temperature TAO.
  • the air conditioning control device 60 brings the cooling expansion valve 16a into a throttling state for exerting the refrigerant pressure reducing action, and brings the heat absorption expansion valve 16b into a fully closed state. Therefore, the refrigeration cycle apparatus 10 in the cooling mode is a refrigerant circuit that causes the refrigerant decompressed by the cooling expansion valve 16 a to flow into the indoor evaporator 17. Furthermore, the air conditioning control device 60 sets the throttle opening degree of the cooling expansion valve 16a so that the degree of superheat SH detected by the degree of superheat sensor 62g approaches a predetermined reference degree of superheat KSH (3.degree. C. in the present embodiment). adjust.
  • the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the cooling mode set in advance. Furthermore, the air conditioning control device 60 operates the high temperature side flow control valve 24 so that the full flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 Control.
  • the air conditioning control device 60 displaces the first air mix door 54a so that the total volume of the cold air flowing through the first air passage 50a flows into the first cold air bypass passage 55a. Further, the second air mix door 54b is displaced so that the total amount of cold air flowing through the second air passage 50b flows into the second cold air bypass passage 55b.
  • the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d. However, in the cooling mode, the inside / outside air switching device door is displaced so as to be in the inside air mode at the maximum cooling time when the target blowing temperature TAO is in the cryogenic temperature range.
  • the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
  • the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
  • the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the refrigerant flowing into the overcooling side indoor condenser 14 hardly dissipates heat, so It flows out of the condenser 14.
  • the refrigerant flowing out of the supercooling side indoor condenser 14 flows into the cooling expansion valve 16a and is decompressed because the heat absorption expansion valve 16b is fully closed. At this time, the degree of opening of the cooling expansion valve 16a is controlled so that the degree of superheat SH approaches the reference degree of heating KSH.
  • the low pressure refrigerant reduced in pressure by the cooling expansion valve 16 a flows into the indoor evaporator 17.
  • the refrigerant flowing into the indoor evaporator 17 absorbs heat from the air blown from the fan 52 and evaporates. This cools the blowing air.
  • the refrigerant that has flowed out of the indoor evaporator 17 is sucked into the compressor 11 via the evaporation pressure adjusting valve 19 and the merging portion 15 b and compressed again.
  • cooling of the vehicle interior can be performed by blowing the blowing air cooled by the indoor evaporator 17 into the vehicle interior.
  • the air conditioning control device 60 controls the operation of the compressor 11 such that the high pressure refrigerant pressure Pd detected by the high pressure sensor 62d becomes the target high pressure PCO.
  • the target high pressure PCO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
  • the target high pressure PCO is raised with the rise of the target blowing temperature TAO so that the blowing air temperature TAV approaches the target blowing temperature TAO.
  • the air conditioning control device 60 brings the cooling expansion valve 16a into a fully closed state, and brings the heat absorption expansion valve 16b into a throttling state. Therefore, the refrigeration cycle apparatus 10 in the heating mode is a refrigerant circuit that causes the refrigerant decompressed by the heat absorption expansion valve 16 b to flow into the chiller 18. Further, the air conditioning control device 60 adjusts the throttle opening degree of the heat absorption expansion valve 16b such that the degree of superheat SH approaches the predetermined reference degree of superheat KSH.
  • the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode. Furthermore, the air conditioning controller 60 operates the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22. Control.
  • the air conditioning control device 60 operates the low temperature side heat medium pump 31 so as to exert the water pressure transfer capability in the predetermined heating mode. Furthermore, the air conditioning control device 60 controls the operation of the low temperature side flow control valve 34 so that the battery which is the in-vehicle device 32 can be maintained at a temperature at which the battery can exhibit appropriate charge and discharge performance.
  • the air conditioning control device 60 closes the air passage on the side of the first cold air bypass passage 55a, so that the total volume of the cold air flowing through the first air passage 50a flows into the overcooling side indoor condenser 14
  • the mix door 54a is displaced.
  • the air passage on the second cold air bypass passage 55 b side is closed, and the second air mix door 54 b is displaced so that the total amount of cold air flowing through the second air passage 50 b flows into the high temperature side heater core 22.
  • the air volume of the blowing air flowing into the subcooling side indoor condenser 14 increases more than in the cooling mode.
  • the air volume of the blowing air flowing into the subcooling side indoor condenser 14 is smaller than in the heating mode.
  • the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d. However, in the heating mode, the inside / outside air switching device door is displaced so as to be in the inside / outside air double layer mode at the maximum heating where the target blowout temperature TAO is in the extremely high temperature region, and the communication port is opened and closed. The door 58d is displaced.
  • the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
  • the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22 through the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium that has flowed into the high temperature side heater core 22 exchanges heat with the air that has passed through the supercooling side indoor condenser 14 and radiates heat.
  • the blowing air is heated, and the temperature of the blowing air approaches the target blowing temperature TAO.
  • the high temperature side heat medium flowing out of the high temperature side heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the refrigerant flowing into the supercooling side indoor condenser 14 is the liquid phase refrigerant separated by the receiver 13. For this reason, in the subcooling side indoor condenser 14, this liquid phase refrigerant is subcooled. Therefore, the temperature of the blown air heated by the supercooling side indoor condenser 14 does not become higher than the temperature of the high temperature side heat medium flowing into the high temperature side heater core 22.
  • the refrigerant flowing out of the supercooling side indoor condenser 14 flows into the heat absorption expansion valve 16b and is reduced in pressure because the cooling expansion valve 16a is fully closed.
  • the throttle opening degree of the heat absorption expansion valve 16b is controlled such that the degree of superheat SH approaches the reference degree of heating KSH.
  • the low pressure refrigerant decompressed by the cooling expansion valve 16 a flows into the refrigerant passage of the chiller 18.
  • the low temperature side heat medium pump 31 since the low temperature side heat medium pump 31 is operating, the low pressure refrigerant and the low temperature side heat medium exchange heat, and the low pressure refrigerant absorbs heat from the low temperature side heat medium and evaporates. Thereby, the low temperature side heat medium is cooled.
  • part of the low temperature side heat medium cooled by the chiller 18 flows into the low temperature side radiator 33 via the low temperature side flow rate adjustment valve 34.
  • the low temperature side heat medium flowing into the low temperature side radiator 33 exchanges heat with the outside air and is heated.
  • the remaining low-temperature side heat medium cooled by the chiller 18 flows into the cooling unit of the battery, which is the on-vehicle device 32, via the low-temperature side flow rate adjustment valve 34 and is heated.
  • the low temperature side flow rate adjustment valve 34 adjusts the low temperature side flow ratio (Qb2 / Qa2) so that the battery which is the on-vehicle device 32 can be maintained at a temperature at which the battery can exhibit appropriate charge / discharge performance.
  • the low temperature side heat medium flowing out of the low temperature side radiator 33 and the low temperature side heat medium flowing out of the cooling portion of the in-vehicle apparatus 32 are drawn into the high temperature side heat medium pump 21 and pumped again to the water passage of the chiller 18.
  • the refrigerant that has flowed out of the refrigerant passage of the chiller 18 is sucked into the compressor 11 via the junction portion 15b and compressed again.
  • heating the vehicle interior by blowing the blown air heated by the high temperature side heater core 22 into the vehicle interior. Furthermore, in the first air passage 50a, heating the vehicle interior can be performed by blowing out the heated air in the order of the supercooled side indoor condenser 14 and the high temperature side heater core 22 into the vehicle interior.
  • the first dehumidifying / heating mode is a dehumidifying / heating mode that is executed when the outside temperature Tam is in a relatively high temperature zone (for example, a temperature zone of 15 ° C. or more and 25 ° C. or less) It is.
  • the air conditioning control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin becomes the target evaporation temperature TEO.
  • the target evaporation temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
  • the target evaporation temperature TEO is raised as the target blow-out temperature TAO rises. Furthermore, the target evaporation temperature TEO is determined to a value that is equal to or higher than a reference temperature (specifically, 1 ° C.) at which frost formation of the indoor evaporator 17 can be suppressed.
  • a reference temperature specifically, 1 ° C.
  • the air conditioning control device 60 sets the cooling expansion valve 16a in the squeezed state and sets the heat absorption expansion valve 16b in the fully closed state, as in the cooling mode.
  • the air-conditioning control device 60 operates the high-temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the first dehumidifying and heating mode determined in advance. Furthermore, the air conditioning control device 60 controls the operation of the high temperature side flow control valve 24 so that the blowing air temperature TAV approaches the target blowing temperature TAO.
  • the air conditioning control device 60 displaces the first air mix door 54a and the second air mix door 54b such that the degree of subcooling SC detected by the degree of subcooling sensor 62e approaches the target degree of subcooling KSC.
  • the target degree of subcooling KSC is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
  • the coefficient of performance (COP) of the cycle can be improved by increasing the degree of subcooling of the refrigerant flowing out of the refrigerant functioning as the condenser. Therefore, it is preferable to increase the target degree of supercooling KSC as much as possible.
  • the refrigerant can not be cooled more than the temperature of the blown air cooled by the indoor evaporator 17. Furthermore, as shown in FIG. 4, a slope exists in the saturated liquid line of the Mollier diagram. Therefore, in the control map of the present embodiment, the target degree of subcooling KSC is decreased as the target blowout temperature TAO decreases.
  • the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d.
  • the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
  • the high temperature side heat medium circuit 20 a part of the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22 via the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium that has flowed into the high temperature side heater core 22 exchanges heat with the air that has passed through the supercooling side indoor condenser 14 and radiates heat.
  • the blowing air is heated and the temperature of the blowing air is a target It approaches the blowing temperature TAO.
  • the remaining high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
  • the high temperature side heat medium flowing out of the high temperature side heater core 22 and the high temperature side heat medium flowing out of the high temperature side radiator 23 are drawn into the high temperature side heat medium pump 21 and pumped again to the water passage of the high temperature side water-refrigerant heat exchanger 12 Be done.
  • the refrigerant flowing out of the supercooling side indoor condenser 14 flows into the cooling expansion valve 16a and is decompressed because the heat absorption expansion valve 16b is fully closed.
  • the low pressure refrigerant reduced in pressure by the cooling expansion valve 16 a flows into the indoor evaporator 17.
  • the refrigerant flowing into the indoor evaporator 17 absorbs heat from the air blown from the fan 52 and evaporates. As a result, the blowing air is cooled and dehumidified.
  • the subsequent operation is the same as in the cooling mode.
  • the blown air cooled and dehumidified by the indoor evaporator 17 is reheated by at least the supercooling side indoor condenser 14 and blown out into the vehicle compartment, thereby Dehumidifying and heating can be performed.
  • the air conditioning control device 60 may control the operation of the high temperature side flow rate adjustment valve 24 so that the full flow rate of the high temperature side heat medium flows into the high temperature side radiator 23 as in the cooling mode. .
  • the first dehumidifying and heating mode is a dehumidifying and heating mode in which the blown air is heated by at least the subcooling side indoor condenser 14.
  • the second dehumidifying / heating mode is a dehumidifying / heating mode that is executed in a temperature range where the outside temperature Tam is relatively low (for example, a temperature range of 0 ° C. or more and 20 ° C. or less). That is, the second dehumidifying and heating mode is performed when the heating capacity of the blowing air required for the refrigeration cycle apparatus 10 is higher than that of the first dehumidifying and heating mode.
  • the air conditioning control device 60 controls the operation of the compressor 11 so that the blown air temperature TAV approaches the target blowing temperature TAO regardless of the refrigerant evaporation temperature Tefin.
  • the air conditioning control device 60 sets both the cooling expansion valve 16a and the heat absorption expansion valve 16b in a throttling state. Specifically, the throttle opening degree of the cooling expansion valve 16a and the throttle opening degree of the heat absorption expansion valve 16b are each set as the throttle opening degree for the second dehumidifying and heating mode, which is predetermined.
  • the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the second dehumidifying and heating mode determined in advance. Furthermore, in the same manner as in the heating mode, the air conditioning control device 60 causes the high temperature side flow so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 The operation of the control valve 24 is controlled.
  • the air conditioning control device 60 operates the low temperature side heat medium pump 31 so as to exert the pressure feeding capability in the second dehumidifying and heating mode determined in advance. Furthermore, the air conditioning control device 60 controls the operation of the low temperature side flow control valve 34 so that the battery which is the in-vehicle device 32 can be maintained at a temperature at which appropriate charge / discharge performance can be exhibited.
  • the air conditioning control device 60 displaces the first air mix door 54a and the second air mix door 54b so that the degree of subcooling SC approaches the target degree of subcooling KSC, as in the first dehumidifying and heating mode.
  • the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d.
  • the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
  • the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22 through the high temperature side flow rate adjustment valve 24 as in the heating mode. Do.
  • the high temperature side heat medium that has flowed into the high temperature side heater core 22 exchanges heat with the air that has passed through the supercooling side indoor condenser 14 and radiates heat. As a result, the blowing air is heated, and the temperature of the blowing air approaches the target blowing temperature TAO.
  • the high temperature side heat medium flowing out of the high temperature side heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the refrigerant that has flowed into the supercooling side indoor condenser 14 exchanges heat with the air that has passed through the indoor evaporator 17 and radiates heat, as in the heating mode. Thereby, the blowing air before flowing into the high temperature side heater core 22 is heated.
  • the flow of the refrigerant flowing out of the supercooling side indoor condenser 14 is branched at the branch portion 15a.
  • One of the refrigerants branched by the branch portion 15a flows into the cooling expansion valve 16a and is decompressed.
  • the low pressure refrigerant reduced in pressure by the cooling expansion valve 16 a flows into the indoor evaporator 17.
  • the refrigerant flowing into the indoor evaporator 17 absorbs heat from the air blown from the fan 52 and evaporates. This cools the blowing air.
  • the other refrigerant branched at the branch portion 15a flows into the heat absorption expansion valve 16b and is decompressed.
  • the low pressure refrigerant decompressed by the cooling expansion valve 16 a flows into the refrigerant passage of the chiller 18.
  • the chiller 18 since the low temperature side heat medium pump 31 is operating, the low pressure refrigerant and the low temperature side heat medium exchange heat, and the low pressure refrigerant absorbs heat from the low temperature side heat medium and evaporates.
  • the low temperature side heat medium absorbs heat from the outside air and the battery as the on-vehicle device 32.
  • the refrigerant flowing out of the refrigerant passage of the chiller 18 merges with the refrigerant flowing out of the evaporation pressure adjusting valve 19 at the merging portion 15b, and is drawn into the compressor 11 and compressed again.
  • dehumidifying and heating the passenger compartment is performed by reheating the blown air cooled and dehumidified by the indoor evaporator 17 with the high temperature side heater core 22 and blowing it out into the passenger compartment.
  • the blown air cooled and dehumidified by the indoor evaporator 17 is reheated in the order of the supercooled side indoor condenser 14 ⁇ the high temperature side heater core 22 and blown out into the vehicle compartment, It is possible to perform dehumidifying and heating of the vehicle interior.
  • the indoor evaporator 17 and the chiller 18 are connected in parallel to the refrigerant flow. Then, the refrigerant can be evaporated by both the indoor evaporator 17 and the chiller 18, and the heat of the blown air and the heat of the low temperature side heat medium can be absorbed by the refrigerant.
  • the refrigerant evaporation pressure in the chiller 18 can be made lower than the refrigerant evaporation pressure in the indoor evaporator 17 by the action of the evaporation pressure adjusting valve 19 disposed on the refrigerant flow downstream side of the indoor evaporator 17. Therefore, in the second dehumidifying and heating mode, the heat absorption amount of the refrigerant can be increased more than in the first evaporation and heating mode, and the heating capacity of the blowing air can be improved.
  • the refrigeration cycle apparatus 10 of the present embodiment in the heating mode, the high pressure refrigerant discharged from the compressor 11 is made to flow in the order of the high temperature side water-refrigerant heat exchanger 12 ⁇ the overcooling side indoor condenser 14 to obtain the first air.
  • the blowing air generally, the outside air
  • the blowing air which is relatively low temperature can be heated stepwise and efficiently in the order of the overcooling side indoor condenser 14 ⁇ the high temperature side heater core 22.
  • the operation mode can be switched with a simple configuration in which the low pressure refrigerant does not need to flow into the high temperature side water-refrigerant heat exchanger 12 or the supercooling side indoor condenser 14.
  • the refrigerant is supercooled by heat exchange with the relatively low temperature blowing air (generally the outside air) in the supercooling side indoor condenser 14, and the supercooling side indoor condenser 14 Can sufficiently reduce the enthalpy of the refrigerant flowing out of the Therefore, it is possible to suppress the decrease in the heating capacity of the blowing air in the high temperature side heater core 22 and the overcooling side indoor condenser 14 by increasing the heat absorption amount of the refrigerant in the chiller 18.
  • the relatively low temperature blowing air generally the outside air
  • the supercooling side indoor condenser 14 Can sufficiently reduce the enthalpy of the refrigerant flowing out of the Therefore, it is possible to suppress the decrease in the heating capacity of the blowing air in the high temperature side heater core 22 and the overcooling side indoor condenser 14 by increasing the heat absorption amount of the refrigerant in the chiller 18.
  • the refrigerant is supercooled by heat exchange with the blown air cooled by the indoor evaporator 17 in the supercooling side indoor condenser 14, and the supercooling side indoor condenser 14 It is possible to sufficiently reduce the enthalpy of the refrigerant flowing out. Therefore, the heat absorption amount of the refrigerant in the indoor evaporator 17 can be increased, and the decrease in the heating capacity of the blown air in the supercooling side indoor condenser 14 can be suppressed.
  • the refrigeration cycle apparatus 10 of the present embodiment even if the operation mode is switched with a simple configuration, it is possible to suppress the decrease in the heating capacity of the blowing air in the high temperature side heater core 22 and the subcooling side indoor condenser 14 .
  • the refrigeration cycle apparatus 10 of the present embodiment includes the chiller 18, and the low temperature side heat medium circuit 30 is provided with the battery cooling unit as the on-vehicle device 32 and the low temperature side radiator 33. Then, in the heating mode, the low pressure refrigerant decompressed by the heat absorption expansion valve 16b flows into the chiller 18, and in the first dehumidifying heating mode, the low pressure refrigerant decompressed by the cooling expansion valve 16a to the indoor evaporator 17 It is flowing.
  • the blown air in the heating mode, can be reliably heated by using the waste heat of the on-vehicle device 32 or the heat absorbed from the outside air as a heat source.
  • the high temperature side water-refrigerant heat exchanger 12, the high temperature side heater core 22 and the like constitute a first heating unit, and the high temperature side radiator 23 is disposed in the high temperature side heat medium circuit 20. doing.
  • the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 is made to flow into the high temperature side heater core 22, and the heat of the high temperature side heat medium is radiated to the blast air.
  • the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 is made to flow into the high temperature side radiator 23, and the heat of the high temperature side heat medium is radiated to the outside air.
  • the heated air be heated by the high temperature side heater core 22 in the heating mode, but also the heat generated by the refrigerant from the air in the indoor evaporator 17 in the cooling mode, the high temperature side heat medium Can be dissipated to the outside air at the high temperature side radiator 23 via the Therefore, it is possible to switch to the cooling mode with a simple configuration that does not require the low pressure refrigerant to flow into the high temperature side water-refrigerant heat exchanger 12 or the overcooling side indoor condenser 14.
  • the receiver 13 is provided. According to this, it becomes easy to supply the liquid phase refrigerant to the supercooling side indoor condenser 14, and the supercooling side indoor condenser 14 functions as a supercooling heat exchanger (so-called subcooler) for supercooling the refrigerant. Cheap. Therefore, it is possible to suppress the decrease in the heating capacity of the blowing air in the high temperature side heater core 22 and the supercooling side indoor condenser 14 more effectively.
  • the supercooling side indoor condenser 14 that directly exchanges heat between the refrigerant and the blown air is adopted as the second heating unit. Therefore, the heating efficiency of the blowing air can be improved as compared with the case of indirectly performing heat exchange via a heat medium such as antifreeze liquid.
  • the first air mix door 54a as the heat release amount adjustment unit is disposed in the indoor air conditioning unit 50, the heat release amount from the refrigerant to the blast air in the subcooling side indoor condenser 14 can be easily adjusted. .
  • the first air mix door 54a reduces the air volume of the blowing air flowing into the overcooling side indoor condenser 14 more than the heating mode. Therefore, in the cooling mode, it is possible to perform the efficient cooling of the vehicle interior by suppressing the reheating of the blown air in the supercooling side indoor condenser 14.
  • the refrigerant evaporation temperature Tefin in the indoor evaporator 17 is a reference temperature (specifically, 1 ° C.) at which frost formation on the indoor evaporator 17 can be suppressed. As described above, since the operation of the compressor 11 is controlled, frost formation of the indoor evaporator 17 can be suppressed.
  • the operation of the first air mix door 54a is controlled so that the degree SC of subcooling of the refrigerant flowing out from the subcooling side indoor condenser 14 approaches the target degree of subcooling KSC. It can be reliably suppressed that the heating capacity of the blowing air in the cooling side indoor condenser 14 is reduced.
  • the operation of the compressor 11 is controlled so that the blown air temperature TAV approaches the target blowing temperature TAO, so that comfortable heating of the vehicle compartment is realized. can do.
  • the refrigeration cycle apparatus 10 according to the present embodiment includes the evaporation pressure control valve 19, so that frost formation of the indoor evaporator 17 can be suppressed regardless of the refrigerant discharge capacity of the compressor 11.
  • the operation of the first air mix door 54a is controlled so that the degree of subcooling SC of the refrigerant flowing out from the subcooling side indoor condenser 14 approaches the target degree of subcooling KSC, It can be reliably suppressed that the heating capacity of the blowing air in the side indoor condenser 14 is reduced.
  • the supercooling side water-refrigerant heat exchanger 14a exchanges heat between the liquid phase refrigerant flowing out of the receiver 13 and the supercooling side heat medium circulating in the supercooling side heat medium circuit 40 to supercool the liquid phase refrigerant. And a heat exchanger for heating the subcooling side heat medium.
  • a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted as the supercooling side heat medium.
  • the overcooling side heat medium circuit 40 is a water circuit that circulates the overcooling side heat medium.
  • the water passage of the subcooling side water-refrigerant heat exchanger 14a, the subcooling side heat medium pump 41, and the subcooling side heater core 42 are disposed.
  • the overcooling side heat medium circuit 40 is a water circuit that circulates the overcooling side heat medium between the overcooling side water-refrigerant heat exchanger 14 a and the overcooling side heater core 42.
  • the supercooling side heat medium pump 41 is a supercooling side water pump that pumps the supercooling side heat medium to the inlet side of the water path of the supercooling side water-refrigerant heat exchanger 14a in the supercooling side heat medium circuit 40.
  • the supercooling-side heat medium pump 41 is an electric pump whose rotational speed (that is, hydraulic feed capacity) is controlled by a control voltage output from the air conditioning controller 60.
  • the supercooling side heater core 42 is disposed in the casing 51 of the indoor air conditioning unit 50.
  • the supercooling side heater core 42 thermally exchanges the heat of the supercooling side heat medium heated by the supercooling side water-refrigerant heat exchanger 14a with the blast air having passed through the indoor evaporator 17 to heat the blast air. It is an exchanger.
  • the second heating unit is disposed by the supercooling side heat medium pump 41, the supercooling side water-refrigerant heat exchanger 14a, the supercooling side heater core 42, and the like disposed in the subcooling side heat medium circuit 40. Is configured.
  • the supercooling side heater core 42 is disposed across the first air passage 50a and the second air passage 50b through the mounting holes formed in the dividing member 51a. It is done.
  • the supercooling side heater core 42 is disposed downstream of the indoor evaporator 17 in the flow of the blown air and upstream of the first air mix door 54a and the second air mix door 54b in the flow of the blown air.
  • the overcooling side heat medium pump 41 of the present embodiment constitutes a heat release amount adjustment unit.
  • the inlet side of the branch portion 15a is connected to the outlet of the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a.
  • the configuration for controlling the operation of the overcooling side heat medium pump 41 is the overcooling side pumping capacity control unit 60g shown in FIG. Since the supercooling side heat medium pump 41 of the present embodiment is a heat release amount adjustment unit, the supercooling side pressure feeding capacity control unit 60g is a heat release amount control unit.
  • the other configuration is the same as that of the first embodiment.
  • (A) Cooling Mode In the cooling mode, the air conditioning controller 60 stops the overcooling side heat medium pump 41. The other operations are the same as in the first embodiment. Therefore, the refrigeration cycle apparatus 10 in the cooling mode can operate substantially in the same manner as the cooling mode of the first embodiment, and can perform cooling of the vehicle interior as in the first embodiment.
  • (B) Heating Mode In the heating mode, the air conditioning control device 60 operates the supercooling side heat medium pump 41 so as to exert the water pressure transfer capability in the predetermined heating mode.
  • the other operations are the same as in the first embodiment.
  • the liquid phase refrigerant separated by the receiver 13 flows into the refrigerant passage of the supercooling side water-refrigerant heat exchanger 14a, the liquid phase refrigerant and the supercooling side heat medium are heat Exchange. Thereby, the liquid phase refrigerant is subcooled and the subcooling side heat medium is heated.
  • the subcooling-side heat medium heated in the subcooling-side water-refrigerant heat exchanger 14 a flows into the subcooling-side heater core 42.
  • the supercooling side heat medium that has flowed into the supercooling side heater core 42 exchanges heat with the blowing air that has passed through the indoor evaporator 17 and radiates heat. Thereby, the blowing air which flows in into high temperature side heater core 22 is heated.
  • heating of the passenger compartment can be performed as in the first embodiment.
  • the air conditioning control device 60 causes the subcooling degree SC detected by the subcooling degree sensor 62e to approach the target subcooling degree KSC.
  • the supercooling side heat medium pump 41 is operated. As a result, the amount of heat released to the air by the supercooling side heater core 42 is adjusted.
  • dehumidifying and heating of the passenger compartment can be performed as in the first embodiment.
  • the refrigeration cycle apparatus 10 of the present embodiment operates as described above, so that the same effect as that of the first embodiment can be obtained.
  • various operation modes can be switched with a simple configuration in which the low pressure refrigerant does not need to flow into the high temperature side water-refrigerant heat exchanger 12 or the supercooling side water / refrigerant heat exchanger 14a. Furthermore, similarly to the first embodiment, even if the operation mode is switched, it is possible to suppress the decrease in the heating capacity of the blown air in the high temperature side heater core 22 and the subcooling side heater core 42.
  • the second cooling unit is configured by the supercooling side water-refrigerant heat exchanger 14a, the supercooling side heater core 42, and the like. Furthermore, since the overcooling side heat medium pump 41 as the heat release amount adjustment unit is disposed in the overcooling side heat medium circuit 40, the heat release amount from the overcooling side heat medium in the overcooling side heater core 42 to the blowing air is It can be easily adjusted.
  • the overcooling side heat medium pump 41 stops the overcooling side heat medium pump 41. That is, the flow rate of the overcooling side heat medium which causes the overcooling side heat medium pump 41 to flow into the overcooling side heater core 42 in the heating mode is decreased. Therefore, in the cooling mode, it is possible to suppress the reheating of the blown air by the supercooling side heater core 42, and perform the efficient cooling of the vehicle interior.
  • the supercooling side heater core 42 can be disposed upstream of the first air mix door 54a and the second air mix door 54b in the flow of the blowing air. According to this, the degree of freedom of the arrangement (layout) of the second heating unit (specifically, the supercooling side heater core 42) can be improved, and the indoor air conditioning unit 50 can be miniaturized.
  • the indoor condenser 12a is employed as the first heating unit. Furthermore, in the high temperature side heat medium circuit 20 of the present embodiment, the high temperature side heater core 22 and the high temperature side flow rate adjustment valve 24 are eliminated.
  • the indoor condenser 12 a is disposed in the casing 51 of the indoor air conditioning unit 50 in the same manner as the high temperature side heater core 22 of the first embodiment.
  • the indoor condenser 12a is a heat exchanger that heats the blown air by heat exchange between the refrigerant discharged from the compressor 11 and the blown air that has passed through the overcooling side indoor condenser 14 or the indoor evaporator 17. Further, in the high temperature side water-refrigerant heat exchanger 12 of the present embodiment, the refrigerant flowing out of the indoor condenser 12a exchanges heat with the high temperature side heat medium circulating in the high temperature side heat medium circuit 20.
  • the high temperature side heat medium is circulated between the high temperature side water-refrigerant heat exchanger 12 and the high temperature side radiator 23.
  • the high temperature side heat medium pump 21 when the high temperature side heat medium pump 21 is operated, when the high temperature side heat medium passes through the water passage of the high temperature side water-refrigerant heat exchanger 12, The heat absorbed can be dissipated to the outside air by the high temperature side radiator 23.
  • the other configuration is the same as that of the first embodiment.
  • the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert a pressure feeding capability for the cooling mode, which is determined in advance, in the cooling mode.
  • the high temperature side heat medium pump 21 is stopped.
  • the other operations are the same as in the first embodiment.
  • the operation of each operation mode will be described.
  • (A) Cooling Mode In the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the cooling mode, the first air mixing door 54a and the second air mixing door 54b completely close the air passage on the indoor condenser 12a side. Therefore, the refrigerant flowing into the indoor condenser 12a does not exchange heat with the blown air, and the high pressure refrigerant flowing into the indoor condenser 12a flows out from the indoor condenser 12a with almost no heat dissipation.
  • the refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side water-refrigerant heat exchanger 12 exchanges heat between the high pressure refrigerant and the high temperature side heat medium.
  • the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated.
  • the refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
  • the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. That is, in the high temperature side radiator 23, the heat of the high temperature side heat medium is radiated to the outside air. Thereby, the high temperature side heat medium is cooled.
  • the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the blowing air cooled by the indoor evaporator 17 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
  • the air-conditioning control device 60 controls the first air mix door 54a and the first air mixing door as in the first embodiment. 2 Move the air mix door 54b. Therefore, in the indoor condenser 12a, the high pressure refrigerant discharged from the compressor 11 and the air blown from the blower 52 exchange heat, and the air is heated. That is, in the indoor condenser 12a, the heat of the high pressure refrigerant discharged from the compressor 11 is radiated to the blowing air.
  • the refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 is stopped. Therefore, the refrigerant flowing into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 hardly exchanges heat with the high temperature side heat medium when the temperature of the high temperature side heat medium rises to the same temperature as the refrigerant. leak.
  • the refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
  • the other operations are the same as in the first embodiment. Therefore, at the time of the heating mode, it is possible to heat the vehicle interior by blowing the blown air heated by the supercooling side indoor condenser 14 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side indoor condenser 14 and the indoor condenser 12a and blown out into the vehicle compartment. Thus, dehumidifying and heating of the passenger compartment can be performed.
  • the refrigeration cycle apparatus 10 of the present embodiment operates as described above, so that the same effect as that of the first embodiment can be obtained.
  • the high temperature side heat medium circuit 20 is configured to circulate the high temperature side heat medium between the high temperature side water-refrigerant heat exchanger 12 and the high temperature side radiator, and as the first heating unit The indoor condenser 12a is adopted.
  • coolant discharged from the compressor 11 by the indoor condenser 12a has is released to blowing air.
  • the cooling mode the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 is made to flow into the high temperature side radiator 23, and the heat of the high temperature side heat medium is radiated to the outside air.
  • the indoor condenser 12a can directly exchange heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air, so indirectly through the heat medium In contrast to the case of heat exchange, the heating efficiency of the blown air can be improved. Therefore, the heating capacity of the blowing air in the first heating unit can be improved.
  • the operation mode can be switched with a simple configuration in which the low pressure refrigerant does not have to flow into the indoor condenser 12a or the supercooling side indoor condenser 14.
  • the air conditioning control device 60 stops the overcooling side heat medium pump 41 in the cooling mode as in the second embodiment. In the heating mode and in the first and second dehumidifying and heating modes, the supercooling side heat medium pump 41 is operated.
  • the air conditioning controller 60 operates the high temperature side heat medium pump 21 in the cooling mode as in the third embodiment.
  • the heating mode In the heating mode, the first dehumidifying heating mode, and the second dehumidifying heating mode, the high temperature side heat medium pump 21 is stopped.
  • the other operations are similar to those of the second embodiment. Hereinafter, the operation of each operation mode will be described.
  • (A) Cooling Mode In the cooling mode, since the overcooling side heat medium pump 41 is stopped, the blowing air is not heated by the overcooling side heater core 42 using the overcooling side heat medium as a heat source. Furthermore, since the high temperature side heat medium pump 21 is operating, it can operate substantially in the same manner as the third embodiment to cool the vehicle interior.
  • the refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the refrigerant flowing into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 is the same as the third embodiment. In addition, it flows out with almost no heat exchange with the high temperature side heat medium.
  • the refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
  • the liquid phase refrigerant flowing out of the receiver 13 flows into the refrigerant passage of the supercooling side water-refrigerant heat exchanger 14a.
  • the heating mode and the first and second dehumidifying heating modes since the supercooling side heat medium pump 41 is operating, the liquid phase refrigerant flowing into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a is excessive. Heat exchange with the cooling side heat medium. Thereby, the liquid phase refrigerant is subcooled and the subcooling side heat medium is heated.
  • the supercooling side heat medium heated in the subcooling side water-refrigerant heat exchanger 14a exchanges heat with the air which has passed through the indoor evaporator 17 in the supercooling side heater core 42, as in the second embodiment. Do. Thereby, the blowing air which passes the indoor evaporator 17 and flows in into the indoor condenser 12a is heated.
  • heating the vehicle interior can be performed by blowing out the blown air heated by the supercooling side heater core 42 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side heater core 42 and the indoor condenser 12a and blown out into the vehicle compartment. , Dehumidifying and heating of the passenger compartment can be performed.
  • the refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the second embodiment.
  • the high temperature side heat medium circuit 20 is configured to circulate the high temperature side heat medium between the high temperature side water-refrigerant heat exchanger 12 and the high temperature side radiator, and as the first heating unit The indoor condenser 12a is adopted. Therefore, as in the third embodiment, the heating capacity of the blown air in the first heating unit can be improved in the heating mode or the like. In addition, the operation mode can be switched with a simple configuration in which the low-pressure refrigerant does not have to flow into the indoor condenser 12 a or the overcooling side indoor condenser 14.
  • the supercooling side water-refrigerant heat exchanger 14a of the present embodiment exchanges heat between the refrigerant flowing out of the supercooling side indoor condenser 14 and the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 in the cooling mode.
  • the function of radiating the heat of the refrigerant to the high temperature side heat medium that is, the function of supercooling the refrigerant is performed.
  • the high temperature side heat medium when the air conditioning controller 60 operates the high temperature side heat medium pump 21, the high temperature side heat medium is the discharge port of the high temperature side heat medium pump 21 ⁇ high temperature side water-refrigerant heat
  • the high temperature side heat medium circulates in the order of the water passage of the exchanger 12 ⁇ the supercooling side water-water passage of the refrigerant heat exchanger 14a ⁇ the high temperature side radiator 23 ⁇ the suction port of the high temperature side heat medium pump 21.
  • the high-pressure side three-way valve 71 switches the refrigerant circuit leading the high-pressure refrigerant discharged from the compressor 11 to the indoor condenser 12a and the refrigerant circuit leading to the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 It is a switching valve.
  • the operation of the high-pressure side three-way valve 71 is controlled by the control voltage output from the air conditioning controller 60.
  • the supercooling side three-way valve 72 switches between the refrigerant circuit leading the refrigerant flowing out of the receiver 13 to the subcooling side indoor condenser 14 and the refrigerant circuit leading the refrigerant side of the subcooling side water-refrigerant heat exchanger 14a. It is a switching valve.
  • the basic configuration of the overcooling side three-way valve 72 is similar to that of the high pressure side three-way valve 71.
  • the other configuration is the same as that of the first embodiment.
  • the air conditioning control device 60 operates the high temperature side heat medium pump 21 in the cooling mode as in the third embodiment. In the heating mode and in the first and second dehumidifying and heating modes, the high temperature side heat medium pump 21 is stopped.
  • the air conditioning control device 60 controls the operation of the high pressure side three-way valve 71 so as to lead the high pressure refrigerant discharged from the compressor 11 to the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12,
  • the operation of the subcooling side three-way valve 72 is controlled so as to lead the refrigerant flowing out of the fuel cell 13 to the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a.
  • the operation of the high-pressure side three-way valve 71 is controlled to lead the high-pressure refrigerant discharged from the compressor 11 to the indoor condenser 12a, and it flows out from the receiver 13.
  • the operation of the subcooling side three-way valve 72 is controlled so as to lead the refrigerant to the subcooling side indoor condenser 14.
  • (A) Cooling Mode In the cooling mode, the high pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 via the high pressure side three-way valve 71. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
  • the liquid phase refrigerant flowing out of the receiver 13 flows into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a via the subcooling side three-way valve 72.
  • the liquid phase refrigerant and the high temperature side heat medium exchange heat thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
  • the high temperature side heat medium heated in the order of the high temperature side water-refrigerant heat exchanger 12 ⁇ the supercooling side water / refrigerant heat exchanger 14a flows into the high temperature side radiator 23.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
  • the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the blowing air cooled by the indoor evaporator 17 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
  • the refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the refrigerant flowing into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 is the third embodiment and Similarly, it flows out with almost no heat exchange with the high temperature side heat medium.
  • the refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
  • the liquid-phase refrigerant flowing out of the receiver 13 flows into the subcooling side indoor condenser 14 via the subcooling side three-way valve 72.
  • the liquid phase refrigerant is subcooled and the blowing air is heated.
  • the refrigerant flowing out of the subcooling side indoor condenser 14 flows into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a.
  • the high temperature side heat medium pump 21 is stopped. Therefore, the refrigerant flowing into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a exchanges heat with the high temperature side heat medium almost when the temperature of the high temperature side heat medium rises to the same temperature as the refrigerant. Spill out.
  • the other operations are the same as in the first embodiment. Therefore, at the time of the heating mode, it is possible to heat the vehicle interior by blowing the blown air heated by the supercooling side indoor condenser 14 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side indoor condenser 14 and the indoor condenser 12a and blown out into the vehicle compartment. Thus, dehumidifying and heating of the passenger compartment can be performed.
  • the refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the first embodiment.
  • the supercooling side water-refrigerant heat exchanger 14a which exchanges heat between the refrigerant flowing out from the supercooling side indoor condenser 14 and the high temperature side heat medium flowing out from the high temperature side water-refrigerant heat exchanger 12. Is equipped. Therefore, in the cooling mode, the refrigerant flowing out of the subcooling side indoor condenser 14 can be further subcooled, and the cooling capacity of the blown air in the indoor evaporator 17 can be further improved.
  • the high-pressure side three-way valve 71 and the overcooling side three-way valve 72 are provided, the high-pressure refrigerant discharged from the compressor 11 during the cooling mode is the indoor condenser 12a and the overcooling side indoor condenser 14 will never be distributed. According to this, it is possible to improve the COP by suppressing the occurrence of unnecessary pressure loss in the refrigerant circulating in the refrigeration cycle apparatus 10.
  • the air conditioning controller 60 operates the high temperature side heat medium pump 21
  • the high temperature side heat medium is discharged from the discharge port of the high temperature side heat medium pump 21 ⁇ high temperature side radiator 23 ⁇ excess
  • the water is circulated in the order of the water passage of the cooling side water-refrigerant heat exchanger 14a ⁇ the water passage of the high temperature side water ⁇ refrigerant heat exchanger 12 ⁇ the suction port of the high temperature side heat medium pump 21.
  • the other configuration is the same as that of the first embodiment.
  • the air conditioning control device 60 operates the high temperature side heat medium pump 21 in the cooling mode. In the heating mode and in the first and second dehumidifying and heating modes, the high temperature side heat medium pump 21 is stopped. The other operations are the same as in the first embodiment. Hereinafter, the operation of each operation mode will be described.
  • (A) Cooling Mode In the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. The high-pressure refrigerant flowing into the indoor condenser 12a flows out with almost no heat release in the indoor condenser 12a, as in the third embodiment.
  • the refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 is operating, in the high temperature side water-refrigerant heat exchanger 12, the high temperature side flowing out from the water passage of the high pressure refrigerant and the supercooling side water-refrigerant heat exchanger 14a.
  • the heat medium exchanges heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated.
  • the liquid-phase refrigerant flowing out of the receiver 13 flows into the supercooling side indoor condenser 14.
  • the liquid-phase refrigerant flowing into the supercooling side indoor condenser 14 flows out with almost no heat release in the supercooling side indoor condenser 14.
  • the refrigerant flowing out of the subcooling side indoor condenser 14 flows into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the liquid refrigerant and the high temperature side heat medium flowing out from the high temperature side radiator 23 exchange heat in the supercooling side water-refrigerant heat exchanger 14a. Thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
  • the blowing air cooled by the indoor evaporator 17 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
  • the heating mode it is possible to heat the vehicle interior by blowing the blown air heated by the supercooling side indoor condenser 14 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side indoor condenser 14 and the indoor condenser 12a and blown out into the vehicle compartment. Thus, dehumidifying and heating of the passenger compartment can be performed.
  • the refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the first embodiment.
  • the supercooling side water-refrigerant heat exchanger heat exchange between the refrigerant flowing out from the subcooling side indoor condenser 14 and the high temperature side heat medium flowing out from the high temperature side water-refrigerant heat exchanger 12 14a
  • the cooling capacity of the blowing air in the indoor evaporator 17 can be further improved in the cooling mode.
  • the refrigerant flows in the order of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 ⁇ the receiver 13 ⁇ the refrigerant passage of the supercooling side water / refrigerant heat exchanger 14a,
  • the high temperature side heat medium flows in the order of the water passage of the supercooling side water-refrigerant heat exchanger 14a to the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the temperature difference between the refrigerant and the high temperature side heat medium in the high temperature side water-refrigerant heat exchanger 12 and the subcooling side water-refrigerant heat exchanger 14a as in the so-called counterflow heat exchanger The heat exchange efficiency can be improved by securing it.
  • the subcooling side water-refrigerant heat exchanger 14a is disposed in the high temperature side heat medium circuit 20 of the present embodiment, and the heat medium three-way valve 25, the heat medium bypass passage 26, and the subcooling side heater core 42 are provided. Has been added. Furthermore, the arrangement of the high temperature side heat medium pump 21 is changed.
  • the heat medium three-way valve 25 is a heat medium circuit that causes the refrigerant flowing out of the high temperature side radiator 23 to be drawn to the high temperature side heat medium pump 21 and a heat medium made to draw the refrigerant flowing out of the supercooling side heater core 42 to the high temperature side heat medium pump 21 It is a three-way switching valve that switches to the medium circuit. The operation of the heat medium three-way valve 25 is controlled by the control voltage output from the air conditioning controller 60.
  • the heat medium bypass passage 26 is a heat medium passage that guides the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 to the supercooling side heater core 42 without flowing into the high temperature side radiator 23. .
  • the high temperature side is switched to the heat medium circuit in which the air conditioning control device 60 causes the refrigerant flowing out of the high temperature side radiator 23 to be sucked into the high temperature side heat medium pump 21.
  • the discharge port of the high temperature side heat medium pump 21 ⁇ water passage of the supercooling side water—refrigerant heat exchanger 14a ⁇ water passage of the high temperature side water—refrigerant heat exchanger 12 ⁇ high temperature side radiator 23
  • the high temperature side heat medium circulates in the order of the heat medium three-way valve 25 and the suction port of the high temperature side heat medium pump 21.
  • the high temperature side heat medium pump 21 when the high temperature side heat medium pump 21 is operated while the air conditioning control device 60 is switching to a heat medium circuit that causes the refrigerant flowing out of the supercooling side heater core 42 to be drawn to the high temperature side heat medium pump 21, Discharge port of medium pump 21 ⁇ supercooling side water-water passage of refrigerant heat exchanger 14 a ⁇ high temperature side water-water passage of refrigerant heat exchanger 12 ⁇ heat medium bypass passage 26 ⁇ supercooling side heater core 42 ⁇ heat medium three-way valve
  • the high temperature side heat medium circulates in the order of 25 ⁇ the suction port of the high temperature side heat medium pump 21.
  • the high temperature side heat medium pump 21 disposed in the high temperature side heat medium circuit 20, the high temperature side water-refrigerant heat exchanger 12, the supercooling side water-refrigerant heat exchanger 14a, and the supercooling side heater core The second heating unit is configured by 42 and the like. The other configuration is the same as that of the fourth embodiment.
  • the high-temperature side heat medium pump 21 is operated so that the air conditioning control device 60 exerts a pumping capability predetermined for each operation mode in any operation mode.
  • the air conditioning control device 60 controls the operation of the heat medium three-way valve 25 so as to switch to the heat medium circuit that causes the high temperature side heat medium pump 21 to suck the high temperature side heat medium flowing out of the high temperature side radiator 23 in the cooling mode. . Further, in the heating mode and in the first and second dehumidifying heating modes, the heat medium three-way valve is switched so that the high temperature side heat medium flowing out from the supercooling side heater core 42 is switched to the heat medium circuit which sucks the high temperature side heat medium pump 21. Control the operation of 25.
  • (A) Cooling Mode In the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. The high-pressure refrigerant flowing into the indoor condenser 12a flows out with almost no heat release in the indoor condenser 12a, as in the fourth embodiment.
  • the refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 is operating, in the high temperature side water-refrigerant heat exchanger 12, the high temperature side flowing out from the water passage of the high pressure refrigerant and the supercooling side water-refrigerant heat exchanger 14a.
  • the heat medium exchanges heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated.
  • the liquid phase refrigerant flowing out of the receiver 13 flows into the refrigerant passage of the supercooling side water-refrigerant heat exchanger 14a.
  • the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the liquid refrigerant and the high temperature side heat medium flowing out from the high temperature side radiator 23 exchange heat in the supercooling side water-refrigerant heat exchanger 14a. Thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
  • the high temperature side heat medium heated in the order of the subcooling side water-refrigerant heat exchanger 14 a ⁇ the high temperature side water / refrigerant heat exchanger 12 flows into the high temperature side radiator 23.
  • the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
  • the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 through the heat medium three-way valve 25 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12 .
  • cooling the vehicle interior can be performed by blowing the blown air cooled by the indoor evaporator 17 into the vehicle interior.
  • the refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 21 is operating, so the high temperature side water-refrigerant heat exchanger 12 exchanges high pressure refrigerant and supercooling side water-refrigerant heat
  • the high temperature side heat medium which flowed out of the water passage of vessel 14a exchanges heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated.
  • the heating mode and the first and second dehumidifying heating modes since the high temperature side heat medium pump 21 is operating, in the supercooling side water-refrigerant heat exchanger 14 a, the liquid phase refrigerant and the supercooling side heater core 42 are The high temperature side heat medium which has flowed out exchanges heat. Thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
  • the high temperature side heat medium whose temperature is increased by absorbing heat from the refrigerant in the order of the subcooling side water-refrigerant heat exchanger 14a ⁇ the high temperature side water / refrigerant heat exchanger 12 is the heat medium bypass passage 26 Flows into the subcooling side heater core 42 via the The high temperature side heat medium that has flowed into the supercooling side heater core 42 exchanges heat with the blowing air that has passed through the indoor evaporator 17. Thereby, the blowing air which passes the indoor evaporator 17 and flows in into the indoor condenser 12a is heated.
  • heating the vehicle interior can be performed by blowing out the blown air heated by the supercooling side heater core 42 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side heater core 42 and the indoor condenser 12a and blown out into the vehicle compartment. , Dehumidifying and heating of the passenger compartment can be performed.
  • the refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the first embodiment.
  • the supercooling side water-refrigerant heat exchanger 14a for exchanging heat between the liquid phase refrigerant flowing out of the receiver 13 and the high temperature side heat medium pressure fed from the high temperature side heat medium pump 21 is provided. Therefore, in the cooling mode, the high pressure refrigerant flowing out of the receiver 13 can be further subcooled, and the cooling capacity of the blowing air in the indoor evaporator 17 can be further improved.
  • the refrigerant flows in the order of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 ⁇ the receiver 13 ⁇ the refrigerant passage of the supercooling side water / refrigerant heat exchanger 14a,
  • the high temperature side heat medium flowing out of the high temperature side radiator 23 flows in the order of the water passage of the supercooling side water-refrigerant heat exchanger 14a to the water passage of the high temperature side water-refrigerant heat exchanger 12.
  • the temperature difference between the refrigerant and the high temperature side heat medium in the high temperature side water-refrigerant heat exchanger 12 and the subcooling side water-refrigerant heat exchanger 14a is secured to achieve heat exchange efficiency. Can be improved.
  • refrigeration cycle device 10 concerning this indication to an air-conditioner for electric vehicles
  • application of refrigeration cycle device 10 is not limited to this.
  • the present invention may be applied to an air conditioner for a hybrid vehicle that obtains driving force for traveling the vehicle from both an internal combustion engine and an electric motor.
  • the present invention is not limited to vehicles, and may be applied to stationary heating devices, cooling devices, and the like.
  • an operation mode is not limited to this. If at least the heating mode and the first dehumidifying and heating mode can be performed, it is possible to obtain the effect of suppressing the decrease in heating capacity. Therefore, the refrigeration cycle apparatus 10 may be applied to an air conditioner that does not operate in the cooling mode. In this case, the high temperature side radiator 23 of the high temperature side heat medium circuit 20 may be eliminated.
  • the cooling only operation mode In the cooling only operation mode, the heat absorbed by the low temperature side heat medium from the on-vehicle device 32 is absorbed by the refrigerant, and the high temperature side radiator 23 dissipates the outside air through the high temperature side heat medium. According to this, it is possible to cool the in-vehicle device 32 without air conditioning the vehicle interior.
  • the air conditioning of the vehicle interior is performed. Simultaneously, the on-vehicle device 32 can be cooled.
  • Each composition of refrigerating cycle device 10 is not limited to what was indicated by the above-mentioned embodiment.
  • branch portion 15a has a three-way joint structure
  • the flow rate of the refrigerant flowing from the second heating portion to the cooling expansion valve 16a and the second flow portion A three-system flow control valve may be employed to adjust the refrigerant flow ratio with respect to the flow rate of the refrigerant flowing into the heat absorption expansion valve 16b from the heating unit.
  • indoor air-conditioning unit 50 is not limited to this. It may not have the partitioning member of the casing 51 and can not be switched to the inside / outside air two-layer mode.
  • the low temperature side radiator 33 and the battery as the in-vehicle device 32 are disposed in the low temperature side heat medium circuit 30, but the low temperature side radiator 33 and the in-vehicle device At least one of 32 may be disposed.
  • the on-vehicle device 32 is not limited to the battery, and may be any heat-generating device that generates heat during operation.
  • an electric motor that outputs a driving force for traveling
  • an inverter that converts the frequency of electric power supplied to the electric motor
  • a charger for charging the battery with electric power, or the like may be adopted.
  • a plurality of heat generating devices may be adopted as the on-vehicle device 32 and connected in parallel or in series to the flow of the low temperature side heat medium.
  • the high temperature side radiator 23 and the low temperature side radiator 33 are not limited to the mutually independent structure.
  • the high temperature side radiator 23 and the low temperature side radiator 33 may be integrated so that the heat possessed by the high temperature side heat carrier and the heat possessed by the low temperature side heat carrier can be mutually transferred.
  • the heat mediums may be integrated so as to be capable of transferring heat by sharing a part of components (for example, heat exchange fins) of the high temperature side radiator 23 and the low temperature side radiator 33.
  • the supercooling side heater core 42 is located downstream of the indoor evaporator 17 with respect to the flow of the air, and the air flow is more than the first air mix door 54a and the second air mix door 54b.
  • positioned at the upstream side was demonstrated, it is not limited to this.
  • the subcooling side heater core 42 may be disposed in the same manner as the subcooling side indoor condenser 14 of the first embodiment.
  • the hydraulic transport capacity of the supercooling side heat medium pump 41 is constant during the first and second dehumidifying heating modes, and the opening degree of the first air mix door 54a causes the supercooling side heater core 42 to radiate heat to the blown air. The amount of heat dissipation may be adjusted.
  • coolant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.

Abstract

This refrigeration cycle device is to be applied to air conditioning devices. The refrigeration cycle device is provided with a compressor (11), first heating units (12, 22, 12a), and second heating units (14, 14a, 42). The compressor compresses and discharges a refrigerant. Using the refrigerant discharged from the compressor as a heat source, the first heating units heat blowing air to be blown to a space that is to be air-conditioned. Using the refrigerant flowed out from the first heating units as a heat source, the second heating units heat the blowing air. The second heating units are disposed so as to heat the blowing air and flow the blowing air to the first heating unit side. In heating mode in which the blowing air is to be heated, the blowing air is heated by means of both the first heating units and the second heating units. Consequently, the present invention makes it possible to provide a refrigeration cycle device capable of suppressing, with a simple configuration, deterioration of heating performance of heating units even if operation mode is switched.

Description

冷凍サイクル装置Refrigeration cycle device 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年8月10日に出願された日本特許出願番号2017-155680号と、2018年6月29日に出願された日本特許出願番号2018-124604号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-155680 filed on Aug. 10, 2017 and Japanese Patent Application No. 2018-124604 filed on June 29, 2018, which are incorporated herein by reference. The contents of the description are incorporated.
 本開示は、冷凍サイクル装置に関するもので、空調装置に適用して有効である。 The present disclosure relates to a refrigeration cycle apparatus and is effective when applied to an air conditioner.
 従来、特許文献1に、車両用空調装置に適用された蒸気圧縮式の冷凍サイクル装置が開示されている。特許文献1の冷凍サイクル装置は、空調対象空間である車室内へ送風される送風空気を冷却する冷房モードの冷媒回路、送風空気を加熱する暖房モードの冷媒回路、および冷却して除湿された送風空気を再加熱する除湿暖房モードの冷媒回路を切り替え可能に構成されている。 BACKGROUND ART Conventionally, Patent Document 1 discloses a vapor compression refrigeration cycle apparatus applied to a vehicle air conditioner. The refrigeration cycle apparatus of Patent Document 1 includes a refrigerant circuit in a cooling mode that cools air blown into a vehicle compartment that is a space to be air-conditioned, a refrigerant circuit in a heating mode that heats blast air, and air that has been cooled and dehumidified. It is comprised so that switching of the refrigerant circuit of the dehumidification heating mode which reheats air is possible.
 より具体的には、特許文献1の冷凍サイクル装置は、冷媒と熱媒体とを熱交換させる第1室外熱交換器、冷媒と外気とを熱交換させる第2室外熱交換器、および冷媒と送風空気とを熱交換させる室内熱交換器を備えている。 More specifically, the refrigeration cycle apparatus of Patent Document 1 includes a first outdoor heat exchanger that exchanges heat between the refrigerant and the heat medium, a second outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and the refrigerant and the air. The indoor heat exchanger which exchanges heat with air is provided.
 そして、冷房モード、および所定の条件で実行される除湿暖房モードでは、第1室外熱交換器→第2室外熱交換器の順に高圧冷媒を流入させて、第1室外熱交換器および第2室外熱交換器を放熱器として機能させるとともに、室内熱交換器へ低圧冷媒を流入させて、室内熱交換器を蒸発器として機能させる冷媒回路に切り替える。さらに、除湿暖房モードでは、第1室外熱交換器を送風空気を加熱する加熱部として機能させている。 Then, in the cooling mode and the dehumidifying and heating mode executed under predetermined conditions, the high pressure refrigerant is made to flow in the order of the first outdoor heat exchanger → the second outdoor heat exchanger, and the first outdoor heat exchanger and the second outdoor While making a heat exchanger function as a radiator, low pressure refrigerant is made to flow into an indoor heat exchanger, and it switches to a refrigerant circuit which makes an indoor heat exchanger function as an evaporator. Furthermore, in the dehumidifying and heating mode, the first outdoor heat exchanger functions as a heating unit that heats the blowing air.
 一方、暖房モードでは、第1室外熱交換器→室内熱交換器の順に高圧冷媒を流入させて、第1室外熱交換器および室内熱交換器を放熱器として機能させるとともに、第2室外熱交換器へ低圧冷媒を流入させて、第2室外熱交換器を蒸発器として機能させる冷媒回路に切り替える。さらに、暖房モードでは、第1室外熱交換器および室内熱交換器の双方を送風空気を加熱する加熱部として機能させている。 On the other hand, in the heating mode, the high pressure refrigerant is made to flow in the order of the first outdoor heat exchanger → the indoor heat exchanger, and the first outdoor heat exchanger and the indoor heat exchanger function as a radiator and the second outdoor heat exchange The low pressure refrigerant is caused to flow into the unit, and the second outdoor heat exchanger is switched to a refrigerant circuit that functions as an evaporator. Furthermore, in the heating mode, both the first outdoor heat exchanger and the indoor heat exchanger function as a heating unit that heats the blown air.
特許第4232463号公報Patent No. 4232463
 ところで、特許文献1の冷凍サイクル装置のように、運転モードに応じて、加熱部として機能する熱交換器(具体的には、室内熱交換器)に高圧冷媒を流入させる冷媒回路と低圧冷媒を流入させる冷媒回路とを切り替える構成では、サイクル構成が複雑化しやすい場合がある。 By the way, like the refrigeration cycle apparatus of Patent Document 1, the refrigerant circuit and the low pressure refrigerant that cause the high pressure refrigerant to flow into the heat exchanger (specifically, the indoor heat exchanger) that functions as the heating unit according to the operation mode. In the configuration in which the refrigerant circuit to be introduced is switched, the cycle configuration may be easily complicated.
 さらに、加熱部として機能する熱交換器へ低圧冷媒を流入させる冷媒回路から高圧冷媒を流入させる冷媒回路へ切り替えると、冷媒の有する熱が加熱部として機能する熱交換器自体を加熱するために使われてしまい、加熱部における送風空気の加熱能力が低下してしまうおそれもある。 Furthermore, when switching from the refrigerant circuit that causes the low pressure refrigerant to flow into the heat exchanger that functions as the heating unit to the refrigerant circuit that flows the high pressure refrigerant, the heat of the refrigerant is used to heat the heat exchanger itself that functions as the heating unit. There is also a possibility that the heating capacity of the blowing air in the heating unit may be reduced.
 すなわち、空調装置に適用される冷凍サイクル装置においては、簡素な構成で運転モードを切り替えても加熱部における加熱能力の低下を抑制可能であることが望ましい。 That is, in the refrigeration cycle apparatus applied to the air conditioner, it is desirable that the decrease in the heating capacity of the heating unit can be suppressed even if the operation mode is switched with a simple configuration.
 本開示は、上記点に鑑み、送風空気の加熱能力の低下を抑制可能な冷凍サイクル装置を提供することを目的とする。 An object of this indication is to provide a refrigerating cycle device which can control a fall of heating capability of blowing air in view of the above-mentioned point.
 本開示の一態様による冷凍サイクル装置は、空調装置に適用される。冷凍サイクル装置は、圧縮機と、第1加熱部と、第2加熱部と、を備える。圧縮機は、冷媒を圧縮して吐出する。第1加熱部は、圧縮機から吐出された冷媒を熱源として空調対象空間へ送風される送風空気を加熱する。第2加熱部は、第1加熱部から流出した冷媒を熱源として送風空気を加熱する。第2加熱部は、送風空気を加熱して第1加熱部側へ流出させるように配置されている。送風空気を加熱する暖房モードでは、第1加熱部および第2加熱部の双方で送風空気を加熱する。 A refrigeration cycle apparatus according to an aspect of the present disclosure is applied to an air conditioner. The refrigeration cycle apparatus includes a compressor, a first heating unit, and a second heating unit. The compressor compresses and discharges the refrigerant. The first heating unit uses the refrigerant discharged from the compressor as a heat source to heat the air that is blown to the space to be air-conditioned. The second heating unit heats the blowing air using the refrigerant flowing out of the first heating unit as a heat source. The second heating unit is disposed so as to heat the blown air and cause it to flow out to the first heating unit side. In the heating mode for heating the blowing air, the blowing air is heated in both of the first heating unit and the second heating unit.
 これによれば、暖房モード時には、圧縮機から吐出された冷媒を第1加熱部→第2加熱部の順に流入させて、比較的低温となっている送風空気であっても第2加熱部→第1加熱部の順で段階的に、かつ、効率的に加熱することができる。 According to this, in the heating mode, the refrigerant discharged from the compressor is made to flow in the order of the first heating unit → the second heating unit, and the second heating unit → even if the air is relatively low temperature → The heating can be performed stepwise and efficiently in the order of the first heating unit.
 また、暖房モード時には、比較的低温となっている送風空気によって第2加熱部から流出する冷媒のエンタルピを充分に低下させることができる。従って、蒸発器として機能する熱交換器における冷媒の吸熱量を増加させて、第1加熱部および第2加熱部における送風空気の加熱能力の低下を抑制することができる。 Further, in the heating mode, the enthalpy of the refrigerant flowing out of the second heating unit can be sufficiently reduced by the air which is relatively low in temperature. Therefore, the heat absorption amount of the refrigerant in the heat exchanger that functions as an evaporator can be increased, and a decrease in the heating capacity of the blowing air in the first heating unit and the second heating unit can be suppressed.
 すなわち、暖房モード時に、送風空気の加熱能力の低下を抑制可能な冷凍サイクル装置を提供することができる。 That is, it is possible to provide a refrigeration cycle apparatus capable of suppressing a decrease in the heating capacity of the blowing air in the heating mode.
 さらに、第2加熱部から流出した冷媒を減圧させる減圧部と、減圧部にて減圧された冷媒を送風空気と熱交換させて蒸発させる冷却用蒸発部と、を備え、
 第2加熱部は、冷却用蒸発部にて冷却された送風空気を加熱して第1加熱部側へ流出させるように配置されており、冷却用蒸発部にて冷却して除湿された送風空気を再加熱する除湿暖房モードでは、少なくとも第2加熱部にて送風空気を加熱するようになっていてもよい。
Further, the apparatus includes a pressure reducing unit that reduces the pressure of the refrigerant flowing out of the second heating unit, and a cooling evaporation unit that causes the refrigerant reduced in the pressure reducing unit to heat exchange with the blowing air and evaporates the refrigerant.
The second heating unit is disposed so as to heat the blown air cooled by the cooling evaporation unit to flow out toward the first heating unit side, and the blown air cooled and dehumidified by the cooling evaporation unit In the dehumidifying and heating mode of reheating, the blowing air may be heated by at least the second heating unit.
 これによれば、除湿暖房モード時には、少なくとも第2加熱部へ高圧冷媒を流入させて、冷却用蒸発部にて冷却されて除湿された送風空気を第2加熱部にて再加熱することができる。従って、第1加熱部および第2加熱部へ低圧冷媒を流入させることのない簡素な構成で、運転モードを切り替えることができる。 According to this, at the time of the dehumidifying and heating mode, the high pressure refrigerant can be made to flow at least into the second heating unit, and the blowing air cooled and dehumidified by the cooling evaporation unit can be reheated by the second heating unit. . Therefore, the operation mode can be switched with a simple configuration in which the low pressure refrigerant does not flow into the first heating unit and the second heating unit.
 さらに、除湿暖房モード時には、冷却用蒸発部にて冷却された送風空気によって第2加熱部から流出する冷媒のエンタルピを充分に低下させることができる。従って、冷却用蒸発部における冷媒の吸熱量を増加させることができ、第2加熱部における送風空気の加熱能力の低下を抑制することができる。 Furthermore, in the dehumidifying and heating mode, the enthalpy of the refrigerant flowing out of the second heating unit can be sufficiently reduced by the blowing air cooled by the cooling evaporation unit. Therefore, the amount of heat absorption of the refrigerant in the cooling evaporation portion can be increased, and a decrease in the heating capacity of the blowing air in the second heating portion can be suppressed.
 すなわち、簡素な構成で運転モードを切り替えても加熱部における加熱能力の低下を抑制可能な冷凍サイクル装置を提供することができる。 That is, it is possible to provide a refrigeration cycle apparatus capable of suppressing a decrease in heating capacity in the heating unit even when the operation mode is switched with a simple configuration.
本開示の少なくとも一つの実施形態の車両用空調装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication. 本開示の少なくとも一つの実施形態の室内空調ユニットの一部断面図である。FIG. 7 is a partial cross-sectional view of an indoor air conditioning unit of at least one embodiment of the present disclosure. 本開示の少なくとも一つの実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram showing an electric control part of a vehicular air-conditioning system of at least one embodiment of the present disclosure. 除湿暖房モードの制御態様を説明するための説明図である。It is an explanatory view for explaining a control mode of dehumidification heating mode. 本開示の少なくとも一つの実施形態の車両用空調装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication. 本開示の少なくとも一つの実施形態の室内空調ユニットの一部断面図である。FIG. 7 is a partial cross-sectional view of an indoor air conditioning unit of at least one embodiment of the present disclosure. 本開示の少なくとも一つの実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram showing an electric control part of a vehicular air-conditioning system of at least one embodiment of the present disclosure. 本開示の少なくとも一つの実施形態の車両用空調装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication. 本開示の少なくとも一つの実施形態の車両用空調装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication. 本開示の少なくとも一つの実施形態の車両用空調装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication. 本開示の少なくとも一つの実施形態の車両用空調装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication. 本開示の少なくとも一つの実施形態の車両用空調装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vehicle air conditioner of at least one embodiment of this indication.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. The same referential mark may be attached | subjected to the part corresponding to the matter demonstrated by the form preceded in each form, and the overlapping description may be abbreviate | omitted. When only a part of the configuration is described in each form, the other forms described above can be applied to other parts of the configuration. Not only combinations of parts which clearly indicate that combinations are possible in each embodiment, but also combinations of embodiments even if they are not specified unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1~図4を用いて、本開示の第1実施形態を説明する。本実施形態の冷凍サイクル装置10は、車両走行用の駆動力を走行用電動モータから得る電気自動車に搭載される車両用空調装置1に適用されている。冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。
First Embodiment
A first embodiment of the present disclosure will be described using FIGS. 1 to 4. The refrigeration cycle apparatus 10 of the present embodiment is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains driving power for traveling a vehicle from a traveling electric motor. The refrigeration cycle apparatus 10 has a function of adjusting the temperature of the blowing air blown into the vehicle compartment, which is a space to be air conditioned, in the vehicle air conditioner 1.
 本実施形態の車両用空調装置1では、冷房モードの運転、暖房モードの運転、および第1、第2除湿暖房モードの運転を切り替えることができる。冷房モードは、送風空気を冷却して車室内の冷房を行う運転モードである。暖房モードは、送風空気を加熱して車室内の暖房を行う運転モードである。第1、第2除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内の除湿暖房を行う運転モードである。 In the vehicle air conditioner 1 of the present embodiment, the operation in the cooling mode, the operation in the heating mode, and the operation in the first and second dehumidifying and heating modes can be switched. The cooling mode is an operation mode for cooling the inside of the vehicle by cooling the blown air. The heating mode is an operation mode in which the blowing air is heated to heat the vehicle interior. The first and second dehumidifying and heating modes are operation modes for reheating the cooled and dehumidified air to dehumidify and heat the passenger compartment.
 また、冷凍サイクル装置10では、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。この冷媒には、圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 In the refrigeration cycle apparatus 10, an HFC refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured. In this refrigerant, refrigerator oil for lubricating the compressor 11 is mixed, and a part of the refrigerator oil circulates in the cycle together with the refrigerant.
 まず、図1の全体構成図を用いて、冷凍サイクル装置10を構成する各構成機器について説明する。 First, each component which comprises the refrigerating-cycle apparatus 10 is demonstrated using the whole block diagram of FIG.
 圧縮機11は、冷凍サイクル装置10において、冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、車両ボンネット内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する空調制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 sucks, compresses and discharges the refrigerant in the refrigeration cycle apparatus 10. The compressor 11 is disposed in a vehicle bonnet. The compressor 11 is an electric compressor which rotationally drives, by an electric motor, a fixed displacement type compression mechanism whose discharge displacement is fixed. The rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from an air conditioning control device 60 described later.
 圧縮機11の吐出口には、高温側水-冷媒熱交換器12の冷媒通路の入口側が接続されている。高温側水-冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒と高温側熱媒体回路20を循環する高温側熱媒体とを熱交換させて、高温側熱媒体を加熱する熱交換器である。高温側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。 The outlet side of the compressor 11 is connected to the inlet side of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. The high temperature side water-refrigerant heat exchanger 12 performs heat exchange between the high pressure refrigerant discharged from the compressor 11 and the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 to heat the high temperature side heat medium. It is As the high temperature side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
 ここで、高温側熱媒体回路20は、高温側熱媒体を循環させる高温側の水回路である。高温側熱媒体回路20には、高温側水-冷媒熱交換器12の水通路、高温側熱媒体ポンプ21、高温側ヒータコア22、高温側ラジエータ23、高温側流量調整弁24等が配置されている。 Here, the high temperature side heat medium circuit 20 is a high temperature side water circuit that circulates the high temperature side heat medium. In the high temperature side heat medium circuit 20, the water passage of the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium pump 21, the high temperature side heater core 22, the high temperature side radiator 23, the high temperature side flow control valve 24 etc. There is.
 高温側熱媒体ポンプ21は、高温側熱媒体回路20において、高温側熱媒体を高温側水-冷媒熱交換器12の水通路の入口側へ圧送する高温側水ポンプである。高温側熱媒体ポンプ21は、空調制御装置60から出力される制御電圧によって、回転数(すなわち、水圧送能力)が制御される電動ポンプである。 The high temperature side heat medium pump 21 is a high temperature side water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the high temperature side water-refrigerant heat exchanger 12 in the high temperature side heat medium circuit 20. The high temperature side heat medium pump 21 is an electric pump whose rotational speed (that is, water pressure transfer capacity) is controlled by a control voltage output from the air conditioning controller 60.
 高温側ヒータコア22は、後述する室内空調ユニット50のケーシング51内に配置されている。高温側ヒータコア22は、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体と後述する過冷却側室内凝縮器14あるいは室内蒸発器17を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。 The high temperature side heater core 22 is disposed in a casing 51 of an indoor air conditioning unit 50 described later. The high temperature side heater core 22 exchanges heat between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the air which has passed through the subcooling side indoor condenser 14 or the indoor evaporator 17 described later. , Is a heat exchanger for heating the blowing air.
 高温側ラジエータ23は、車両ボンネット内の前方側に配置されている。高温側ラジエータ23は、高温側水-冷媒熱交換器12等と一体的に形成されていてもよい。高温側ラジエータ23は、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体と図示しない外気ファンから送風された外気とを熱交換させて、高温側熱媒体の有する熱を外気に放熱させる熱交換器である。 The high temperature side radiator 23 is disposed on the front side in the vehicle bonnet. The high temperature side radiator 23 may be integrally formed with the high temperature side water-refrigerant heat exchanger 12 or the like. The high temperature side radiator 23 performs heat exchange between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the outside air blown from the outside air fan (not shown) to obtain the heat of the high temperature side heat medium as the outside air. Is a heat exchanger that dissipates heat.
 高温側ヒータコア22および高温側ラジエータ23は、図1に示すように、高温側熱媒体回路20において、高温側熱媒体の流れに対して並列的に接続されている。 The high temperature side heater core 22 and the high temperature side radiator 23 are connected in parallel to the flow of the high temperature side heat medium in the high temperature side heat medium circuit 20, as shown in FIG.
 高温側流量調整弁24は、高温側ヒータコア22へ流入する高温側熱媒体の流量である高温側ヒータコア流量Qa1と高温側ラジエータ23へ流入する高温側熱媒体の流量である高温側ラジエータ流量Qb1との高温側流量比(Qb1/Qa1)を調整する高温側流量比調整部である。 The high temperature side flow control valve 24 includes a high temperature side heater core flow rate Qa1 which is a flow rate of the high temperature side heat medium flowing into the high temperature side heater core 22, and a high temperature side radiator flow rate Qb1 which is a flow rate of the high temperature side heat medium flowing into the high temperature side radiator 23. It is a high temperature side flow ratio adjustment part which adjusts the high temperature side flow ratio (Qb1 / Qa1).
 高温側流量調整弁24は、高温側流量比(Qb1/Qa1)を連続的に調整可能な三方式の流量調整弁である。高温側流量調整弁24は、空調制御装置60から出力される制御信号によって、その作動が制御される。 The high temperature side flow control valve 24 is a three-system flow control valve capable of continuously adjusting the high temperature flow rate ratio (Qb1 / Qa1). The operation of the high temperature side flow control valve 24 is controlled by a control signal output from the air conditioning controller 60.
 高温側流量調整弁24は、高温側ヒータコア22の熱媒体入口側と高温側ラジエータ23の熱媒体入口側との接続部に配置されている。 The high temperature side flow control valve 24 is disposed at the connection between the heat medium inlet side of the high temperature side heater core 22 and the heat medium inlet side of the high temperature side radiator 23.
 具体的には、高温側水-冷媒熱交換器12の水通路の出口には、高温側流量調整弁24の入口側が接続されている。高温側流量調整弁24の一方の出口には、高温側ヒータコア22の熱媒体入口側が接続されている。高温側流量調整弁24の他方の出口には、高温側ラジエータ23の熱媒体入口側が接続されている。 Specifically, the inlet side of the high temperature side flow control valve 24 is connected to the outlet of the water passage of the high temperature side water-refrigerant heat exchanger 12. The heat medium inlet side of the high temperature side heater core 22 is connected to one outlet of the high temperature side flow control valve 24. The heat medium inlet side of the high temperature side radiator 23 is connected to the other outlet of the high temperature side flow control valve 24.
 このため、高温側熱媒体回路20では、高温側流量調整弁24が高温側流量比(Qb1/Qa1)を調整すると、高温側ヒータコア22へ流入する高温側熱媒体の流量が変化する。これにより、高温型ヒータコア22における高温側熱媒体の送風空気への放熱量、すなわち送風空気の加熱量が調整される。 Therefore, in the high temperature side heat medium circuit 20, when the high temperature side flow control valve 24 adjusts the high temperature side flow ratio (Qb1 / Qa1), the flow rate of the high temperature side heat medium flowing into the high temperature side heater core 22 changes. Thereby, the amount of heat radiation to the blast air of the high temperature side heat medium in high temperature type heater core 22, ie, the amount of heating of blast air, is adjusted.
 従って、本実施形態では、高温側熱媒体回路20に配置された高温側熱媒体ポンプ21、高温側水-冷媒熱交換器12、高温側ヒータコア22、高温側流量調整弁24等によって、圧縮機11から吐出された冷媒を熱源として送風空気を加熱する第1加熱部が構成されている。 Therefore, in the present embodiment, the compressor is constituted by the high temperature side heat medium pump 21 disposed in the high temperature side heat medium circuit 20, the high temperature side water-refrigerant heat exchanger 12, the high temperature side heater core 22, the high temperature side flow control valve 24 etc. A first heating unit is configured to heat the blown air by using the refrigerant discharged from 11 as a heat source.
 次に、高温側水-冷媒熱交換器12の冷媒通路の出口には、レシーバ(受液器)13の入口側が接続されている。レシーバ13は、高温側水-冷媒熱交換器12から流出した高圧冷媒の気液を分離して分離された液相冷媒を下流側へ流出させるとともに、サイクルの余剰冷媒を液相冷媒として貯える気液分離部である。レシーバ13は、有底筒状の容器であり、高温側水-冷媒熱交換器12等と一体的に形成されていてもよい。 Next, the inlet side of the receiver (receiver) is connected to the outlet of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. The receiver 13 separates the gas phase of the high pressure refrigerant flowing out from the high temperature side water-refrigerant heat exchanger 12 and allows the separated liquid phase refrigerant to flow out to the downstream side, and stores the excess refrigerant of the cycle as the liquid phase refrigerant. It is a liquid separation part. The receiver 13 is a cylindrical container with a bottom, and may be integrally formed with the high temperature side water-refrigerant heat exchanger 12 or the like.
 レシーバ13の液相冷媒出口には、過冷却側室内凝縮器14の冷媒入口側が接続されている。過冷却側室内凝縮器14は、高温側ヒータコア22とともに、室内空調ユニット50のケーシング51内に配置されている。より詳細には、過冷却側室内凝縮器14は、高温側ヒータコア22よりも送風空気流れ上流側に配置されている。 The refrigerant inlet side of the subcooling side indoor condenser 14 is connected to the liquid phase refrigerant outlet of the receiver 13. The supercooling side indoor condenser 14 is disposed in the casing 51 of the indoor air conditioning unit 50 together with the high temperature side heater core 22. More specifically, the supercooling side indoor condenser 14 is disposed upstream of the high temperature side heater core 22 in the flow of the blast air.
 過冷却側室内凝縮器14は、レシーバ13から流出した高圧冷媒と後述する室内蒸発器17を通過した送風空気とを熱交換させて、送風空気を加熱するとともに、レシーバ13から流出した高圧冷媒を過冷却する熱交換器である。従って、本実施形態では、過冷却側室内凝縮器14によって、第1加熱部から流出した冷媒を熱源として送風空気を加熱する第2加熱部が構成されている。 The supercooling side indoor condenser 14 exchanges heat between the high pressure refrigerant flowing out of the receiver 13 and the air blowing through the indoor evaporator 17 described later to heat the air blowing, and the high pressure refrigerant flowing out of the receiver 13 It is a heat exchanger that overcools. Therefore, in the present embodiment, the subcooling side indoor condenser 14 configures a second heating unit that heats the blown air by using the refrigerant flowing out of the first heating unit as a heat source.
 過冷却側室内凝縮器14の出口には、分岐部15aの流入口側が接続されている。分岐部15aは、過冷却側室内凝縮器14から流出した冷媒の流れを分岐するものである。分岐部15aは、互いに連通する3つの流入出口が有する三方継手構造のもので、3つの流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。 The outlet side of the supercooling side indoor condenser 14 is connected to the inlet side of the branch portion 15a. The branch portion 15 a branches the flow of the refrigerant flowing out of the supercooling side indoor condenser 14. The branch portion 15a is a three-way joint structure having three inlets and outlets communicating with each other, one of the three inlets and outlets being a refrigerant inlet and the remaining two being a refrigerant outlet.
 分岐部15aの一方の流出口には、冷房用膨張弁16aの入口側が接続されている。分岐部15aの他方の流出口には、吸熱用膨張弁16bの入口側が接続されている。 The inlet side of the cooling expansion valve 16a is connected to one outlet of the branch portion 15a. The inlet side of the heat absorption expansion valve 16b is connected to the other outlet of the branch portion 15a.
 冷房用膨張弁16aは、少なくとも冷房モード時および除湿暖房モード時に、過冷却側室内凝縮器14から流出した冷媒を減圧させる減圧部であるとともに、室内蒸発器17へ流入する冷媒の流量を調整する冷房用流量調整部である。 The cooling expansion valve 16a is a pressure reducing unit that reduces the pressure of the refrigerant flowing out of the supercooling side indoor condenser 14 at least in the cooling mode and the dehumidifying heating mode, and adjusts the flow rate of the refrigerant flowing into the indoor evaporator 17. It is a flow control unit for cooling.
 冷房用膨張弁16aは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータ(具体的には、ステッピングモータ)とを有して構成される電気式の可変絞り機構である。冷房用膨張弁16aは、空調制御装置60から出力される制御信号(制御パルス)によって、その作動が制御される。冷房用膨張弁16aは、弁開度を全閉とすることで冷媒通路を閉塞する全閉機能を有している。 The cooling expansion valve 16a includes a valve body configured to be able to change the throttle opening degree, and an electric actuator (specifically, a stepping motor) that changes the opening degree of the valve body. Is a variable stop mechanism of the formula. The operation of the cooling expansion valve 16 a is controlled by a control signal (control pulse) output from the air conditioning control device 60. The cooling expansion valve 16a has a fully closing function of closing the refrigerant passage by fully closing the valve opening degree.
 冷房用膨張弁16aの出口には、室内蒸発器17の冷媒入口側が接続されている。室内蒸発器17は、室内空調ユニット50のケーシング51内に配置されている。より詳細には、室内蒸発器17は、過冷却側室内凝縮器14および高温側ヒータコア22よりも送風空気流れ上流側に配置されている。 The refrigerant inlet side of the indoor evaporator 17 is connected to the outlet of the cooling expansion valve 16a. The indoor evaporator 17 is disposed in the casing 51 of the indoor air conditioning unit 50. More specifically, the indoor evaporator 17 is disposed upstream of the supercooled side indoor condenser 14 and the high temperature side heater core 22 in the flow of the blast air.
 室内蒸発器17は、少なくとも冷房モード時および除湿暖房モード時に、冷房用膨張弁16aにて減圧された低圧冷媒と送風空気とを熱交換させて低圧冷媒を蒸発させ、送風空気を冷却する冷却用蒸発部である。 The indoor evaporator 17 performs a heat exchange between the low pressure refrigerant decompressed by the cooling expansion valve 16a and the blast air at least in the cooling mode and the dehumidifying heating mode to evaporate the low pressure refrigerant and cool the blast air. It is an evaporation part.
 室内蒸発器17の冷媒出口には、蒸発圧力調整弁19の入口側が接続されている。蒸発圧力調整弁19は、室内蒸発器17における冷媒蒸発圧力を予め定めた基準圧力以上に維持する蒸発圧力調整部である。蒸発圧力調整弁19は、室内蒸発器17の出口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。 The inlet side of the evaporation pressure control valve 19 is connected to the refrigerant outlet of the indoor evaporator 17. The evaporation pressure adjustment valve 19 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 17 at or above a predetermined reference pressure. The evaporation pressure control valve 19 is configured by a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the outlet side of the indoor evaporator 17 increases.
 本実施形態では、蒸発圧力調整弁19として、室内蒸発器17における冷媒蒸発温度を、室内蒸発器17の着霜を抑制可能な基準温度(本実施形態では、1℃)以上に維持するものを採用している。 In the present embodiment, as the evaporation pressure adjusting valve 19, one that maintains the refrigerant evaporation temperature in the indoor evaporator 17 at a reference temperature (1.degree. C. in the present embodiment) or more that can suppress the formation of frost on the indoor evaporator 17. It is adopted.
 蒸発圧力調整弁19の出口には、合流部15bの一方の流入口側が接続されている。合流部15bは、蒸発圧力調整弁19から流出した冷媒の流れとチラー18から流出した冷媒の流れとを合流させるものである。合流部15bの基本的構成は、分岐部15aと同様である。すなわち、合流部は、三方継手構造のもので、3つの流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。 One outlet side of the merging portion 15 b is connected to the outlet of the evaporating pressure regulating valve 19. The merging portion 15 b merges the flow of the refrigerant flowing out of the evaporation pressure adjusting valve 19 and the flow of the refrigerant flowing out of the chiller 18. The basic configuration of the merging portion 15b is the same as that of the branching portion 15a. That is, the junction portion is of a three-way joint structure, in which two of the three inflow / outlet ports are used as the refrigerant inlet and the remaining one is used as the refrigerant outlet.
 吸熱用膨張弁16bは、少なくとも暖房モード時に、過冷却側室内凝縮器14から流出した冷媒を減圧させる減圧部であるとともに、チラー18へ流入する冷媒の流量を調整する吸熱用流量調整部である。吸熱用膨張弁16bの基本的構成は、冷房用膨張弁16aと同様である。 The heat absorption expansion valve 16 b is a pressure reduction unit that reduces the pressure of the refrigerant flowing out of the supercooling side indoor condenser 14 at least in the heating mode, and is a heat absorption flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the chiller 18. . The basic configuration of the heat absorption expansion valve 16b is the same as that of the cooling expansion valve 16a.
 吸熱用膨張弁16bの出口には、チラー18の冷媒通路の入口側が接続されている。チラー18は、少なくとも暖房モード時に、吸熱用膨張弁16bにて減圧された低圧冷媒と低温側熱媒体回路30を循環する低温側熱媒体とを熱交換させ、低圧冷媒を蒸発させて冷媒に吸熱作用を発揮させる吸熱用蒸発部である。低温側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。 The inlet side of the refrigerant passage of the chiller 18 is connected to the outlet of the heat absorption expansion valve 16b. The chiller 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 16b and the low temperature side heat medium circulating in the low temperature side heat medium circuit 30 at least in the heating mode, evaporates the low pressure refrigerant, and absorbs heat to the refrigerant. It is a heat absorption evaporator that exerts an action. As the low temperature side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
 ここで、低温側熱媒体回路30は、低温側熱媒体を循環させる低温側の水回路である。低温側熱媒体回路30には、低温側熱媒体ポンプ31、車載機器32の冷却部、低温側ラジエータ33、低温側流量調整弁34等が配置されている。 Here, the low temperature side heat medium circuit 30 is a low temperature side water circuit for circulating the low temperature side heat medium. In the low temperature side heat medium circuit 30, a low temperature side heat medium pump 31, a cooling unit of the on-vehicle device 32, a low temperature side radiator 33, a low temperature side flow rate adjustment valve 34 and the like are arranged.
 低温側熱媒体ポンプ31、低温側熱媒体回路30において、低温側熱媒体をチラー18の水通路の入口側へ圧送する低温側水ポンプである。低温側熱媒体ポンプ31の基本的構成は、高温側熱媒体ポンプ21と同様である。 The low temperature side heat medium pump 31 and the low temperature side heat medium circuit 30 are low temperature side water pumps for pumping the low temperature side heat medium to the inlet side of the water passage of the chiller 18. The basic configuration of the low temperature side heat medium pump 31 is similar to that of the high temperature side heat medium pump 21.
 車載機器32は、作動時に発熱を伴う発熱機器であり、本実施形態の車載機器は、走行用電動モータに電量を供給するバッテリである。また、車載機器32の冷却部とは、充放電時のような作動時にバッテリが発生させた熱を低圧側熱媒体に吸熱させるために、バッテリ内に形成された熱媒体通路を意味している。 The in-vehicle device 32 is a heat generating device that generates heat when it is activated, and the in-vehicle device of the present embodiment is a battery that supplies an electric quantity to the traveling electric motor. Further, the cooling unit of the on-vehicle device 32 means a heat medium passage formed in the battery in order to absorb the heat generated by the battery at the time of operation such as charging and discharging to the low-pressure side heat medium. .
 低温側ラジエータ33は、チラー18等と一体的に形成されて、車両ボンネット内の前方側に配置されている。低温側ラジエータ33は、チラー18にて冷却された低温側熱媒体と外気ファンから送風された外気とを熱交換させて、低温側熱媒体に外気から吸熱させる熱交換器である。 The low temperature side radiator 33 is integrally formed with the chiller 18 and the like, and is disposed on the front side in the vehicle bonnet. The low temperature side radiator 33 is a heat exchanger which causes the low temperature side heat medium to absorb heat from the outside air by heat exchange between the low temperature side heat medium cooled by the chiller 18 and the outside air blown from the outside air fan.
 車載機器32の冷却部および低温側ラジエータ33は、図1に示すように、低温側熱媒体回路30において、低温側熱媒体の流れに対して並列的に接続されている。 The cooling unit of the on-vehicle device 32 and the low temperature side radiator 33 are connected in parallel to the flow of the low temperature side heat medium in the low temperature side heat medium circuit 30, as shown in FIG.
 低温側流量調整弁34は、車載機器32の冷却部へ流入する低温側熱媒体の流量である機器側流量Qa2と低温側ラジエータ33へ流入する低温側熱媒体の流量である低温側ラジエータ側流量Qb2との低温側流量比(Qb2/Qa2)を調整する低温側流量比調整部である。低温側流量調整弁34の基本的構成は、高温側流量調整弁24と同様である。 The low temperature side flow control valve 34 is a device side flow Qa2 which is a flow of the low temperature side heat medium flowing into the cooling unit of the in-vehicle device 32 and a low temperature side radiator side flow which is a flow of the low temperature side heat medium flowing into the low temperature side radiator 33 It is a low temperature side flow ratio adjustment part which adjusts the low temperature side flow ratio (Qb2 / Qa2) with Qb2. The basic configuration of the low temperature side flow control valve 34 is similar to that of the high temperature side flow control valve 24.
 低温側流量調整弁34は、車載機器32の冷却部の熱媒体入口側と低温側ラジエータ33の熱媒体入口側との接続部に配置されている。つまり、チラー18の水通路の出口には、低温側流量調整弁34の入口側が接続されている。低温側流量調整弁34の一方の出口には、車載機器32の冷却部の熱媒体入口側が接続されている。低温側流量調整弁34の他方の出口には、低温側ラジエータ33の熱媒体入口側が接続されている。 The low temperature side flow control valve 34 is disposed at a connection portion between the heat medium inlet side of the cooling unit of the on-vehicle device 32 and the heat medium inlet side of the low temperature side radiator 33. That is, the inlet side of the low temperature side flow control valve 34 is connected to the outlet of the water passage of the chiller 18. The heat medium inlet side of the cooling unit of the on-vehicle device 32 is connected to one outlet of the low temperature side flow rate adjustment valve 34. The heat medium inlet side of the low temperature side radiator 33 is connected to the other outlet of the low temperature side flow rate adjustment valve 34.
 低温側熱媒体回路30では、低温側流量調整弁34が低温側流量比(Qb2/Qa2)を調整することによって、車載機器32の冷却部における低温側熱媒体の車載機器32からの吸熱量、および低温側ラジエータ33における低温側熱媒体の外気からの吸熱量を調整することができる。 In the low temperature side heat medium circuit 30, the low temperature side flow rate adjustment valve 34 adjusts the low temperature side flow ratio (Qb2 / Qa2) to obtain the heat absorption amount from the in-vehicle device 32 of the low temperature side heat medium in the cooling unit of the in-vehicle device 32; The heat absorption amount from the outside air of the low temperature side heat medium in the low temperature side radiator 33 can be adjusted.
 チラー18の冷媒通路の出口には、合流部15bの他方の流入口側が接続されている。合流部15bの流出口には、圧縮機11の吸入口側が接続されている。 The other inlet side of the merging portion 15 b is connected to the outlet of the refrigerant passage of the chiller 18. The suction port side of the compressor 11 is connected to the outlet of the merging portion 15b.
 次に、図1、図2を用いて、室内空調ユニット50について説明する。図2は、室内空調ユニット50のうち、後述する送風機52よりも送風空気流れ下流側に位置付けられる部位の断面図である。図2における上下前後の各矢印は、室内空調ユニット50を車両に搭載した際の各方向を示している。室内空調ユニット50は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 50 will be described using FIGS. 1 and 2. FIG. 2 is a cross-sectional view of a portion of the indoor air conditioning unit 50 that is positioned downstream of the air flow from the fan 52 described later. Arrows in the upper, lower, front, and back directions in FIG. 2 indicate directions when the indoor air conditioning unit 50 is mounted on a vehicle. The indoor air conditioning unit 50 is disposed inside the instrument panel (i.e., the instrument panel) at the front of the vehicle interior.
 室内空調ユニット50は、温度調整された送風空気を車室内の適切な箇所へ吹き出すための空気通路を形成するものである。室内空調ユニット50は、その外殻を形成するケーシング51の内部に形成される空気通路に、送風機52、室内蒸発器17、過冷却側室内凝縮器14、高温側ヒータコア22等を収容したものである。 The indoor air conditioning unit 50 forms an air passage for blowing out the temperature-controlled blowing air to an appropriate place in the vehicle compartment. The indoor air conditioning unit 50 is one in which the blower 52, the indoor evaporator 17, the overcooling side indoor condenser 14, the high temperature side heater core 22 and the like are housed in an air passage formed inside the casing 51 forming the outer shell thereof. is there.
 ケーシング51は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて形成されている。ケーシング51内には、区画部材51aが配置されている。これにより、ケーシング51内の空気通路は、鉛直方向上方側に形成される第1空気通路50aと鉛直方向下方側に形成される第2空気通路50bに区画されている。 The casing 51 forms an air passage for blowing air blown into the vehicle compartment, and is formed of a resin (specifically, polypropylene) which has a certain degree of elasticity and is excellent in strength. In the casing 51, a partitioning member 51a is disposed. Thus, the air passage in the casing 51 is divided into a first air passage 50a formed on the upper side in the vertical direction and a second air passage 50b formed on the lower side in the vertical direction.
 ケーシング51の送風空気流れ最上流側には、内外気切替装置53が配置されている。内外気切替装置53は、ケーシング51内へ導入される内気(車室内空気)と外気(車室外空気)との導入割合を変更するものである。 An internal / external air switching device 53 is disposed on the most upstream side of the blowing air flow of the casing 51. The inside / outside air switching device 53 changes the introduction ratio of inside air (air in the vehicle compartment) and outside air (air outside the vehicle) introduced into the casing 51.
 より具体的には、内外気切替装置53は、板ドアで形成された内外気切替ドアを有している。内外気切替装置53は、内外気切替ドアを変位させて、内気導入口の開口面積と外気導入口の開口面積との開口面積比を連続的に変化させることによって、内気と外気との導入割合を変更する。 More specifically, the inside / outside air switching device 53 has an inside / outside air switching door formed of a plate door. The inside / outside air switching device 53 displaces the inside / outside air switching door to continuously change the opening area ratio between the opening area of the inside air inlet and the opening area of the outside air inlet, thereby introducing the inside air to the outside air. Change
 内外気切替ドアは、内外気切替ドア用の電動アクチュエータ61aによって駆動される。この電動アクチュエータ61aは、空調制御装置60から出力される制御信号によって、その作動が制御される。 The inside and outside air switching door is driven by an electric actuator 61a for the inside and outside air switching door. The operation of the electric actuator 61a is controlled by a control signal output from the air conditioning controller 60.
 内外気切替ドアによって切り替えられる内外気導入モードとしては、内気モード、外気モード、内外気二層モードがある。 As an inside / outside air introduction mode switched by the inside / outside air switching door, there are a inside air mode, an outside air mode, and an inside / outside air double layer mode.
 内気モードは、第1空気通路50aおよび第2空気通路50bの双方に内気を導入させる導入モードである。外気モードは、第1空気通路50aおよび第2空気通路50bの双方に外気を導入させる導入モードである。内外気二層モードは、第1空気通路50aに外気を導入させ、第2空気通路50bに内気を導入させる導入モードである。 The inside air mode is an introduction mode in which inside air is introduced into both the first air passage 50a and the second air passage 50b. The outside air mode is an introduction mode in which the outside air is introduced into both the first air passage 50a and the second air passage 50b. The inside / outside air double-layer mode is an introduction mode in which outside air is introduced into the first air passage 50a and inside air is introduced into the second air passage 50b.
 内外気切替装置53の送風空気流れ下流側には、送風機52が配置されている。送風機52は、第1空気通路50a側へ送風空気を送風する第1遠心多翼ファンと第2空気通路50b側へ送風空気を送風する第2遠心多翼ファンとを共通の電動モータで駆動する二連式の電動送風機である。送風機52は、空調制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air. The blower 52 drives the first centrifugal multi-blade fan for blowing the blown air toward the first air passage 50a and the second centrifugal multi-blade fan for blowing the blown air toward the second air passage 50b with a common electric motor. It is a two-stage electric blower. The rotation speed (that is, the blowing capacity) of the blower 52 is controlled by the control voltage output from the air conditioning control device 60.
 送風機52の送風空気流れ下流側には、室内蒸発器17、過冷却側室内凝縮器14、および高温側ヒータコア22が、送風空気の流れに対して、この順に配置されている。従って、過冷却側室内凝縮器14は、室内蒸発器17にて冷却された送風空気を加熱して、高温側ヒータコア22側へ流出させるように配置されている。 An indoor evaporator 17, an overcooling side indoor condenser 14, and a high temperature side heater core 22 are arranged in this order with respect to the flow of the blowing air, on the downstream side of the blowing air flow of the blower 52. Therefore, the supercooling side indoor condenser 14 is arranged so as to heat the blown air cooled by the indoor evaporator 17 and to discharge it to the high temperature side heater core 22 side.
 室内蒸発器17および高温側ヒータコア22は、区画部材51aに形成された取付穴を貫通して、第1空気通路50aおよび第2空気通路50bの双方に跨って配置されている。 The indoor evaporator 17 and the high temperature side heater core 22 are disposed across the first air passage 50a and the second air passage 50b through the attachment holes formed in the dividing member 51a.
 つまり、室内蒸発器17を流通する冷媒は、第1空気通路50aを流通する送風空気および第2空気通路50bを流通する送風空気の双方と熱交換可能に配置されている。また、高温側ヒータコア22を流通する高温側熱媒体は、第1空気通路50aを流通する送風空気および第2空気通路50bを流通する送風空気の双方と熱交換可能に配置されている。 That is, the refrigerant flowing through the indoor evaporator 17 is disposed so as to be able to exchange heat with both the blown air flowing through the first air passage 50a and the blown air flowing through the second air passage 50b. Further, the high temperature side heat medium flowing through the high temperature side heater core 22 is disposed so as to be able to exchange heat with both the blown air flowing through the first air passage 50 a and the blown air flowing through the second air passage 50 b.
 また、過冷却側室内凝縮器14は、第1空気通路50a側に配置されている。つまり、過冷却側室内凝縮器14を流通する冷媒は、第1空気通路50aを流通する送風空気と熱交換可能に配置されている。 The supercooling side indoor condenser 14 is disposed on the first air passage 50a side. That is, the refrigerant flowing through the supercooling side indoor condenser 14 is disposed so as to be able to exchange heat with the blowing air flowing through the first air passage 50a.
 第1空気通路50a内には、室内蒸発器17を通過した送風空気を、過冷却側室内凝縮器14および高温側ヒータコア22を迂回させて下流側へ流す第1冷風バイパス通路55aが設けられている。また、第2空気通路50b内には、室内蒸発器17を通過した送風空気を、高温側ヒータコア22を迂回させて下流側へ流す第2冷風バイパス通路55bが設けられている。 In the first air passage 50a, there is provided a first cold air bypass passage 55a for flowing the blown air which has passed through the indoor evaporator 17 to the downstream side by bypassing the overcooling side indoor condenser 14 and the high temperature side heater core 22. There is. Further, in the second air passage 50b, a second cold air bypass passage 55b is provided which allows the blown air that has passed through the indoor evaporator 17 to bypass the high temperature side heater core 22 and flow downstream.
 第1空気通路50aの室内蒸発器17の送風空気流れ下流側であって、かつ、過冷却側室内凝縮器14および高温側ヒータコア22の送風空気流れ上流側には、第1エアミックスドア54aが配置されている。第1エアミックスドア54aは、第1空気通路50aを流通する室内蒸発器17を通過後の送風空気のうち、過冷却側室内凝縮器14および高温側ヒータコア22を通過させる風量と第1冷風バイパス通路55aを通過させる風量との風量割合を調整するものである。 The first air mix door 54a is on the downstream side of the blown air flow of the indoor evaporator 17 of the first air passage 50a and on the upstream side of the blown air flow of the supercooling side indoor condenser 14 and the high temperature side heater core 22. It is arranged. The first air mix door 54a is configured such that the volume of air passing through the supercooling side indoor condenser 14 and the high temperature side heater core 22 and the first cold air bypass of the blown air after passing through the indoor evaporator 17 flowing through the first air passage 50a. The ratio of the air volume to the air volume passing through the passage 55a is adjusted.
 第2空気通路50bの室内蒸発器17の送風空気流れ下流側であって、かつ、高温側ヒータコア22の送風空気流れ上流側には、第2エアミックスドア54bが配置されている。第2エアミックスドア54bは、第2空気通路50bを流通する室内蒸発器17を通過後の送風空気のうち、高温側ヒータコア22を通過させる風量と第2冷風バイパス通路55bを通過させる風量との風量割合を調整するものである。 A second air mix door 54b is disposed on the downstream side of the flow of the blown air of the indoor evaporator 17 of the second air passage 50b and on the upstream side of the flow of the blown air of the high temperature side heater core 22. The second air mix door 54b includes, among the blown air after passing through the indoor evaporator 17 flowing through the second air passage 50b, an air volume for passing the high temperature side heater core 22 and an air volume for passing the second cold air bypass passage 55b. It adjusts the air volume ratio.
 第1エアミックスドア54aおよび第2エアミックスドア54bは、いずれも高温側ヒータコア22の熱交換面と略平行にスライド移動して、風量割合を調整するスライドドアである。 Each of the first air mix door 54 a and the second air mix door 54 b is a slide door that slides in a direction substantially parallel to the heat exchange surface of the high temperature side heater core 22 to adjust the air volume ratio.
 第1エアミックスドア54aおよび第2エアミックスドア54bは、リンク機構等を介して、共通するエアミックスドア用の電動アクチュエータ61bによって連動して操作される。このため、第1エアミックスドア54aが第1冷風バイパス通路55aを開く開度と第2エアミックスドア54bが第2冷風バイパス通路55bを開く開度は、略同等となる。エアミックスドア用の電動アクチュエータ61bは、空調制御装置60から出力される制御信号によって、その作動が制御される。 The first air mix door 54a and the second air mix door 54b are operated in conjunction with each other by a common electric mix door electric actuator 61b via a link mechanism or the like. Therefore, the opening degree at which the first air mix door 54a opens the first cold air bypass passage 55a and the opening degree at which the second air mix door 54b opens the second cold air bypass passage 55b are substantially equal. The operation of the electric actuator 61 b for the air mix door is controlled by a control signal output from the air conditioning controller 60.
 第1空気通路50aの高温側ヒータコア22の送風空気流れ下流側には、過冷却側室内凝縮器14および高温側ヒータコア22にて加熱された送風空気と第1冷風バイパス通路55aを通過して加熱されていない送風空気とを混合させる第1混合空間56aが設けられている。第2空気通路50bの高温側ヒータコア22の送風空気流れ下流側には、高温側ヒータコア22にて加熱された送風空気と第2冷風バイパス通路55bを通過して加熱されていない送風空気とを混合させる第2混合空間56bが設けられている。 On the downstream side of the blown air flow of the high temperature side heater core 22 of the first air passage 50a, the blown air heated by the supercooling side indoor condenser 14 and the high temperature side heater core 22 passes through the first cold air bypass passage 55a A first mixing space 56a is provided to mix with the air not being supplied. On the downstream side of the flow of the blown air of the high temperature side heater core 22 of the second air passage 50b, the blown air heated by the high temperature side heater core 22 and the blown air not passing through the second cold air bypass passage 55b are mixed. A second mixing space 56b is provided.
 高温側ヒータコア22の送風空気流れ下流側に位置付けられる区画部材51aには、第1混合空間56aへ流入した送風空気と第2混合空間56bへ流入した送風空気とを連通させる連通口57dが設けられている。 The partition member 51a positioned on the downstream side of the air flow of the high temperature side heater core 22 is provided with a communication port 57d for communicating the air flowing into the first mixing space 56a with the air flowing into the second mixing space 56b. ing.
 さらに、ケーシング51の内部には、この連通口57dを開閉する連通口開閉ドア58dが配置されている。連通口開閉ドア58dは、連通口開閉ドア用の電動アクチュエータ61cによって駆動される。この電動アクチュエータ61cは、空調制御装置60から出力される制御信号によって、その作動が制御される。 Further, inside the casing 51, a communication port opening / closing door 58d for opening and closing the communication port 57d is disposed. The communication opening and closing door 58d is driven by an electric actuator 61c for the communication opening and closing door. The operation of the electric actuator 61 c is controlled by a control signal output from the air conditioning controller 60.
 ケーシング51の第1空気通路50a側の送風空気流れ最下流部には、第1混合空間56aにて混合された送風空気(空調風)を、車室内へ吹き出すデフロスタ開口穴57c、フェイス開口穴57aが設けられている。ケーシング51の第2空気通路50b側の送風空気流れ最下流部には、第2混合空間56bにて混合された送風空気(空調風)を、車室内へ吹き出すフット開口穴57bが設けられている。 A defroster opening hole 57c and a face opening hole 57a for blowing the blowing air (air conditioned air) mixed in the first mixing space 56a into the vehicle compartment at the most downstream portion of the blowing air flow on the side of the first air passage 50a of the casing 51. Is provided. A foot opening hole 57b is provided at the most downstream portion of the air flow on the second air passage 50b side of the casing 51 for blowing air (air-conditioned air) mixed in the second mixing space 56b into the vehicle compartment. .
 フェイス開口穴57aは、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴57bは、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴57cは、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 The face opening hole 57a is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment. The foot opening hole 57b is an opening hole for blowing the conditioned air toward the feet of the occupant. The defroster opening hole 57c is an opening hole for blowing the conditioned air toward the inner side surface of the vehicle front windshield.
 フェイス開口穴57a、フット開口穴57b、およびデフロスタ開口穴57cは、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 The face opening hole 57a, the foot opening hole 57b, and the defroster opening hole 57c are respectively provided with a face outlet, a foot outlet, and a defroster outlet provided in the vehicle compartment via a duct that forms an air passage (all shown) Not connected).
 従って、第1エアミックスドア54aが、過冷却側室内凝縮器14および高温側ヒータコア22を通過させる送風空気の風量と第1冷風バイパス通路55aを通過させる風量との風量割合を調整することによって、第1混合空間56aにて混合される空調風の温度が調整される。これにより、デフロスタ吹出口およびフェイス吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。 Therefore, by adjusting the air volume ratio of the air volume of the blown air which the first air mix door 54a passes the supercooling side indoor condenser 14 and the high temperature side heater core 22 and the air volume which passes the first cold air bypass passage 55a, The temperature of the conditioned air mixed in the first mixing space 56a is adjusted. As a result, the temperature of the air (air-conditioned air) blown out from the defroster outlet and the face outlet into the vehicle compartment is also adjusted.
 同様に、第2エアミックスドア54bが、高温側ヒータコア22を通過させる送風空気の風量と第2冷風バイパス通路55bを通過させる風量との風量割合を調整することによって、第2混合空間56bにて混合される空調風の温度が調整される。これにより、フット吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。 Similarly, in the second mixing space 56b, the second air mixing door 54b adjusts the air volume ratio between the air volume of the blown air passing through the high temperature side heater core 22 and the air volume passing through the second cold air bypass passage 55b. The temperature of the conditioned air to be mixed is adjusted. As a result, the temperature of the air (air-conditioned air) blown out from the foot outlet into the vehicle compartment is also adjusted.
 ここで、第1エアミックスドア54aが、過冷却側室内凝縮器14を通過させる送風空気の風量を調整することによって、過冷却側室内凝縮器14にて送風空気に放熱される熱量を調整することができる。従って、本実施形態の第1エアミックスドア54aは、放熱量調整部を構成している。 Here, the first air mix door 54a adjusts the amount of air blown through the supercooled side indoor condenser 14 to adjust the amount of heat released to the blown air in the supercooled side indoor condenser 14. be able to. Therefore, the first air mix door 54a of the present embodiment constitutes a heat release amount adjustment unit.
 また、デフロスタ開口穴57cおよびフェイス開口穴57aの送風空気流れ上流側には、デフロスタ開口穴57cおよびフェイス開口穴57aの開口面積を調整するフェイス・デフロスタドアが配置されている。フェイス・デフロスタドア58aは、デフロスタ開口穴57cおよびフェイス開口穴57aの一方の開口面積を増加させると同時に、他方の開口面積を縮小させるスライドドアである。 Further, on the upstream side of the blast air flow of the defroster opening hole 57c and the face opening hole 57a, a face defroster door for adjusting the opening area of the defroster opening hole 57c and the face opening hole 57a is disposed. The face defroster door 58a is a slide door which increases the opening area of one of the defroster opening hole 57c and the face opening hole 57a and at the same time reduces the other opening area.
 また、フット開口穴57bの送風空気流れ上流側には、フット開口穴57bの開口面積を調整するフットドア58bが配置されている。フットドア58bは、フット開口穴57bの開口面積を変化させる板ドアである。 A foot door 58b for adjusting the opening area of the foot opening hole 57b is disposed on the upstream side of the air flow of the foot opening hole 57b. The foot door 58b is a plate door that changes the opening area of the foot opening hole 57b.
 フェイス・デフロスタドア58aおよびフットドア58bは、空調風が吹き出される吹出口を切り替える吹出モード切替装置を構成するものである。フェイス・デフロスタドア58aおよびフットドア58bは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータ61dに連結されて連動して回転操作される。この電動アクチュエータ61dは、空調制御装置60から出力される制御信号によって、その作動が制御される。 The face defroster door 58a and the foot door 58b constitute an air outlet mode switching device for switching the air outlet from which the conditioned air is blown out. The face defroster door 58a and the foot door 58b are connected to an electric actuator 61d for driving the air outlet mode door via a link mechanism or the like, and are rotationally operated in conjunction with each other. The operation of the electric actuator 61 d is controlled by a control signal output from the air conditioning controller 60.
 次に、図3を用いて、本実施形態の電気制御部の概要について説明する。空調制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、16a、16b、21、24、31、34、52、61a~61d等の作動を制御する。 Next, the outline of the electric control unit according to the present embodiment will be described with reference to FIG. The air conditioning control device 60 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like, and peripheral circuits thereof. Then, various calculations and processing are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 16a, 16b, 21, 24, 31, 34, 52, 61a connected to the output side Control the operation of.
 また、空調制御装置60の入力側には、図3のブロック図に示すように、内気温センサ62a、外気温センサ62b、日射センサ62c、高圧センサ62d、過冷却度センサ62e、蒸発器温度センサ62f、過熱度センサ62g、空調風温度センサ62h等の空調制御用のセンサ群が接続されている。空調制御装置60には、これらの空調制御用のセンサ群の検出信号が入力される。 Further, as shown in the block diagram of FIG. 3, on the input side of the air conditioning control device 60, an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, a supercooling sensor 62e, and an evaporator temperature sensor A group of sensors for air conditioning control such as 62 f, superheat degree sensor 62 g, air conditioning air temperature sensor 62 h and the like are connected. The air conditioning control device 60 receives detection signals of these air conditioning control sensors.
 内気温センサ62aは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62bは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ62cは、車室内へ照射される日射量Asを検出する日射量検出部である。高圧センサ62dは、圧縮機11の吐出口側から冷房用膨張弁16aあるいは吸熱用膨張弁16bの入口側へ至る冷媒流路の高圧冷媒圧力Pdを検出する冷媒圧力検出部である。 The inside air temperature sensor 62a is an inside air temperature detection unit that detects a vehicle room temperature (inside air temperature) Tr. The outside air temperature sensor 62b is an outside air temperature detection unit that detects the temperature outside the vehicle (outside air temperature) Tam. The solar radiation sensor 62c is a solar radiation amount detection unit that detects the solar radiation amount As emitted to the vehicle interior. The high pressure sensor 62d is a refrigerant pressure detection unit that detects the high pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 16a or the heat absorption expansion valve 16b.
 過冷却度センサ62eは、過冷却側室内凝縮器14から流出した冷媒の温度および圧力に基づいて、当該冷媒の過冷却度SCを検出する過冷却度検出部である。蒸発器温度センサ62fは、室内蒸発器17における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。 The subcooling degree sensor 62 e is a subcooling degree detection unit that detects the subcooling degree SC of the refrigerant based on the temperature and the pressure of the refrigerant flowing out of the subcooling side indoor condenser 14. The evaporator temperature sensor 62 f is an evaporator temperature detection unit that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 17.
 過熱度センサ62gは、圧縮機11の吸入口側の冷媒の温度および圧力に基づいて、当該冷媒の過熱度SHを検出する過熱度検出部である。空調風温度センサ62hは、第1混合空間56aおよび第2混合空間56bから車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The superheat degree sensor 62g is a superheat degree detection unit that detects the superheat degree SH of the refrigerant based on the temperature and pressure of the refrigerant on the suction port side of the compressor 11. The air conditioning air temperature sensor 62 h is an air conditioning air temperature detection unit that detects the temperature of the air supplied from the first mixing space 56 a and the second mixing space 56 b into the vehicle compartment.
 さらに、空調制御装置60の入力側には、図3に示すように、車室内前部の計器盤付近に配置された操作パネル63が接続され、この操作パネル63に設けられた各種操作スイッチからの操作信号が入力される。 Further, as shown in FIG. 3, an operation panel 63 disposed near the instrument panel at the front of the vehicle compartment is connected to the input side of the air conditioning control device 60, and various operation switches provided on the operation panel 63 The operation signal of is input.
 操作パネル63に設けられた各種操作スイッチとしては、具体的に、車両用空調装置の自動制御運転を設定あるいは解除するオートスイッチ、車室内の冷房を行うことを要求する冷房スイッチ、送風機52の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ等がある。 Specifically, the various operation switches provided on the operation panel 63 include an auto switch for setting or canceling the automatic control operation of the air conditioning system for a vehicle, a cooling switch for requesting cooling of the vehicle interior, and an air volume of the blower 52 There are an air volume setting switch for manually setting the temperature setting switch and a temperature setting switch for setting the target temperature Tset in the vehicle compartment.
 なお、本実施形態の空調制御装置60は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 In addition, although the control part which controls the various control object apparatus connected to the output side was integrally comprised, the air-conditioning control apparatus 60 of this embodiment controls the operation | movement of each control object apparatus (Hardware and software) constitute a control unit that controls the operation of each control target device.
 例えば、空調制御装置60のうち、圧縮機11の作動を制御する構成は、吐出能力制御部60aである。高温側熱媒体ポンプ21の作動を制御する構成は、高温側圧送能力制御部60bである。高温側流量調整弁24の作動を制御する構成は、高温側流量比制御部60cである。低温側熱媒体ポンプ31の作動を制御する構成は、低温側圧送能力制御部60dである。低温側流量調整弁34の作動を制御する構成は、低温側流量比制御部60eである。 For example, in the air conditioning control device 60, the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 60a. The configuration for controlling the operation of the high temperature side heat medium pump 21 is a high temperature side pressure feeding capacity control unit 60b. The configuration for controlling the operation of the high temperature side flow control valve 24 is the high temperature side flow ratio control unit 60c. The configuration for controlling the operation of the low temperature side heat medium pump 31 is the low temperature side pressure feeding capacity control unit 60d. The configuration for controlling the operation of the low temperature side flow control valve 34 is the low temperature side flow ratio control unit 60 e.
 さらに、第1、第2エアミックスドア54a、54b(具体的には、エアミックスドア用の電動アクチュエータ61b)の作動を制御する構成は、エアミックス制御部60fである。本実施形態の第1エアミックスドア54aは、放熱量調整部を構成しているので、エアミックス制御部60fは、放熱量制御部である。 Further, the configuration for controlling the operation of the first and second air mix doors 54a and 54b (specifically, the electric actuator 61b for the air mix door) is an air mix control unit 60f. The first air mix door 54a of the present embodiment constitutes a heat release amount adjustment unit, so the air mix control unit 60f is a heat release amount control unit.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。上述の如く、本実施形態の車両用空調装置1では運転モードを切り替えることができる。これらの運転モードの切り替えは、空調制御装置60に予め記憶された空調制御プログラムが実行されることによって行われる。 Next, the operation of the vehicle air conditioner 1 of the present embodiment in the above configuration will be described. As described above, in the vehicle air conditioner 1 of the present embodiment, the operation mode can be switched. The switching of these operation modes is performed by executing the air conditioning control program stored in advance in the air conditioning control device 60.
 より具体的には、空調制御プログラムでは、空調制御用のセンサ群によって検出された検出信号および操作パネル63から出力される操作信号に基づいて、車室内へ送風させる送風空気の目標吹出温度TAOを算出する。そして、目標吹出温度TAOおよび検出信号に基づいて、運転モードを切り替える。そして、運転モードに応じて出力側に接続された各種制御対象機器の作動を制御する。以下に、各運転モードの作動を説明する。 More specifically, in the air conditioning control program, based on the detection signal detected by the air conditioning control sensor group and the operation signal output from the operation panel 63, the target blowout temperature TAO of the air to be blown into the vehicle compartment is calculated. calculate. Then, the operation mode is switched based on the target blowout temperature TAO and the detection signal. Then, according to the operation mode, the operation of various control target devices connected to the output side is controlled. The operation of each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、空調制御装置60は、蒸発器温度センサ62fによって検出された冷媒蒸発温度Tefinが目標蒸発温度TEOとなるように圧縮機11の作動を制御する。目標蒸発温度TEOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して決定される。
(A) Cooling Mode In the cooling mode, the air-conditioning control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62f becomes the target evaporation temperature TEO. The target evaporation temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
 具体的には、冷房モードの制御マップでは、空調風温度センサ62hによって検出された送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標蒸発温度TEOを上昇させる。 Specifically, in the control map of the cooling mode, the target evaporation temperature TEO is increased along with the increase of the target outlet temperature TAO so that the blown air temperature TAV detected by the air conditioning air temperature sensor 62h approaches the target outlet temperature TAO. Let
 また、空調制御装置60は、冷房用膨張弁16aを冷媒減圧作用を発揮する絞り状態とし、吸熱用膨張弁16bを全閉状態とする。従って、冷房モードの冷凍サイクル装置10は、冷房用膨張弁16aにて減圧された冷媒を室内蒸発器17へ流入させる冷媒回路となる。さらに、空調制御装置60は、過熱度センサ62gによって検出された過熱度SHが予め定めた基準過熱度KSH(本実施形態では、3℃)に近づくように冷房用膨張弁16aの絞り開度を調整する。 Further, the air conditioning control device 60 brings the cooling expansion valve 16a into a throttling state for exerting the refrigerant pressure reducing action, and brings the heat absorption expansion valve 16b into a fully closed state. Therefore, the refrigeration cycle apparatus 10 in the cooling mode is a refrigerant circuit that causes the refrigerant decompressed by the cooling expansion valve 16 a to flow into the indoor evaporator 17. Furthermore, the air conditioning control device 60 sets the throttle opening degree of the cooling expansion valve 16a so that the degree of superheat SH detected by the degree of superheat sensor 62g approaches a predetermined reference degree of superheat KSH (3.degree. C. in the present embodiment). adjust.
 また、空調制御装置60は、予め定めた冷房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。さらに、空調制御装置60は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量を高温側ラジエータ23へ流入させるように、高温側流量調整弁24の作動を制御する。 In addition, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the cooling mode set in advance. Furthermore, the air conditioning control device 60 operates the high temperature side flow control valve 24 so that the full flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 Control.
 また、空調制御装置60は、第1空気通路50aを流通する冷風の全風量が第1冷風バイパス通路55aへ流入するように第1エアミックスドア54aを変位させる。さらに、第2空気通路50bを流通する冷風の全風量が第2冷風バイパス通路55bへ流入するように第2エアミックスドア54bを変位させる。 In addition, the air conditioning control device 60 displaces the first air mix door 54a so that the total volume of the cold air flowing through the first air passage 50a flows into the first cold air bypass passage 55a. Further, the second air mix door 54b is displaced so that the total amount of cold air flowing through the second air passage 50b flows into the second cold air bypass passage 55b.
 また、空調制御装置60は、内外気導入モードが外気モードとなるように内外気切替装置53の内外気切替装置ドアを変位させる。さらに、連通口57dを全開させるように連通口開閉ドア58dを変位させる。但し、冷房モードでは、目標吹出温度TAOが極低温域となる最大冷房時には内気モードとなるように内外気切替装置ドアを変位させる。 Further, the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d. However, in the cooling mode, the inside / outside air switching device door is displaced so as to be in the inside air mode at the maximum cooling time when the target blowing temperature TAO is in the cryogenic temperature range.
 従って、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
 高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled. The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
 高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、過冷却側室内凝縮器14へ流入する。冷房モードでは、第1エアミックスドア54aが過冷却側室内凝縮器14側の通風路を閉じているので、過冷却側室内凝縮器14へ流入した冷媒は殆ど放熱することなく、過冷却側室内凝縮器14から流出する。 The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the subcooling side indoor condenser 14. In the cooling mode, since the first air mix door 54a closes the air passage on the side of the overcooling side indoor condenser 14, the refrigerant flowing into the overcooling side indoor condenser 14 hardly dissipates heat, so It flows out of the condenser 14.
 過冷却側室内凝縮器14から流出した冷媒は、吸熱用膨張弁16bが全閉状態となっているので、冷房用膨張弁16aへ流入して減圧される。この際、冷房用膨張弁16aの絞り開度は、過熱度SHが基準加熱度KSHに近づくように制御される。 The refrigerant flowing out of the supercooling side indoor condenser 14 flows into the cooling expansion valve 16a and is decompressed because the heat absorption expansion valve 16b is fully closed. At this time, the degree of opening of the cooling expansion valve 16a is controlled so that the degree of superheat SH approaches the reference degree of heating KSH.
 冷房用膨張弁16aにて減圧された低圧冷媒は、室内蒸発器17へ流入する。室内蒸発器17へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより送風空気が冷却される。室内蒸発器17から流出した冷媒は、蒸発圧力調整弁19および合流部15bを介して、圧縮機11へ吸入されて再び圧縮される。 The low pressure refrigerant reduced in pressure by the cooling expansion valve 16 a flows into the indoor evaporator 17. The refrigerant flowing into the indoor evaporator 17 absorbs heat from the air blown from the fan 52 and evaporates. This cools the blowing air. The refrigerant that has flowed out of the indoor evaporator 17 is sucked into the compressor 11 via the evaporation pressure adjusting valve 19 and the merging portion 15 b and compressed again.
 以上の如く、冷房モードでは、室内蒸発器17にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 As described above, in the cooling mode, cooling of the vehicle interior can be performed by blowing the blowing air cooled by the indoor evaporator 17 into the vehicle interior.
 (b)暖房モード
 暖房モードでは、空調制御装置60は、高圧センサ62dによって検出された高圧冷媒圧力Pdが目標高圧PCOとなるように圧縮機11の作動を制御する。目標高圧PCOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して決定される。
(B) Heating Mode In the heating mode, the air conditioning control device 60 controls the operation of the compressor 11 such that the high pressure refrigerant pressure Pd detected by the high pressure sensor 62d becomes the target high pressure PCO. The target high pressure PCO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
 具体的には、暖房モードの制御マップでは、送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標高圧PCOを上昇させる。 Specifically, in the control map of the heating mode, the target high pressure PCO is raised with the rise of the target blowing temperature TAO so that the blowing air temperature TAV approaches the target blowing temperature TAO.
 また、空調制御装置60は、冷房用膨張弁16aを全閉状態とし、吸熱用膨張弁16bを絞り状態とする。従って、暖房モードの冷凍サイクル装置10は、吸熱用膨張弁16bにて減圧された冷媒をチラー18へ流入させる冷媒回路となる。さらに、空調制御装置60は、過熱度SHが予め定めた基準過熱度KSHに近づくように吸熱用膨張弁16bの絞り開度を調整する。 Further, the air conditioning control device 60 brings the cooling expansion valve 16a into a fully closed state, and brings the heat absorption expansion valve 16b into a throttling state. Therefore, the refrigeration cycle apparatus 10 in the heating mode is a refrigerant circuit that causes the refrigerant decompressed by the heat absorption expansion valve 16 b to flow into the chiller 18. Further, the air conditioning control device 60 adjusts the throttle opening degree of the heat absorption expansion valve 16b such that the degree of superheat SH approaches the predetermined reference degree of superheat KSH.
 また、空調制御装置60は、予め定めた暖房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。さらに、空調制御装置60は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量が高温側ヒータコア22へ流入するように、高温側流量調整弁24の作動を制御する。 Further, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode. Furthermore, the air conditioning controller 60 operates the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22. Control.
 また、空調制御装置60は、予め定めた暖房モード時の水圧送能力を発揮するように、低温側熱媒体ポンプ31を作動させる。さらに、空調制御装置60は、車載機器32であるバッテリが適切な充放電性能を発揮可能な温度に維持されるように、低温側流量調整弁34の作動を制御する。 Further, the air conditioning control device 60 operates the low temperature side heat medium pump 31 so as to exert the water pressure transfer capability in the predetermined heating mode. Furthermore, the air conditioning control device 60 controls the operation of the low temperature side flow control valve 34 so that the battery which is the in-vehicle device 32 can be maintained at a temperature at which the battery can exhibit appropriate charge and discharge performance.
 また、空調制御装置60は、第1冷風バイパス通路55a側の通風路を閉じて、第1空気通路50aを流通する冷風の全風量が過冷却側室内凝縮器14へ流入するように第1エアミックスドア54aを変位させる。さらに、第2冷風バイパス通路55b側の通風路を閉じて、第2空気通路50bを流通する冷風の全風量が高温側ヒータコア22へ流入するように第2エアミックスドア54bを変位させる。 Further, the air conditioning control device 60 closes the air passage on the side of the first cold air bypass passage 55a, so that the total volume of the cold air flowing through the first air passage 50a flows into the overcooling side indoor condenser 14 The mix door 54a is displaced. Furthermore, the air passage on the second cold air bypass passage 55 b side is closed, and the second air mix door 54 b is displaced so that the total amount of cold air flowing through the second air passage 50 b flows into the high temperature side heater core 22.
 このため、暖房モードでは、過冷却側室内凝縮器14へ流入する送風空気の風量が冷房モードよりも増加する。換言すると、冷房モードでは、過冷却側室内凝縮器14へ流入する送風空気の風量が暖房モードよりも減少する。 For this reason, in the heating mode, the air volume of the blowing air flowing into the subcooling side indoor condenser 14 increases more than in the cooling mode. In other words, in the cooling mode, the air volume of the blowing air flowing into the subcooling side indoor condenser 14 is smaller than in the heating mode.
 また、空調制御装置60は、内外気導入モードが外気モードとなるように内外気切替装置53の内外気切替装置ドアを変位させる。さらに、連通口57dを全開させるように連通口開閉ドア58dを変位させる。但し、暖房モードでは、目標吹出温度TAOが極高温域となる最大暖房時には内外気二層モードとなるように内外気切替装置ドアを変位させ、さらに、連通口57dを閉塞させるように連通口開閉ドア58dを変位させる。 Further, the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d. However, in the heating mode, the inside / outside air switching device door is displaced so as to be in the inside / outside air double layer mode at the maximum heating where the target blowout temperature TAO is in the extremely high temperature region, and the communication port is opened and closed. The door 58d is displaced.
 従って、暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Accordingly, in the heating mode refrigeration cycle apparatus 10, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
 高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、高温側ヒータコア22へ流入する。高温側ヒータコア22へ流入した高温側熱媒体は、過冷却側室内凝縮器14を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。高温側ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22 through the high temperature side flow rate adjustment valve 24. The high temperature side heat medium that has flowed into the high temperature side heater core 22 exchanges heat with the air that has passed through the supercooling side indoor condenser 14 and radiates heat. As a result, the blowing air is heated, and the temperature of the blowing air approaches the target blowing temperature TAO. The high temperature side heat medium flowing out of the high temperature side heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
 高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、過冷却側室内凝縮器14へ流入する。過冷却側室内凝縮器14へ流入した冷媒は、室内蒸発器17を通過した送風空気と熱交換して放熱する。これにより、第1空気通路50a側に配置された高温側ヒータコア22へ流入する送風空気が加熱される。 The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the subcooling side indoor condenser 14. The refrigerant flowing into the supercooling side indoor condenser 14 exchanges heat with the air that has passed through the indoor evaporator 17 and radiates heat. Thereby, the blowing air which flows in into the high temperature side heater core 22 arrange | positioned at the 1st air path 50a side is heated.
 ここで、過冷却側室内凝縮器14へ流入する冷媒は、レシーバ13にて分離された液相冷媒である。このため、過冷却側室内凝縮器14では、この液相冷媒が過冷却される。従って、過冷却側室内凝縮器14にて加熱された送風空気の温度が、高温側ヒータコア22へ流入する高温側熱媒体の温度よりも高くなることはない。 Here, the refrigerant flowing into the supercooling side indoor condenser 14 is the liquid phase refrigerant separated by the receiver 13. For this reason, in the subcooling side indoor condenser 14, this liquid phase refrigerant is subcooled. Therefore, the temperature of the blown air heated by the supercooling side indoor condenser 14 does not become higher than the temperature of the high temperature side heat medium flowing into the high temperature side heater core 22.
 過冷却側室内凝縮器14から流出した冷媒は、冷房用膨張弁16aが全閉状態となっているので、吸熱用膨張弁16bへ流入して減圧される。この際、吸熱用膨張弁16bの絞り開度は、過熱度SHが基準加熱度KSHに近づくように制御される。 The refrigerant flowing out of the supercooling side indoor condenser 14 flows into the heat absorption expansion valve 16b and is reduced in pressure because the cooling expansion valve 16a is fully closed. At this time, the throttle opening degree of the heat absorption expansion valve 16b is controlled such that the degree of superheat SH approaches the reference degree of heating KSH.
 冷房用膨張弁16aにて減圧された低圧冷媒は、チラー18の冷媒通路へ流入する。チラー18では、低温側熱媒体ポンプ31が作動しているので、低圧冷媒と低温側熱媒体が熱交換して、低圧冷媒が低温側熱媒体から吸熱して蒸発する。これにより、低温側熱媒体が冷却される。 The low pressure refrigerant decompressed by the cooling expansion valve 16 a flows into the refrigerant passage of the chiller 18. In the chiller 18, since the low temperature side heat medium pump 31 is operating, the low pressure refrigerant and the low temperature side heat medium exchange heat, and the low pressure refrigerant absorbs heat from the low temperature side heat medium and evaporates. Thereby, the low temperature side heat medium is cooled.
 低温側熱媒体回路30では、チラー18にて冷却された一部の低温側熱媒体が、低温側流量調整弁34を介して、低温側ラジエータ33へ流入する。低温側ラジエータ33へ流入した低温側熱媒体は、外気と熱交換して加熱される。チラー18にて冷却された残余の低温側熱媒体は、低温側流量調整弁34を介して、車載機器32であるバッテリの冷却部へ流入して加熱される。 In the low temperature side heat medium circuit 30, part of the low temperature side heat medium cooled by the chiller 18 flows into the low temperature side radiator 33 via the low temperature side flow rate adjustment valve 34. The low temperature side heat medium flowing into the low temperature side radiator 33 exchanges heat with the outside air and is heated. The remaining low-temperature side heat medium cooled by the chiller 18 flows into the cooling unit of the battery, which is the on-vehicle device 32, via the low-temperature side flow rate adjustment valve 34 and is heated.
 この際、低温側流量調整弁34は、車載機器32であるバッテリが適切な充放電性能を発揮できる温度に維持されるように、低温側流量比(Qb2/Qa2)を調整する。低温側ラジエータ33から流出した低温側熱媒体および車載機器32の冷却部から流出した低温側熱媒体は、高温側熱媒体ポンプ21に吸入され、再びチラー18の水通路へ圧送される。 At this time, the low temperature side flow rate adjustment valve 34 adjusts the low temperature side flow ratio (Qb2 / Qa2) so that the battery which is the on-vehicle device 32 can be maintained at a temperature at which the battery can exhibit appropriate charge / discharge performance. The low temperature side heat medium flowing out of the low temperature side radiator 33 and the low temperature side heat medium flowing out of the cooling portion of the in-vehicle apparatus 32 are drawn into the high temperature side heat medium pump 21 and pumped again to the water passage of the chiller 18.
 チラー18の冷媒通路から流出した冷媒は、合流部15bを介して、圧縮機11へ吸入されて再び圧縮される。 The refrigerant that has flowed out of the refrigerant passage of the chiller 18 is sucked into the compressor 11 via the junction portion 15b and compressed again.
 以上の如く、暖房モードでは、高温側ヒータコア22で加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、第1空気通路50aでは、過冷却側室内凝縮器14→高温側ヒータコア22の順で加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 As described above, in the heating mode, it is possible to heat the vehicle interior by blowing the blown air heated by the high temperature side heater core 22 into the vehicle interior. Furthermore, in the first air passage 50a, heating the vehicle interior can be performed by blowing out the heated air in the order of the supercooled side indoor condenser 14 and the high temperature side heater core 22 into the vehicle interior.
 (c)第1除湿暖房モード
 第1除湿暖房モードは、外気温Tamが比較的高い温度帯(例えば、15℃以上、25℃以下の温度帯)となっている際に実行される除湿暖房モードである。
(C) First Dehumidifying / Heating Mode The first dehumidifying / heating mode is a dehumidifying / heating mode that is executed when the outside temperature Tam is in a relatively high temperature zone (for example, a temperature zone of 15 ° C. or more and 25 ° C. or less) It is.
 第1除湿暖房モードでは、空調制御装置60は、冷媒蒸発温度Tefinが目標蒸発温度TEOとなるように圧縮機11の作動を制御する。目標蒸発温度TEOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して決定される。 In the first dehumidifying and heating mode, the air conditioning control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin becomes the target evaporation temperature TEO. The target evaporation temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
 具体的には、第1除湿暖房モードの制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発温度TEOを上昇させる。さらに、目標蒸発温度TEOは、室内蒸発器17の着霜を抑制可能な基準温度(具体的には、1℃)以上の値に決定される。 Specifically, in the control map of the first dehumidifying and heating mode, the target evaporation temperature TEO is raised as the target blow-out temperature TAO rises. Furthermore, the target evaporation temperature TEO is determined to a value that is equal to or higher than a reference temperature (specifically, 1 ° C.) at which frost formation of the indoor evaporator 17 can be suppressed.
 また、空調制御装置60は、冷房モードと同様に、冷房用膨張弁16aを絞り状態とし、吸熱用膨張弁16bを全閉状態とする。 Further, the air conditioning control device 60 sets the cooling expansion valve 16a in the squeezed state and sets the heat absorption expansion valve 16b in the fully closed state, as in the cooling mode.
 また、空調制御装置60は、予め定めた第1除湿暖房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。さらに、空調制御装置60は、送風空気温度TAVが目標吹出温度TAOに近づくように、高温側流量調整弁24の作動を制御する。 Further, the air-conditioning control device 60 operates the high-temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the first dehumidifying and heating mode determined in advance. Furthermore, the air conditioning control device 60 controls the operation of the high temperature side flow control valve 24 so that the blowing air temperature TAV approaches the target blowing temperature TAO.
 また、空調制御装置60は、過冷却度センサ62eによって検出された過冷却度SCが目標過冷却度KSCに近づくように第1エアミックスドア54aおよび第2エアミックスドア54bを変位させる。目標過冷却度KSCは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して決定される。 Further, the air conditioning control device 60 displaces the first air mix door 54a and the second air mix door 54b such that the degree of subcooling SC detected by the degree of subcooling sensor 62e approaches the target degree of subcooling KSC. The target degree of subcooling KSC is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 60.
 ここで、一般的な冷凍サイクル装置では、凝縮器として機能する冷媒から流出する冷媒の過冷却度を増加させることによって、サイクルの成績係数(COP)を向上させることができる。従って、目標過冷却度KSCは、可能な範囲で増加させることが好ましい。 Here, in a general refrigeration cycle apparatus, the coefficient of performance (COP) of the cycle can be improved by increasing the degree of subcooling of the refrigerant flowing out of the refrigerant functioning as the condenser. Therefore, it is preferable to increase the target degree of supercooling KSC as much as possible.
 ところが、本実施形態の過冷却側室内凝縮器14では、室内蒸発器17にて冷却された送風空気の温度よりも冷媒を冷却することができない。さらに、図4に示すように、モリエル線図の飽和液線には傾きが存在する。そこで、本実施形態の制御マップでは、目標吹出温度TAOの低下に伴って、目標過冷却度KSCを減少させる。 However, in the supercooling side indoor condenser 14 of the present embodiment, the refrigerant can not be cooled more than the temperature of the blown air cooled by the indoor evaporator 17. Furthermore, as shown in FIG. 4, a slope exists in the saturated liquid line of the Mollier diagram. Therefore, in the control map of the present embodiment, the target degree of subcooling KSC is decreased as the target blowout temperature TAO decreases.
 また、空調制御装置60は、内外気導入モードが外気モードとなるように内外気切替装置53の内外気切替装置ドアを変位させる。さらに、連通口57dを全開させるように連通口開閉ドア58dを変位させる。 Further, the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d.
 従って、第1除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the first dehumidifying and heating mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
 高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された一部の高温側熱媒体が、高温側流量調整弁24を介して、高温側ヒータコア22へ流入する。高温側ヒータコア22へ流入した高温側熱媒体は、過冷却側室内凝縮器14を通過した送風空気と熱交換して放熱する。第1除湿暖房モードでは、第1エアミックスドア54aおよび第2エアミックスドア54bが、それぞれ高温側ヒータコア22側の通風路を開いているので、送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。 In the high temperature side heat medium circuit 20, a part of the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium that has flowed into the high temperature side heater core 22 exchanges heat with the air that has passed through the supercooling side indoor condenser 14 and radiates heat. In the first dehumidifying and heating mode, since the first air mix door 54a and the second air mix door 54b respectively open the air passage on the high temperature side heater core 22 side, the blowing air is heated and the temperature of the blowing air is a target It approaches the blowing temperature TAO.
 高温側水-冷媒熱交換器12にて加熱された残余の高温側熱媒体は、高温側流量調整弁24を介して、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。 The remaining high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
 高温側ヒータコア22から流出した高温側熱媒体および高温側ラジエータ23から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。 The high temperature side heat medium flowing out of the high temperature side heater core 22 and the high temperature side heat medium flowing out of the high temperature side radiator 23 are drawn into the high temperature side heat medium pump 21 and pumped again to the water passage of the high temperature side water-refrigerant heat exchanger 12 Be done.
 高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、過冷却側室内凝縮器14へ流入する。過冷却側室内凝縮器14へ流入した冷媒は、第1エアミックスドア54aが過冷却側室内凝縮器14側の通風路を開いているので、室内蒸発器17を通過した送風空気と熱交換して放熱する。これにより、高温側ヒータコア22へ流入する送風空気が加熱される。 The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the subcooling side indoor condenser 14. Since the first air mix door 54a opens the ventilation path on the side of the supercooling side indoor condenser 14, the refrigerant having flowed into the supercooling side indoor condenser 14 exchanges heat with the air that has passed through the indoor evaporator 17. Dissipate heat. Thereby, the blowing air which flows in into high temperature side heater core 22 is heated.
 過冷却側室内凝縮器14から流出した冷媒は、吸熱用膨張弁16bが全閉状態となっているので、冷房用膨張弁16aへ流入して減圧される。冷房用膨張弁16aにて減圧された低圧冷媒は、室内蒸発器17へ流入する。室内蒸発器17へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより送風空気が冷却されて、除湿される。以降の作動は冷房モードと同様である。 The refrigerant flowing out of the supercooling side indoor condenser 14 flows into the cooling expansion valve 16a and is decompressed because the heat absorption expansion valve 16b is fully closed. The low pressure refrigerant reduced in pressure by the cooling expansion valve 16 a flows into the indoor evaporator 17. The refrigerant flowing into the indoor evaporator 17 absorbs heat from the air blown from the fan 52 and evaporates. As a result, the blowing air is cooled and dehumidified. The subsequent operation is the same as in the cooling mode.
 以上の如く、第1除湿暖房モードでは、室内蒸発器17にて冷却されて除湿された送風空気を、少なくとも過冷却側室内凝縮器14で再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 As described above, in the first dehumidifying and heating mode, the blown air cooled and dehumidified by the indoor evaporator 17 is reheated by at least the supercooling side indoor condenser 14 and blown out into the vehicle compartment, thereby Dehumidifying and heating can be performed.
 ここで、第1除湿暖房モードでは、過冷却側室内凝縮器14にて加熱された送風空気の温度が目標吹出温度TAOに到達している場合には、高温側水-冷媒熱交換器12にて送風空気をさらに加熱する必要はない。従って、この場合には、空調制御装置60は、冷房モードと同様に、高温側熱媒体の全流量を高温側ラジエータ23へ流入させるように、高温側流量調整弁24の作動を制御すればよい。 Here, in the first dehumidifying and heating mode, when the temperature of the blown air heated by the supercooling side indoor condenser 14 has reached the target blowing temperature TAO, the high temperature side water-refrigerant heat exchanger 12 is used. There is no need to further heat the blowing air. Therefore, in this case, the air conditioning control device 60 may control the operation of the high temperature side flow rate adjustment valve 24 so that the full flow rate of the high temperature side heat medium flows into the high temperature side radiator 23 as in the cooling mode. .
 それゆえ、第1除湿暖房モードは、少なくとも過冷却側室内凝縮器14にて送風空気を加熱する除湿暖房モードとなる。 Therefore, the first dehumidifying and heating mode is a dehumidifying and heating mode in which the blown air is heated by at least the subcooling side indoor condenser 14.
 (d)第2除湿暖房モード
 第2除湿暖房モードは、外気温Tamが比較的低い温度帯(例えば、0℃以上、20℃以下の温度帯)で実行され除湿暖房モードである。つまり、第2除湿暖房モードは、冷凍サイクル装置10に要求される送風空気の加熱能力が第1除湿暖房モードよりも高くなっている際に実行される。
(D) Second Dehumidifying / Heating Mode The second dehumidifying / heating mode is a dehumidifying / heating mode that is executed in a temperature range where the outside temperature Tam is relatively low (for example, a temperature range of 0 ° C. or more and 20 ° C. or less). That is, the second dehumidifying and heating mode is performed when the heating capacity of the blowing air required for the refrigeration cycle apparatus 10 is higher than that of the first dehumidifying and heating mode.
 第2除湿暖房モードでは、空調制御装置60は、冷媒蒸発温度Tefinによらず、送風空気温度TAVが目標吹出温度TAOに近づくように圧縮機11の作動を制御する。 In the second dehumidifying and heating mode, the air conditioning control device 60 controls the operation of the compressor 11 so that the blown air temperature TAV approaches the target blowing temperature TAO regardless of the refrigerant evaporation temperature Tefin.
 また、空調制御装置60は、冷房用膨張弁16aおよび吸熱用膨張弁16bの双方を絞り状態とする。具体的には、冷房用膨張弁16aの絞り開度および吸熱用膨張弁16bの絞り開度を、それぞれ予め定めた第2除湿暖房モード用の絞り開度とする。 Further, the air conditioning control device 60 sets both the cooling expansion valve 16a and the heat absorption expansion valve 16b in a throttling state. Specifically, the throttle opening degree of the cooling expansion valve 16a and the throttle opening degree of the heat absorption expansion valve 16b are each set as the throttle opening degree for the second dehumidifying and heating mode, which is predetermined.
 また、空調制御装置60は、予め定めた第2除湿暖房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。さらに、空調制御装置60は、暖房モードと同様に、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量が高温側ヒータコア22へ流入するように、高温側流量調整弁24の作動を制御する。 In addition, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the second dehumidifying and heating mode determined in advance. Furthermore, in the same manner as in the heating mode, the air conditioning control device 60 causes the high temperature side flow so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 The operation of the control valve 24 is controlled.
 また、空調制御装置60は、予め定めた第2除湿暖房モード時の圧送能力を発揮するように、低温側熱媒体ポンプ31を作動させる。さらに、空調制御装置60は、暖房モードと同様に、車載機器32であるバッテリが適切な充放電性能を発揮可能な温度に維持されるように、低温側流量調整弁34の作動を制御する。 Further, the air conditioning control device 60 operates the low temperature side heat medium pump 31 so as to exert the pressure feeding capability in the second dehumidifying and heating mode determined in advance. Furthermore, the air conditioning control device 60 controls the operation of the low temperature side flow control valve 34 so that the battery which is the in-vehicle device 32 can be maintained at a temperature at which appropriate charge / discharge performance can be exhibited.
 また、空調制御装置60は、第1除湿暖房モードと同様に、過冷却度SCが目標過冷却度KSCに近づくように第1エアミックスドア54aおよび第2エアミックスドア54bを変位させる。 Further, the air conditioning control device 60 displaces the first air mix door 54a and the second air mix door 54b so that the degree of subcooling SC approaches the target degree of subcooling KSC, as in the first dehumidifying and heating mode.
 また、空調制御装置60は、内外気導入モードが外気モードとなるように内外気切替装置53の内外気切替装置ドアを変位させる。さらに、連通口57dを全開させるように連通口開閉ドア58dを変位させる。 Further, the air conditioning control device 60 displaces the inside / outside air switching device door of the inside / outside air switching device 53 so that the inside / outside air introduction mode becomes the outside air mode. Furthermore, the communication port opening / closing door 58d is displaced so as to fully open the communication port 57d.
 従って、第2除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the second dehumidifying and heating mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
 高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、暖房モードと同様に、高温側流量調整弁24を介して、高温側ヒータコア22へ流入する。高温側ヒータコア22へ流入した高温側熱媒体は、過冷却側室内凝縮器14を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side heater core 22 through the high temperature side flow rate adjustment valve 24 as in the heating mode. Do. The high temperature side heat medium that has flowed into the high temperature side heater core 22 exchanges heat with the air that has passed through the supercooling side indoor condenser 14 and radiates heat. As a result, the blowing air is heated, and the temperature of the blowing air approaches the target blowing temperature TAO.
 高温側ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。 The high temperature side heat medium flowing out of the high temperature side heater core 22 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
 高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、過冷却側室内凝縮器14へ流入する。過冷却側室内凝縮器14へ流入した冷媒は、暖房モードと同様に、室内蒸発器17を通過した送風空気と熱交換して放熱する。これにより、高温側ヒータコア22へ流入する前の送風空気が加熱される。 The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the subcooling side indoor condenser 14. The refrigerant that has flowed into the supercooling side indoor condenser 14 exchanges heat with the air that has passed through the indoor evaporator 17 and radiates heat, as in the heating mode. Thereby, the blowing air before flowing into the high temperature side heater core 22 is heated.
 過冷却側室内凝縮器14から流出した冷媒の流れは、分岐部15aにて分岐される。分岐部15aにて分岐された一方の冷媒は、冷房用膨張弁16aへ流入して減圧される。冷房用膨張弁16aにて減圧された低圧冷媒は、室内蒸発器17へ流入する。室内蒸発器17へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより送風空気が冷却される。 The flow of the refrigerant flowing out of the supercooling side indoor condenser 14 is branched at the branch portion 15a. One of the refrigerants branched by the branch portion 15a flows into the cooling expansion valve 16a and is decompressed. The low pressure refrigerant reduced in pressure by the cooling expansion valve 16 a flows into the indoor evaporator 17. The refrigerant flowing into the indoor evaporator 17 absorbs heat from the air blown from the fan 52 and evaporates. This cools the blowing air.
 この際、室内蒸発器17における冷媒蒸発温度は、圧縮機11の冷媒吐出能力によらず、蒸発圧力調整弁19の作用によって、1℃以上に維持される。 Under the present circumstances, the refrigerant | coolant evaporation temperature in the indoor evaporator 17 is maintained by 1 degreeC or more by the effect | action of the evaporation pressure control valve 19, irrespective of the refrigerant | coolant discharge capacity of the compressor 11. FIG.
 一方、分岐部15aにて分岐された他方の冷媒は、吸熱用膨張弁16bへ流入して減圧される。冷房用膨張弁16aにて減圧された低圧冷媒は、チラー18の冷媒通路へ流入する。チラー18では、暖房モードと同様に、低温側熱媒体ポンプ31が作動しているので、低圧冷媒と低温側熱媒体が熱交換して、低圧冷媒が低温側熱媒体から吸熱して蒸発する。 On the other hand, the other refrigerant branched at the branch portion 15a flows into the heat absorption expansion valve 16b and is decompressed. The low pressure refrigerant decompressed by the cooling expansion valve 16 a flows into the refrigerant passage of the chiller 18. In the chiller 18, as in the heating mode, since the low temperature side heat medium pump 31 is operating, the low pressure refrigerant and the low temperature side heat medium exchange heat, and the low pressure refrigerant absorbs heat from the low temperature side heat medium and evaporates.
 低温側熱媒体回路30では、暖房モードと同様に、低温側熱媒体が外気および車載機器32であるバッテリから吸熱する。チラー18の冷媒通路から流出した冷媒は、合流部15bにて蒸発圧力調整弁19から流出した冷媒と合流し、圧縮機11へ吸入されて再び圧縮される。 In the low temperature side heat medium circuit 30, as in the heating mode, the low temperature side heat medium absorbs heat from the outside air and the battery as the on-vehicle device 32. The refrigerant flowing out of the refrigerant passage of the chiller 18 merges with the refrigerant flowing out of the evaporation pressure adjusting valve 19 at the merging portion 15b, and is drawn into the compressor 11 and compressed again.
 以上の如く、第2除湿暖房モードでは、室内蒸発器17にて冷却されて除湿された送風空気を高温側ヒータコア22で再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。さらに、第1空気通路50aでは、室内蒸発器17にて冷却されて除湿された送風空気を過冷却側室内凝縮器14→高温側ヒータコア22の順で再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 As described above, in the second dehumidifying and heating mode, dehumidifying and heating the passenger compartment is performed by reheating the blown air cooled and dehumidified by the indoor evaporator 17 with the high temperature side heater core 22 and blowing it out into the passenger compartment. Can. Furthermore, in the first air passage 50a, the blown air cooled and dehumidified by the indoor evaporator 17 is reheated in the order of the supercooled side indoor condenser 14 → the high temperature side heater core 22 and blown out into the vehicle compartment, It is possible to perform dehumidifying and heating of the vehicle interior.
 ここで、第2除湿暖房モードでは、冷房用膨張弁16aおよび吸熱用膨張弁16bの双方が絞り状態となるので、室内蒸発器17およびチラー18が冷媒流れに対して並列的に接続される。そして、室内蒸発器17およびチラー18の双方で冷媒を蒸発させて、送風空気の有する熱、および低温側熱媒体の有する熱を冷媒に吸熱させることができる。 Here, in the second dehumidifying and heating mode, since both the cooling expansion valve 16a and the heat absorption expansion valve 16b are in the squeezed state, the indoor evaporator 17 and the chiller 18 are connected in parallel to the refrigerant flow. Then, the refrigerant can be evaporated by both the indoor evaporator 17 and the chiller 18, and the heat of the blown air and the heat of the low temperature side heat medium can be absorbed by the refrigerant.
 さらに、室内蒸発器17の冷媒流れ下流側に配置された蒸発圧力調整弁19の作用によって、チラー18における冷媒蒸発圧力を、室内蒸発器17における冷媒蒸発圧力よりも低下させることができる。従って、第2除湿暖房モードでは、第1蒸発暖房モードよりも冷媒の吸熱量を増加させて、送風空気の加熱能力を向上させることができる。 Furthermore, the refrigerant evaporation pressure in the chiller 18 can be made lower than the refrigerant evaporation pressure in the indoor evaporator 17 by the action of the evaporation pressure adjusting valve 19 disposed on the refrigerant flow downstream side of the indoor evaporator 17. Therefore, in the second dehumidifying and heating mode, the heat absorption amount of the refrigerant can be increased more than in the first evaporation and heating mode, and the heating capacity of the blowing air can be improved.
 以下、本実施形態の冷凍サイクル装置10の優れた効果について説明する。本実施形態の冷凍サイクル装置10では、暖房モード時には、圧縮機11から吐出された高圧冷媒を高温側水-冷媒熱交換器12→過冷却側室内凝縮器14の順に流入させて、第1空気通路50aでは、比較的低温となっている送風空気(基本的に外気)を過冷却側室内凝縮器14→高温側ヒータコア22の順で段階的に、かつ、効率的に加熱することができる。 Hereinafter, the excellent effects of the refrigeration cycle apparatus 10 of the present embodiment will be described. In the refrigeration cycle apparatus 10 of the present embodiment, in the heating mode, the high pressure refrigerant discharged from the compressor 11 is made to flow in the order of the high temperature side water-refrigerant heat exchanger 12 → the overcooling side indoor condenser 14 to obtain the first air. In the passage 50a, the blowing air (generally, the outside air) which is relatively low temperature can be heated stepwise and efficiently in the order of the overcooling side indoor condenser 14 → the high temperature side heater core 22.
 さらに、第1除湿暖房モード時の第1空気通路50aでは、少なくとも過冷却側室内凝縮器14へ高圧冷媒を流入させて、室内蒸発器17にて冷却されて除湿された送風空気を過冷却側室内凝縮器14にて再加熱することができる。従って、高温側水-冷媒熱交換器12や過冷却側室内凝縮器14へ低圧冷媒を流入させる必要のない簡素な構成で、運転モードを切り替えることができる。 Furthermore, in the first air passage 50a in the first dehumidifying and heating mode, high pressure refrigerant is caused to flow at least into the overcooling side indoor condenser 14, and the cooled air dehumidified by the indoor evaporator 17 is on the overcooling side. It can be reheated by the indoor condenser 14. Therefore, the operation mode can be switched with a simple configuration in which the low pressure refrigerant does not need to flow into the high temperature side water-refrigerant heat exchanger 12 or the supercooling side indoor condenser 14.
 また、暖房モード時には、過冷却側室内凝縮器14にて、比較的低温となっている送風空気(基本的に外気)と熱交換させることによって冷媒を過冷却し、過冷却側室内凝縮器14から流出する冷媒のエンタルピを充分に低下させることができる。従って、チラー18における冷媒の吸熱量を増加させて、高温側ヒータコア22および過冷却側室内凝縮器14における送風空気の加熱能力が低下してしまうことを抑制することができる。 Further, in the heating mode, the refrigerant is supercooled by heat exchange with the relatively low temperature blowing air (generally the outside air) in the supercooling side indoor condenser 14, and the supercooling side indoor condenser 14 Can sufficiently reduce the enthalpy of the refrigerant flowing out of the Therefore, it is possible to suppress the decrease in the heating capacity of the blowing air in the high temperature side heater core 22 and the overcooling side indoor condenser 14 by increasing the heat absorption amount of the refrigerant in the chiller 18.
 さらに、第1除湿暖房モード時には、過冷却側室内凝縮器14にて、室内蒸発器17にて冷却された送風空気と熱交換させることによって冷媒を過冷却し、過冷却側室内凝縮器14から流出する冷媒のエンタルピを充分に低下させることができる。従って、室内蒸発器17における冷媒の吸熱量を増加させることができ、過冷却側室内凝縮器14における送風空気の加熱能力が低下してしまうことを抑制することができる。 Further, in the first dehumidifying and heating mode, the refrigerant is supercooled by heat exchange with the blown air cooled by the indoor evaporator 17 in the supercooling side indoor condenser 14, and the supercooling side indoor condenser 14 It is possible to sufficiently reduce the enthalpy of the refrigerant flowing out. Therefore, the heat absorption amount of the refrigerant in the indoor evaporator 17 can be increased, and the decrease in the heating capacity of the blown air in the supercooling side indoor condenser 14 can be suppressed.
 すなわち、本実施形態の冷凍サイクル装置10によれば、簡素な構成で運転モードを切り替えても高温側ヒータコア22および過冷却側室内凝縮器14における送風空気の加熱能力の低下を抑制することができる。 That is, according to the refrigeration cycle apparatus 10 of the present embodiment, even if the operation mode is switched with a simple configuration, it is possible to suppress the decrease in the heating capacity of the blowing air in the high temperature side heater core 22 and the subcooling side indoor condenser 14 .
 また、本実施形態の冷凍サイクル装置10では、チラー18を備え、低温側熱媒体回路30には、車載機器32であるバッテリの冷却部、および低温側ラジエータ33が配置されている。そして、暖房モードでは、吸熱用膨張弁16bにて減圧された低圧冷媒をチラー18へ流入させ、第1除湿暖房モードでは、冷房用膨張弁16aにて減圧された低圧冷媒を室内蒸発器17へ流入させている。 Further, the refrigeration cycle apparatus 10 of the present embodiment includes the chiller 18, and the low temperature side heat medium circuit 30 is provided with the battery cooling unit as the on-vehicle device 32 and the low temperature side radiator 33. Then, in the heating mode, the low pressure refrigerant decompressed by the heat absorption expansion valve 16b flows into the chiller 18, and in the first dehumidifying heating mode, the low pressure refrigerant decompressed by the cooling expansion valve 16a to the indoor evaporator 17 It is flowing.
 これによれば、暖房モード時には、車載機器32の廃熱あるいは外気から吸熱した熱を熱源として、確実に送風空気を加熱することができる。 According to this, in the heating mode, the blown air can be reliably heated by using the waste heat of the on-vehicle device 32 or the heat absorbed from the outside air as a heat source.
 また、本実施形態の冷凍サイクル装置10では、高温側水-冷媒熱交換器12、高温側ヒータコア22等によって第1加熱部を構成し、高温側熱媒体回路20に、高温側ラジエータ23を配置している。 Further, in the refrigeration cycle apparatus 10 of the present embodiment, the high temperature side water-refrigerant heat exchanger 12, the high temperature side heater core 22 and the like constitute a first heating unit, and the high temperature side radiator 23 is disposed in the high temperature side heat medium circuit 20. doing.
 そして、暖房モードでは、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体を高温側ヒータコア22へ流入させて、高温側熱媒体の有する熱を送風空気へ放熱させる。一方、冷房モードでは、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体を高温側ラジエータ23へ流入させて、高温側熱媒体の有する熱を外気へ放熱させる。 Then, in the heating mode, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 is made to flow into the high temperature side heater core 22, and the heat of the high temperature side heat medium is radiated to the blast air. On the other hand, in the cooling mode, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 is made to flow into the high temperature side radiator 23, and the heat of the high temperature side heat medium is radiated to the outside air.
 これによれば、暖房モード時に、高温側ヒータコア22にて送風空気を加熱することができるだけでなく、冷房モード時には、室内蒸発器17にて冷媒が送風空気から吸熱した熱を、高温側熱媒体を介して高温側ラジエータ23にて外気へ放熱することができる。従って、高温側水-冷媒熱交換器12や過冷却側室内凝縮器14へ低圧冷媒を流入させる必要のない簡素な構成で、冷房モードに切り替えることができる。 According to this, not only can the heated air be heated by the high temperature side heater core 22 in the heating mode, but also the heat generated by the refrigerant from the air in the indoor evaporator 17 in the cooling mode, the high temperature side heat medium Can be dissipated to the outside air at the high temperature side radiator 23 via the Therefore, it is possible to switch to the cooling mode with a simple configuration that does not require the low pressure refrigerant to flow into the high temperature side water-refrigerant heat exchanger 12 or the overcooling side indoor condenser 14.
 また、本実施形態の冷凍サイクル装置10では、レシーバ13を備えている。これによれば、過冷却側室内凝縮器14に液相冷媒を供給しやすくなり、過冷却側室内凝縮器14を冷媒を過冷却する過冷却用熱交換器(いわゆる、サブクーラー)として機能させやすい。従って、より一層効果的に、高温側ヒータコア22および過冷却側室内凝縮器14における送風空気の加熱能力の低下を抑制することができる。 Moreover, in the refrigerating cycle device 10 of the present embodiment, the receiver 13 is provided. According to this, it becomes easy to supply the liquid phase refrigerant to the supercooling side indoor condenser 14, and the supercooling side indoor condenser 14 functions as a supercooling heat exchanger (so-called subcooler) for supercooling the refrigerant. Cheap. Therefore, it is possible to suppress the decrease in the heating capacity of the blowing air in the high temperature side heater core 22 and the supercooling side indoor condenser 14 more effectively.
 また、本実施形態の冷凍サイクル装置10では、第2加熱部として、冷媒と送風空気とを直接的に熱交換させる過冷却側室内凝縮器14を採用している。従って、不凍液等の熱媒体を介して間接的に熱交換させる場合に対して、送風空気の加熱効率を向上させることができる。 Moreover, in the refrigeration cycle apparatus 10 of the present embodiment, the supercooling side indoor condenser 14 that directly exchanges heat between the refrigerant and the blown air is adopted as the second heating unit. Therefore, the heating efficiency of the blowing air can be improved as compared with the case of indirectly performing heat exchange via a heat medium such as antifreeze liquid.
 さらに、室内空調ユニット50に放熱量調整部としての第1エアミックスドア54aを配置しているので、過冷却側室内凝縮器14における冷媒から送風空気への放熱量を容易に調整することができる。 Furthermore, since the first air mix door 54a as the heat release amount adjustment unit is disposed in the indoor air conditioning unit 50, the heat release amount from the refrigerant to the blast air in the subcooling side indoor condenser 14 can be easily adjusted. .
 そして、冷房モード時に、第1エアミックスドア54aが暖房モードよりも過冷却側室内凝縮器14へ流入する送風空気の風量を減少させる。従って、冷房モード時に、過冷却側室内凝縮器14にて送風空気が再加熱されてしまうことを抑制して、車室内の効率的な冷房を行うことができる。 Then, in the cooling mode, the first air mix door 54a reduces the air volume of the blowing air flowing into the overcooling side indoor condenser 14 more than the heating mode. Therefore, in the cooling mode, it is possible to perform the efficient cooling of the vehicle interior by suppressing the reheating of the blown air in the supercooling side indoor condenser 14.
 また、本実施形態の冷凍サイクル装置10の第1除湿暖房モードでは、室内蒸発器17における冷媒蒸発温度Tefinが室内蒸発器17の着霜を抑制可能な基準温度(具体的には、1℃)以上となるように、圧縮機11の作動を制御するので、室内蒸発器17の着霜を抑制することができる。 Further, in the first dehumidifying and heating mode of the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant evaporation temperature Tefin in the indoor evaporator 17 is a reference temperature (specifically, 1 ° C.) at which frost formation on the indoor evaporator 17 can be suppressed. As described above, since the operation of the compressor 11 is controlled, frost formation of the indoor evaporator 17 can be suppressed.
 さらに、第1除湿暖房モードでは、過冷却側室内凝縮器14から流出した冷媒の過冷却度SCが目標過冷却度KSCに近づくように、第1エアミックスドア54aの作動を制御するので、過冷却側室内凝縮器14における送風空気の加熱能力が低下してしまうことを確実に抑制することができる。 Furthermore, in the first dehumidifying and heating mode, the operation of the first air mix door 54a is controlled so that the degree SC of subcooling of the refrigerant flowing out from the subcooling side indoor condenser 14 approaches the target degree of subcooling KSC. It can be reliably suppressed that the heating capacity of the blowing air in the cooling side indoor condenser 14 is reduced.
 また、本実施形態の冷凍サイクル装置10の第2除湿暖房モードでは、送風空気温度TAVが目標吹出温度TAOに近づくように、圧縮機11の作動を制御するので、車室内の快適な暖房を実現することができる。この際、本実施形態の冷凍サイクル装置10は、蒸発圧力調整弁19を備えているので、圧縮機11の冷媒吐出能力によらず、室内蒸発器17の着霜を抑制することができる。 Further, in the second dehumidifying and heating mode of the refrigeration cycle apparatus 10 of the present embodiment, the operation of the compressor 11 is controlled so that the blown air temperature TAV approaches the target blowing temperature TAO, so that comfortable heating of the vehicle compartment is realized. can do. At this time, the refrigeration cycle apparatus 10 according to the present embodiment includes the evaporation pressure control valve 19, so that frost formation of the indoor evaporator 17 can be suppressed regardless of the refrigerant discharge capacity of the compressor 11.
 さらに、第2除湿暖房モードでは、過冷却側室内凝縮器14から流出した冷媒の過冷却度SCが目標過冷却度KSCに近づくように第1エアミックスドア54aの作動を制御するので、過冷却側室内凝縮器14における送風空気の加熱能力が低下してしまうことを確実に抑制することができる。 Furthermore, in the second dehumidifying and heating mode, since the operation of the first air mix door 54a is controlled so that the degree of subcooling SC of the refrigerant flowing out from the subcooling side indoor condenser 14 approaches the target degree of subcooling KSC, It can be reliably suppressed that the heating capacity of the blowing air in the side indoor condenser 14 is reduced.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図5の全体構成図に示すように、冷凍サイクル装置10の構成を変更した例を説明する。なお、図5では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。具体的には、本実施形態では、第1実施形態で説明した過冷却側室内凝縮器14に代えて過冷却側水-冷媒熱交換器14aを採用している。
Second Embodiment
In the present embodiment, an example in which the configuration of the refrigeration cycle apparatus 10 is changed as shown in the overall configuration diagram of FIG. 5 with respect to the first embodiment will be described. In FIG. 5, the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings. Specifically, in the present embodiment, the supercooling side water-refrigerant heat exchanger 14a is employed in place of the supercooling side indoor condenser 14 described in the first embodiment.
 過冷却側水-冷媒熱交換器14aは、レシーバ13から流出した液相冷媒と過冷却側熱媒体回路40を循環する過冷却側熱媒体とを熱交換させて、液相冷媒を過冷却するとともに過冷却側熱媒体を加熱する熱交換器である。過冷却側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。 The supercooling side water-refrigerant heat exchanger 14a exchanges heat between the liquid phase refrigerant flowing out of the receiver 13 and the supercooling side heat medium circulating in the supercooling side heat medium circuit 40 to supercool the liquid phase refrigerant. And a heat exchanger for heating the subcooling side heat medium. As the supercooling side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
 ここで、過冷却側熱媒体回路40は、過冷却側熱媒体を循環させる水回路である。過冷却側熱媒体回路40には、過冷却側水-冷媒熱交換器14aの水通路、過冷却側熱媒体ポンプ41、過冷却側ヒータコア42が配置されている。換言すると、過冷却側熱媒体回路40は、過冷却側水-冷媒熱交換器14aと過冷却側ヒータコア42との間で過冷却側熱媒体を循環させる水回路である。 Here, the overcooling side heat medium circuit 40 is a water circuit that circulates the overcooling side heat medium. In the subcooling side heat medium circuit 40, the water passage of the subcooling side water-refrigerant heat exchanger 14a, the subcooling side heat medium pump 41, and the subcooling side heater core 42 are disposed. In other words, the overcooling side heat medium circuit 40 is a water circuit that circulates the overcooling side heat medium between the overcooling side water-refrigerant heat exchanger 14 a and the overcooling side heater core 42.
 過冷却側熱媒体ポンプ41は、過冷却側熱媒体回路40において、過冷却側熱媒体を過冷却側水-冷媒熱交換器14aの水通路の入口側へ圧送する過冷却側水ポンプである。過冷却側熱媒体ポンプ41は、空調制御装置60から出力される制御電圧によって、回転数(すなわち、水圧送能力)が制御される電動ポンプである。 The supercooling side heat medium pump 41 is a supercooling side water pump that pumps the supercooling side heat medium to the inlet side of the water path of the supercooling side water-refrigerant heat exchanger 14a in the supercooling side heat medium circuit 40. . The supercooling-side heat medium pump 41 is an electric pump whose rotational speed (that is, hydraulic feed capacity) is controlled by a control voltage output from the air conditioning controller 60.
 過冷却側ヒータコア42は、室内空調ユニット50のケーシング51内に配置されている。過冷却側ヒータコア42は、過冷却側水-冷媒熱交換器14aにて加熱された過冷却側熱媒体と室内蒸発器17を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。 The supercooling side heater core 42 is disposed in the casing 51 of the indoor air conditioning unit 50. The supercooling side heater core 42 thermally exchanges the heat of the supercooling side heat medium heated by the supercooling side water-refrigerant heat exchanger 14a with the blast air having passed through the indoor evaporator 17 to heat the blast air. It is an exchanger.
 従って、本実施形態では、過冷却側熱媒体回路40に配置された、過冷却側熱媒体ポンプ41、過冷却側水-冷媒熱交換器14a、過冷却側ヒータコア42等によって、第2加熱部が構成されている。 Therefore, in the present embodiment, the second heating unit is disposed by the supercooling side heat medium pump 41, the supercooling side water-refrigerant heat exchanger 14a, the supercooling side heater core 42, and the like disposed in the subcooling side heat medium circuit 40. Is configured.
 さらに、過冷却側ヒータコア42は、図6の断面図に示すように、区画部材51aに形成された取付穴を貫通して、第1空気通路50aおよび第2空気通路50bの双方に跨って配置されている。過冷却側ヒータコア42は、室内蒸発器17よりも送風空気流れ下流側であって、第1エアミックスドア54aおよび第2エアミックスドア54bよりも送風空気流れ上流側に配置されている。 Furthermore, as shown in the cross-sectional view of FIG. 6, the supercooling side heater core 42 is disposed across the first air passage 50a and the second air passage 50b through the mounting holes formed in the dividing member 51a. It is done. The supercooling side heater core 42 is disposed downstream of the indoor evaporator 17 in the flow of the blown air and upstream of the first air mix door 54a and the second air mix door 54b in the flow of the blown air.
 このため、本実施形態では、過冷却側熱媒体ポンプ41が過冷却側ヒータコア42へ流入させる過冷却側熱媒体の流量を調整することによって、過冷却側ヒータコア42にて送風空気に放熱される熱量が調整される。従って、本実施形態の過冷却側熱媒体ポンプ41は、放熱量調整部を構成している。過冷却側水-冷媒熱交換器14aの冷媒通路の出口には、分岐部15aの流入口側が接続されている。 For this reason, in the present embodiment, by adjusting the flow rate of the overcooling side heat medium that the overcooling side heat medium pump 41 causes the overcooling side heater core 42 to flow, the overcooling side heater core 42 dissipates heat into the blown air. The amount of heat is adjusted. Therefore, the subcooling side heat medium pump 41 of the present embodiment constitutes a heat release amount adjustment unit. The inlet side of the branch portion 15a is connected to the outlet of the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a.
 また、本実施形態の空調制御装置60のうち、過冷却側熱媒体ポンプ41の作動を制御する構成は、図7に示す過冷却側圧送能力制御部60gである。本実施形態の過冷却側熱媒体ポンプ41は、放熱量調整部しているので、過冷却側圧送能力制御部60gは、放熱量制御部である。その他の構成は、第1実施形態と同様である。 Further, in the air conditioning control device 60 of the present embodiment, the configuration for controlling the operation of the overcooling side heat medium pump 41 is the overcooling side pumping capacity control unit 60g shown in FIG. Since the supercooling side heat medium pump 41 of the present embodiment is a heat release amount adjustment unit, the supercooling side pressure feeding capacity control unit 60g is a heat release amount control unit. The other configuration is the same as that of the first embodiment.
 次に、上記構成における本実施形態の作動について説明する。 Next, the operation of the present embodiment in the above configuration will be described.
 (a)冷房モード
 冷房モードでは、空調制御装置60は、過冷却側熱媒体ポンプ41を停止させる。その他の作動は、第1実施形態と同様である。従って、冷房モードの冷凍サイクル装置10では、実質的に、第1実施形態の冷房モードと同様に作動して、第1実施形態と同様に車室内の冷房を行うことができる。
(A) Cooling Mode In the cooling mode, the air conditioning controller 60 stops the overcooling side heat medium pump 41. The other operations are the same as in the first embodiment. Therefore, the refrigeration cycle apparatus 10 in the cooling mode can operate substantially in the same manner as the cooling mode of the first embodiment, and can perform cooling of the vehicle interior as in the first embodiment.
 (b)暖房モード
 暖房モードでは、空調制御装置60は、予め定めた暖房モード時の水圧送能力を発揮するように、過冷却側熱媒体ポンプ41を作動させる。その他の作動は、第1実施形態と同様である。
(B) Heating Mode In the heating mode, the air conditioning control device 60 operates the supercooling side heat medium pump 41 so as to exert the water pressure transfer capability in the predetermined heating mode. The other operations are the same as in the first embodiment.
 従って、冷房モードの冷凍サイクル装置10では、レシーバ13にて分離された液相冷媒が過冷却側水-冷媒熱交換器14aの冷媒通路へ流入すると、液相冷媒と過冷却側熱媒体が熱交換する。これにより、液相冷媒が過冷却されて、過冷却側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, when the liquid phase refrigerant separated by the receiver 13 flows into the refrigerant passage of the supercooling side water-refrigerant heat exchanger 14a, the liquid phase refrigerant and the supercooling side heat medium are heat Exchange. Thereby, the liquid phase refrigerant is subcooled and the subcooling side heat medium is heated.
 過冷却側熱媒体回路40では、過冷却側水-冷媒熱交換器14aにて加熱された過冷却側熱媒体が、過冷却側ヒータコア42へ流入する。過冷却側ヒータコア42へ流入した過冷却側熱媒体は、室内蒸発器17を通過した送風空気と熱交換して放熱する。これにより、高温側ヒータコア22へ流入する送風空気が加熱される。 In the subcooling-side heat medium circuit 40, the subcooling-side heat medium heated in the subcooling-side water-refrigerant heat exchanger 14 a flows into the subcooling-side heater core 42. The supercooling side heat medium that has flowed into the supercooling side heater core 42 exchanges heat with the blowing air that has passed through the indoor evaporator 17 and radiates heat. Thereby, the blowing air which flows in into high temperature side heater core 22 is heated.
 その他の作動は、第1実施形態の暖房モードと同様である。従って、暖房モードの冷凍サイクル装置10では、第1実施形態と同様に車室内の暖房を行うことができる。 The other operations are the same as in the heating mode of the first embodiment. Accordingly, in the heating mode refrigeration cycle apparatus 10, heating of the passenger compartment can be performed as in the first embodiment.
 (c)第1、第2除湿暖房モード
 第1、第2除湿暖房モードでは、空調制御装置60は、過冷却度センサ62eによって検出された過冷却度SCが目標過冷却度KSCに近づくように過冷却側熱媒体ポンプ41を作動させる。これにより、過冷却側ヒータコア42にて送風空気に放熱される放熱量が調整される。
(C) First and second dehumidifying and heating modes In the first and second dehumidifying and heating modes, the air conditioning control device 60 causes the subcooling degree SC detected by the subcooling degree sensor 62e to approach the target subcooling degree KSC. The supercooling side heat medium pump 41 is operated. As a result, the amount of heat released to the air by the supercooling side heater core 42 is adjusted.
 その他の作動は、第1実施形態と同様である。従って、第1、第2除湿暖房モードの冷凍サイクル装置10では、第1実施形態と同様に車室内の除湿暖房を行うことができる。 The other operations are the same as in the first embodiment. Therefore, in the refrigeration cycle apparatus 10 in the first and second dehumidifying and heating modes, dehumidifying and heating of the passenger compartment can be performed as in the first embodiment.
 本実施形態の冷凍サイクル装置10では、以上の如く作動するので、第1実施形態と同様の効果を得ることができる。 The refrigeration cycle apparatus 10 of the present embodiment operates as described above, so that the same effect as that of the first embodiment can be obtained.
 すなわち、高温側水-冷媒熱交換器12や過冷却側水-冷媒熱交換器14aへ低圧冷媒を流入させる必要のない簡素な構成で、種々の運転モードを切り替えることができる。さらに、第1実施形態と同様に、運転モードを切り替えても高温側ヒータコア22および過冷却側ヒータコア42における送風空気の加熱能力の低下を抑制することができる。 That is, various operation modes can be switched with a simple configuration in which the low pressure refrigerant does not need to flow into the high temperature side water-refrigerant heat exchanger 12 or the supercooling side water / refrigerant heat exchanger 14a. Furthermore, similarly to the first embodiment, even if the operation mode is switched, it is possible to suppress the decrease in the heating capacity of the blown air in the high temperature side heater core 22 and the subcooling side heater core 42.
 また、本実施形態の冷凍サイクル装置10では、過冷却側水-冷媒熱交換器14a、過冷却側ヒータコア42等によって第2加熱部を構成している。さらに、過冷却側熱媒体回路40に、放熱量調整部としての過冷却側熱媒体ポンプ41を配置しているので、過冷却側ヒータコア42における過冷却側熱媒体から送風空気への放熱量を容易に調整することができる。 Further, in the refrigeration cycle apparatus 10 of the present embodiment, the second cooling unit is configured by the supercooling side water-refrigerant heat exchanger 14a, the supercooling side heater core 42, and the like. Furthermore, since the overcooling side heat medium pump 41 as the heat release amount adjustment unit is disposed in the overcooling side heat medium circuit 40, the heat release amount from the overcooling side heat medium in the overcooling side heater core 42 to the blowing air is It can be easily adjusted.
 そして、冷房モード時に、過冷却側熱媒体ポンプ41が過冷却側熱媒体ポンプ41を停止させる。すなわち、過冷却側熱媒体ポンプ41が暖房モードよりも過冷却側ヒータコア42へ流入させる過冷却側熱媒体の流量を減少させる。従って、冷房モード時に、過冷却側ヒータコア42にて送風空気が再加熱されてしまうことを抑制して、車室内の効率的な冷房を行うことができる。 Then, in the cooling mode, the overcooling side heat medium pump 41 stops the overcooling side heat medium pump 41. That is, the flow rate of the overcooling side heat medium which causes the overcooling side heat medium pump 41 to flow into the overcooling side heater core 42 in the heating mode is decreased. Therefore, in the cooling mode, it is possible to suppress the reheating of the blown air by the supercooling side heater core 42, and perform the efficient cooling of the vehicle interior.
 これに加えて、本実施形態の第2加熱部によれば、過冷却側ヒータコア42を第1エアミックスドア54aおよび第2エアミックスドア54bよりも送風空気流れ上流側に配置することができる。これによれば、第2加熱部(具体的には、過冷却側ヒータコア42)の配置(レイアウト)の自由度を向上させて、室内空調ユニット50の小型化を図ることもできる。 In addition to this, according to the second heating unit of the present embodiment, the supercooling side heater core 42 can be disposed upstream of the first air mix door 54a and the second air mix door 54b in the flow of the blowing air. According to this, the degree of freedom of the arrangement (layout) of the second heating unit (specifically, the supercooling side heater core 42) can be improved, and the indoor air conditioning unit 50 can be miniaturized.
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図8に示すように、第1加熱部の構成を変更した例を説明する。具体的には、本実施形態では、第1加熱部として、室内凝縮器12aを採用している。さらに、本実施形態の高温側熱媒体回路20では、高温側ヒータコア22および高温側流量調整弁24を廃止している。
Third Embodiment
In the present embodiment, an example in which the configuration of the first heating unit is changed as shown in FIG. 8 with respect to the first embodiment will be described. Specifically, in the present embodiment, the indoor condenser 12a is employed as the first heating unit. Furthermore, in the high temperature side heat medium circuit 20 of the present embodiment, the high temperature side heater core 22 and the high temperature side flow rate adjustment valve 24 are eliminated.
 室内凝縮器12aは、室内空調ユニット50のケーシング51内に、第1実施形態の高温側ヒータコア22と同様に配置されている。室内凝縮器12aは、圧縮機11から吐出された冷媒と過冷却側室内凝縮器14あるいは室内蒸発器17を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。また、本実施形態の高温側水-冷媒熱交換器12では、室内凝縮器12aから流出した冷媒と高温側熱媒体回路20を循環する高温側熱媒体とを熱交換させる。 The indoor condenser 12 a is disposed in the casing 51 of the indoor air conditioning unit 50 in the same manner as the high temperature side heater core 22 of the first embodiment. The indoor condenser 12a is a heat exchanger that heats the blown air by heat exchange between the refrigerant discharged from the compressor 11 and the blown air that has passed through the overcooling side indoor condenser 14 or the indoor evaporator 17. Further, in the high temperature side water-refrigerant heat exchanger 12 of the present embodiment, the refrigerant flowing out of the indoor condenser 12a exchanges heat with the high temperature side heat medium circulating in the high temperature side heat medium circuit 20.
 さらに、本実施形態の高温側熱媒体回路20では、高温側水-冷媒熱交換器12と高温側ラジエータ23との間で高温側熱媒体を循環させる。このため、本実施形態の高温側熱媒体回路20では、高温側熱媒体ポンプ21を作動させると、高温側熱媒体が高温側水-冷媒熱交換器12の水通路を通過する際に冷媒から吸熱した熱を、高温側ラジエータ23にて外気に放熱させることができる。その他の構成は第1実施形態と同様である。 Further, in the high temperature side heat medium circuit 20 of the present embodiment, the high temperature side heat medium is circulated between the high temperature side water-refrigerant heat exchanger 12 and the high temperature side radiator 23. For this reason, in the high temperature side heat medium circuit 20 of the present embodiment, when the high temperature side heat medium pump 21 is operated, when the high temperature side heat medium passes through the water passage of the high temperature side water-refrigerant heat exchanger 12, The heat absorbed can be dissipated to the outside air by the high temperature side radiator 23. The other configuration is the same as that of the first embodiment.
 次に、上記構成における本実施形態の作動について説明する。本実施形態では、空調制御装置60が、冷房モード時には、予め定めた冷房モード用の圧送能力を発揮するように高温側熱媒体ポンプ21を作動させる。また、暖房モード時、および第1、第2除湿暖房モード時には、高温側熱媒体ポンプ21を停止させる。その他の作動は第1実施形態と同様である。以下、各運転モードの作動について説明する。 Next, the operation of the present embodiment in the above configuration will be described. In the present embodiment, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert a pressure feeding capability for the cooling mode, which is determined in advance, in the cooling mode. In the heating mode and in the first and second dehumidifying and heating modes, the high temperature side heat medium pump 21 is stopped. The other operations are the same as in the first embodiment. Hereinafter, the operation of each operation mode will be described.
 (a)冷房モード
 冷房モードでは、圧縮機11から吐出された高圧冷媒が、室内凝縮器12aへ流入する。冷房モードでは、第1エアミックスドア54aおよび第2エアミックスドア54bが室内凝縮器12a側の通風路を全閉としている。このため、室内凝縮器12aへ流入した冷媒と送風空気が熱交換することはなく、室内凝縮器12aへ流入した高圧冷媒は、殆ど放熱することなく室内凝縮器12aから流出する。
(A) Cooling Mode In the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the cooling mode, the first air mixing door 54a and the second air mixing door 54b completely close the air passage on the indoor condenser 12a side. Therefore, the refrigerant flowing into the indoor condenser 12a does not exchange heat with the blown air, and the high pressure refrigerant flowing into the indoor condenser 12a flows out from the indoor condenser 12a with almost no heat dissipation.
 室内凝縮器12aから流出した冷媒は、高温側水-冷媒熱交換器12の冷媒通路へ流入する。冷房モードでは、高温側熱媒体ポンプ21が作動しているので、高温側水-冷媒熱交換器12にて高圧冷媒と高温側熱媒体が熱交換する。これにより、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。 The refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. In the cooling mode, since the high temperature side heat medium pump 21 is operating, the high temperature side water-refrigerant heat exchanger 12 exchanges heat between the high pressure refrigerant and the high temperature side heat medium. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
 高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。つまり、高温側ラジエータ23にて、高温側熱媒体の有する熱が外気に放熱される。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. That is, in the high temperature side radiator 23, the heat of the high temperature side heat medium is radiated to the outside air. Thereby, the high temperature side heat medium is cooled. The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
 その他の作動は、第1実施形態の冷房モードと同様である。従って、冷房モード時には、室内蒸発器17にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 The other operations are the same as in the cooling mode of the first embodiment. Accordingly, in the cooling mode, the blowing air cooled by the indoor evaporator 17 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
 (b)暖房モード、および第1、第2除湿暖房モード
 暖房モード、および第1、第2除湿暖房モードでは、空調制御装置60が、第1実施形態と同様に第1エアミックスドア54aおよび第2エアミックスドア54bを変位させる。このため、室内凝縮器12aにて、圧縮機11から吐出された高圧冷媒と、送風機52から送風された送風空気が熱交換して、送風空気が加熱される。つまり、室内凝縮器12aにて、圧縮機11から吐出された高圧冷媒の有する熱が送風空気に放熱される。
(B) Heating mode and first and second dehumidifying heating modes In the heating mode and the first and second dehumidifying and heating modes, the air-conditioning control device 60 controls the first air mix door 54a and the first air mixing door as in the first embodiment. 2 Move the air mix door 54b. Therefore, in the indoor condenser 12a, the high pressure refrigerant discharged from the compressor 11 and the air blown from the blower 52 exchange heat, and the air is heated. That is, in the indoor condenser 12a, the heat of the high pressure refrigerant discharged from the compressor 11 is radiated to the blowing air.
 室内凝縮器12aから流出した冷媒は、高温側水-冷媒熱交換器12の冷媒通路へ流入する。暖房モードでは、高温側熱媒体ポンプ21が停止している。このため、高温側水-冷媒熱交換器12の冷媒通路へ流入した冷媒は、高温側熱媒体の温度が冷媒と同等の温度に上昇してしまうと殆ど高温側熱媒体と熱交換することなく流出する。高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。 The refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. In the heating mode, the high temperature side heat medium pump 21 is stopped. Therefore, the refrigerant flowing into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 hardly exchanges heat with the high temperature side heat medium when the temperature of the high temperature side heat medium rises to the same temperature as the refrigerant. leak. The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
 その他の作動は、第1実施形態と同様である。従って、暖房モード時には、過冷却側室内凝縮器14および室内凝縮器12aにて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、第1、第2除湿暖房モード時には、室内蒸発器17にて冷却されて除湿された送風空気を、過冷却側室内凝縮器14および室内凝縮器12aにて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 The other operations are the same as in the first embodiment. Therefore, at the time of the heating mode, it is possible to heat the vehicle interior by blowing the blown air heated by the supercooling side indoor condenser 14 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side indoor condenser 14 and the indoor condenser 12a and blown out into the vehicle compartment. Thus, dehumidifying and heating of the passenger compartment can be performed.
 本実施形態の冷凍サイクル装置10は、以上の如く作動するので、第1実施形態と同様の効果を得ることができる。 The refrigeration cycle apparatus 10 of the present embodiment operates as described above, so that the same effect as that of the first embodiment can be obtained.
 さらに、本実施形態では、高温側水-冷媒熱交換器12と高温側ラジエータとの間で高温側熱媒体を循環させるように、高温側熱媒体回路20を構成し、第1加熱部として、室内凝縮器12aを採用している。 Furthermore, in the present embodiment, the high temperature side heat medium circuit 20 is configured to circulate the high temperature side heat medium between the high temperature side water-refrigerant heat exchanger 12 and the high temperature side radiator, and as the first heating unit The indoor condenser 12a is adopted.
 そして、暖房モードでは、室内凝縮器12aにて圧縮機11から吐出された高圧冷媒の有する熱を送風空気へ放熱させる。一方、冷房モードでは、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体を高温側ラジエータ23へ流入させて、高温側熱媒体の有する熱を外気へ放熱させる。 And in heating mode, the heat which the high pressure refrigerant | coolant discharged from the compressor 11 by the indoor condenser 12a has is released to blowing air. On the other hand, in the cooling mode, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 is made to flow into the high temperature side radiator 23, and the heat of the high temperature side heat medium is radiated to the outside air.
 これによれば、暖房モード時等に、室内凝縮器12aにて、圧縮機11から吐出された高圧冷媒と送風空気とを直接的に熱交換させることができるので、熱媒体を介して間接的に熱交換させる場合に対して、送風空気の加熱効率を向上させることができる。従って、第1加熱部における送風空気の加熱能力を向上させることができる。 According to this, in the heating mode or the like, the indoor condenser 12a can directly exchange heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air, so indirectly through the heat medium In contrast to the case of heat exchange, the heating efficiency of the blown air can be improved. Therefore, the heating capacity of the blowing air in the first heating unit can be improved.
 また、冷房モード時には、室内蒸発器17にて冷媒が送風空気から吸熱した熱を、高温側熱媒体を介して高温側ラジエータ23にて外気へ放熱することができる。従って、室内凝縮器12aや過冷却側室内凝縮器14へ低圧冷媒を流入させる必要のない簡素な構成で、運転モードを切り替えることができる。 Further, in the cooling mode, the heat absorbed by the refrigerant from the blown air by the indoor evaporator 17 can be dissipated to the outside air by the high temperature side radiator 23 through the high temperature side heat medium. Therefore, the operation mode can be switched with a simple configuration in which the low pressure refrigerant does not have to flow into the indoor condenser 12a or the supercooling side indoor condenser 14.
 (第4実施形態)
 本実施形態では、第2実施形態に対して、図9に示すように、第3実施形態と同様に、第1加熱部の構成を変更した例を説明する。すなわち、本実施形態の冷凍サイクル装置10では、第1加熱部として、室内凝縮器12aを採用している。さらに、高温側熱媒体回路20の高温側ヒータコア22および高温側流量調整弁24を廃止している。その他の構成は第2実施形態と同様である。
Fourth Embodiment
In the present embodiment, as shown in FIG. 9, an example in which the configuration of the first heating unit is changed as in the third embodiment will be described with respect to the second embodiment. That is, in the refrigeration cycle apparatus 10 of the present embodiment, the indoor condenser 12a is employed as the first heating unit. Furthermore, the high temperature side heater core 22 and the high temperature side flow control valve 24 of the high temperature side heat medium circuit 20 are eliminated. The other configuration is the same as that of the second embodiment.
 次に、上記構成における本実施形態の作動について説明する。本実施形態では、空調制御装置60が、第2実施形態と同様に、冷房モード時には、過冷却側熱媒体ポンプ41を停止させる。また、暖房モード時、および第1、第2除湿暖房モード時には、過冷却側熱媒体ポンプ41を作動させる。 Next, the operation of the present embodiment in the above configuration will be described. In the present embodiment, the air conditioning control device 60 stops the overcooling side heat medium pump 41 in the cooling mode as in the second embodiment. In the heating mode and in the first and second dehumidifying and heating modes, the supercooling side heat medium pump 41 is operated.
 さらに、空調制御装置60は、第3実施形態と同様に、冷房モード時には、高温側熱媒体ポンプ21を作動させる。また、暖房モード時、第1除湿暖房モード時、および第2除湿暖房モード時には、高温側熱媒体ポンプ21を停止させる。その他の作動は第2実施形態と同様である。以下、各運転モードの作動について説明する。 Furthermore, the air conditioning controller 60 operates the high temperature side heat medium pump 21 in the cooling mode as in the third embodiment. In the heating mode, the first dehumidifying heating mode, and the second dehumidifying heating mode, the high temperature side heat medium pump 21 is stopped. The other operations are similar to those of the second embodiment. Hereinafter, the operation of each operation mode will be described.
 (a)冷房モード
 冷房モードでは、過冷却側熱媒体ポンプ41が停止しているので、過冷却側ヒータコア42にて過冷却側熱媒体を熱源として送風空気が加熱されることはない。さらに、高温側熱媒体ポンプ21が作動しているので、実質的に、第3実施形態と同様に作動して、車室内の冷房を行うことができる。
(A) Cooling Mode In the cooling mode, since the overcooling side heat medium pump 41 is stopped, the blowing air is not heated by the overcooling side heater core 42 using the overcooling side heat medium as a heat source. Furthermore, since the high temperature side heat medium pump 21 is operating, it can operate substantially in the same manner as the third embodiment to cool the vehicle interior.
 (b)暖房モード、および第1、第2除湿暖房モード
 暖房モード、および第1、第2除湿暖房モードでは、第3実施形態と同様に、圧縮機11から吐出された高圧冷媒が、室内凝縮器12aにて、過冷却側ヒータコア42を通過した送風空気と熱交換する。これにより、過冷却側ヒータコア42を通過した送風空気が加熱される。
(B) Heating mode and first and second dehumidifying and heating modes In the heating mode and first and second dehumidifying and heating modes, high-pressure refrigerant discharged from the compressor 11 is condensed in the room as in the third embodiment. The heat is exchanged with the blown air that has passed through the subcooling side heater core 42 in the vessel 12a. As a result, the air that has passed through the supercooling side heater core 42 is heated.
 室内凝縮器12aから流出した冷媒は、高温側水-冷媒熱交換器12の冷媒通路へ流入する。暖房モード、第1、第2除湿暖房モードでは、高温側熱媒体ポンプ21が停止しているので、高温側水-冷媒熱交換器12の冷媒通路へ流入した冷媒は、第3実施形態と同様に、高温側熱媒体と殆ど熱交換することなく流出する。高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。 The refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. In the heating mode and the first and second dehumidifying heating modes, since the high temperature side heat medium pump 21 is stopped, the refrigerant flowing into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 is the same as the third embodiment. In addition, it flows out with almost no heat exchange with the high temperature side heat medium. The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
 レシーバ13から流出した液相冷媒は、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入する。暖房モード、および第1、第2除湿暖房モードでは、過冷却側熱媒体ポンプ41が作動しているので、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入した液相冷媒は、過冷却側熱媒体と熱交換する。これにより、液相冷媒が過冷却され、過冷却側熱媒体が加熱される。 The liquid phase refrigerant flowing out of the receiver 13 flows into the refrigerant passage of the supercooling side water-refrigerant heat exchanger 14a. In the heating mode and the first and second dehumidifying heating modes, since the supercooling side heat medium pump 41 is operating, the liquid phase refrigerant flowing into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a is excessive. Heat exchange with the cooling side heat medium. Thereby, the liquid phase refrigerant is subcooled and the subcooling side heat medium is heated.
 過冷却側水-冷媒熱交換器14aにて加熱された過冷却側熱媒体は、第2実施形態と同様に、過冷却側ヒータコア42にて、室内蒸発器17を通過した送風空気と熱交換する。これにより、室内蒸発器17を通過して室内凝縮器12aへ流入する送風空気が加熱される。 The supercooling side heat medium heated in the subcooling side water-refrigerant heat exchanger 14a exchanges heat with the air which has passed through the indoor evaporator 17 in the supercooling side heater core 42, as in the second embodiment. Do. Thereby, the blowing air which passes the indoor evaporator 17 and flows in into the indoor condenser 12a is heated.
 その他の作動は、第2実施形態と同様である。従って、暖房モード時には、過冷却側ヒータコア42および室内凝縮器12aにて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、第1、第2除湿暖房モード時には、室内蒸発器17にて冷却されて除湿された送風空気を、過冷却側ヒータコア42および室内凝縮器12aにて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 The other operations are similar to those of the second embodiment. Therefore, in the heating mode, heating the vehicle interior can be performed by blowing out the blown air heated by the supercooling side heater core 42 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side heater core 42 and the indoor condenser 12a and blown out into the vehicle compartment. , Dehumidifying and heating of the passenger compartment can be performed.
 本実施形態の冷凍サイクル装置10は、以上の如く作動して、第2実施形態と同様の効果を得ることができる。 The refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the second embodiment.
 さらに、本実施形態では、高温側水-冷媒熱交換器12と高温側ラジエータとの間で高温側熱媒体を循環させるように、高温側熱媒体回路20を構成し、第1加熱部として、室内凝縮器12aを採用している。従って、第3実施形態と同様に、暖房モード時等に第1加熱部における送風空気の加熱能力を向上させることができる。また、室内凝縮器12aや過冷却側室内凝縮器14へ低圧冷媒を流入させる必要のない簡素な構成で、運転モードを切り替えることができる。 Furthermore, in the present embodiment, the high temperature side heat medium circuit 20 is configured to circulate the high temperature side heat medium between the high temperature side water-refrigerant heat exchanger 12 and the high temperature side radiator, and as the first heating unit The indoor condenser 12a is adopted. Therefore, as in the third embodiment, the heating capacity of the blown air in the first heating unit can be improved in the heating mode or the like. In addition, the operation mode can be switched with a simple configuration in which the low-pressure refrigerant does not have to flow into the indoor condenser 12 a or the overcooling side indoor condenser 14.
 (第5実施形態)
 本実施形態では、第3実施形態に対して、図10に示すように、高温側熱媒体回路20の構成を変更した例を説明する。具体的には、本実施形態の高温側熱媒体回路20では、第3実施形態に対して、過冷却側水-冷媒熱交換器14aが追加されている。さらに、本実施形態の冷凍サイクル装置10では、第3実施形態に対して、高圧側三方弁71および過冷却側三方弁72が追加されている。
Fifth Embodiment
In this embodiment, an example in which the configuration of the high temperature side heat medium circuit 20 is changed as shown in FIG. 10 with respect to the third embodiment will be described. Specifically, in the high temperature side heat medium circuit 20 of the present embodiment, a supercooling side water-refrigerant heat exchanger 14a is added to the third embodiment. Furthermore, in the refrigeration cycle apparatus 10 of the present embodiment, a high-pressure side three-way valve 71 and a supercooling side three-way valve 72 are added to the third embodiment.
 本実施形態の過冷却側水-冷媒熱交換器14aは、冷房モード時に、過冷却側室内凝縮器14から流出した冷媒と高温側熱媒体回路20を循環する高温側熱媒体とを熱交換させて、冷媒の有する熱を高温側熱媒体に放熱させる機能(すなわち、冷媒を過冷却する機能)を果たす。 The supercooling side water-refrigerant heat exchanger 14a of the present embodiment exchanges heat between the refrigerant flowing out of the supercooling side indoor condenser 14 and the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 in the cooling mode. Thus, the function of radiating the heat of the refrigerant to the high temperature side heat medium (that is, the function of supercooling the refrigerant) is performed.
 本実施形態の高温側熱媒体回路20では、空調制御装置60が高温側熱媒体ポンプ21を作動させると、高温側熱媒体が、高温側熱媒体ポンプ21の吐出口→高温側水-冷媒熱交換器12の水通路→過冷却側水-冷媒熱交換器14aの水通路→高温側ラジエータ23→高温側熱媒体ポンプ21の吸入口の順に高温側熱媒体が循環する。 In the high temperature side heat medium circuit 20 of the present embodiment, when the air conditioning controller 60 operates the high temperature side heat medium pump 21, the high temperature side heat medium is the discharge port of the high temperature side heat medium pump 21 → high temperature side water-refrigerant heat The high temperature side heat medium circulates in the order of the water passage of the exchanger 12 → the supercooling side water-water passage of the refrigerant heat exchanger 14a → the high temperature side radiator 23 → the suction port of the high temperature side heat medium pump 21.
 また、高圧側三方弁71は、圧縮機11から吐出された高圧冷媒を室内凝縮器12aへ導く冷媒回路と高温側水-冷媒熱交換器12の冷媒通路へ導く冷媒回路とを切り替える三方式の切替弁である。高圧側三方弁71は、空調制御装置60から出力される制御電圧によって、その作動が制御される。 In addition, the high-pressure side three-way valve 71 switches the refrigerant circuit leading the high-pressure refrigerant discharged from the compressor 11 to the indoor condenser 12a and the refrigerant circuit leading to the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 It is a switching valve. The operation of the high-pressure side three-way valve 71 is controlled by the control voltage output from the air conditioning controller 60.
 過冷却側三方弁72は、レシーバ13から流出した冷媒を過冷却側室内凝縮器14へ導く冷媒回路と過冷却側水-冷媒熱交換器14aの冷媒通路へ導く冷媒回路とを切り替える三方式の切替弁である。過冷却側三方弁72の基本的構成は、高圧側三方弁71と同様である。その他の構成は第1実施形態と同様である。 The supercooling side three-way valve 72 switches between the refrigerant circuit leading the refrigerant flowing out of the receiver 13 to the subcooling side indoor condenser 14 and the refrigerant circuit leading the refrigerant side of the subcooling side water-refrigerant heat exchanger 14a. It is a switching valve. The basic configuration of the overcooling side three-way valve 72 is similar to that of the high pressure side three-way valve 71. The other configuration is the same as that of the first embodiment.
 次に、上記構成における本実施形態の作動について説明する。本実施形態では、空調制御装置60が、冷房モード時には、第3実施形態と同様に、高温側熱媒体ポンプ21を作動させる。また、暖房モード時、および第1、第2除湿暖房モード時には、高温側熱媒体ポンプ21を停止させる。 Next, the operation of the present embodiment in the above configuration will be described. In the present embodiment, the air conditioning control device 60 operates the high temperature side heat medium pump 21 in the cooling mode as in the third embodiment. In the heating mode and in the first and second dehumidifying and heating modes, the high temperature side heat medium pump 21 is stopped.
 また、空調制御装置60は、冷房モード時には、圧縮機11から吐出された高圧冷媒を高温側水-冷媒熱交換器12の冷媒通路へ導くように高圧側三方弁71の作動を制御し、レシーバ13から流出した冷媒を過冷却側水-冷媒熱交換器14aの冷媒通路へ導くように過冷却側三方弁72の作動を制御する。 Further, in the cooling mode, the air conditioning control device 60 controls the operation of the high pressure side three-way valve 71 so as to lead the high pressure refrigerant discharged from the compressor 11 to the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12, The operation of the subcooling side three-way valve 72 is controlled so as to lead the refrigerant flowing out of the fuel cell 13 to the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a.
 さらに、暖房モード時、および第1、第2除湿暖房モード時には、圧縮機11から吐出された高圧冷媒を室内凝縮器12aへ導くように高圧側三方弁71の作動を制御し、レシーバ13から流出した冷媒を過冷却側室内凝縮器14へ導くように過冷却側三方弁72の作動を制御する。その他の作動は第1実施形態と同様である。以下、各運転モードの作動について説明する。 Furthermore, in the heating mode and in the first and second dehumidifying and heating modes, the operation of the high-pressure side three-way valve 71 is controlled to lead the high-pressure refrigerant discharged from the compressor 11 to the indoor condenser 12a, and it flows out from the receiver 13. The operation of the subcooling side three-way valve 72 is controlled so as to lead the refrigerant to the subcooling side indoor condenser 14. The other operations are the same as in the first embodiment. Hereinafter, the operation of each operation mode will be described.
 (a)冷房モード
 冷房モードでは、圧縮機11から吐出された高圧冷媒が、高圧側三方弁71を介して、高温側水-冷媒熱交換器12の冷媒通路へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換する。これにより、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒はレシーバ13へ流入して気液分離される。
(A) Cooling Mode In the cooling mode, the high pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 via the high pressure side three-way valve 71. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated. The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
 レシーバ13から流出した液相冷媒は、過冷却側三方弁72を介して、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入する。過冷却側水-冷媒熱交換器14aでは、高温側熱媒体ポンプ21が作動しているので、液相冷媒と高温側熱媒体が熱交換する。これにより、液相冷媒が過冷却されて、高温側熱媒体が加熱される。 The liquid phase refrigerant flowing out of the receiver 13 flows into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a via the subcooling side three-way valve 72. In the subcooling side water-refrigerant heat exchanger 14a, since the high temperature side heat medium pump 21 is operating, the liquid phase refrigerant and the high temperature side heat medium exchange heat. Thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
 高温側熱媒体回路20では、高温側水-冷媒熱交換器12→過冷却側水-冷媒熱交換器14aの順で加熱された高温側熱媒体が、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated in the order of the high temperature side water-refrigerant heat exchanger 12 → the supercooling side water / refrigerant heat exchanger 14a flows into the high temperature side radiator 23. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled. The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
 その他の作動は、第1実施形態の冷房モードと同様である。従って、冷房モード時には、室内蒸発器17にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 The other operations are the same as in the cooling mode of the first embodiment. Accordingly, in the cooling mode, the blowing air cooled by the indoor evaporator 17 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
 (b)暖房モード、および第1、第2除湿暖房モード
 暖房モード、および第1、第2除湿暖房モードでは、圧縮機11から吐出された高圧冷媒が、高圧側三方弁71を介して、室内凝縮器12aへ流入する。室内凝縮器12aでは、第3実施形態と同様に、送風空気が加熱される。
(B) Heating mode and first and second dehumidifying heating modes In the heating mode and the first and second dehumidifying and heating modes, the high pressure refrigerant discharged from the compressor 11 is indoors through the high pressure side three-way valve 71. It flows into the condenser 12a. In the indoor condenser 12a, the blown air is heated as in the third embodiment.
 室内凝縮器12aから流出した冷媒は、高温側水-冷媒熱交換器12の冷媒通路へ流入する。暖房モード、および第1、第2除湿暖房モードでは、高温側熱媒体ポンプ21が停止しているので、高温側水-冷媒熱交換器12の冷媒通路へ流入した冷媒は、第3実施形態と同様に、高温側熱媒体と殆ど熱交換することなく流出する。高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。 The refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. In the heating mode and the first and second dehumidifying heating modes, since the high temperature side heat medium pump 21 is stopped, the refrigerant flowing into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 is the third embodiment and Similarly, it flows out with almost no heat exchange with the high temperature side heat medium. The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
 レシーバ13から流出した液相冷媒は、過冷却側三方弁72を介して、過冷却側室内凝縮器14へ流入する。過冷却側室内凝縮器14では、第1実施形態と同様に、液相冷媒が過冷却されて、送風空気が加熱される。 The liquid-phase refrigerant flowing out of the receiver 13 flows into the subcooling side indoor condenser 14 via the subcooling side three-way valve 72. In the supercooling side indoor condenser 14, as in the first embodiment, the liquid phase refrigerant is subcooled and the blowing air is heated.
 過冷却側室内凝縮器14から流出した冷媒は、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入する。暖房モード、および第1、第2除湿暖房モードでは、高温側熱媒体ポンプ21が停止している。このため、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入した冷媒は、高温側熱媒体の温度が冷媒と同等の温度に上昇してしまうと殆ど高温側熱媒体と熱交換することなく流出する。 The refrigerant flowing out of the subcooling side indoor condenser 14 flows into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a. In the heating mode and the first and second dehumidifying and heating modes, the high temperature side heat medium pump 21 is stopped. Therefore, the refrigerant flowing into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a exchanges heat with the high temperature side heat medium almost when the temperature of the high temperature side heat medium rises to the same temperature as the refrigerant. Spill out.
 その他の作動は、第1実施形態と同様である。従って、暖房モード時には、過冷却側室内凝縮器14および室内凝縮器12aにて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、第1、第2除湿暖房モード時には、室内蒸発器17にて冷却されて除湿された送風空気を、過冷却側室内凝縮器14および室内凝縮器12aにて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 The other operations are the same as in the first embodiment. Therefore, at the time of the heating mode, it is possible to heat the vehicle interior by blowing the blown air heated by the supercooling side indoor condenser 14 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side indoor condenser 14 and the indoor condenser 12a and blown out into the vehicle compartment. Thus, dehumidifying and heating of the passenger compartment can be performed.
 本実施形態の冷凍サイクル装置10は、以上の如く作動して、第1実施形態と同様の効果を得ることができる。 The refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the first embodiment.
 また、本実施形態では、過冷却側室内凝縮器14から流出した冷媒と高温側水-冷媒熱交換器12から流出した高温側熱媒体とを熱交換させる過冷却側水-冷媒熱交換器14aを備えている。従って、冷房モード時に、過冷却側室内凝縮器14から流出した冷媒を、さらに過冷却することができ、より一層、室内蒸発器17における送風空気の冷却能力を向上させることができる。 Further, in the present embodiment, the supercooling side water-refrigerant heat exchanger 14a which exchanges heat between the refrigerant flowing out from the supercooling side indoor condenser 14 and the high temperature side heat medium flowing out from the high temperature side water-refrigerant heat exchanger 12. Is equipped. Therefore, in the cooling mode, the refrigerant flowing out of the subcooling side indoor condenser 14 can be further subcooled, and the cooling capacity of the blown air in the indoor evaporator 17 can be further improved.
 また、本実施形態では、高圧側三方弁71および過冷却側三方弁72を備えているので、冷房モード時に、圧縮機11から吐出された高圧冷媒が室内凝縮器12aおよび過冷却側室内凝縮器14を流通することがない。これによれば、冷凍サイクル装置10を循環する冷媒に不必要な圧力損失が発生してしまうことを抑制して、COPを向上させることができる。 Further, in the present embodiment, since the high-pressure side three-way valve 71 and the overcooling side three-way valve 72 are provided, the high-pressure refrigerant discharged from the compressor 11 during the cooling mode is the indoor condenser 12a and the overcooling side indoor condenser 14 will never be distributed. According to this, it is possible to improve the COP by suppressing the occurrence of unnecessary pressure loss in the refrigerant circulating in the refrigeration cycle apparatus 10.
 (第6実施形態)
 本実施形態では、第3実施形態に対して、図11に示すように、高温側熱媒体回路20の構成を変更した例を説明する。具体的には、本実施形態の高温側熱媒体回路20では、第5実施形態と同様に、過冷却側水-冷媒熱交換器14aが追加されている。さらに、高温側熱媒体ポンプ21の配置が変更されている。
Sixth Embodiment
In this embodiment, an example in which the configuration of the high-temperature side heat medium circuit 20 is changed as shown in FIG. 11 with respect to the third embodiment will be described. Specifically, in the high temperature side heat medium circuit 20 of the present embodiment, a supercooling side water-refrigerant heat exchanger 14a is added as in the fifth embodiment. Furthermore, the arrangement of the high temperature side heat medium pump 21 is changed.
 本実施形態の高温側熱媒体回路20では、空調制御装置60が高温側熱媒体ポンプ21を作動させると、高温側熱媒体は、高温側熱媒体ポンプ21の吐出口→高温側ラジエータ23→過冷却側水-冷媒熱交換器14aの水通路→高温側水-冷媒熱交換器12の水通路→高温側熱媒体ポンプ21の吸入口の順で循環する。その他の構成は第1実施形態と同様である。 In the high temperature side heat medium circuit 20 of the present embodiment, when the air conditioning controller 60 operates the high temperature side heat medium pump 21, the high temperature side heat medium is discharged from the discharge port of the high temperature side heat medium pump 21 → high temperature side radiator 23 → excess The water is circulated in the order of the water passage of the cooling side water-refrigerant heat exchanger 14a → the water passage of the high temperature side water−refrigerant heat exchanger 12 → the suction port of the high temperature side heat medium pump 21. The other configuration is the same as that of the first embodiment.
 次に、上記構成における本実施形態の作動について説明する。本実施形態では、空調制御装置60が、冷房モード時には、高温側熱媒体ポンプ21を作動させる。また、暖房モード時、および第1、第2除湿暖房モード時には、高温側熱媒体ポンプ21を停止させる。その他の作動は第1実施形態と同様である。以下、各運転モードの作動について説明する。 Next, the operation of the present embodiment in the above configuration will be described. In the present embodiment, the air conditioning control device 60 operates the high temperature side heat medium pump 21 in the cooling mode. In the heating mode and in the first and second dehumidifying and heating modes, the high temperature side heat medium pump 21 is stopped. The other operations are the same as in the first embodiment. Hereinafter, the operation of each operation mode will be described.
 (a)冷房モード
 冷房モードでは、圧縮機11から吐出された高圧冷媒が、室内凝縮器12aへ流入する。室内凝縮器12aへ流入した高圧冷媒は、第3実施形態と同様に、室内凝縮器12aにて殆ど放熱することなく流出する。
(A) Cooling Mode In the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. The high-pressure refrigerant flowing into the indoor condenser 12a flows out with almost no heat release in the indoor condenser 12a, as in the third embodiment.
 室内凝縮器12aから流出した冷媒は、高温側水-冷媒熱交換器12の冷媒通路へ流入する。冷房モードでは、高温側熱媒体ポンプ21が作動しているので、高温側水-冷媒熱交換器12にて、高圧冷媒と過冷却側水-冷媒熱交換器14aの水通路から流出した高温側熱媒体が熱交換する。これにより、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 The refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. In the cooling mode, since the high temperature side heat medium pump 21 is operating, in the high temperature side water-refrigerant heat exchanger 12, the high temperature side flowing out from the water passage of the high pressure refrigerant and the supercooling side water-refrigerant heat exchanger 14a. The heat medium exchanges heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated.
 高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13から流出した液相冷媒は、過冷却側室内凝縮器14へ流入する。過冷却側室内凝縮器14へ流入した液相冷媒は、第3実施形態と同様に、過冷却側室内凝縮器14にて殆ど放熱することなく流出する。 The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant flowing out of the receiver 13 flows into the supercooling side indoor condenser 14. As in the third embodiment, the liquid-phase refrigerant flowing into the supercooling side indoor condenser 14 flows out with almost no heat release in the supercooling side indoor condenser 14.
 過冷却側室内凝縮器14から流出した冷媒は、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入する。冷房モードでは、高温側熱媒体ポンプ21が作動しているので、過冷却側水-冷媒熱交換器14aにて、液相冷媒と高温側ラジエータ23から流出した高温側熱媒体が熱交換する。これにより、液相冷媒が過冷却されて、高温側熱媒体が加熱される。 The refrigerant flowing out of the subcooling side indoor condenser 14 flows into the refrigerant passage of the subcooling side water-refrigerant heat exchanger 14a. In the cooling mode, since the high temperature side heat medium pump 21 operates, the liquid refrigerant and the high temperature side heat medium flowing out from the high temperature side radiator 23 exchange heat in the supercooling side water-refrigerant heat exchanger 14a. Thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
 その他の作動は、第1実施形態の冷房モードと同様である。従って、冷房モード時には、室内蒸発器17にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 The other operations are the same as in the cooling mode of the first embodiment. Accordingly, in the cooling mode, the blowing air cooled by the indoor evaporator 17 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
 (b)暖房モード、および第1、第2除湿暖房モード
 暖房モード、および第1、第2除湿暖房モードでは、高温側熱媒体ポンプ21が停止しているので、実質的に、第5実施形態の暖房モード、および第1、第2除湿暖房モードと同様に作動する。
(B) Heating mode and first and second dehumidifying heating modes In the heating mode and the first and second dehumidifying and heating modes, the high-temperature side heat medium pump 21 is stopped, so substantially the fifth embodiment And the first and second dehumidifying heating modes.
 従って、暖房モード時には、過冷却側室内凝縮器14および室内凝縮器12aにて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、第1、第2除湿暖房モード時には、室内蒸発器17にて冷却されて除湿された送風空気を、過冷却側室内凝縮器14および室内凝縮器12aにて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 Therefore, at the time of the heating mode, it is possible to heat the vehicle interior by blowing the blown air heated by the supercooling side indoor condenser 14 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side indoor condenser 14 and the indoor condenser 12a and blown out into the vehicle compartment. Thus, dehumidifying and heating of the passenger compartment can be performed.
 本実施形態の冷凍サイクル装置10は、以上の如く作動して、第1実施形態と同様の効果を得ることができる。 The refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the first embodiment.
 また、本実施形態では、過冷却側室内凝縮器14から流出した冷媒と高温側水-冷媒熱交換器12から流出した高温側熱媒体とを熱交換させる過冷却側水-冷媒熱交換器(14a)を備えている。従って、第5実施形態と同様に、冷房モード時に、より一層、室内蒸発器17における送風空気の冷却能力を向上させることができる。 Further, in the present embodiment, the supercooling side water-refrigerant heat exchanger (heat exchange between the refrigerant flowing out from the subcooling side indoor condenser 14 and the high temperature side heat medium flowing out from the high temperature side water-refrigerant heat exchanger 12 14a) is provided. Therefore, as in the fifth embodiment, the cooling capacity of the blowing air in the indoor evaporator 17 can be further improved in the cooling mode.
 この際、本実施形態の冷凍サイクル装置10では、冷媒を高温側水-冷媒熱交換器12の冷媒通路→レシーバ13→過冷却側水-冷媒熱交換器14aの冷媒通路の順に流し、高温側熱媒体回路20では、高温側熱媒体を過冷却側水-冷媒熱交換器14aの水通路→高温側水-冷媒熱交換器12の水通路の順に流している。 At this time, in the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant flows in the order of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 → the receiver 13 → the refrigerant passage of the supercooling side water / refrigerant heat exchanger 14a, In the heat medium circuit 20, the high temperature side heat medium flows in the order of the water passage of the supercooling side water-refrigerant heat exchanger 14a to the water passage of the high temperature side water-refrigerant heat exchanger 12.
 これによれば、いわゆる対向流型の熱交換器と同様に、高温側水-冷媒熱交換器12および過冷却側水-冷媒熱交換器14aにおける、冷媒と高温側熱媒体との温度差を確保して、熱交換効率を向上させることができる。 According to this, the temperature difference between the refrigerant and the high temperature side heat medium in the high temperature side water-refrigerant heat exchanger 12 and the subcooling side water-refrigerant heat exchanger 14a as in the so-called counterflow heat exchanger The heat exchange efficiency can be improved by securing it.
 (第7実施形態)
 本実施形態では、第4実施形態に対して、図12に示すように、高温側熱媒体回路20の構成を変更した例を説明する。具体的には、本実施形態の高温側熱媒体回路20には、過冷却側水-冷媒熱交換器14aが配置され、熱媒体三方弁25、熱媒体バイパス通路26、過冷却側ヒータコア42が追加されている。さらに、高温側熱媒体ポンプ21の配置が変更されている。
Seventh Embodiment
In the present embodiment, an example in which the configuration of the high-temperature side heat medium circuit 20 is changed as shown in FIG. 12 with respect to the fourth embodiment will be described. Specifically, the subcooling side water-refrigerant heat exchanger 14a is disposed in the high temperature side heat medium circuit 20 of the present embodiment, and the heat medium three-way valve 25, the heat medium bypass passage 26, and the subcooling side heater core 42 are provided. Has been added. Furthermore, the arrangement of the high temperature side heat medium pump 21 is changed.
 熱媒体三方弁25は、高温側ラジエータ23から流出した冷媒を高温側熱媒体ポンプ21へ吸入させる熱媒体回路と、過冷却側ヒータコア42から流出した冷媒を高温側熱媒体ポンプ21へ吸入させる熱媒体回路とを切り替える三方式の切替弁である。熱媒体三方弁25は、空調制御装置60から出力される制御電圧によって、その作動が制御される。 The heat medium three-way valve 25 is a heat medium circuit that causes the refrigerant flowing out of the high temperature side radiator 23 to be drawn to the high temperature side heat medium pump 21 and a heat medium made to draw the refrigerant flowing out of the supercooling side heater core 42 to the high temperature side heat medium pump 21 It is a three-way switching valve that switches to the medium circuit. The operation of the heat medium three-way valve 25 is controlled by the control voltage output from the air conditioning controller 60.
 熱媒体バイパス通路26は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体を、高温側ラジエータ23へ流入させることなく、過冷却側ヒータコア42へ導く熱媒体通路である。 The heat medium bypass passage 26 is a heat medium passage that guides the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 to the supercooling side heater core 42 without flowing into the high temperature side radiator 23. .
 このため、本実施形態の高温側熱媒体回路20では、空調制御装置60が、高温側ラジエータ23から流出した冷媒を高温側熱媒体ポンプ21へ吸入させる熱媒体回路に切り替えている際に高温側熱媒体ポンプ21を作動させると、高温側熱媒体ポンプ21の吐出口→過冷却側水-冷媒熱交換器14aの水通路→高温側水-冷媒熱交換器12の水通路→高温側ラジエータ23→熱媒体三方弁25→高温側熱媒体ポンプ21の吸入口の順に高温側熱媒体が循環する。 Therefore, in the high temperature side heat medium circuit 20 of the present embodiment, the high temperature side is switched to the heat medium circuit in which the air conditioning control device 60 causes the refrigerant flowing out of the high temperature side radiator 23 to be sucked into the high temperature side heat medium pump 21. When the heat medium pump 21 is operated, the discharge port of the high temperature side heat medium pump 21 → water passage of the supercooling side water—refrigerant heat exchanger 14a → water passage of the high temperature side water—refrigerant heat exchanger 12 → high temperature side radiator 23 The high temperature side heat medium circulates in the order of the heat medium three-way valve 25 and the suction port of the high temperature side heat medium pump 21.
 また、空調制御装置60が、過冷却側ヒータコア42から流出した冷媒を高温側熱媒体ポンプ21へ吸入させる熱媒体回路に切り替えている際に高温側熱媒体ポンプ21を作動させると、高温側熱媒体ポンプ21の吐出口→過冷却側水-冷媒熱交換器14aの水通路→高温側水-冷媒熱交換器12の水通路→熱媒体バイパス通路26→過冷却側ヒータコア42→熱媒体三方弁25→高温側熱媒体ポンプ21の吸入口の順に高温側熱媒体が循環する。 Further, when the high temperature side heat medium pump 21 is operated while the air conditioning control device 60 is switching to a heat medium circuit that causes the refrigerant flowing out of the supercooling side heater core 42 to be drawn to the high temperature side heat medium pump 21, Discharge port of medium pump 21 → supercooling side water-water passage of refrigerant heat exchanger 14 a → high temperature side water-water passage of refrigerant heat exchanger 12 → heat medium bypass passage 26 → supercooling side heater core 42 → heat medium three-way valve The high temperature side heat medium circulates in the order of 25 → the suction port of the high temperature side heat medium pump 21.
 従って、本実施形態では、高温側熱媒体回路20に配置された高温側熱媒体ポンプ21、高温側水-冷媒熱交換器12、過冷却側水-冷媒熱交換器14a、および過冷却側ヒータコア42等によって、第2加熱部が構成されている。その他の構成は第4実施形態と同様である。 Therefore, in the present embodiment, the high temperature side heat medium pump 21 disposed in the high temperature side heat medium circuit 20, the high temperature side water-refrigerant heat exchanger 12, the supercooling side water-refrigerant heat exchanger 14a, and the supercooling side heater core The second heating unit is configured by 42 and the like. The other configuration is the same as that of the fourth embodiment.
 次に、上記構成における本実施形態の作動について説明する。本実施形態では、空調制御装置60が、いずれの運転モードにおいても、各運転モード毎に予め定めた圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。 Next, the operation of the present embodiment in the above configuration will be described. In the present embodiment, the high-temperature side heat medium pump 21 is operated so that the air conditioning control device 60 exerts a pumping capability predetermined for each operation mode in any operation mode.
 また、空調制御装置60は、冷房モード時には、高温側ラジエータ23から流出した高温側熱媒体を高温側熱媒体ポンプ21へ吸入させる熱媒体回路に切り替えるように熱媒体三方弁25の作動を制御する。また、暖房モード時、および第1、第2除湿暖房モード時には、過冷却側ヒータコア42から流出した高温側熱媒体を高温側熱媒体ポンプ21へ吸入させる熱媒体回路に切り替えるように熱媒体三方弁25の作動を制御する。 Further, the air conditioning control device 60 controls the operation of the heat medium three-way valve 25 so as to switch to the heat medium circuit that causes the high temperature side heat medium pump 21 to suck the high temperature side heat medium flowing out of the high temperature side radiator 23 in the cooling mode. . Further, in the heating mode and in the first and second dehumidifying heating modes, the heat medium three-way valve is switched so that the high temperature side heat medium flowing out from the supercooling side heater core 42 is switched to the heat medium circuit which sucks the high temperature side heat medium pump 21. Control the operation of 25.
 その他の作動は第1実施形態と同様である。以下、各運転モードの作動について説明する。 The other operations are the same as in the first embodiment. Hereinafter, the operation of each operation mode will be described.
 (a)冷房モード
 冷房モードでは、圧縮機11から吐出された高圧冷媒が、室内凝縮器12aへ流入する。室内凝縮器12aへ流入した高圧冷媒は、第4実施形態と同様に、室内凝縮器12aにて殆ど放熱することなく流出する。
(A) Cooling Mode In the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. The high-pressure refrigerant flowing into the indoor condenser 12a flows out with almost no heat release in the indoor condenser 12a, as in the fourth embodiment.
 室内凝縮器12aから流出した冷媒は、高温側水-冷媒熱交換器12の冷媒通路へ流入する。冷房モードでは、高温側熱媒体ポンプ21が作動しているので、高温側水-冷媒熱交換器12にて、高圧冷媒と過冷却側水-冷媒熱交換器14aの水通路から流出した高温側熱媒体が熱交換する。これにより、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 The refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. In the cooling mode, since the high temperature side heat medium pump 21 is operating, in the high temperature side water-refrigerant heat exchanger 12, the high temperature side flowing out from the water passage of the high pressure refrigerant and the supercooling side water-refrigerant heat exchanger 14a. The heat medium exchanges heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated.
 高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。 The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid.
 レシーバ13から流出した液相冷媒は、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入する。冷房モードでは、高温側熱媒体ポンプ21が作動しているので、過冷却側水-冷媒熱交換器14aにて、液相冷媒と高温側ラジエータ23から流出した高温側熱媒体が熱交換する。これにより、液相冷媒が過冷却されて、高温側熱媒体が加熱される。 The liquid phase refrigerant flowing out of the receiver 13 flows into the refrigerant passage of the supercooling side water-refrigerant heat exchanger 14a. In the cooling mode, since the high temperature side heat medium pump 21 operates, the liquid refrigerant and the high temperature side heat medium flowing out from the high temperature side radiator 23 exchange heat in the supercooling side water-refrigerant heat exchanger 14a. Thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
 高温側熱媒体回路20では、過冷却側水-冷媒熱交換器14a→高温側水-冷媒熱交換器12の順で加熱された高温側熱媒体が、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium heated in the order of the subcooling side water-refrigerant heat exchanger 14 a → the high temperature side water / refrigerant heat exchanger 12 flows into the high temperature side radiator 23. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
 高温側ラジエータ23にて冷却された高温側熱媒体は、熱媒体三方弁25を介して高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。 The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 through the heat medium three-way valve 25 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12 .
 その他の作動は、第4実施形態の冷房モードと同様である。従って、本実施形態の冷凍サイクル装置10では、室内蒸発器17にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 The other operations are the same as in the cooling mode of the fourth embodiment. Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, cooling the vehicle interior can be performed by blowing the blown air cooled by the indoor evaporator 17 into the vehicle interior.
 (b)暖房モード、および第1、第2除湿暖房モード
 暖房モード、および第1、第2除湿暖房モードでは、圧縮機11から吐出された高圧冷媒が、室内凝縮器12aへ流入する。室内凝縮器12aでは、第3実施形態と同様に、送風空気が加熱される。
(B) Heating mode and first and second dehumidifying heating modes In the heating mode and the first and second dehumidifying and heating modes, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the indoor condenser 12a, the blown air is heated as in the third embodiment.
 室内凝縮器12aから流出した冷媒は、高温側水-冷媒熱交換器12の冷媒通路へ流入する。暖房モード、および第1、第2除湿暖房モードでは、高温側熱媒体ポンプ21が作動しているので、高温側水-冷媒熱交換器12にて、高圧冷媒と過冷却側水-冷媒熱交換器14aの水通路から流出した高温側熱媒体が熱交換する。これにより、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。 The refrigerant flowing out of the indoor condenser 12 a flows into the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. In the heating mode and the first and second dehumidifying heating modes, the high temperature side heat medium pump 21 is operating, so the high temperature side water-refrigerant heat exchanger 12 exchanges high pressure refrigerant and supercooling side water-refrigerant heat The high temperature side heat medium which flowed out of the water passage of vessel 14a exchanges heat. Thereby, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium is heated.
 高温側水-冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13から流出した液相冷媒は、過冷却側水-冷媒熱交換器14aの冷媒通路へ流入する。暖房モード、および第1、第2除湿暖房モードでは、高温側熱媒体ポンプ21が作動しているので、過冷却側水-冷媒熱交換器14aにて、液相冷媒と過冷却側ヒータコア42から流出した高温側熱媒体が熱交換する。これにより、液相冷媒が過冷却されて、高温側熱媒体が加熱される。 The refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid phase refrigerant flowing out of the receiver 13 flows into the refrigerant passage of the supercooling side water-refrigerant heat exchanger 14a. In the heating mode and the first and second dehumidifying heating modes, since the high temperature side heat medium pump 21 is operating, in the supercooling side water-refrigerant heat exchanger 14 a, the liquid phase refrigerant and the supercooling side heater core 42 are The high temperature side heat medium which has flowed out exchanges heat. Thereby, the liquid phase refrigerant is subcooled and the high temperature side heat medium is heated.
 高温側熱媒体回路20では、過冷却側水-冷媒熱交換器14a→高温側水-冷媒熱交換器12の順で冷媒から吸熱して温度上昇した高温側熱媒体が、熱媒体バイパス通路26を介して、過冷却側ヒータコア42へ流入する。過冷却側ヒータコア42へ流入した高温側熱媒体は、室内蒸発器17を通過した送風空気と熱交換する。これにより、室内蒸発器17を通過して室内凝縮器12aへ流入する送風空気が加熱される。 In the high temperature side heat medium circuit 20, the high temperature side heat medium whose temperature is increased by absorbing heat from the refrigerant in the order of the subcooling side water-refrigerant heat exchanger 14a → the high temperature side water / refrigerant heat exchanger 12 is the heat medium bypass passage 26 Flows into the subcooling side heater core 42 via the The high temperature side heat medium that has flowed into the supercooling side heater core 42 exchanges heat with the blowing air that has passed through the indoor evaporator 17. Thereby, the blowing air which passes the indoor evaporator 17 and flows in into the indoor condenser 12a is heated.
 その他の作動は、第4実施形態と同様である。従って、暖房モード時には、過冷却側ヒータコア42および室内凝縮器12aにて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、第1、第2除湿暖房モード時には、室内蒸発器17にて冷却されて除湿された送風空気を、過冷却側ヒータコア42および室内凝縮器12aにて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 The other operations are similar to those of the fourth embodiment. Therefore, in the heating mode, heating the vehicle interior can be performed by blowing out the blown air heated by the supercooling side heater core 42 and the indoor condenser 12a into the vehicle interior. Furthermore, in the first and second dehumidifying and heating modes, the blown air which has been cooled and dehumidified by the indoor evaporator 17 is reheated by the supercooling side heater core 42 and the indoor condenser 12a and blown out into the vehicle compartment. , Dehumidifying and heating of the passenger compartment can be performed.
 本実施形態の冷凍サイクル装置10は、以上の如く作動して、第1実施形態と同様の効果を得ることができる。 The refrigeration cycle apparatus 10 of this embodiment can operate as described above to obtain the same effect as that of the first embodiment.
 また、本実施形態では、レシーバ13から流出した液相冷媒と高温側熱媒体ポンプ21から圧送された高温側熱媒体とを熱交換させる過冷却側水-冷媒熱交換器14aを備えている。従って、冷房モード時に、レシーバ13から流出した高圧冷媒を、さらに過冷却することができ、より一層、室内蒸発器17における送風空気の冷却能力を向上させることができる。 Further, in the present embodiment, the supercooling side water-refrigerant heat exchanger 14a for exchanging heat between the liquid phase refrigerant flowing out of the receiver 13 and the high temperature side heat medium pressure fed from the high temperature side heat medium pump 21 is provided. Therefore, in the cooling mode, the high pressure refrigerant flowing out of the receiver 13 can be further subcooled, and the cooling capacity of the blowing air in the indoor evaporator 17 can be further improved.
 この際、本実施形態の冷凍サイクル装置10では、冷媒を高温側水-冷媒熱交換器12の冷媒通路→レシーバ13→過冷却側水-冷媒熱交換器14aの冷媒通路の順に流し、高温側熱媒体回路20では、高温側ラジエータ23から流出した高温側熱媒体を過冷却側水-冷媒熱交換器14aの水通路→高温側水-冷媒熱交換器12の水通路の順に流している。 At this time, in the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant flows in the order of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 → the receiver 13 → the refrigerant passage of the supercooling side water / refrigerant heat exchanger 14a, In the heat medium circuit 20, the high temperature side heat medium flowing out of the high temperature side radiator 23 flows in the order of the water passage of the supercooling side water-refrigerant heat exchanger 14a to the water passage of the high temperature side water-refrigerant heat exchanger 12.
 従って、第6実施形態と同様に、高温側水-冷媒熱交換器12および過冷却側水-冷媒熱交換器14aにおける、冷媒と高温側熱媒体との温度差を確保して、熱交換効率を向上させることができる。 Therefore, as in the sixth embodiment, the temperature difference between the refrigerant and the high temperature side heat medium in the high temperature side water-refrigerant heat exchanger 12 and the subcooling side water-refrigerant heat exchanger 14a is secured to achieve heat exchange efficiency. Can be improved.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure. In addition, the means disclosed in each of the above embodiments may be combined as appropriate in the feasible range.
 上述の実施形態では、本開示に係る冷凍サイクル装置10を電気自動車用の空調装置に適用した例を説明したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、内燃機関および電動モータの双方から車両走行用の駆動力を得るハイブリッド車両用の空調装置に適用してもよい。さらに、車両用に限定されることなく、定置型の加熱装置、冷却装置等に適用してもよい。 Although the above-mentioned embodiment explained the example which applied refrigeration cycle device 10 concerning this indication to an air-conditioner for electric vehicles, application of refrigeration cycle device 10 is not limited to this. For example, the present invention may be applied to an air conditioner for a hybrid vehicle that obtains driving force for traveling the vehicle from both an internal combustion engine and an electric motor. Furthermore, the present invention is not limited to vehicles, and may be applied to stationary heating devices, cooling devices, and the like.
 上述の実施形態では、各種運転モードに切替可能な冷凍サイクル装置10について説明したが、運転モードはこれに限定されない。少なくとも、暖房モードおよび第1除湿暖房モードを実行可能であれば、加熱能力低下の抑制効果を得ることができる。従って、冷凍サイクル装置10を、冷房モードでの運転を行わない空調装置に適用してもよい。この場合は、高温側熱媒体回路20の高温側ラジエータ23を廃止してもよい。 Although the above-mentioned embodiment explained refrigeration cycle device 10 which can be switched to various operation modes, an operation mode is not limited to this. If at least the heating mode and the first dehumidifying and heating mode can be performed, it is possible to obtain the effect of suppressing the decrease in heating capacity. Therefore, the refrigeration cycle apparatus 10 may be applied to an air conditioner that does not operate in the cooling mode. In this case, the high temperature side radiator 23 of the high temperature side heat medium circuit 20 may be eliminated.
 さらに、上述の実施形態で説明した各種運転モードの他にも、冷却専用運転モードに切替可能としてもよい。冷却専用運転モードでは、低温側熱媒体が車載機器32から吸熱した熱を冷媒に吸熱させ、高温側熱媒体を介して高温側ラジエータ23にて外気に放熱させる。これによれば、車室内の空調を行うことなく、車載機器32を冷却することができる。 Furthermore, in addition to the various operation modes described in the above-described embodiment, it may be possible to switch to the cooling only operation mode. In the cooling only operation mode, the heat absorbed by the low temperature side heat medium from the on-vehicle device 32 is absorbed by the refrigerant, and the high temperature side radiator 23 dissipates the outside air through the high temperature side heat medium. According to this, it is possible to cool the in-vehicle device 32 without air conditioning the vehicle interior.
 また、上述した冷房運転モード時や第1除湿暖房モード時に、第2除湿暖房モード時と同様に、室内蒸発器17およびチラー18の双方に低圧冷媒を流入させるようにすれば、車室内の空調を行うと同時に、車載機器32を冷却することができる。 Further, when the low pressure refrigerant is made to flow into both the indoor evaporator 17 and the chiller 18 in the cooling operation mode or the first dehumidifying heating mode as in the second dehumidifying heating mode, the air conditioning of the vehicle interior is performed. Simultaneously, the on-vehicle device 32 can be cooled.
 冷凍サイクル装置10の各構成は、上述の実施形態に開示されたものに限定されない。 Each composition of refrigerating cycle device 10 is not limited to what was indicated by the above-mentioned embodiment.
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、内燃機関を有する車両に適用する場合等には、エンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用してもよい。 For example, although the example which employ | adopted the electric compressor as the compressor 11 was demonstrated in the above-mentioned embodiment, when applying to the vehicle which has an internal combustion engine, you may employ | adopt an engine drive type compressor. . Furthermore, as the engine-driven compressor, a variable displacement compressor may be employed in which the refrigerant discharge capacity can be adjusted by changing the discharge capacity.
 また、上述の実施形態では、分岐部15aとして三方継手構造のものを採用した例を説明したが、分岐部15aとして、第2加熱部から冷房用膨張弁16a側へ流入する冷媒流量と第2加熱部から吸熱用膨張弁16bへ流入する冷媒流量との冷媒流量比を調整する三方式の流量調整弁を採用してもよい。 In the above embodiment, an example in which the branch portion 15a has a three-way joint structure is described. However, as the branch portion 15a, the flow rate of the refrigerant flowing from the second heating portion to the cooling expansion valve 16a and the second flow portion A three-system flow control valve may be employed to adjust the refrigerant flow ratio with respect to the flow rate of the refrigerant flowing into the heat absorption expansion valve 16b from the heating unit.
 また、上述の実施形態では、室内空調ユニット50として、内外気導入モードとして内外気二層モードに切替可能なものを採用しているが、室内空調ユニット50はこれに限定されない。ケーシング51の区画部材を有しておらず、内外気二層モードに切り替えることのできないものであってもよい。 Moreover, in the above-mentioned embodiment, although what can be switched to inside-and-outside air 2 layer mode is employ | adopted as inside-and-outside air introduction mode as indoor air-conditioning unit 50, the indoor air-conditioning unit 50 is not limited to this. It may not have the partitioning member of the casing 51 and can not be switched to the inside / outside air two-layer mode.
 また、上述の実施形態では、低温側熱媒体回路30に低温側ラジエータ33および車載機器32としてのバッテリを配置した例を説明したが、低温側熱媒体回路30には低温側ラジエータ33および車載機器32の少なくとも一方が配置されていればよい。 In the embodiment described above, the low temperature side radiator 33 and the battery as the in-vehicle device 32 are disposed in the low temperature side heat medium circuit 30, but the low temperature side radiator 33 and the in-vehicle device At least one of 32 may be disposed.
 さらに、車載機器32はバッテリに限定されることなく、作動時に発熱を伴う発熱機器であればよい。例えば、車載機器32として、走行用の駆動力を出力する電動モータ、電動モータに供給させる電力の周波数を変換するインバータ、バッテリに電力を充電するための充電器等を採用してもよい。車載機器32として、複数の発熱機器を採用して、低温側熱媒体の流れに対して並列的あるいは直列的に接続してもよい。 Furthermore, the on-vehicle device 32 is not limited to the battery, and may be any heat-generating device that generates heat during operation. For example, as the in-vehicle device 32, an electric motor that outputs a driving force for traveling, an inverter that converts the frequency of electric power supplied to the electric motor, a charger for charging the battery with electric power, or the like may be adopted. A plurality of heat generating devices may be adopted as the on-vehicle device 32 and connected in parallel or in series to the flow of the low temperature side heat medium.
 また、上述の実施形態では、高温側ラジエータ23および低温側ラジエータ33の関係について言及していないが、高温側ラジエータ23および低温側ラジエータ33は、互いに独立した構成に限定されない。 Moreover, in the above-mentioned embodiment, although the relationship between the high temperature side radiator 23 and the low temperature side radiator 33 is not mentioned, the high temperature side radiator 23 and the low temperature side radiator 33 are not limited to the mutually independent structure.
 例えば、高温側ラジエータ23および低温側ラジエータ33は、高温側熱媒体の有する熱と低温側熱媒体の有する熱が互いに熱移動可能に一体化されていてもよい。具体的には、高温側ラジエータ23および低温側ラジエータ33の一部の構成部品(例えば、熱交換フィン)を共通化することによって、熱媒体同士が熱移動可能に一体化されていてもよい。 For example, the high temperature side radiator 23 and the low temperature side radiator 33 may be integrated so that the heat possessed by the high temperature side heat carrier and the heat possessed by the low temperature side heat carrier can be mutually transferred. Specifically, the heat mediums may be integrated so as to be capable of transferring heat by sharing a part of components (for example, heat exchange fins) of the high temperature side radiator 23 and the low temperature side radiator 33.
 また、上述した第2実施形態では、過冷却側ヒータコア42を、室内蒸発器17よりも送風空気流れ下流側であって、第1エアミックスドア54aおよび第2エアミックスドア54bよりも送風空気流れ上流側に配置した例を説明したがこれに限定されない。 In the second embodiment described above, the supercooling side heater core 42 is located downstream of the indoor evaporator 17 with respect to the flow of the air, and the air flow is more than the first air mix door 54a and the second air mix door 54b. Although the example arrange | positioned at the upstream side was demonstrated, it is not limited to this.
 例えば、過冷却側ヒータコア42を、第1実施形態の過冷却側室内凝縮器14と同様に配置してもよい。この場合は、第1、第2除湿暖房モード時に過冷却側熱媒体ポンプ41の水圧送能力を一定として、第1エアミックスドア54aの開度によって、過冷却側ヒータコア42にて送風空気に放熱される放熱量を調整するようにしてもよい。 For example, the subcooling side heater core 42 may be disposed in the same manner as the subcooling side indoor condenser 14 of the first embodiment. In this case, the hydraulic transport capacity of the supercooling side heat medium pump 41 is constant during the first and second dehumidifying heating modes, and the opening degree of the first air mix door 54a causes the supercooling side heater core 42 to radiate heat to the blown air. The amount of heat dissipation may be adjusted.
 また、上述の実施形態では、冷凍サイクル装置10の冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which employ | adopted R134a as a refrigerant | coolant of the refrigerating-cycle apparatus 10, a refrigerant | coolant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant etc. which mixed multiple types among these refrigerant | coolants.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more than or less than the above, are also included in the category and the scope of the present disclosure. It is a thing.

Claims (16)

  1.  空調装置に適用される冷凍サイクル装置であって、
     冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を熱源として空調対象空間へ送風される送風空気を加熱する第1加熱部(12、22、12a)と、
     前記第1加熱部から流出した冷媒を熱源として前記送風空気を加熱する第2加熱部(14、14a、42)と、を備え、
     前記第2加熱部は、前記送風空気を加熱して前記第1加熱部側へ流出させるように配置されており、
     前記送風空気を加熱する暖房モードでは、前記第1加熱部および前記第2加熱部の双方で前記送風空気を加熱する冷凍サイクル装置。
    A refrigeration cycle apparatus applied to an air conditioner, comprising:
    A compressor (11) that compresses and discharges a refrigerant;
    A first heating unit (12, 22, 12a) that heats the blown air blown into the air-conditioned space using the refrigerant discharged from the compressor as a heat source;
    And a second heating unit (14, 14a, 42) configured to heat the blown air using the refrigerant flowing out of the first heating unit as a heat source,
    The second heating unit is disposed so as to heat the blown air and cause it to flow out to the first heating unit side.
    In the heating mode for heating the blowing air, a refrigeration cycle apparatus for heating the blowing air in both of the first heating unit and the second heating unit.
  2.  さらに、前記第2加熱部から流出した冷媒を減圧させる減圧部(16a、16b)と、
     前記減圧部(16a)にて減圧された冷媒を前記送風空気と熱交換させて蒸発させる冷却用蒸発部(17)と、を備え、
     前記第2加熱部は、前記冷却用蒸発部にて冷却された前記送風空気を加熱して前記第1加熱部側へ流出させるように配置されており、
     前記冷却用蒸発部にて冷却して除湿された前記送風空気を再加熱する除湿暖房モードでは、少なくとも前記第2加熱部にて前記送風空気を加熱する請求項1に記載の冷凍サイクル装置。
    Furthermore, a pressure reducing unit (16a, 16b) for reducing the pressure of the refrigerant flowing out of the second heating unit;
    And a cooling evaporation unit (17) for heat exchange of the refrigerant decompressed by the decompression unit (16a) with the blown air to evaporate the refrigerant.
    The second heating unit is disposed so as to heat the blown air cooled by the cooling evaporation unit and cause the blown air to flow out to the first heating unit side.
    The refrigeration cycle apparatus according to claim 1, wherein in the dehumidifying and heating mode of reheating the blown air cooled and dehumidified by the cooling evaporation unit, the blown air is heated at least by the second heating unit.
  3.  さらに、前記減圧部(16b)にて減圧された冷媒を低温側熱媒体と熱交換させて蒸発させる吸熱用蒸発部(18)を備え、
     前記低温側熱媒体を循環させる低温側熱媒体回路(30)には、作動時に発熱を伴う発熱機器(32)および前記低温側熱媒体と外気とを熱交換させる低温側ラジエータ(33)の少なくとも一方が配置されており、
     前記暖房モードでは、前記減圧部にて減圧された前記冷媒を前記吸熱用蒸発部へ流入させる冷媒回路に切り替え、
     前記除湿暖房モードでは、前記減圧部にて減圧された前記冷媒を前記冷却用蒸発部へ流入させる冷媒回路に切り替える請求項2に記載の冷凍サイクル装置。
    Furthermore, the heat absorption evaporator (18) is provided, which causes the refrigerant decompressed by the decompression unit (16b) to heat exchange with the low temperature side heat medium and evaporate the refrigerant.
    The low temperature side heat medium circuit (30) for circulating the low temperature side heat medium includes at least at least a low temperature side radiator (33) for heat exchange between the low temperature side heat medium and the heat generating device (32) One is placed,
    In the heating mode, switching is performed to a refrigerant circuit that causes the refrigerant reduced in pressure by the pressure reduction unit to flow into the heat absorption evaporation unit;
    The refrigeration cycle apparatus according to claim 2, wherein in the dehumidifying and heating mode, the refrigerant cycle reduced in pressure by the pressure reducing unit is switched to a refrigerant circuit that causes the refrigerant to flow into the cooling evaporation unit.
  4.  前記第1加熱部は、前記圧縮機から吐出された冷媒と高温側熱媒体とを熱交換させる高温側水-冷媒熱交換器(12)、および前記高温側熱媒体と前記送風空気とを熱交換させる高温側ヒータコア(22)を有し、
     前記高温側熱媒体を循環させる高温側熱媒体回路(20)には、前記高温側熱媒体と外気とを熱交換させる高温側ラジエータ(23)が配置されており、
     前記暖房モードでは、前記高温側ヒータコアにて前記高温側熱媒体の有する熱を前記送風空気へ放熱させ、
     前記送風空気を冷却する冷房モードでは、前記高温側ラジエータにて前記高温側熱媒体の有する熱を外気へ放熱させる請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
    The first heating unit heats the high temperature side water-refrigerant heat exchanger (12) which exchanges heat between the refrigerant discharged from the compressor and the high temperature side heat medium, and heats the high temperature side heat medium and the blowing air. Has a high temperature side heater core (22) to be replaced,
    In the high temperature side heat medium circuit (20) for circulating the high temperature side heat medium, a high temperature side radiator (23) for heat exchange between the high temperature side heat medium and the outside air is disposed;
    In the heating mode, the heat of the high temperature side heat medium is released to the blowing air by the high temperature side heater core,
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein in the cooling mode for cooling the blown air, the heat of the high temperature side heat medium is radiated to the outside air by the high temperature side radiator.
  5.  さらに、前記圧縮機から吐出された冷媒と高温側熱媒体とを熱交換させる高温側水-冷媒熱交換器(12)、および前記高温側熱媒体と外気とを熱交換させる高温側ラジエータ(23)を有する高温側熱媒体回路(20)を備え、
     前記第1加熱部は、前記圧縮機から吐出された冷媒と前記送風空気とを熱交換させる室内凝縮器(12a)を有し、
     前記暖房モードでは、前記室内凝縮器にて前記圧縮機から吐出された冷媒の有する熱を前記送風空気へ放熱させ、
     前記送風空気を冷却する冷房モードでは、前記高温側ラジエータにて前記高温側熱媒体の有する熱を外気に放熱させる請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
    Furthermore, a high temperature side water-refrigerant heat exchanger (12) for heat exchange between the refrigerant discharged from the compressor and the high temperature side heat medium, and a high temperature side radiator (23 for heat exchange between the high temperature side heat medium and the outside air A high temperature side heat medium circuit (20) having
    The first heating unit includes an indoor condenser (12a) that exchanges heat between the refrigerant discharged from the compressor and the blowing air.
    In the heating mode, the heat generated by the refrigerant discharged from the compressor is released to the blowing air by the indoor condenser.
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein in the cooling mode for cooling the blowing air, the heat of the high temperature side heat medium is radiated to the outside air by the high temperature side radiator.
  6.  前記第1加熱部から流出した冷媒の気液を分離して、分離された液相冷媒を前記第2加熱部側へ流出させる気液分離部(13)を有する請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。 The gas-liquid separation unit (13) according to any one of claims 1 to 5, further comprising: a gas-liquid separation unit (13) for separating the gas-liquid of the refrigerant flowing out from the first heating unit and flowing the separated liquid-phase refrigerant to the second heating unit side. Refrigerating cycle device according to one.
  7.  前記第2加熱部は、前記第1加熱部から流出した冷媒と前記送風空気とを熱交換させる過冷却側室内凝縮器(14)を有している請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。 The second heating unit according to any one of claims 1 to 6, wherein the second heating unit includes a supercooling side indoor condenser (14) that performs heat exchange between the refrigerant flowing out of the first heating unit and the blown air. Refrigeration cycle device as described.
  8.  前記第2加熱部は、前記室内凝縮器から流出した冷媒と前記送風空気とを熱交換させる過冷却側室内凝縮器(14)を有し、
     前記過冷却側室内凝縮器(14)から流出した冷媒と前記高温側熱媒体とを熱交換させる過冷却側水-冷媒熱交換器(14a)を備える請求項5に記載の冷凍サイクル装置。
    The second heating unit has a supercooling side indoor condenser (14) that exchanges heat between the refrigerant flowing out of the indoor condenser and the air.
    The refrigeration cycle apparatus according to claim 5, further comprising: a supercooling side water-refrigerant heat exchanger (14a) for exchanging heat between the refrigerant flowing out of the subcooling side indoor condenser (14) and the high temperature side heat medium.
  9.  さらに、前記第2加熱部にて送風空気へ放熱される熱量を調整する放熱量調整部(54a、41)と、
     前記放熱量調整部の作動を制御する放熱量制御部(60f)と、を備え、
     前記放熱量調整部は、前記過冷却側室内凝縮器(14)へ流入する前記送風空気の風量を調整するエアミックスドア(54a)である請求項7または8に記載の冷凍サイクル装置。
    Furthermore, a heat release amount adjustment unit (54a, 41) that adjusts the amount of heat released to the blast air by the second heating unit;
    A heat release control unit (60f) for controlling the operation of the heat release adjustment unit;
    The refrigeration cycle apparatus according to claim 7 or 8, wherein the heat release amount adjustment unit is an air mix door (54a) that adjusts an air volume of the blown air flowing into the supercooling side indoor condenser (14).
  10.  前記送風空気を冷却する冷房モードでは、前記放熱量制御部は、前記暖房モードよりも前記過冷却側室内凝縮器(14)へ流入する前記送風空気の風量を減少させる請求項9に記載の冷凍サイクル装置。 The refrigeration according to claim 9, wherein in the cooling mode for cooling the blowing air, the heat release amount control unit reduces an air volume of the blowing air flowing into the overcooling side indoor condenser (14) more than the heating mode. Cycle equipment.
  11.  前記第2加熱部は、前記第1加熱部から流出した冷媒と過冷却側熱媒体とを熱交換させる過冷却側水-冷媒熱交換器(14a)、および前記過冷却側熱媒体と前記送風空気とを熱交換させる過冷却側ヒータコア(42)を有している請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。 The second heating unit is a supercooling side water-refrigerant heat exchanger (14a) that exchanges heat between the refrigerant flowing out of the first heating unit and the supercooling side heat medium, and the supercooling side heat medium and the air blowing The refrigeration cycle apparatus according to any one of claims 1 to 6, further comprising a supercooling side heater core (42) which exchanges heat with air.
  12.  さらに、前記第2加熱部にて送風空気へ放熱される熱量を調整する放熱量調整部(54a、41)と、
     前記放熱量調整部の作動を制御する放熱量制御部(60g)と、を備え、
     前記放熱量制御部は、前記過冷却側ヒータコアへ前記過冷却側熱媒体を圧送する過冷却側熱媒体ポンプ(41)である請求項11に記載の冷凍サイクル装置。
    Furthermore, a heat release amount adjustment unit (54a, 41) that adjusts the amount of heat released to the blast air by the second heating unit;
    A heat release amount control unit (60 g) for controlling the operation of the heat release amount adjustment unit;
    The refrigeration cycle apparatus according to claim 11, wherein the heat release amount control unit is a supercooling side heat medium pump (41) that pumps the supercooling side heat medium to the supercooling side heater core.
  13.  前記送風空気を冷却する冷房モードでは、前記放熱量制御部は、前記暖房モードよりも前記第2加熱部へ流入させる前記過冷却側熱媒体の流量を減少させる請求項12に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 12, wherein in the cooling mode for cooling the blown air, the heat release amount control unit reduces the flow rate of the supercooling side heat medium to be flowed into the second heating unit more than the heating mode. .
  14.  前記第2加熱部は、前記室内凝縮器から流出した冷媒と前記高温側熱媒体とを熱交換させる過冷却側水-冷媒熱交換器(14a)、および前記高温側熱媒体と前記送風空気とを熱交換させる過冷却側ヒータコア(42)を有している請求項5に記載の冷凍サイクル装置。 The second heating unit is a supercooling side water-refrigerant heat exchanger (14a) that exchanges heat between the refrigerant flowing out of the indoor condenser and the high temperature side heat medium, the high temperature side heat medium, and the blowing air. The refrigeration cycle apparatus according to claim 5, further comprising a supercooling side heater core (42) for exchanging heat.
  15.  前記高温側熱媒体を循環させる高温側熱媒体回路(20)には、高温側ヒータコアへ流入する前記高温側熱媒体の高温側ヒータコア流量(Qa1)と前記高温側ラジエータへ流入する前記高温側熱媒体のラジエータ側流量(Qb1)との流量比(Qb1/Qa1)を調整する高温側流量比調整部(24)が配置されており、
     さらに、前記圧縮機の作動を制御する吐出能力制御部(60a)と、
     前記高温側流量比調整部の作動を制御する高温側流量比制御部(60c)と、を備え、
     少なくとも前記除湿暖房モードでは、
     前記吐出能力制御部は、前記冷却用蒸発部における冷媒蒸発温度(Tefin)が目標蒸発温度(TEO)となるように前記圧縮機の作動を制御し、
     前記放熱量制御部は、前記第2加熱部から流出した冷媒の過冷却度(SC)が目標過冷却度(KSC)に近づくように前記放熱量調整部の作動を制御し、
     前記高温側流量比制御部は、前記第1加熱部にて加熱された前記送風空気の温度(TAV)が目標温度(TAO)に近づくように前記高温側流量比調整部の作動を制御する請求項9、10、12、13のいずれか1つに記載の冷凍サイクル装置。
    In the high temperature side heat medium circuit (20) for circulating the high temperature side heat medium, the high temperature side heater core flow rate (Qa1) of the high temperature side heat medium flowing into the high temperature side heater core and the high temperature side heat flow into the high temperature side radiator A high temperature side flow ratio adjustment unit (24) is arranged to adjust the flow ratio (Qb1 / Qa1) of the medium to the radiator side flow (Qb1),
    And a discharge capacity control unit (60a) for controlling the operation of the compressor.
    A high temperature side flow ratio control unit (60c) for controlling the operation of the high temperature side flow ratio adjustment unit;
    At least in the dehumidifying heating mode,
    The discharge capacity control unit controls the operation of the compressor such that the refrigerant evaporation temperature (Tefin) in the cooling evaporation unit becomes a target evaporation temperature (TEO),
    The heat release amount control unit controls the operation of the heat release amount adjustment unit such that the degree of subcooling (SC) of the refrigerant flowing out of the second heating portion approaches a target degree of subcooling (KSC);
    The high temperature side flow ratio control unit controls the operation of the high temperature side flow ratio adjustment unit such that the temperature (TAV) of the blown air heated by the first heating unit approaches a target temperature (TAO) The refrigeration cycle apparatus according to any one of Items 9, 10, 12, and 13.
  16.  さらに、前記圧縮機の作動を制御する吐出能力制御部(60a)と、
     前記冷却用蒸発部における冷媒蒸発温度を予め定めた基準温度以上となるよう調整する蒸発圧力調整部(19)と、を備え、
     少なくとも前記除湿暖房モードでは、
     前記吐出能力制御部は、前記第1加熱部にて加熱された前記送風空気の温度(TAV)が目標温度(TAO)に近づくように前記圧縮機の作動を制御し、
     前記放熱量制御部は、前記第2加熱部から流出した冷媒の過冷却度(SC)が予め定めた目標過冷却度(KSC)に近づくように前記放熱量調整部の作動を制御する請求項9、10、12、13のいずれか1つに記載の冷凍サイクル装置。
    And a discharge capacity control unit (60a) for controlling the operation of the compressor.
    An evaporation pressure adjusting unit (19) for adjusting the refrigerant evaporation temperature in the cooling evaporation unit to be equal to or higher than a predetermined reference temperature;
    At least in the dehumidifying heating mode,
    The discharge capacity control unit controls the operation of the compressor such that the temperature (TAV) of the blowing air heated by the first heating unit approaches a target temperature (TAO),
    The heat release amount control unit controls the operation of the heat release amount adjustment unit such that the degree of subcooling (SC) of the refrigerant flowing out of the second heating portion approaches a predetermined target degree of supercooling (KSC). The refrigeration cycle apparatus according to any one of 9, 10, 12, and 13.
PCT/JP2018/027593 2017-08-10 2018-07-24 Refrigeration cycle device WO2019031221A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017155680 2017-08-10
JP2017-155680 2017-08-10
JP2018124604A JP6922856B2 (en) 2017-08-10 2018-06-29 Refrigeration cycle equipment
JP2018-124604 2018-06-29

Publications (1)

Publication Number Publication Date
WO2019031221A1 true WO2019031221A1 (en) 2019-02-14

Family

ID=65271043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027593 WO2019031221A1 (en) 2017-08-10 2018-07-24 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2019031221A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175263A1 (en) * 2019-02-28 2020-09-03 株式会社デンソー Heat management system
JP2020142789A (en) * 2019-02-28 2020-09-10 株式会社デンソー Heat management system
US20210291626A1 (en) * 2018-12-26 2021-09-23 Denso Corporation Refrigeration cycle device
CN113490819A (en) * 2019-02-28 2021-10-08 株式会社电装 Refrigeration cycle device
CN113646594A (en) * 2019-03-29 2021-11-12 株式会社电装 Air conditioner
US11207949B2 (en) 2020-01-07 2021-12-28 Ford Global Technologies, Llc Multi-compressor refrigerant system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098430A (en) * 2000-07-21 2002-04-05 Nippon Soken Inc Heat pump cycle
JP2004218853A (en) * 2003-01-09 2004-08-05 Denso Corp Air conditioner
JP2007278624A (en) * 2006-04-07 2007-10-25 Denso Corp Heat pump cycle
JP2014213765A (en) * 2013-04-26 2014-11-17 サンデン株式会社 Vehicle air conditioner
WO2015136768A1 (en) * 2014-03-12 2015-09-17 カルソニックカンセイ株式会社 In-vehicle temperature adjusting device, vehicle air-conditioning device, and battery temperature adjsuting device
WO2017010289A1 (en) * 2015-07-14 2017-01-19 株式会社デンソー Heat pump cycle
JP2017503709A (en) * 2014-07-31 2017-02-02 ハンオン システムズ Heat pump system for vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098430A (en) * 2000-07-21 2002-04-05 Nippon Soken Inc Heat pump cycle
JP2004218853A (en) * 2003-01-09 2004-08-05 Denso Corp Air conditioner
JP2007278624A (en) * 2006-04-07 2007-10-25 Denso Corp Heat pump cycle
JP2014213765A (en) * 2013-04-26 2014-11-17 サンデン株式会社 Vehicle air conditioner
WO2015136768A1 (en) * 2014-03-12 2015-09-17 カルソニックカンセイ株式会社 In-vehicle temperature adjusting device, vehicle air-conditioning device, and battery temperature adjsuting device
JP2017503709A (en) * 2014-07-31 2017-02-02 ハンオン システムズ Heat pump system for vehicles
WO2017010289A1 (en) * 2015-07-14 2017-01-19 株式会社デンソー Heat pump cycle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210291626A1 (en) * 2018-12-26 2021-09-23 Denso Corporation Refrigeration cycle device
US11897316B2 (en) * 2018-12-26 2024-02-13 Denso Corporation Refrigeration cycle device
WO2020175263A1 (en) * 2019-02-28 2020-09-03 株式会社デンソー Heat management system
JP2020142789A (en) * 2019-02-28 2020-09-10 株式会社デンソー Heat management system
CN113474190A (en) * 2019-02-28 2021-10-01 株式会社电装 Thermal management system
CN113490819A (en) * 2019-02-28 2021-10-08 株式会社电装 Refrigeration cycle device
CN113490819B (en) * 2019-02-28 2022-11-01 株式会社电装 Refrigeration cycle device
JP7173064B2 (en) 2019-02-28 2022-11-16 株式会社デンソー thermal management system
CN113646594A (en) * 2019-03-29 2021-11-12 株式会社电装 Air conditioner
US11207949B2 (en) 2020-01-07 2021-12-28 Ford Global Technologies, Llc Multi-compressor refrigerant system

Similar Documents

Publication Publication Date Title
JP6794964B2 (en) Refrigeration cycle equipment
US20190111756A1 (en) Refrigeration cycle device
US20220032732A1 (en) Battery heating device for vehicle
US11718156B2 (en) Refrigeration cycle device
JP6332560B2 (en) Air conditioner for vehicles
WO2019031221A1 (en) Refrigeration cycle device
US10759257B2 (en) Refrigeration cycle device
KR102421890B1 (en) refrigeration cycle device
WO2015075872A1 (en) Heat pump system
WO2014073151A1 (en) Refrigeration cycle device
US20220234416A1 (en) Refrigeration cycle device
JP6075058B2 (en) Refrigeration cycle equipment
US11506404B2 (en) Refrigeration cycle device
CN113423596A (en) Refrigeration cycle device
WO2019116781A1 (en) Heating device for vehicles
US20210190389A1 (en) Refrigeration cycle device
JP2016223705A (en) Heat Pump Cycle
WO2020050038A1 (en) Refrigeration cycle device
JP6922856B2 (en) Refrigeration cycle equipment
WO2019026481A1 (en) Combined heat exchanger
WO2020050086A1 (en) Compressor and refrigeration cycle device
WO2020050085A1 (en) Compressor and refrigeration cycle device
WO2019111637A1 (en) Refrigeration cycle device
WO2019026530A1 (en) Refrigeration cycle device
WO2019065039A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844579

Country of ref document: EP

Kind code of ref document: A1