WO2020049844A1 - 圧縮機、及び、これを備える冷凍サイクル装置 - Google Patents

圧縮機、及び、これを備える冷凍サイクル装置 Download PDF

Info

Publication number
WO2020049844A1
WO2020049844A1 PCT/JP2019/025682 JP2019025682W WO2020049844A1 WO 2020049844 A1 WO2020049844 A1 WO 2020049844A1 JP 2019025682 W JP2019025682 W JP 2019025682W WO 2020049844 A1 WO2020049844 A1 WO 2020049844A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbiting
chamber
refrigerant
compression
injection hole
Prior art date
Application number
PCT/JP2019/025682
Other languages
English (en)
French (fr)
Inventor
植田 英之
貴典 十佐近
正記 宇野
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2019571084A priority Critical patent/JPWO2020049844A1/ja
Publication of WO2020049844A1 publication Critical patent/WO2020049844A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a compressor and the like.
  • Trifluoroiodomethane is a nonflammable refrigerant having a very low GWP (Global Warming Potential), but its stability as a substance is not so high. That is, trifluoroiodomethane is easily decomposed at high temperatures, and as a result, acidic substances such as hydrogen iodide may be generated.
  • Patent Literature 1 describes that the temperature of a refrigerant including a CI bond is maintained at or below a predetermined upper limit temperature by reducing the discharge capacity of a compressor.
  • an object of the present invention is to provide a highly reliable compressor and the like.
  • a compressor according to the present invention compresses a gaseous refrigerant sucked through a suction chamber in a compression chamber, and discharges the compressed refrigerant through a discharge port.
  • a closed container that contains at least the compression mechanism unit and in which refrigerating machine oil is sealed, wherein the refrigerant contains trifluoroiodomethane, and the refrigerating machine oil has compatibility with the refrigerant.
  • the compression mechanism unit includes a fixed member provided with the discharge port, and a moving member that forms the compression chamber between the fixed member and the fixed member by moving the fixed member. An injection hole for guiding the condensed refrigerant to the compression chamber is provided.
  • a highly reliable compressor and the like can be provided.
  • FIG. 3 is a cross-sectional view taken along the line II-II of FIG. 2 in a state where an injection hole communicates with a turning outside line chamber in a compression mechanism section included in the compressor according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the compression mechanism provided in the compressor according to the embodiment of the present invention, in a state where the injection hole is closed by a swirl wrap.
  • FIG. 4 is a cross-sectional view of the compression mechanism provided in the compressor according to the embodiment of the present invention, in which an injection hole is in communication with the swirling extension chamber.
  • FIG. 9 is a cross-sectional view of the compression mechanism section of the compressor according to the first modified example of the present invention, in which an injection hole communicates with both the turning external chamber and the turning internal chamber.
  • FIG. 10 is a cross-sectional view of a compression mechanism section of a compressor according to a second modified example of the present invention, in a state where two injection holes communicate with a swirling extension chamber. It is a cross-sectional view showing another state in the compression mechanism part of the compressor concerning the 2nd modification of the present invention. It is a cross-sectional view of the compression mechanism part of the compressor which concerns on the 3rd modification of this invention. It is a cross-sectional view of a compression mechanism part of a compressor according to a fourth modification of the present invention. It is a cross-sectional view of a compression mechanism part of a compressor according to a fifth modification of the present invention. It is a cross-sectional view which shows another state in the compression mechanism part of the compressor which concerns on the 5th modification of this invention.
  • an air conditioner W (refrigeration cycle device: see FIG. 1) including a scroll-type compressor 1 (see FIGS. 1 and 2) will be described.
  • FIG. 1 is a configuration diagram including a refrigerant circuit Q of the air conditioner W according to the embodiment.
  • the solid arrows in FIG. 1 indicate the flow of the refrigerant during the cooling operation.
  • the dashed arrows in FIG. 1 indicate the flow of the refrigerant during the heating operation.
  • the air conditioner W is a device that performs air conditioning such as a cooling operation and a heating operation.
  • the air conditioner W includes a compressor 1, an accumulator 2, an outdoor heat exchanger 3, an outdoor fan Fo, an outdoor expansion valve 4, and injection valves Va and Vb. I have.
  • the air conditioner W includes an indoor expansion valve 5, an indoor heat exchanger 6, an indoor fan Fi, a four-way valve 7, an outdoor control circuit Go, an indoor control circuit Gi, It has.
  • the compressor 1, the accumulator 2, the outdoor heat exchanger 3, the outdoor expansion valve 4, and the like are installed in the outdoor unit Uo.
  • the indoor expansion valve 5, the indoor heat exchanger 6, and the like are installed in the indoor unit Ui.
  • the compressor 1 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the suction side of the compressor 1 is connected to the accumulator 2 via a suction pipe ka.
  • the discharge side of the compressor 1 is connected to the four-way valve 7 via a discharge pipe kb.
  • the accumulator 2 is a shell-shaped member that separates the refrigerant flowing sequentially through the four-way valve 7 and the pipe kc into gas and liquid.
  • the outdoor heat exchanger 3 is a heat exchanger that exchanges heat between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan Fo.
  • One end (gas side) of the outdoor heat exchanger 3 is connected to the four-way valve 7 via a pipe kd, and the other end (liquid side) is connected to the indoor heat exchanger 6 via a pipe ke.
  • the outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger 3, and is installed near the outdoor heat exchanger 3.
  • the outdoor expansion valve 4 is a valve for reducing the pressure of the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 3 and the indoor heat exchanger 6), and is provided in the pipe ke.
  • the refrigerant decompressed by the outdoor expansion valve 4 is directed to the “evaporator” (the other of the outdoor heat exchanger 3 and the indoor heat exchanger 6) via the pipe ke.
  • the indoor expansion valve 5 provided near the indoor heat exchanger 6 in the pipe ke has the same function as the outdoor expansion valve 4.
  • fluorobutene examples include C 4 H 4 F 4 , C 4 H 3 F 5 (HFO1345), and C 4 H 2 F 6 (HFO1336).
  • chlorofluoroethene examples include C 2 F 3 Cl (CTFE).
  • chlorofluoropropene examples include 2-chloro-3,3,3-trifluoro-1-propene (HCFO1233xf) and 1-chloro-3,3,3-trifluoro-1-propene (HCFO1233zd). .
  • trifluoroiodomethane, difluoromethane (HFC32), pentafluoroethane (HFC125), and hexafluoropropene are used as refrigerants to adjust GWP (Global Warming Potential), vapor pressure, and flame retardant parameters. It is preferable to use one or more of (FO1216).
  • GWP uses the values of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) (100 years).
  • the GWP of the refrigerant not described in AR4 may use the value of the IPCC Fifth Evaluation Report (AR5), may use the value described in another known document, or may use a known value. A value calculated or measured using the method may be used.
  • the GWP of trifluoroiodomethane is 0.4
  • the GWP of HFC32 is 675
  • the GWP of HFC125 is 3,500.
  • the GWP of the refrigerant is 750 or less, preferably 500 or less, more preferably 150 or less, further preferably 100 or less, and particularly preferably 75 or less.
  • the vapor pressure of the refrigerant at 25 ° C. is preferably in the range from 1.4 MPa to 1.8 MPa.
  • the flame retardancy parameter of the refrigerant represented by the following equation (1) is preferably 0.46 or less.
  • F mix represents the flame retardant parameter of the mixed refrigerant
  • Fi represents the flame retardant parameter of each refrigerant component
  • xi represents the mole fraction of each refrigerant component.
  • a polyol ester oil or a polyvinyl ether oil having a kinematic viscosity at 40 ° C. of 30 to 100 mm 2 / s is preferable.
  • the kinematic viscosity is measured based on standards such as ISO (International Organization for Standardization) 3104, ASTM (American Society for Testing and Materials), and D445 and D7042.
  • the low-temperature critical melting temperature of the refrigerant and the refrigerating machine oil is preferably + 10 ° C. or lower.
  • Examples of the refrigerating machine oil having the above characteristics include polyol ester oils represented by chemical formulas (1) and (2) and polyvinyl ether oils represented by chemical formula (3).
  • R 1 to R 10 represent an alkyl group having 4 to 9 carbon atoms, which may be the same or different.
  • OR 11 is a methyloxy group, an ethyloxy group, a propyloxy group or a butyloxy group, and n is 5 to 15.
  • the frame 13 shown in FIG. 2 is a member that supports the orbiting scroll 12 and is fastened to the fixed scroll 11.
  • the crankshaft 14 is a shaft that rotates with the driving of the electric motor 18, and is rotatably supported by a main bearing 15 and a sub-bearing 16.
  • the upper end of the crankshaft 14 rotates eccentrically with respect to the rotation shaft of the electric motor 18.
  • an oil supply passage i for guiding refrigeration oil to the main bearing 15, the sub-bearing 16, and the like is provided inside the crankshaft 14.
  • FIG. 3B is a cross-sectional view in a state where the injection hole h1 is closed by the turning wrap 12b.
  • the diameter of the opening on the injection side in the injection hole h1 is smaller than the thickness of the turning wrap 12b. Accordingly, when the orbiting scroll 12 moves to the predetermined position shown in FIG. 3B, the injection hole h1 is temporarily closed by the orbiting wrap 12b.
  • the communication of the injection hole h1 to the turning outside line room Po and the communication of the injection hole h1 to the turning inside line room Pi are intermittently and alternately repeated. It is supposed to be.
  • the injection hole h2 communicates with both the turning outside line chamber Po and the turning inside line chamber Pi in a process where the injection hole h2 and the turning wrap 12b partially overlap.
  • a rise in the temperature of the refrigerant can be suppressed, and the decomposition of trifluoroiodomethane contained in the refrigerant can be suppressed.
  • FIG. 5A is a cross-sectional view of the compression mechanism JB of the compressor according to the second modification, in a state where two injection holes h3a and h3b communicate with the swirl extension chamber Pi.
  • two injection holes h3a and h3b are provided in the base plate 11a of the fixed scroll 11.
  • both the injection holes h3a and h3b communicate with the orbiting extension chamber Pi. Thereby, the temperature rise of the refrigerant compressed in the swirl extension room Pi can be suppressed.
  • FIG. 5B is a cross-sectional view showing another state of the compression mechanism JB of the compressor according to the second modification.
  • the orbiting scroll 12 moves from the state of FIG. 5A to the predetermined position shown in FIG. 5B, one of the injection holes h3a communicates with the orbiting extension chamber Pi, and the other injection hole h3b communicates with the orbiting outside line chamber Po. Thereby, the temperature rise of the refrigerant can be suppressed even in the turning outside line chamber Po.
  • the injection holes h3a and h3b communicate with at least one of the orbiting outside line chamber Po and the orbiting inside line chamber Pi with the turning of the orbiting scroll 12. Is also good.
  • FIG. 6 is a cross-sectional view of a compression mechanism JC of a compressor according to a third modification.
  • a configuration in which three injection holes h4a, h4b, and h4c are provided in the base plate 11a of the fixed scroll 11 may be employed.
  • the respective injection holes h4a, h4b, h4c may communicate with different “compression chambers”. Even with such a configuration, it is possible to appropriately suppress the temperature rise of the refrigerant compressed in the turning outside line chamber Po and the turning inside line chamber Pi.
  • the number of the plurality of injection holes provided in the base plate 11a of the fixed scroll 11 may be two, or may be four or more.
  • FIG. 7 is a cross-sectional view of a compression mechanism JD of a compressor according to a fourth modification.
  • two injection holes h5a and h5b are provided in the base plate 11a of the fixed scroll 11.
  • one injection hole h5a communicates only with the turning outside line room Po
  • the other injection hole h5b communicates only with the turning inside line room Pi.
  • pressure pulsation in the pipe kh (see FIG. 2) that guides the refrigerant to the injection holes h5a and h5b is suppressed as compared with the above-described embodiment (see FIG. 3A), and the refrigerant is injected. It will be easier.
  • the number of injection holes may be three or more. Then, with the turning of the orbiting scroll 12, at least one of the plurality of injection holes communicates with the turning external chamber Po, but does not communicate with the turning internal chamber Pi, and the remainder of the plurality of injection holes remains in the turning internal line. It may be configured such that it communicates with the room Pi but does not communicate with the turning outside line room Po.
  • FIG. 8A is a cross-sectional view of a compression mechanism JE of a compressor according to a fifth modification.
  • the base plate 11a of the fixed scroll 11 is provided with two injection holes h6a and h6b. Then, as shown in FIG. 8A, at least one of the injection holes h6b communicates with the swirling extension chamber Pi immediately after the compression of the refrigerant is started in the swirling extension chamber Pi with the turning of the orbiting scroll 12. Thereby, the temperature rise of the refrigerant in the swirling extension room Pi can be suppressed.
  • FIG. 8B is a cross-sectional view showing another state of the compression mechanism JE of the compressor according to the fifth modification.
  • the injection hole h6a communicates with the orbiting outside line chamber Po. That is, with the turning of the orbiting scroll 12, at least the other injection hole h6a communicates with the orbiting outside line chamber Po immediately after the compression of the refrigerant is started in the orbiting outside line chamber Po. Thereby, the temperature rise of the refrigerant in the turning outside line chamber Po can be suppressed.
  • the refrigerant is injected through the injection holes h6a and h6b at the start of the compression in which the pressure in the turning internal chamber Pi and the turning external chamber Po is relatively low. Therefore, the pressure in the swirl extension line chamber Pi and the swirl outside line chamber Po is more likely to be lower than at the downstream side of the “condenser”, so that the refrigerant is more easily injected through the injection holes h6a and h6b.
  • the refrigerant is injected through the injection holes h6a and h6b.
  • the compression ratio of the refrigerant near the injection hole h6a and the compression ratio of the refrigerant near the injection hole h6b become substantially equal, so that the pipe kh communicating with the injection holes h6a and hb (see FIG. 2).
  • Pressure pulsation in the inside is suppressed. This makes it easier for the refrigerant to be injected, in combination with the low pressure in the turning internal line chamber Pi and the turning external line chamber Po. As a result, the decomposition of trifluoroiodomethane contained in the refrigerant is suppressed.
  • the diameters of the injection-side openings of the two injection holes h6a and h6b may be smaller than the thickness of the turning wrap 12b (see FIGS. 8A and 8B).
  • one injection hole h6b communicates with the orbiting extension chamber Pi, and the other injection hole h6a is closed by the orbiting wrap 12b. It is preferable that it comes off.
  • the other injection hole h6a communicates with the orbiting outer chamber Po and the one injection hole h6b is closed by the orbiting wrap 12b.
  • the configuration of the refrigerant circuit Q shown in FIG. 1 is an example, and the present invention is not limited to this.
  • a three-way valve (not shown) may be used instead of the injection valves Va and Vb.
  • a plurality of capillary tubes (not shown) having different flow path resistances are provided, and the capillary tubes through which the refrigerant flows are appropriately changed by "switching means" (not shown). You may make it switch.
  • the compressor 1 is a scroll type compressor
  • the present invention is not limited to this. That is, the present invention can be applied to other types of compressors such as a rotary type and a reciprocating type.
  • the air conditioner W (see FIG. 1) provided with one outdoor unit Uo and one indoor unit Ui has been described, but the present invention is not limited to this.
  • the embodiments and the like can be applied to a multi-type air conditioner including a plurality of indoor units.
  • the embodiments and the like can be applied to a refrigerator, a chiller, a refrigerator, and the like as a “refrigeration cycle device” other than the air conditioner W.
  • the embodiment and each modified example can be appropriately combined.
  • the embodiment (see FIG. 3A) and the fifth modification (see FIGS. 8A and 8B) are combined, and the swirl extension chamber Pi and the swirl exterior chamber Po immediately after the start of the compression (fifth modification),
  • the refrigerant may be intermittently and alternately injected via one injection hole h1 (embodiment).
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations. Further, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration. In addition, the above-described mechanisms and configurations are shown to be necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

信頼性の高い圧縮機等を提供する。圧縮機(1)は、圧縮機構部(J)と、少なくとも圧縮機構部(J)を収容し、冷凍機油が封入される密閉容器(19)と、を備えている。前記した冷媒には、トリフルオロヨードメタンが含まれ、冷凍機油は、冷媒との間に相溶性を有する。圧縮機構部(J)は、固定スクロール(11)と、その移動によって固定スクロール(11)との間に圧縮室(P)を形成する旋回スクロール(12)と、を有する。圧縮機構部(J)には、凝縮した冷媒を圧縮室(P)に導くインジェクション孔(h1)が設けられている。

Description

圧縮機、及び、これを備える冷凍サイクル装置
 本発明は、圧縮機等に関する。
 空気調和機等の冷凍サイクル装置に関して、トリフルオロヨードメタン(CFI)を含む冷媒を用いることが提案されている。トリフルオロヨードメタンは、GWP(Global Warming Potential:地球温暖化係数)が非常に低い不燃性の冷媒であるが、物質としての安定性はそれほど高くない。すなわち、トリフルオロヨードメタンは、高温下で分解しやすく、その結果としてヨウ化水素等の酸性物質が生ずる可能性がある。
 このようなトリフルオロヨードメタンの分解を抑制するものとして、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、圧縮機の吐出容量を低減することで、C-I結合を含む冷媒の温度を所定の上限温度以下に保つことが記載されている。
特開2008-128493号公報
 特許文献1には、前記したように、圧縮機の吐出容量を低減することが記載されているが、別の方法でトリフルオロヨードメタンの分解を抑制し、圧縮機等の信頼性をさらに高める余地がある。
 そこで、本発明は、信頼性の高い圧縮機等を提供することを課題とする。
 前した課題を解決するために、本発明に係る圧縮機は、吸入室を介して吸い込まれるガス状の冷媒を圧縮室で圧縮し、圧縮した冷媒を吐出口を介して吐出する圧縮機構部と、少なくとも前記圧縮機構部を収容し、冷凍機油が封入される密閉容器と、を備え、前記冷媒には、トリフルオロヨードメタンが含まれ、前記冷凍機油は、前記冷媒との間に相溶性を有し、前記圧縮機構部は、前記吐出口が設けられる固定部材と、その移動によって前記固定部材との間に前記圧縮室を形成する移動部材と、を有し、前記圧縮機構部には、凝縮した冷媒を前記圧縮室に導くインジェクション孔が設けられていることを特徴とする。
 本発明によれば、信頼性の高い圧縮機等を提供できる。
本発明の実施形態に係る空気調和機の冷媒回路を含む構成図である。 本発明の実施形態に係る圧縮機の縦断面図である。 本発明の実施形態に係る圧縮機が備える圧縮機構部において、インジェクション孔が旋回外線室に連通している状態での図2のII-II線の横断面図である。 本発明の実施形態に係る圧縮機が備える圧縮機構部において、インジェクション孔が旋回ラップで塞がれた状態の横断面図である。 本発明の実施形態に係る圧縮機が備える圧縮機構部において、インジェクション孔が旋回内線室に連通している状態の横断面図である。 本発明の第1の変形例に係る圧縮機の圧縮機構部において、インジェクション孔が旋回外線室及び旋回内線室の両方に連通している状態の横断面図である。 本発明の第2の変形例に係る圧縮機の圧縮機構部において、2つのインジェクション孔が旋回内線室に連通している状態の横断面図である。 本発明の第2の変形例に係る圧縮機の圧縮機構部における別の状態を示す横断面図である。 本発明の第3の変形例に係る圧縮機の圧縮機構部の横断面図である。 本発明の第4の変形例に係る圧縮機の圧縮機構部の横断面図である。 本発明の第5の変形例に係る圧縮機の圧縮機構部の横断面図である。 本発明の第5の変形例に係る圧縮機の圧縮機構部における別の状態を示す横断面図である。
 以下では、一例として、スクロール式の圧縮機1(図1、図2参照)を備える空気調和機W(冷凍サイクル装置:図1参照)について説明する。
≪実施形態≫
<空気調和機の構成>
 図1は、実施形態に係る空気調和機Wの冷媒回路Qを含む構成図である。
 なお、図1の実線矢印は、冷房運転時における冷媒の流れを示している。
 また、図1の破線矢印は、暖房運転時における冷媒の流れを示している。
 空気調和機Wは、冷房運転や暖房運転等の空調を行う機器である。図1に示すように、空気調和機Wは、圧縮機1と、アキュムレータ2と、室外熱交換器3と、室外ファンFoと、室外膨張弁4と、インジェクション弁Va,Vbと、を備えている。また、空気調和機Wは、前記した構成の他に、室内膨張弁5と、室内熱交換器6と、室内ファンFiと、四方弁7と、室外制御回路Goと、室内制御回路Giと、を備えている。
 図1に示す例では、圧縮機1、アキュムレータ2、室外熱交換器3、室外膨張弁4等が、室外機Uoに設置されている。一方、室内膨張弁5や室内熱交換器6等は、室内機Uiに設置されている。
 圧縮機1は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。圧縮機1の吸入側は、吸入配管kaを介してアキュムレータ2に接続されている。一方、圧縮機1の吐出側は、吐出配管kbを介して四方弁7に接続されている。
 アキュムレータ2は、四方弁7及び配管kcを順次に介して流れ込む冷媒を気液分離する殻状部材である。
 室外熱交換器3は、その伝熱管(図示せず)を通流する冷媒と、室外ファンFoから送り込まれる外気と、の間で熱交換が行われる熱交換器である。室外熱交換器3は、その一端(ガス側)が配管kdを介して四方弁7に接続され、他端(液側)が配管keを介して室内熱交換器6に接続されている。
 室外ファンFoは、室外熱交換器3に外気を送り込むファンであり、室外熱交換器3の付近に設置されている。
 室外膨張弁4は、「凝縮器」(室外熱交換器3及び室内熱交換器6の一方)で凝縮した冷媒を減圧する弁であり、配管keに設けられている。そして、室外膨張弁4で減圧された冷媒が、配管keを介して「蒸発器」(室外熱交換器3及び室内熱交換器6の他方)に向かうようになっている。なお、配管keにおいて室内熱交換器6の付近に設けられる室内膨張弁5も、室外膨張弁4と同様の機能を有している。
 室内熱交換器6は、その伝熱管(図示せず)を通流する冷媒と、室内ファンFiから送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。室内熱交換器6は、その一端(液側)が配管keを介して室外熱交換器3に接続され、他端(ガス側)が配管kfを介して四方弁7に接続されている。
 室内ファンFiは、室内熱交換器6に室内空気を送り込むファンであり、室内熱交換器6の付近に設置されている。
 四方弁7は、空気調和機Wの運転モードに応じて、冷媒の流路を切り替える弁である。すなわち、冷房運転時(図1の実線矢印を参照)には、圧縮機1、室外熱交換器3(凝縮器)、室外膨張弁4(膨張弁)、室内膨張弁5(膨張弁)、及び室内熱交換器6(蒸発器)を順次に介して、冷凍サイクルで冷媒が循環する。
 一方、暖房運転時(図1の破線矢印を参照)には、圧縮機1、室内熱交換器6(凝縮器)、室内膨張弁5(膨張弁)、室外膨張弁4(膨張弁)、及び室外熱交換器3(蒸発器)を順次に介して、冷凍サイクルで冷媒が循環する。
 すなわち、圧縮機1、「凝縮器」、「膨張弁」、及び「蒸発器」を順次に介して冷媒が循環する冷媒回路Qにおいて、前記した「凝縮器」及び「蒸発器」の一方は室外熱交換器3であり、他方は室内熱交換器6である。
 インジェクション弁Va,Vbは、「凝縮器」で凝縮した冷媒を圧縮機1に導くための弁であり、配管kgに設けられている。なお、配管kgの一端は、前記した配管keにおいて室外熱交換器3と室外膨張弁4との間に接続されている。また、配管kgの他端は、配管keにおいて室内熱交換器6と室内膨張弁5との間に接続されている。
 そして、冷房運転時には、一方のインジェクション弁Vaが適宜に開弁され、他方のインジェクション弁Vbが閉弁される。これによって、室外熱交換器3で凝縮した冷媒が、配管ke(一部)、配管kg(一部)、及び配管khを順次に介して、圧縮室P(図2参照)に導かれる。
 一方、暖房運転時には、一方のインジェクション弁Vaが閉弁され、他方のインジェクション弁Vbが適宜に開弁される。これによって、室内熱交換器6で凝縮した冷媒が、配管ke(一部)、配管kg(一部)、及び配管khを順次に介して、圧縮室P(図2参照)に導かれる。
 前記した配管khは、その上流端が、配管kgにおいてインジェクション弁Va,Vbの間に接続され、下流端が、後記する固定スクロール11(図2参照)のインジェクション孔h1(図2参照)に差し込まれている。
 なお、インジェクション孔h1に冷媒を導く配管kgに設けられ、この配管kgを介した冷媒の通流/遮断を切り替える「切替手段」は、インジェクション弁Va,Vbを含んで構成される。
 吐出温度センサ8は、圧縮機1から吐出される冷媒の温度を検出するセンサであり、例えば、吐出配管kbに設置されている。その他、図1では図示を省略しているが、圧縮機1の吸入圧力、吐出圧力、室内温度、室外温度等を検出する各センサが設けられている。吐出温度センサ8を含む各センサの検出値は、次に説明する室外制御回路Goや室内制御回路Giに出力される。
 室外制御回路Goは、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。室外制御回路Goは、リモコン(図示せず)からの指令や吐出温度センサ8等の検出値に基づいて、圧縮機1、室外ファンFo、室外膨張弁4、インジェクション弁Va,Vb等を制御する。
 室内制御回路Giは、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成されている。室内制御回路Giは、室外制御回路Goとの間で所定の通信を行い、室内膨張弁5や室内ファンFi等を制御する。以下では、室外制御回路Go及び室内制御回路Giをまとめて「制御手段」という。
 「制御手段」は、例えば、冷房運転中、吐出温度センサ8の検出値が「所定値」以上になった場合、配管kg,kh及び後記するインジェクション孔h1(図2参照)を順次に介して冷媒が通流するように、インジェクション弁Va(切替手段)を閉弁から開弁に切り替える。なお、冷房運転中は、他方のインジェクション弁Vbは閉弁状態で維持される。また、暖房運転中は、他方のインジェクション弁Vbが適宜に開弁される。これによって、圧縮機1で圧縮される冷媒の温度が高くなりすぎることを抑制できる。
 なお、前記した「所定値」は、冷媒に含まれているトリフルオロヨードメタンが分解し始める温度よりも低い所定の温度閾値であり、予め設定されている。
<冷媒について>
 冷媒回路Qを循環する冷媒には、トリフルオロヨードメタン(CFI)が含まれている。このような冷媒として、トリフルオロヨードメタンを単体で用いてもよいし、また、トリフルオロヨードメタンと他の冷媒とを含む混合冷媒を用いてもよい。他の冷媒としては、CO、炭化水素、エーテル、フルオロエーテル、フルオロアルケン、HFC、HFO、HClFO、及びHBrFO等が例示される。
 なお、「HFC」は、ハイドロフルオロカーボンを示す。「HFO」は、炭素原子、フッ素原子、及び水素原子からなるハイドロフルオロオレフィンであり、少なくとも1つの炭素-炭素二重結合を有する。「HClFO」は、炭素、塩素、フッ素、及び水素原子からなり、少なくとも1つの炭素-炭素二重結合を有する。「HBrFO」は、炭素、臭素、フッ素、及び水素原子からなり、少なくとも1つの炭素-炭素二重結合を有する。
 HFCとしては、ジフルオロメタン(HFC32)、ペンタフルオロエタン(HFC125)、1,1,2,2-テトラフルオロエタン(HFC134)、1,1,1,2-テトラフルオロエタン(HFC134a)、トリフルオロエタン(HFC143a)、ジフルオロエタン(HFC152a)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC227ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(HFC236fa)、1,1,1,3,3-ペンタフルオロプロパン(HFC245fa)、及び1,1,1,3,3-ペンタフルオロブタン(HFC365mfc)が例示される。
 前記したフルオロアルケンとしては、フルオロエテン、フルオロプロペン、フルオロブテン、クロロフルオロエテン、クロロフルオロプロペン、及びクロロフルオロブテンが例示される。フルオロプロペンとしては、3,3,3-トリフルオロプロペン(HFO1243zf)、 1,3,3,3-テトラフルオロプロペン(HFO1234ze)、2,3,3,3-テトラフルオロプロペン(HFO1234yf)、及びHFO1225が例示される。
 前記したフルオロブテンとしては、C、C(HFO1345)、及びC(HFO1336)が例示される。クロロフルオロエテンとしては、CCl(CTFE)が例示される。クロロフルオロプロペンとしては、2-クロロ-3,3,3-トリフルオロ-1-プロペン(HCFO1233xf)、及び1-クロロ-3,3,3-トリフルオロ-1-プロペン(HCFO1233zd)が例示される。
 GWP(Global Warming Potential:地球温暖化係数)、蒸気圧、及び難燃化パラメータを調整するため、冷媒として、トリフルオロヨードメタン、ジフルオロメタン(HFC32)、ペンタフルオロエタン(HFC125)、及びヘキサフルオロプロペン(FO1216)の1種以上を用いることが好ましい。
 また、機器の能力に合う蒸気圧を得るために、冷媒にHFO1234yf、HFO1234ze、1,1,1,2-テトラフルオロエタン(HFC134a)、HFO1123等を含め、能力に関係する蒸気圧や効率に影響する温度勾配度合いを混合濃度により調整することが好ましい。
 混合冷媒中のトリフルオロヨードメタンの配合量は、質量ベースで10%以上100%以下、好ましくは20%以上80%以下、より好ましくは30%以上50%以下である。
 GWPは、気候変動に関する政府間パネル(IPCC)第4次評価報告書(AR4)の値(100年値)が用いられる。また、AR4に記載されていない冷媒のGWPは、IPCC第5次評価報告書(AR5)の値を用いてもよいし、他の公知文献に記載された値を用いてもよいし、公知の方法を用いて算出又は測定した値を用いてもよい。 AR4によると、トリフルオロヨードメタンのGWPは0.4であり、HFC32のGWPは675であり、HFC125のGWPは3,500である。
 冷媒のGWPは、750以下であり、好ましくは500以下であり、より好ましくは150以下であり、更に好ましくは100以下であり、特に好ましくは75以下である。
 冷媒の25℃の蒸気圧は、好ましくは1.4MPaから1.8MPaの範囲である。また、以下の数式(1)で示される冷媒の難燃化パラメータは、好ましくは0.46以下である。なお、数式(1)において、Fmixは混合冷媒の難燃化パラメータ、Fiは各冷媒成分の難燃化パラメータ、xiは各冷媒成分のモル分率を示す。
 Fmix=ΣFi・xi ・・・(1)
 冷凍機油としては、40℃における動粘度が30~100mm/sのポリオールエステル油又はポリビニルエーテル油が好ましい。動粘度は、ISO(International Organization for Standardization,国際標準化機構)3104、ASTM(American Society for Testing and Materials,米国材料試験協会)D445、D7042等の規格に基づいて測定される。冷媒と冷凍機油との低温側臨界溶解温度は、+10℃以下であることが好ましい。
 上記特性を有する冷凍機油としては、化学式(1)、(2)で表されるポリオールエステル油、化学式(3)で表されるポリビニルエーテル油が例示される。式(1)、(2)中、R~R10は、炭素数4~9のアルキル基を表し、それぞれ同一であっても異なってもよい。また、式(3)中、OR11は、メチルオキシ基、エチルオキシ基、プロピルオキシ基又はブチルオキシ基であり、nは、5~15である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 前記したポリオールエステル油やポリビニルエーテル油といった冷凍機油は、冷媒との間に相溶性を有している。これによって、冷凍機油の一部が冷媒とともに圧縮機1から流出しても、この冷凍機油が冷媒とともに冷媒回路Qを循環して圧縮機1に戻ってくる。したがって、圧縮機1以外の箇所に冷凍機油が溜まり込むことがほとんどないため、圧縮機1の各部品の潤滑性や信頼性を確保できる。
<圧縮機の構成>
 図2は、実施形態に係る圧縮機1の縦断面図である。
 図2に示す圧縮機1は、固定スクロール11と旋回スクロール12との間の圧縮室Pにおいて、ガス状の冷媒を圧縮する機器である。図2に示すように、圧縮機1は、固定スクロール11や旋回スクロール12を含む圧縮機構部Jの他に、クランク軸14、電動機18、密閉容器19等を備えている。
 圧縮機構部Jは、吸入室Mを介して吸い込まれるガス状の冷媒を圧縮室Pで圧縮し、圧縮した冷媒を吐出口Nを介して吐出する機構である。圧縮機構部Jは、固定スクロール11と、旋回スクロール12と、を備え、図2に示す例では、密閉容器19内の上部空間に配置されている。
 固定スクロール11は、密閉容器19内に固定される「固定部材」である。固定スクロール11は、台板11aと、この台板11aに立設される渦巻状の固定ラップ11b(図3Aも参照)と、を有している。
 なお、平面視で円状を呈する台板11aの中心付近には、圧縮された冷媒を吐出するための吐出口Nが設けられている。また、台板11aの所定箇所には、「凝縮器」で凝縮した冷媒を圧縮室Pに導くインジェクション孔h1が設けられている。このインジェクション孔h1に、前記した配管kh(図1も参照)が差し込まれている。
 旋回スクロール12は、その移動によって固定スクロール11との間に圧縮室Pを形成する「移動部材」である。旋回スクロール12は、固定スクロール11に対向した状態で旋回自在に配置されている。旋回スクロール12は、台板12aと、この台板12aに立設される渦巻状の旋回ラップ12bと、を有している。
 そして、固定ラップ11bと旋回ラップ12bとが互いに噛み合わされることで、固定スクロール11と旋回スクロール12との間に複数の圧縮室Pが形成されるようになっている。前記した圧縮室Pは、冷媒を圧縮するための空間である。
 例えば、旋回スクロール12の外線側と、固定スクロール11と、の間の空間である旋回外線室Po(図3A参照)が、前記した圧縮室Pとして機能する。また、旋回スクロール12の内線側と、固定スクロール11と、の間の空間である旋回内線室Pi(図3A参照)が、別の圧縮室Pとして機能する。
 そして、旋回スクロール12の旋回に伴って、旋回外線室Po及び旋回内線室Piのうち少なくとも一方にインジェクション孔h1が連通するようになっている。なお、インジェクション孔h1の連通の詳細については後記する。
 図2に示すフレーム13は、旋回スクロール12を支持する部材であり、固定スクロール11に締結されている。
 クランク軸14は、電動機18の駆動に伴って回転する軸であり、主軸受15及び副軸受16によって回転自在に軸支されている。また、クランク軸14の上端部は、電動機18の回転軸に対して偏心回転するようになっている。クランク軸14の内部には、主軸受15や副軸受16等に冷凍機油を導く給油流路iが設けられている。
 オルダムリング17は、クランク軸14の上端部の偏心回転を受けて、旋回スクロール12を自転させることなく旋回させる輪状部材である。
 電動機18は、クランク軸14を回転させる駆動源であり、フレーム13の下側に配置されている。電動機18は、密閉容器19の内周壁に固定される固定子18aと、固定子18a内において回転自在である回転子18bと、を備えている。
 密閉容器19は、圧縮機構部J、クランク軸14、電動機18等を収容する殻状の容器であり、略密閉された状態になっている。この密閉容器19には、圧縮機1の潤滑性やシール性を高めるための冷凍機油L(潤滑油ともいう)が封入されている。冷凍機油Lは、密閉容器19の底部に貯留されている。
 図2に示す吸入配管kaは、圧縮機構部Jの吸入室Mに冷媒を導く配管であり、密閉容器19の所定箇所に差し込まれている。なお、吸入室Mは、圧縮機構部Jの吸入において冷媒を一時的に貯留するための空間であり、固定スクロール11に設けられている。
 電動機18の駆動によって旋回スクロール12が旋回すると、吸入配管kaを介してガス状の冷媒が吸入室Mに導かれる。そして、固定スクロール11と旋回スクロール12との間の圧縮室Pが、その容積を次第に縮小させながら渦巻き状に移動することで、冷媒が圧縮されるようになっている。圧縮された冷媒は、固定スクロール11の中心付近の吐出口Nを介して吐出される。このようにして吐出されたガス状の冷媒は、密閉容器19の内部に充満し、さらに、吐出配管kbを介して四方弁7(図1参照)に導かれる。
<冷媒のインジェクション>
 前記したように、冷媒回路Q(図1参照)を循環する冷媒には、トリフルオロヨードメタンが含まれている。したがって、圧縮機1から吐出される冷媒の温度が高くなりすぎると、場合によっては、冷媒に含まれるトリフルオロヨードメタンが分解する可能性がある。そこで、本実施形態では、トリフルオロヨードメタンの分解を抑制するために、「凝縮器」で凝縮した冷媒の一部を圧縮室Pに噴射(インジェクション)するようにしている。
 図2に示す例では、固定ラップ11bの間の溝の部分における所定箇所にインジェクション孔h1が開口している。そして、「凝縮器」で凝縮した比較的低温の冷媒が、配管kh及びインジェクション孔h1を順次に介して、圧縮室Pに噴射されるようになっている。
 さらに、本実施形態では、次の図3A、図3B、図3Cを用いて説明するように、1つのインジェクション孔h1を介して、旋回外線室Po及び旋回内線室Piに間欠的かつ交互に冷媒が噴射されるようにしている。
 図3Aは、圧縮機が備える圧縮機構部Jにおいて、インジェクション孔h1が旋回外線室Poに連通している状態での図2のII-II線の横断面図である。
 図3Aに示すように、固定スクロール11の台板11aに1つのインジェクション孔h1が設けられている。そして、旋回スクロール12が旋回する過程で、旋回外線室Poとインジェクション孔h1とが一時的に連通するようになっている。
 これによって、「凝縮器」で凝縮した液相又は気液二相の冷媒が、インジェクション孔h1を介して旋回外線室Poに噴射される。その結果、旋回外線室Poで圧縮される冷媒の温度上昇が抑制され、冷媒に含まれるトリフルオロヨードメタンの分解が抑制される。
 図3Bは、インジェクション孔h1が旋回ラップ12bで塞がれた状態の横断面図である。
 図3Bに示すように、インジェクション孔h1における噴射側の開口部の径は、旋回ラップ12bの肉厚よりも小さい。したがって、図3Bに示す所定位置に旋回スクロール12が移動すると、インジェクション孔h1が旋回ラップ12bで一時的に塞がれた状態になる。
 図3Cは、インジェクション孔h1が旋回内線室Piに連通している状態の横断面図である。
 旋回スクロール12が旋回する過程で、インジェクション孔h1が旋回ラップ12bでいったん塞がれた後(図3B参照)、旋回内線室Piとインジェクション孔h1とが一時的に連通する。その結果、インジェクション孔h1を介して旋回内線室Piに冷媒が噴射されるため、旋回内線室Piにおける冷媒の温度上昇を抑制できる。
 このように本実施形態では、旋回スクロール12の旋回に伴って、インジェクション孔h1の旋回外線室Poへの連通と、インジェクション孔h1の旋回内線室Piへの連通と、が間欠的かつ交互に繰り返されるようになっている。
<効果>
 本実施形態によれば、トリフルオロヨードメタンを含む冷媒を用いることで、これまでよりもGWPが大幅に低くなるため、地球温暖化への影響を抑制できる。また、「凝縮器」で凝縮した比較的低温の冷媒が圧縮室P(図2参照)に噴射される。これによって、圧縮機構部Jで圧縮される冷媒の温度上昇が抑制され、冷媒に含まれるトリフルオロヨードメタンの分解が抑制される。したがって、圧縮機1の信頼性を高め、ひいては、空気調和機Wの信頼性を高めることができる。
 また、本実施形態によれば、固定スクロール11に1つのインジェクション孔h1が設けられる(図3A参照)。したがって、複数のインジェクション孔(図示せず)が設けられる構成に比べて、圧縮機1の構成を簡素化できるとともに、製造コストを削減できる。
 また、1つのインジェクション孔h1を介して、旋回外線室Po及び旋回内線室Piに交互に冷媒が噴射される。したがって、旋回外線室Poと旋回内線室Piとの間に所定の圧力差があっても、一方に多量の冷媒が噴射され、他方には冷媒が噴射されないということがほとんどない。その結果、インジェクション孔h1を介して、旋回外線室Po及び旋回内線室Piの両方に比較的低温の冷媒を噴射させることができる。
≪変形例≫
 以上、本発明に係る圧縮機1等について実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、実施形態では、インジェクション孔h1の噴射側の開口部の径が、旋回ラップ12bの肉厚よりも小さい構成(図3B参照)について説明したが、これに限らない。すなわち、次の図4に示す構成であってもよい。
<第1の変形例>
 図4は、第1の変形例に係る圧縮機の圧縮機構部JAにおいて、インジェクション孔h2が旋回外線室Po及び旋回内線室Piの両方に連通している状態の横断面図である。
 図4に示す例では、インジェクション孔h2における噴射側の開口部の径が、旋回ラップ12bの肉厚よりも大きくなっている。そして、旋回スクロール12がインジェクション孔h2の中心付近に移動したとき、旋回外線室Po及び旋回内線室Piが、同じタイミングでインジェクション孔h1に連通するようになっている。
 つまり、旋回スクロール12の旋回に伴って、インジェクション孔h2と旋回ラップ12bとが部分的に重なる過程で、インジェクション孔h2が、旋回外線室Po及び旋回内線室Piの両方に連通する。このような構成でも、旋回外線室Po及び旋回内線室Piのそれぞれにおいて、冷媒の温度上昇を抑制し、冷媒に含まれるトリフルオロヨードメタンの分解を抑制できる。
<第2の変形例>
 図5Aは、第2の変形例に係る圧縮機の圧縮機構部JBにおいて、2つのインジェクション孔h3a,h3bが旋回内線室Piに連通している状態の横断面図である。
 図5Aに示す例では、固定スクロール11の台板11aに2つのインジェクション孔h3a,h3bが設けられている。そして、旋回スクロール12が、図5Aに示す所定位置に移動したとき、インジェクション孔h3a,h3bの両方が旋回内線室Piに連通するようになっている。これによって、旋回内線室Piで圧縮される冷媒の温度上昇を抑制できる。
 図5Bは、第2の変形例に係る圧縮機の圧縮機構部JBにおける別の状態を示す横断面図である。
 前記した図5Aの状態から、図5Bに示す所定位置に旋回スクロール12が移動すると、一方のインジェクション孔h3aが旋回内線室Piに連通し、他方のインジェクション孔h3bが旋回外線室Poに連通する。これによって、旋回外線室Poにおいても、冷媒の温度上昇を抑制できる。このように、複数のインジェクション孔h3a,h3bが設けられる構成において、旋回スクロール12の旋回に伴い、旋回外線室Po及び旋回内線室Piのうち少なくとも一方にインジェクション孔h3a,h3bが連通するようにしてもよい。
<第3の変形例>
 図6は、第3の変形例に係る圧縮機の圧縮機構部JCの横断面図である。
 図6に示すように、3つのインジェクション孔h4a,h4b,h4cが固定スクロール11の台板11aに設けられる構成であってもよい。そして、旋回外線室Po及び旋回内線室Piを含む「圧縮室」において、それぞれのインジェクション孔h4a,h4b,h4cが、異なる「圧縮室」に連通するようにしてもよい。このような構成でも、旋回外線室Poや旋回内線室Piで圧縮される冷媒の温度上昇を適切に抑制できる。
 なお、固定スクロール11の台板11aに設けられる複数のインジェクション孔の個数は、2つであってもよいし、また、4つ以上であってもよい。
<第4の変形例>
 図7は、第4の変形例に係る圧縮機の圧縮機構部JDの横断面図である。
 図7に示す例では、固定スクロール11の台板11aに2つのインジェクション孔h5a,h5bが設けられている。これら2つのインジェクション孔h5a,h5bのうち、一方のインジェクション孔h5aは旋回外線室Poのみに連通し、他方のインジェクション孔h5bは旋回内線室Piのみに連通するようになっている。このような構成によれば、前記した実施形態(図3A参照)に比べて、インジェクション孔h5a,h5bに冷媒を導く配管kh(図2参照)内での圧力脈動が抑制され、冷媒が噴射されやすくなる。
 なお、前記した第4の変形例の構成において、インジェクション孔の個数が3つ以上であってもよい。そして、旋回スクロール12の旋回に伴って、複数のインジェクション孔のうち少なくとも一つが旋回外線室Poに連通する一方、旋回内線室Piには連通せず、複数のインジェクション孔のうちの残りは旋回内線室Piに連通する一方、旋回外線室Poには連通しないように構成してもよい。
<第5の変形例>
 図8Aは、第5の変形例に係る圧縮機の圧縮機構部JEの横断面図である。
 図8Aに示す例では、固定スクロール11の台板11aに2つのインジェクション孔h6a,h6bが設けられている。そして、図8Aに示すように、旋回スクロール12の旋回に伴って、旋回内線室Piで冷媒の圧縮が開始された直後に、少なくとも一方のインジェクション孔h6bが旋回内線室Piに連通する。これによって、旋回内線室Piにおける冷媒の温度上昇を抑制できる。
 図8Bは、第5の変形例に係る圧縮機の圧縮機構部JEにおける別の状態を示す横断面図である。
 図8Bに示す所定位置に旋回スクロール12が移動すると、インジェクション孔h6aが旋回外線室Poに連通する。すなわち、旋回スクロール12の旋回に伴って、旋回外線室Poで冷媒の圧縮が開始された直後に少なくとも他方のインジェクション孔h6aが旋回外線室Poに連通する。これによって、旋回外線室Poにおける冷媒の温度上昇を抑制できる。
 図8A、図8Bに示す構成によれば、旋回内線室Piや旋回外線室Poの圧力が比較的低い圧縮開始時に、インジェクション孔h6a,h6bを介して冷媒が噴射される。したがって、「凝縮器」の下流側よりも旋回内線室Piや旋回外線室Poの圧力が低くなりやすいため、インジェクション孔h6a,h6bを介して冷媒が噴射されやすくなる。
 また、冷媒の圧縮開始直後に、インジェクション孔h6a,h6bを介して冷媒が噴射される。これによって、インジェクション孔h6aの付近での冷媒の圧縮比と、インジェクション孔h6bの付近での冷媒の圧縮比と、が略等しくなるため、インジェクション孔h6a,hbに連通する配管kh(図2参照)内での圧力脈動が抑制される。これによって、旋回内線室Piや旋回外線室Poが低圧であることと相まって、冷媒が噴射されやすくなる。その結果、冷媒に含まれるトリフルオロヨードメタンの分解が抑制される。
 なお、2つのインジェクション孔h6a,h6bにおける噴射側の開口部の径が、それぞれ、旋回ラップ12bの肉厚よりも小さくてもよい(図8A、図8B参照)。そして、旋回スクロール12の旋回に伴って、旋回内線室Piで冷媒の圧縮が開始された直後に一方のインジェクション孔h6bが旋回内線室Piに連通し、他方のインジェクション孔h6aは旋回ラップ12bで塞がれることが好ましい。また、旋回スクロール12の旋回に伴って、旋回外線室Poで冷媒の圧縮が開始された直後に他方のインジェクション孔h6aが旋回外線室Poに連通し、一方のインジェクション孔h6bは旋回ラップ12bで塞がれることが好ましい。このような構成によれば、旋回内線室Piと旋回外線室Poとの間に若干の圧力差があっても、インジェクション孔h6a,hbに連通する配管kh(図2参照)内での圧力脈動がさらに抑制される。したがって、冷媒に含まれるトリフルオロヨードメタンの分解を適切に抑制できる。
<他の変形例>
 なお、図1に示す冷媒回路Qの構成は一例であり、これに限定されるものではない。例えば、インジェクション弁Va,Vbに代えて、三方弁(図示せず)を用いてもよい。また、インジェクション弁Va,Vbに代えて、流路抵抗の異なる複数本のキャピラリチューブ(図示せず)を設け、冷媒を通流させるキャピラリチューブを「切替手段」(図示せず)によって、適宜に切り替えるようにしてもよい。
 また、実施形態では、圧縮機1がスクロール式の圧縮機である場合について説明したが、これに限らない。すなわち、ロータリ式やレシプロ式等の別タイプの圧縮機にも適用できる。
 また、実施形態では、室外機Uo及び室内機Uiが1台ずつ設けられた空気調和機W(図1参照)について説明したが、これに限らない。例えば、複数台の室内機を備えるマルチタイプの空気調和機にも、実施形態等を適用できる。また、空気調和機W以外の「冷凍サイクル装置」として、冷凍機、チラー、冷蔵庫等にも、実施形態等を適用できる。
 また、実施形態と各変形例は、適宜に組み合わせることが可能である。例えば、実施形態(図3A参照)と第5の変形例(図8A、図8B参照)とを組み合わせ、圧縮開始直後の旋回内線室Pi及び旋回外線室Poに(第5の変形例)、1つのインジェクション孔h1を介して、間欠的かつ交互に冷媒が噴射されるようにしてもよい(実施形態)。
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 1  圧縮機
 2  アキュムレータ
 3  室外熱交換器(凝縮器/蒸発器)
 4  室外膨張弁(膨張弁)
 5  室内膨張弁(膨張弁)
 6  室内熱交換器(蒸発器/凝縮器)
 7  四方弁
 8  吐出温度センサ
 11 固定スクロール(固定部材)
 11a 台板
 11b 固定ラップ
 12 旋回スクロール(移動部材)
 12a 台板
 12b 旋回ラップ
 13 フレーム
 14 クランク軸
 18 電動機
 19 密閉容器
 h1,h2,h3a,h3b,h4a,h4b,h4c,h5a,h5b,h6a,h6b インジェクション孔
 Go 室外制御回路(制御手段)
 Gi 室内制御回路(制御手段)
 J,JA,JB,JC,JD,JE 圧縮機構部
 kg,kh 配管
 L  冷凍機油
 M  吸入室
 N  吐出口
 P  圧縮室
 Po 旋回外線室(圧縮室)
 Pi 旋回内線室(圧縮室)
 Q  冷媒回路
 Va,Vb インジェクション弁(切替手段)
 W  空気調和機(冷凍サイクル装置)

Claims (12)

  1.  吸入室を介して吸い込まれるガス状の冷媒を圧縮室で圧縮し、圧縮した冷媒を吐出口を介して吐出する圧縮機構部と、
     少なくとも前記圧縮機構部を収容し、冷凍機油が封入される密閉容器と、を備え、
     前記冷媒には、トリフルオロヨードメタンが含まれ、
     前記冷凍機油は、前記冷媒との間に相溶性を有し、
     前記圧縮機構部は、前記吐出口が設けられる固定部材と、その移動によって前記固定部材との間に前記圧縮室を形成する移動部材と、を有し、
     前記圧縮機構部には、凝縮した冷媒を前記圧縮室に導くインジェクション孔が設けられている圧縮機。
  2.  前記固定部材は、渦巻き状の固定ラップを有する固定スクロールであり、
     前記移動部材は、渦巻き状の旋回ラップを有する旋回スクロールであり、
     前記旋回スクロールの外線側と、前記固定スクロールと、の間の空間である旋回外線室が、前記圧縮室として機能するとともに、
     前記旋回スクロールの内線側と、前記固定スクロールと、の間の空間である旋回内線室が、別の前記圧縮室として機能し、
     前記旋回スクロールの旋回に伴って、前記旋回外線室及び前記旋回内線室のうち少なくとも一方に前記インジェクション孔が連通すること
     を特徴とする請求項1に記載の圧縮機。
  3.  前記インジェクション孔は、前記固定スクロールにおいて前記固定ラップが立設される台板に設けられること
     を特徴とする請求項2に記載の圧縮機。
  4.  前記インジェクション孔における噴射側の開口部の径は、前記旋回ラップの肉厚よりも小さく、
     前記旋回スクロールの旋回に伴って、前記インジェクション孔が前記旋回ラップで一時的に塞がれ、前記インジェクション孔の前記旋回外線室への連通と、当該インジェクション孔の前記旋回内線室への連通と、が間欠的かつ交互に繰り返されること
     を特徴とする請求項3に記載の圧縮機。
  5.  前記インジェクション孔における噴射側の開口部の径は、前記旋回ラップの肉厚よりも大きく、
     前記旋回スクロールの旋回に伴って、前記インジェクション孔と前記旋回ラップとが部分的に重なる過程で、前記インジェクション孔が、前記旋回外線室及び前記旋回内線室の両方に連通すること
     を特徴とする請求項3に記載の圧縮機。
  6.  前記固定スクロールの前記台板には、複数の前記インジェクション孔が設けられ、
     前記旋回外線室及び前記旋回内線室を含む前記圧縮室において、それぞれの前記インジェクション孔が、異なる前記圧縮室に連通すること
     を特徴とする請求項3に記載の圧縮機。
  7.  前記固定スクロールの前記台板には、複数の前記インジェクション孔が設けられ、
     前記旋回スクロールの旋回に伴って、複数の前記インジェクション孔のうち少なくとも一つが前記旋回外線室に連通する一方、前記旋回内線室には連通せず、複数の前記インジェクション孔のうちの残りは前記旋回内線室に連通する一方、前記旋回外線室には連通しないこと
     を特徴とする請求項3に記載の圧縮機。
  8.  前記固定スクロールの前記台板には、2つの前記インジェクション孔が設けられ、
     前記旋回スクロールの旋回に伴って、前記旋回内線室で冷媒の圧縮が開始された直後に少なくとも一方の前記インジェクション孔が当該旋回内線室に連通し、
     前記旋回スクロールの旋回に伴って、前記旋回外線室で冷媒の圧縮が開始された直後に少なくとも他方の前記インジェクション孔が当該旋回外線室に連通すること
     を特徴とする請求項3に記載の圧縮機。
  9.  2つの前記インジェクション孔における噴射側の開口部の径は、それぞれ、前記旋回ラップの肉厚よりも小さく、
     前記旋回スクロールの旋回に伴って、前記旋回内線室で冷媒の圧縮が開始された直後に一方の前記インジェクション孔が当該旋回内線室に連通し、他方の前記インジェクション孔は前記旋回ラップで塞がれ、
     前記旋回スクロールの旋回に伴って、前記旋回外線室で冷媒の圧縮が開始された直後に他方の前記インジェクション孔が当該旋回外線室に連通し、一方の前記インジェクション孔は前記旋回ラップで塞がれること
     を特徴とする請求項8に記載の圧縮機。
  10.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路を備え、
     前記圧縮機は、
     吸入室を介して吸い込まれるガス状の冷媒を圧縮室で圧縮し、圧縮した冷媒を吐出口を介して吐出する圧縮機構部と、
     少なくとも前記圧縮機構部を収容し、冷凍機油が封入される密閉容器と、を備え、
     前記冷媒には、トリフルオロヨードメタンが含まれ、
     前記冷凍機油は、前記冷媒との間に相溶性を有し、
     前記圧縮機構部は、前記吐出口が設けられる固定部材と、その移動によって前記固定部材との間に前記圧縮室を形成する移動部材と、を有し、
     前記圧縮機構部には、凝縮した冷媒を前記圧縮室に導くインジェクション孔が設けられている冷凍サイクル装置。
  11.  前記圧縮機から吐出される冷媒の温度を検出する吐出温度センサと、
     前記インジェクション孔に冷媒を導く配管に設けられ、前記配管を介した冷媒の通流/遮断を切り替える切替手段と、
     前記吐出温度センサの検出値が所定値以上になった場合、前記配管及び前記インジェクション孔を順次に介して冷媒が通流するように前記切替手段を切り替える制御手段と、を備えること
     を特徴とする請求項10に記載の冷凍サイクル装置。
  12.  前記冷凍機油は、ポリオールエステル油又はポリビニルエーテル油であること
     を特徴とする請求項10又は請求項11に記載の冷凍サイクル装置。
PCT/JP2019/025682 2018-09-06 2019-06-27 圧縮機、及び、これを備える冷凍サイクル装置 WO2020049844A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571084A JPWO2020049844A1 (ja) 2018-09-06 2019-06-27 圧縮機、及び、これを備える冷凍サイクル装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018166533 2018-09-06
JP2018-166533 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020049844A1 true WO2020049844A1 (ja) 2020-03-12

Family

ID=69722813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025682 WO2020049844A1 (ja) 2018-09-06 2019-06-27 圧縮機、及び、これを備える冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JPWO2020049844A1 (ja)
WO (1) WO2020049844A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113833654A (zh) * 2020-06-08 2021-12-24 日立江森自控空调有限公司 涡旋压缩机以及冷冻循环装置
JP7212189B1 (ja) 2022-05-24 2023-01-24 日立ジョンソンコントロールズ空調株式会社 密閉型圧縮機及び冷凍サイクル装置
EP4134603A4 (en) * 2020-04-07 2023-05-24 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187584A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd ヘリウム用スクロ−ル圧縮機
JP2008128493A (ja) * 2006-11-16 2008-06-05 Sanden Corp 冷凍回路及び該冷凍回路を用いた車両用空調装置
JP2008138589A (ja) * 2006-12-01 2008-06-19 Sanden Corp 冷凍回路の往復動型圧縮機
JP2011502207A (ja) * 2007-10-31 2011-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヨードトリフルオロメタンを含む組成物およびそれらの使用
JP2012102705A (ja) * 2010-11-12 2012-05-31 Daikin Industries Ltd スクロール圧縮機
WO2017141342A1 (ja) * 2016-02-16 2017-08-24 三菱電機株式会社 スクロール圧縮機
JP2017172348A (ja) * 2016-03-18 2017-09-28 日立ジョンソンコントロールズ空調株式会社 容積形圧縮機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243481A (ja) * 1987-03-31 1988-10-11 Toshiba Corp スクロ−ルコンプレツサ
JPH0618860U (ja) * 1992-08-05 1994-03-11 タバイエスペック株式会社 中間インジェクション回路付きヒートポンプ兼用冷凍回路
JP6522345B2 (ja) * 2015-01-13 2019-05-29 日立ジョンソンコントロールズ空調株式会社 冷凍装置及び密閉型電動圧縮機
JP6615526B2 (ja) * 2015-07-31 2019-12-04 Jxtgエネルギー株式会社 冷凍機油、および冷凍機用作動流体組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187584A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd ヘリウム用スクロ−ル圧縮機
JP2008128493A (ja) * 2006-11-16 2008-06-05 Sanden Corp 冷凍回路及び該冷凍回路を用いた車両用空調装置
JP2008138589A (ja) * 2006-12-01 2008-06-19 Sanden Corp 冷凍回路の往復動型圧縮機
JP2011502207A (ja) * 2007-10-31 2011-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヨードトリフルオロメタンを含む組成物およびそれらの使用
JP2012102705A (ja) * 2010-11-12 2012-05-31 Daikin Industries Ltd スクロール圧縮機
WO2017141342A1 (ja) * 2016-02-16 2017-08-24 三菱電機株式会社 スクロール圧縮機
JP2017172348A (ja) * 2016-03-18 2017-09-28 日立ジョンソンコントロールズ空調株式会社 容積形圧縮機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4134603A4 (en) * 2020-04-07 2023-05-24 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE
CN113833654A (zh) * 2020-06-08 2021-12-24 日立江森自控空调有限公司 涡旋压缩机以及冷冻循环装置
JP7212189B1 (ja) 2022-05-24 2023-01-24 日立ジョンソンコントロールズ空調株式会社 密閉型圧縮機及び冷凍サイクル装置
JP2023172615A (ja) * 2022-05-24 2023-12-06 日立ジョンソンコントロールズ空調株式会社 密閉型圧縮機及び冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2020049844A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
CN109072900B (zh) 压缩机和热循环系统
JP6545338B1 (ja) 冷凍サイクル装置
JP6545337B1 (ja) 冷凍サイクル装置
WO2020049844A1 (ja) 圧縮機、及び、これを備える冷凍サイクル装置
EP3410041A1 (en) Refrigeration cycle device
EP2261579A1 (en) Freezing device
JP2009228476A (ja) スクロール圧縮機
JP2010243148A (ja) 冷凍サイクル装置
WO2020050020A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP6924888B1 (ja) 冷凍サイクル装置
JPWO2019239528A1 (ja) 冷媒組成物及びこれを用いた冷凍サイクル装置
JP6899360B2 (ja) 冷凍サイクル装置
WO2020090759A1 (ja) 冷凍サイクル装置
WO2020031801A1 (ja) 密閉型電動圧縮機及びこれを用いた冷凍空調装置
JP6897119B2 (ja) 冷凍装置
JP2009228471A (ja) スクロール圧縮機
WO2020050022A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP6821075B1 (ja) 冷凍サイクル装置
WO2024069896A1 (ja) 空気調和機
JP2009228473A (ja) スクロール圧縮機
JP2009228470A (ja) スクロール圧縮機
JP2020030022A (ja) 冷凍空調装置及びこれに用いる密閉型電動圧縮機
JP2018123974A (ja) 冷凍装置
JP2018123976A (ja) 冷凍装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019571084

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858058

Country of ref document: EP

Kind code of ref document: A1