WO2020048052A1 - 一种拉曼光纤放大器的增益动态控制方法、装置和系统 - Google Patents

一种拉曼光纤放大器的增益动态控制方法、装置和系统 Download PDF

Info

Publication number
WO2020048052A1
WO2020048052A1 PCT/CN2018/123701 CN2018123701W WO2020048052A1 WO 2020048052 A1 WO2020048052 A1 WO 2020048052A1 CN 2018123701 W CN2018123701 W CN 2018123701W WO 2020048052 A1 WO2020048052 A1 WO 2020048052A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
power
pump
tilt
slope
Prior art date
Application number
PCT/CN2018/123701
Other languages
English (en)
French (fr)
Inventor
张翠红
付成鹏
陶金涛
张皓
程丽晶
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US17/273,574 priority Critical patent/US12074407B2/en
Publication of WO2020048052A1 publication Critical patent/WO2020048052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0912Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre

Definitions

  • the present invention relates to the technical field of Raman fiber amplifiers, and in particular, to a gain dynamic control method, device, and system of a Raman fiber amplifier.
  • DRA distributed fiber Raman fiber amplifier
  • the WSS-based reconfigurable optical add / drop multiplexing system ( Reconfigurable (Optical Add-Drop Multiplexer, abbreviated as: ROADM) has been commercialized on a large scale, and the increase and decrease of optical channels on the line often occur, resulting in frequent and drastic changes in the total optical power on the optical fiber line. Therefore, the amplifier in the optical fiber line must be able to respond quickly The change of the input optical signal maintains the gain stability and keeps the unswitched optical channels in the line from generating excessive power overshoot or undershoot, while completing the transient time as short as possible.
  • ROADM Reconfigurable optical Add-Drop Multiplexer
  • the distributed Raman optical fiber amplifier cannot detect the input simultaneously (the input power cannot be detected in real time when the pump is turned on) and the output cannot be detected at the same time, which brings certain challenges to the gain control of the distributed Raman optical fiber amplifier.
  • the technical problem to be solved by the embodiments of the present invention is that in the prior art, the increase or decrease of optical channels on a line often occurs, which causes a problem of frequent and drastic changes in the total optical power on the optical fiber line.
  • the present invention provides a gain dynamic control system for a Raman fiber amplifier, including a Raman fiber amplifier composed of one or more pump lasers, for controlling the working state of the one or more pump lasers.
  • a central processing unit corresponding to the Raman fiber amplifier is further provided with an out-of-band ASE detection circuit and an output power detection circuit, wherein the control circuit of the pump laser, the out-of-band ASE detection circuit and the output power detection circuit are respectively connected to the central processing unit
  • the system specifically includes:
  • the maximum gain G corresponding to all the tilts of the Raman fiber amplifier is calculated, and the calculated maximum gain G constitutes a GAIN MASK model.
  • the maintaining the output optical power of the designated first pump laser at the maximum output power further includes:
  • the central processing unit obtains the output power value through the output power detection circuit
  • the central processing unit obtains the out-of-band ASE power according to the out-of-band ASE detection circuit, and calculates the current gain of the Raman amplifier according to the linear relationship between the out-of-band ASE power and gain;
  • the central processing unit calculates the in-band ASE power according to the current output power value, the out-band ASE power, and the Raman gain, thereby obtaining the input signal power, and determining that the input signal power reaches a maximum value.
  • the first pump laser and the second pump laser are specifically:
  • the short-wavelength pump is the first pump laser to which it belongs; when the positive slope is adjusted, the long-wavelength pump is the second pump laser.
  • the system further includes:
  • the central processing unit judges whether the target gain is within the range of GAIN and MASK;
  • the central processing unit directly locks the Raman fiber amplifier to the target gain through the out-of-band ASE value obtained by the out-of-band ASE detection circuit;
  • the central processing unit will lock the Raman fiber amplifier gain to the corresponding maximum GAIN MASK gain, and then gradually increase the lock gain according to the preset first step length until it reaches The target gain or at least one pump laser appears to reach the maximum output power.
  • the system further includes:
  • the central processing unit decrements the gain of the amplifier successively according to a preset second step length until the output pump power margin reaches the preset first distance, and the Raman amplifier The gain is locked at a gain that satisfies the current output pump output optical power margin reaching a preset first distance.
  • the present invention also provides a method for dynamically controlling gain of a Raman fiber amplifier, which includes:
  • the maximum gain G corresponding to all the tilts of the Raman fiber amplifier is calculated, and the calculated maximum gain G constitutes a GAIN MASK model.
  • the maintaining the output optical power of the designated first pump laser at the maximum output power specifically includes:
  • the first pump laser and the second pump laser are specifically:
  • the short-wavelength pump is the first pump laser to which it belongs; when the positive slope is adjusted, the long-wavelength pump is the second pump laser.
  • the method further includes:
  • the target gain is within the range of GAIN and MASK, it is directly locked to the target gain
  • the target gain is within or outside the GAIN MASK range, lock the gain to the maximum value of the corresponding GAIN MASK gain, and then gradually increase the lock gain according to the preset first step length until the target gain is reached or at least one pump appears The laser reaches its maximum output power.
  • the gain of the amplifier is gradually decreased according to a preset second step length until the output pump power margin reaches a preset first distance, and the Raman amplifier is The gain is locked at a gain that satisfies the current output pump output optical power margin reaching a preset first distance.
  • the present invention also provides a gain dynamic control method of a Raman fiber amplifier, which includes: determining whether a target gain is within a GAIN MASK range;
  • the target gain is within the range of GAIN and MASK, it is directly locked to the target gain
  • the target gain is within or outside the GAIN MASK range, lock the gain to the maximum value of the corresponding GAIN MASK gain, and then gradually increase the lock gain according to the preset first step length until the target gain is reached or at least one pump appears The laser reaches its maximum output power.
  • the present invention also provides a gain dynamic control device for a Raman fiber amplifier, the device includes at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores a An instruction executed by the at least one processor, the instruction being set by a program to execute the gain dynamic control method of the Raman fiber amplifier according to the second aspect.
  • the maximum gain GAIN MASK of a Raman fiber amplifier that can be reached in the entire input optical power range is calculated according to the input power range and gain slope of the amplifier. Therefore, it provides a new reference for considering the stability of target gain and signal control in the specific implementation process.
  • the amplifier in the optical fiber line can quickly respond to changes in the input optical signal, maintain gain stability, and keep the unswitched optical channel in the line from generating excessive power overshoot or undershoot.
  • gain switching occurs, the completion time of the switching is made as short as possible.
  • FIG. 1 is a schematic structural diagram of a gain dynamic control system of a Raman fiber amplifier according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for dynamically controlling a gain of a Raman fiber amplifier according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of calculating a maximum output power in a method for dynamically controlling a gain of a Raman fiber amplifier according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for adjusting to a target gain in a method for dynamically controlling gain of a Raman fiber amplifier according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of another gain dynamic control method of a Raman fiber amplifier according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a gain dynamic control device for a Raman fiber amplifier according to an embodiment of the present invention.
  • the unswitched optical channel is also referred to as the remaining channel, which is hereinafter collectively referred to as the remaining channel.
  • the remaining channel In TWDM technology, different optical channels refer to different timing and / or frequency bands occupied by the optical signal transmission process.
  • the target gain range of the Raman amplifier mentioned here includes the gain MASK (GAIN MASK) interval and the extended interval (that is, the area between GAIN MASK and the actual maximum gain).
  • the GAIN MASK interval is based on the hardware of the Raman amplifier.
  • the relationship between the configuration and the slope is the scaled or calculated Raman gain range, that is, the gain range that the input optical power can reach over the entire input power range under the set gain slope conditions.
  • the gain extension interval is a gain range beyond the gain of GAIN and MASK.
  • the maximum gain that the module can achieve under different input power conditions will be different; under lower input power conditions, the Raman gain can reach a larger gain value, which may reach the module's The target gain, and when the input power is large, the Raman gain can reach a larger gain value, and the Raman amplifier may not reach the target gain.
  • Embodiment 1 of the present invention provides a gain dynamic control system for a Raman fiber amplifier.
  • the system includes a Raman fiber amplifier 2 composed of one or more pump lasers ( ⁇ 1, ..., ⁇ n).
  • a control circuit (2-1, ..., 2-n) for controlling the working state of the one or more pump lasers an out-of-band ASE detection circuit 3 and an output power detection circuit are provided corresponding to the Raman fiber amplifier 2 4.
  • the control circuit (2-1, ..., 2-n) of the pump laser, the out-of-band ASE detection circuit 3, and the output power detection circuit 4 are respectively connected to the central processing unit 1, and the system specifically includes:
  • the central processing unit 1 sets the output optical power of all pump lasers to the maximum output pump power to obtain the current Raman amplifier.
  • the maximum gain G corresponding to all the tilts of the Raman fiber amplifier 22 is calculated, and the calculated maximum gain G constitutes a GAIN MASK model.
  • the maximum gain GAIN MASK that the Raman fiber amplifier can reach in the entire input optical power range is calculated. Therefore, it provides a new reference for considering the stability of target gain and signal control in the specific implementation process.
  • the output optical power of the designated first pump laser at the maximum output power actually includes two meanings: 1. the input signal optical power reaches the maximum value; 2.
  • the gain of the Mann fiber amplifier is also at the maximum value; at this time, the condition that the output optical power of the first pump laser in the embodiment of the present invention is at the maximum output power can be met. Therefore, in combination with the system described in Embodiment 1 of the present invention, It also provides the process of implementing the above conditions in the system, including:
  • the central processing unit 1 obtains the output power value through the output power detection circuit 4.
  • the output power value is the power value of the signal output light detected by the optical splitter as shown on the right side in FIG. 1.
  • the central processing unit 1 obtains the out-of-band ASE power according to the out-of-band ASE detection circuit 3, and calculates the current gain of the Raman amplifier according to the linear relationship between the out-of-band ASE power and the gain;
  • the central processing unit 1 calculates the in-band ASE power according to the current output power value, out-of-band ASE power, and Raman gain to obtain the input signal power; where, the formula (output power value-out-of-band ASE power-in-band ASE) Then, the optical power value of the output signal can be calculated. According to the optical power value of the output signal / Raman gain, the input signal power can be obtained.
  • the selection of the first pump laser and the second pump laser also needs to be limited in the optimal implementation scheme.
  • the short-wavelength pump is the first pump laser to which it belongs; when the positive slope is adjusted, the long-wavelength pump is the second pump laser.
  • the pumping wavelengths are divided into two groups, a group of short-wavelength pump lasers, a group of long-wavelength pump lasers, and the pump power of each wavelength in each group There is a fixed proportional relationship between them and remains unchanged.
  • Embodiment 1 of the present invention a maximum gain GAINMASK suitable for various input signals applicable to current Raman fiber amplifiers is given. Therefore, the system proposed by the present utility model also provides a preferred implementation scheme in the specific control process. Specifically:
  • the central processing unit 1 determines whether the target gain is within the range of GAIN MASK
  • the central processing unit 1 directly locks the Raman fiber amplifier 2 to the target gain through the out-of-band ASE value obtained by the out-of-band ASE detection circuit 3.
  • the central processing unit 1 will lock the gain of the Raman fiber amplifier 2 to the corresponding maximum GAIN MASK gain, and then gradually increase the lock gain according to the preset first step length. Until the target gain is reached or at least one pump laser appears to reach the maximum output power.
  • the amplifier in the optical fiber line can quickly respond to the change of the input optical signal, maintain the gain stability, and keep the unswitched optical channel in the line from generating excessive power overshoot or Undershoot, on the other hand, when gain switching occurs, make the switching completion time as short as possible. That is, based on the GAIN MASK reference basis, the above-mentioned jump to the target gain can be achieved without the need to adjust step by step from the beginning as in the prior art.
  • the system further includes:
  • the central processing unit 1 decreases the gain of the amplifier successively according to a preset second step length until the output pump power margin reaches the preset first distance, and Raman The gain of the amplifier is locked at a gain that satisfies the current output pump output optical power margin reaching a preset first distance.
  • the embodiment of the present invention provides the gain dynamic control system of the Raman fiber amplifier according to Embodiment 1, the embodiment of the present invention also proposes a corresponding gain dynamic control method of the Raman fiber amplifier.
  • the solution may be implemented in the system in Embodiment 1, and may also be applied to other systems similar to the system architecture described in Embodiment 1, and is not particularly limited herein. As shown in Figure 2, the method includes:
  • step 201 the output optical powers of all the pump lasers are set to the maximum output pump power to obtain the gain G M and the gain slope tilt M of the current Raman amplifier.
  • the step 201 is usually implemented under the following constraints: the system is configured to make the Raman amplified input signal optical power at the maximum input power when the pump is turned off.
  • step 202 the output optical power of the designated first pump laser is maintained at the maximum output power, and the output optical power values of the pump lasers of other wavelengths are adjusted so that the gain slope of the amplifier reaches the minimum slope to obtain the corresponding Raman gain. G NM and gain slope tilt NM .
  • step 203 the output optical power of the pump is adjusted to ensure that the output optical power of the designated second pump laser is at the maximum output power, and the output optical power values of the pump lasers of other wavelengths are adjusted so that the gain slope of the amplifier reaches the maximum slope To get the corresponding Raman gain G PM and gain slope tilt PM .
  • step 205 the maximum gain G corresponding to all the tilts of the Raman fiber amplifier is calculated, and the calculated maximum gain G constitutes a GAIN MASK model.
  • the maximum gain GAIN MASK that the Raman fiber amplifier can reach in the entire input optical power range is calculated. Therefore, it provides a new reference for considering the stability of target gain and signal control in the specific implementation process.
  • the fitting in the above step 204 may be specifically implemented by the following methods.
  • two points (tilt M , G M ) and (tilt NM , G NM ) are connected to perform linearity.
  • the values of K and B in the gain calculation formula when tilt ⁇ tilt M are obtained, and recorded as: K N and B N.
  • coordinates connect the two points (tilt M , G M ) and (tilt PM , G PM ) to perform a linear fit to obtain the K and B values in the gain calculation formula when tilt ⁇ tilt M , and record it as: K P , B P.
  • K N , B N, K P , and B P the maximum gain G corresponding to all the tilts is calculated by formula (1), which is the maximum gain value of the GAIN MASK model.
  • step 202 As shown in FIG. 3, which specifically includes:
  • step 2021 the out-of-band ASE power is obtained, and the current gain of the Raman amplifier is calculated according to the linear relationship between the out-of-band ASE power and the gain.
  • the in-band ASE power is calculated according to the current output power value, the out-band ASE power, and the Raman gain, so as to obtain the input signal power.
  • step 2023 it is determined that the input signal power reaches a maximum value; the first pump laser corresponding to the specified design is operated at the maximum output power, and the output optical power values of the pump lasers of other wavelengths are adjusted so that the gain slope reaches the minimum slope tilt NM to complete the adjustment of this gain slope pulldown maximum gain G NM .
  • the maximum value of the first wavelength output optical power obtained through the above steps 2021-2023 is the most true maximum value in the strict sense. It considers two factors that affect the output optical power comprehensively, and passes the step 2021- 2023 has performed strict calculations, and has given reference and guarantee to the set values (including the input optical power and the gain of the Raman fiber amplifier).
  • the maximum output power of the pump laser is determined by the laser itself. What needs to be determined in the embodiment of the present invention is the Raman gain obtained when the pump output has high maximum power.
  • the optical power of the input signal is calculated through the output power and gain to determine whether the input optical power exceeds the maximum input optical power. Because the GAIN MASK proposed in the embodiment of the present invention is determined at the time of the maximum input optical power, if the input signal optical power is greater than the specified maximum optical power, the originally calibrated GAIN MASK is not applicable.
  • the selection of the first pump laser and the second pump laser also needs to be limited in the optimal implementation scheme.
  • the amplifier when adjusting the negative slope, the short-wavelength pump is the first pump laser to which it belongs; when adjusting the positive slope, the long-wavelength pump is the second pump laser.
  • the pumping wavelengths are divided into two groups, a group of short-wavelength pump lasers, a group of long-wavelength pump lasers, and the pump power of each wavelength in each group There is a fixed proportional relationship between them and remains unchanged.
  • Embodiment 2 of the present invention a maximum gain GAIN MASK suitable for various input signals applicable to the current Raman fiber amplifier is given. Therefore, the system proposed by the present utility model also provides a preferred implementation scheme of fast response in the specific control process. As shown in FIG. 4, the method further includes:
  • step 301 it is determined whether the target gain is within the GAIN MASK range.
  • step 302 if the target gain is within the range of GAIN and MASK, it is directly locked to the target gain.
  • step 303 if the target gain is within or outside the range of GAIN MASK, the gain is locked to the maximum value of the corresponding GAIN MASK gain, and then the gain is gradually locked according to a preset first step length until the target gain or It appears that at least one pump laser reaches the maximum output power.
  • step 303 security adjustment may be performed through the following step 304, specifically:
  • the gain of the amplifier is gradually decreased according to the preset second step length until the output pump power margin reaches the preset first distance, and the gain of the Raman amplifier is locked. Under the condition that the current output pump output optical power margin reaches a preset first distance gain.
  • the embodiment of the present invention also provides an implementation scheme of GAIN MASK proposed in Embodiment 2 of the present invention in a specific application scenario.
  • the specific application scenario refers to a function in which the GAIN MASK is set as an optional configuration, the method needs to judge the GAIN MASK's availability status in the specific implementation process, thereby completing the entire program flow. Specifically, it will be described in combination with the system shown in Embodiment 1, as shown in FIG. 5, including:
  • step 401 the central processing unit 1 determines the GAIN MASK enabled state of the Raman amplifier, and determines whether the target gain is limited to the GAIN MASK gain range according to the state of the GAIN MASK.
  • step 403 When the GAIN MASK enabled state is in the enabled state; if the target gain is not greater than GAIN MASK, step 403 is performed, and the central processing unit 1 directly locks the Raman gain to the target gain, and ends the current adjustment process. If the target gain is greater than GAIN MASK, perform step 404, the lock gain of the Raman amplifier will be limited to the GAIN MASK range, and the target gain setting exceeding GAIN MASK will be forcibly locked to meet the maximum gain of GAIN MASK, ending the round of adjustment .
  • the process proceeds to step 403, and the lock gain of the Raman amplifier can be set to a gain closest to the target gain.
  • Specific methods include: determining whether the target gain is within the GAIN MASK range, and if the target gain is within the GAIN MASK range, the central processing unit directly locks the actual locking gain of the Raman amplifier to the target gain. If the target gain is outside the GAIN MASK range, the central processing unit first locks the actual locked gain of the Raman amplifier to the maximum value of the corresponding GAIN MASK gain. And proceed to step 405.
  • step 405 the actual locking gain of the Raman amplifier is gradually increased according to the set step value until the target gain is reached or at least one pump laser appears to reach the maximum output power.
  • step 406 if the pump output power reaches the maximum output power value, the actual locked gain of the Raman amplifier is successively decremented according to the preset step of the module, until the output pump output optical power margin reaches a preset first distance. . At this time, the central processing unit locks the target lock gain of the Raman amplifier at the current gain.
  • step 407 the current gain and the target gain are continuously compared, and the pump laser is monitored in real time. If it appears that at least one pump laser reaches the maximum output power, it returns to step 406, and gradually decreases the lock gain of the amplifier in accordance with a preset step, until the output pump power margin reaches the first distance of the preset distance. At this time, the central processing unit locks the target lock gain of the Raman amplifier at the current gain.
  • step 407 the current gain and the target gain are continuously compared.
  • the gain adjustment is started. : Increase the lock gain of the amplifier one by one according to the set step, until the lock gain of the amplifier reaches the target gain, or the pump output power reaches the maximum output power value. If the pump output power reaches the maximum output power value, the lock-in gain of the amplifier is successively decremented according to the set step until the output pump output optical power margin reaches a preset first distance. At this time, the central processing unit locks the gain of the Raman amplifier at the current gain.
  • the Raman amplifier includes GAIN MASK and has a GAIN MASK enable function.
  • GAIN MASK When the GAIN MASK is enabled, the gain of the Raman amplifier can be limited to the GAIN MASK range. Regardless of how the fiber line is switched, the Raman amplifier can meet the gain lock without gain change, and the lock gain of the remaining channels is unchanged, thereby minimizing the overshoot and undershoot caused by the channel switching, and ensuring the communication line. Bit error performance.
  • the Raman amplifier can maximize its actual locking gain to the target gain. At this time, the Raman amplifier can make full use of the pump optical power of the Raman amplifier. Increasing the actual gain of the amplifier and maximizing the noise figure of the line will help improve the error performance when the fiber line is stable.
  • the Raman amplifier performs gain switching by gradually increasing or decreasing, which effectively avoids sudden gain changes in the remaining optical channels and optical power overshoot and undershoot.
  • An embodiment of the present invention further provides a gain dynamic control device for a Raman fiber amplifier.
  • the device includes at least one processor 21; and a memory 22 communicatively connected to the at least one processor 21;
  • the processor 21 and the memory 22 may be connected through a bus or in other manners.
  • the connection through the bus is taken as an example.
  • the memory 22 is a non-volatile computer-readable storage medium, and can be used to store non-volatile software programs and non-volatile computer executable programs, such as the gain dynamic control method of the Raman fiber amplifier in Embodiment 2.
  • the processor 21 executes a method for dynamically controlling a gain of a Raman fiber amplifier by running a nonvolatile software program and instructions stored in the memory 22.
  • the memory 22 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 22 may optionally include a memory remotely disposed with respect to the processor 21, and these remote memories may be connected to the processor 21 through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the program instructions / modules are stored in the memory 22, and when executed by the one or more processors 21, perform the gain dynamic control method of the Raman fiber amplifier in Embodiment 1 described above, for example, execute the above description The steps shown in Figure 2-5.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: Read memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种拉曼光纤放大器的增益动态控制方法、装置和系统,其中方法包括判断目标增益是否在GAIN MASK范围之内;如果目标增益在GAIN MASK范围之内,则直接锁定到目标增益;如果目标增益在GAIN MASK范围之外,则将增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。实现了光纤线路中的放大器能快速响应输入光信号的变化,保持增益稳定性,保持线路中无切换的光通道不产生过大的功率过冲或欠冲,另一方面,当出现增益切换时,使切换的完成时间尽可能短。

Description

一种拉曼光纤放大器的增益动态控制方法、装置和系统 【技术领域】
本发明涉及拉曼光纤放大器技术领域,特别是涉及一种拉曼光纤放大器的增益动态控制方法、装置和系统。
【背景技术】
随着视频业务、大数据、5G及物联网的快速发展,系统对骨干网的网络容量的需求也越来越迫切,100Gbit/s系统已不能完全满足带宽需求,超100Gbit/s的系统如400Gbit/s系统正小规模试用,而超100Gbit/s系统对光信噪比OSNR(Optical Signal Noise Ratio,简写为:OSNR)要求越来越高,传统EDFA放大器已不能满足系统对噪声指数的要求,而分布式光纤拉曼光纤放大器(Distribute Raman Amplifier,简写为:DRA)因其极低的等效噪声指数优势,正被越来越广泛地应用到超高速、超大容量及超长距离的光纤通信系统中。同时,为了支持视频点播、5G高速下载,传统的电交叉速率已不能完全满足巨大的带宽需求,需要在光层领域实现波长级的交叉,因此基于WSS的可重构光分插复用系统(Reconfigurable Optical Add-Drop Multiplexer,简写为:ROADM)已大规模商用,线路上光信道增减经常发生,使得光纤线路上总的光功率产生频繁剧烈变化,从而要求光纤线路中的放大器必须能快速响应输入光信号的变化,保持增益稳定性,保持线路中无切换的光通道不产生过大的功率过冲或欠冲,同时完成瞬态时间尽可能短。
分布式拉曼光纤放大器由于输入(在开泵情况下,未放大的输入功率无法实时检测)输出不能同时检测,给分布式拉曼光纤放大器的增益控制带来一定的挑战,专利201110174019.4和US8797640,公布了一种利用带外自发辐射噪声ASE实现拉曼增益控制的方法,该专利没有提及分布式拉曼光纤放大器增益 动态调节过程及瞬态过程中增益控制方法。
鉴于此,克服该现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明实施例要解决的技术问题是现有技术中,线路上光信道增减经常发生,会造成光纤线路上总的光功率产生频繁剧烈变化的问题。
本发明实施例进一步要解决的技术问题是
本发明实施例采用如下技术方案:
第一方面,本发明提供了一种拉曼光纤放大器的增益动态控制系统,包括由一个或者多个泵浦激光器构成的拉曼光纤放大器,用于控制所述一个或者多个泵浦激光器工作状态的中心处理单元,对应所述拉曼光纤放大器还设置有带外ASE检测电路和输出功率检测电路,其中,泵浦激光器的控制电路、带外ASE检测电路和输出功率检测电路分别连接中心处理单元,所述系统具体包括:
将所有泵浦激光器的输出光功率设置为最大输出泵浦功率,得到当前拉曼放大器的增益G M和增益斜率tilt M
保持指定的第一泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最小斜率,得到相应的拉曼增益G NM和增益斜率tilt NM
调整泵浦输出光功率,保证指定的第二泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最大斜率,得到相应的拉曼增益G PM和增益斜率tilt PM
以增益斜率为第一维度参数,增益为第二维度参数,拟合所述(tilt NM,G NM)和(tilt M,G M)得到tilt<tilt M时增益计算公式中的K和B得到K N,B N,以及拟合所述(tilt M,G M)和(tilt PM,G PM)得到tilt≥tilt M时增益计算公式中的K和B得到K P,B P;其中,所述增益计算公式为G=K*Tilt+B;
计算得到拉曼光纤放大器所有tilt对应的最大增益G,有所述计算得到的最大增益G构成GAIN MASK模型。
优选的,所述保持指定的第一泵浦激光器的输出光功率在最大输出功率,还包括:
中心处理单元通过输出功率检测电路,获得输出功率值;
中心处理单元根据带外ASE检测电路,得到带外ASE功率,并根据带外ASE功率和增益间线性关系,计算拉曼放大器的当前增益;
中心处理单元根据当前的输出功率值、带外ASE功率和拉曼增益,计算带内ASE功率,从而得到输入信号功率,并确定所述输入信号功率达到最大值。
优选的,所述第一泵浦激光器和第二泵浦激光器,具体:
对于双泵浦波长的拉曼光纤放大器,当调节负斜率时,短波长泵浦为所属第一泵浦激光器;当调节正斜率时,长波长泵浦为所述第二泵浦激光器。
优选的,所述系统还包括:
中心处理单元判断目标增益是否在GAIN MASK范围之内;
如果目标增益在GAIN MASK范围之内,则中心处理单元通过带外ASE检测电路获取的带外ASE值,直接将拉曼光纤放大器锁定到目标增益;
如果目标增益在GAIN MASK范围之内外,则中心处理单元将将拉曼光纤放大器增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
优选的,所述系统还包括:
若出现泵浦输出功率达到最大输出功率值,中心处理单元按照预设的第二步进长度逐次递减放大器的增益,直到输出泵浦输出光功率余量达到预设第一距离,将拉曼放大器的增益锁定在满足当前输出泵浦输出光功率余量达到预设第一距离的增益下。
第二方面,本发明还提供了一种拉曼光纤放大器的增益动态控制方法,方法包括:
将所有泵浦激光器的输出光功率设置为最大输出泵浦功率,得到当前拉曼放大器的增益G M和增益斜率tilt M
保持指定的第一泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最小斜率,得到相应的拉曼增益G NM和增益斜率tilt NM
调整泵浦输出光功率,保证指定的第二泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最大斜率,得到相应的拉曼增益G PM和增益斜率tilt PM
以增益斜率为第一维度参数,增益为第二维度参数,拟合所述(tilt NM,G NM)和(tilt M,G M)得到tilt<tilt M时增益计算公式中的K和B得到K N,B N,以及拟合所述(tilt M,G M)和(tilt PM,G PM)得到tilt≥tilt M时增益计算公式中的K和B得到K P,B P;其中,计算公式为G=K*Tilt+B;
计算得到拉曼光纤放大器所有tilt对应的最大增益G,有所述计算得到的最大增益G构成GAIN MASK模型。
优选的,所述保持指定的第一泵浦激光器的输出光功率在最大输出功率,具体包括:
获取带外ASE功率,并根据带外ASE功率和增益间线性关系,计算拉曼放大器的当前增益;
根据当前的输出功率值、带外ASE功率和拉曼增益,计算带内ASE功率,从而得到输入信号功率;
确定所述输入信号功率达到最大值;保持对应指定的第一泵浦激光器工作在最大输出功率下,调整其它波长的泵浦激光器的输出光功率值,使增益斜率达到最小斜率tilt NM,从而完成此增益斜率下拉曼最大增益G NM的调整。
优选的,所述第一泵浦激光器和第二泵浦激光器,具体:
对于双泵浦波长的拉曼光纤放大器,当调节负斜率时,短波长泵浦为所属第一泵浦激光器;当调节正斜率时,长波长泵浦为所述第二泵浦激光器。
优选的,在分布式拉曼光纤放大器具体工作时,所述方法还包括:
判断目标增益是否在GAIN MASK范围之内;
如果目标增益在GAIN MASK范围之内,则直接锁定到目标增益;
如果目标增益在GAIN MASK范围之内外,则将增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
优选的,若出现泵浦输出功率达到最大输出功率值,按照预设的第二步进长度逐次递减放大器的增益,直到输出泵浦输出光功率余量达到预设第一距离,将拉曼放大器的增益锁定在满足当前输出泵浦输出光功率余量达到预设第一距离的增益下。
第三方面,本发明还提供了一种拉曼光纤放大器的增益动态控制方法,包括:判断目标增益是否在GAIN MASK范围之内;
如果目标增益在GAIN MASK范围之内,则直接锁定到目标增益;
如果目标增益在GAIN MASK范围之内外,则将增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
第四方面,本发明还提供了一种拉曼光纤放大器的增益动态控制装置,装置包括至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被程序设置为执行第二方面所述的拉曼光纤放大器的增益动态控制方法。
与现有技术相比,本发明实施例的有益效果在于:
本发明根据放大器的输入功率范围和增益斜率,计算拉曼光纤放大器的在整个输入光功率范围内,均可达到的最大增益GAIN MASK。从而为具体实现过程中,兼顾目标增益和信号控制的稳定性提供了新的参考依据。
进一步的,在本发明优选的方案中,实现了光纤线路中的放大器能快速响应输入光信号的变化,保持增益稳定性,保持线路中无切换的光通道不产生过大的功率过冲或欠冲,另一方面,当出现增益切换时,使切换的完成时间尽可能短。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种拉曼光纤放大器的增益动态控制系统的架构示意图;
图2是本发明实施例提供的一种拉曼光纤放大器的增益动态控制方法的流程示意图;
图3是本发明实施例提供的一种拉曼光纤放大器的增益动态控制方法中计算最大输出功率的流程示意图;
图4是本发明实施例提供的一种拉曼光纤放大器的增益动态控制方法中调整到目标增益的方法流程图;
图5是本发明实施例提供的另一种拉曼光纤放大器的增益动态控制方法的流程示意图;
图6是本发明实施例提供的一种拉曼光纤放大器的增益动态控制装置的结构示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
其中,无切换的光通道也称:剩余通道,后文统称剩余通道,在TWDM技术中,不同光通道指的是光信号传输过程中所占用的不同的时序和/或频段。
这里所提到的拉曼放大器的目标增益范围包含增益MASK(GAIN MASK)区间和扩展区间两个部分(即GAIN MASK与实际最大增益之间的区域),GAIN MASK区间为根据拉曼放大器的硬件配置和斜率之间的关系定标或计算所得的拉曼增益范围,即在设定的增益斜率条件下,输入光功率在整个输入功率范围内都能 达到的增益范围。增益扩展区间是增益超出GAIN MASK之外的增益范围。在扩展区间内,在不同的输入功率条件下,模块可以达到的最大增益将有所不同;在较低的输入功率条件下,拉曼增益可以达到更大的增益值,有可能可以达到模块的目标增益,而当输入功率较大时,拉曼增益可以达到更大的增益值有所降低,拉曼放大器可能无法达到目标增益。
实施例1:
本发明实施例1提供了一种拉曼光纤放大器的增益动态控制系统,如图1所示,包括由一个或者多个泵浦激光器(λ1,…,λn)构成的拉曼光纤放大器2,用于控制所述一个或者多个泵浦激光器工作状态的控制电路(2-1,…,2-n),对应所述拉曼光纤放大器2还设置有带外ASE检测电路3和输出功率检测电路4,其中,泵浦激光器的控制电路(2-1,…,2-n)、带外ASE检测电路3和输出功率检测电路4分别连接中心处理单元1,所述系统具体包括:
配置系统,在关泵的状态下,使拉曼放大的输入信号光功率在最大输入功率,中心处理单元1将所有泵浦激光器的输出光功率设置为最大输出泵浦功率,得到当前拉曼放大器的增益G M和增益斜率tilt M
保持指定的第一泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最小斜率,得到相应的拉曼增益G NM和增益斜率tilt NM
调整泵浦输出光功率,保证指定的第二泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最大斜率,得到相应的拉曼增益G PM和增益斜率tilt PM
以增益斜率为第一维度参数,增益为第二维度参数,拟合所述(tilt NM,G NM)和(tilt M,G M)得到tilt<tilt M时增益计算公式中的K和B得到K N,B N,以及拟合所述(tilt M,G M)和(tilt PM,G PM)得到tilt≥tilt M时增益计算公式中的K和B得到K P,B P;其中,所述增益计算公式为G=K*Tilt+B。
计算得到拉曼光纤放大器22所有tilt对应的最大增益G,有所述计算得到的最大增益G构成GAIN MASK模型。
本发明实施例根据放大器的输入功率范围和增益斜率,计算拉曼光纤放大器的在整个输入光功率范围内,均可达到的最大增益GAIN MASK。从而为具体实现过程中,兼顾目标增益和信号控制的稳定性提供了新的参考依据。
在本发明实施例中,对于所述保持指定的第一泵浦激光器的输出光功率在最大输出功率,实际上包含了两层含义:1、输入的信号光功率达到了最大值;2、拉曼光纤放大器的增益也处于最大值;此时,才能满足本发明实施例中上述第一泵浦激光器的输出光功率在最大输出功率的条件,因此,结合本发明实施例1所述的系统,还提供了在该系统中实现对于上述条件实现的过程,具体包括:
中心处理单元1通过输出功率检测电路4,获得输出功率值。所述输出功率值为图1所示右侧所示的,通过分光器检测到信号输出光的功率值。
中心处理单元1根据带外ASE检测电路3,得到带外ASE功率,并根据带外ASE功率和增益间线性关系,计算拉曼放大器的当前增益;
中心处理单元1根据当前的输出功率值、带外ASE功率和拉曼增益,计算带内ASE功率,从而得到输入信号功率;其中,通过公式(输出功率值-带外ASE功率-带内ASE)便可以计算得到输出信号光功率值,进一步的根据输出信号光功率值/拉曼增益,便可得到输入信号功率。
确定所述输入信号功率达到最大值;保持对应指定的第一泵浦激光器工作在最大增益下,则得到所述指定的第一泵浦激光器的输出光功率在最大输出功率。
在本发明实施例实现过程中,对于所述第一泵浦激光器和第二泵浦激光器的选定,在最优的实现方案中也需要做限定的,具体的,对于双泵浦波长的拉曼光纤放大器,当调节负斜率时,短波长泵浦为所属第一泵浦激光器;当调节正斜率时,长波长泵浦为所述第二泵浦激光器。对于泵浦波长超过2个波长的拉曼光纤放大器,将泵浦波长分为两组,短波长泵浦激光器一组,长波长泵浦激光器一组,每组内的各个波长的泵浦功率之间具有固定的比例关系,并保持不变。当调节负斜率时,保持短波长组泵浦功率最大(由于每一组内的泵浦激 光器的泵浦功率是按照固定比例调的,因此,该组中有一个波长的泵浦功率达到最大值,即保持该组内其它各泵浦激光器的泵浦光功率不再变)。当调节正斜率时,保持长波长组泵浦功率最大(由于每一组内的泵浦激光器的泵浦功率是按照固定比例调的,因此,该组中有一个波长的泵浦功率达到最大值,即保持该组内其它各泵浦激光器的泵浦光功率不再变)。
在本发明实施例1中给与了一种适用于当前拉曼光纤放大器的各种输入信号均能实现的最大增益GAIN MASK。从而,也为本实用新型所提出的系统在具体控制过程中提供了一种优选的实现方案,具体的:
中心处理单元1判断目标增益是否在GAIN MASK范围之内;
如果目标增益在GAIN MASK范围之内,则中心处理单元1通过带外ASE检测电路3获取的带外ASE值,直接将拉曼光纤放大器2锁定到目标增益;
如果目标增益在GAIN MASK范围之内外,则中心处理单元1将将拉曼光纤放大器2增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
在本发明实施例上述的优选的方案中,实现了光纤线路中的放大器能快速响应输入光信号的变化,保持增益稳定性,保持线路中无切换的光通道不产生过大的功率过冲或欠冲,另一方面,当出现增益切换时,使切换的完成时间尽可能短。即基于所述GAIN MASK参考依据,可以实现上述向目标增益的跳转,而无需像现有技术中那边,需要一开始便通过步进的方式调整。
结合本发明实施例,在所述系统实现过程中,还存在一种优选的实现方案,尤其是对于上述目标增益大于GAIN MASK,且接近或者大于拉曼光纤放大器所能实现的最大增益的情况发生时。在该优选的实现方案中,系统还包括:
若出现泵浦输出功率达到最大输出功率值,中心处理单元1按照预设的第二步进长度逐次递减放大器的增益,直到输出泵浦输出光功率余量达到预设第一距离,将拉曼放大器的增益锁定在满足当前输出泵浦输出光功率余量达到预设第一距离的增益下。
实施例2:
在本发明实施例提供了如实施例1所述的一种拉曼光纤放大器的增益动态控制系统之后,本发明实施例还提出了相应的一种拉曼光纤放大器的增益动态控制方法,具体的所述方案可以在实施例1中的系统中实现,也可以适用于类似于实施例1所述的系统架构的其它系统,在此不做特殊限定。如图2所示,方法包括:
在步骤201中,将所有泵浦激光器的输出光功率设置为最大输出泵浦功率,得到当前拉曼放大器的增益G M和增益斜率tilt M
其中,所述步骤201通常是在以下约束条件中实现:配置系统,在关泵的状态下,使拉曼放大的输入信号光功率在最大输入功率。
在步骤202中,保持指定的第一泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最小斜率,得到相应的拉曼增益G NM和增益斜率tilt NM
在步骤203中,调整泵浦输出光功率,保证指定的第二泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最大斜率,得到相应的拉曼增益G PM和增益斜率tilt PM
在步骤204中,以增益斜率为第一维度参数,增益为第二维度参数,拟合所述(tilt NM,G NM)和(tilt M,G M)得到tilt<tilt M时增益计算公式中的K和B得到K N,B N,以及拟合所述(tilt M,G M)和(tilt PM,G PM)得到tilt≥tilt M时增益计算公式中的K和B得到K P,B P;其中,计算公式为G=K*Tilt+B。
在步骤205中,计算得到拉曼光纤放大器所有tilt对应的最大增益G,有所述计算得到的最大增益G构成GAIN MASK模型。
本发明实施例根据放大器的输入功率范围和增益斜率,计算拉曼光纤放大器的在整个输入光功率范围内,均可达到的最大增益GAIN MASK。从而为具体实现过程中,兼顾目标增益和信号控制的稳定性提供了新的参考依据。
在本发明实施例中,上述步骤204中的拟合,具体可以通过以下方法内容实现,在坐标中,通过(tilt M,G M)和(tilt NM,G NM)两点连线,进行线性拟合, 得到tilt<tilt M时增益计算公式中的K,B值,记为:K N,B N。在坐标中,通过(tilt M,G M)和(tilt PM,G PM)两点连线,进行线性拟合,得到tilt≥tilt M时增益计算公式中的K,B值,记为:K P,B P。通过定标参数K N,B N,K P,B P,通过公式(一)计算得到所有tilt对应的最大增益G,即为GAIN MASK模型的最大增益值。
结合本发明实施例对于步骤202中所涉及的,还提供了一种具体实现方式,如图3所示,具体包括:
在步骤2021中,获取带外ASE功率,并根据带外ASE功率和增益间线性关系,计算拉曼放大器的当前增益。
在步骤2022中,根据当前的输出功率值、带外ASE功率和拉曼增益,计算带内ASE功率,从而得到输入信号功率。
在步骤2023中,确定所述输入信号功率达到最大值;保持对应指定的第一泵浦激光器工作在最大输出功率下,调整其它波长的泵浦激光器的输出光功率值,使增益斜率达到最小斜率tilt NM,从而完成此增益斜率下拉曼最大增益G NM的调整。
通过上述步骤2021-2023所得出的第一波长输出光功率最大值,是严格意义上最真实的最大值,其综合考虑影响输出光功率的两大因素,并通过本发明所提出的步骤2021-2023进行了严格的计算,并分别给予设定值(包括输入光功率和拉曼光纤放大器的增益)的参考和保障。
泵浦激光器可输出的最大功率都是激光器本身确定的了。在本发明实施例中需要确定的是在泵浦输出高功率最大时,得到的拉曼增益。通过输出功率和增益计算输入信号光功率,是为了判断该输入光功率是否超过了最大输入光功率。因为本发明实施例所提出的GAIN MASK是在最大输入光功率的时候定出来的,如果输入信号光功率大于了指定的最大光功率,原来定标出来的GAIN MASK就不适用了。
在本发明实施例实现过程中,对于第一泵浦激光器和第二泵浦激光器的选定,在最优的实现方案中也需要做限定的,具体的,对于双泵浦波长的拉曼光纤放大器,当调节负斜率时,短波长泵浦为所属第一泵浦激光器;当调节正斜 率时,长波长泵浦为所述第二泵浦激光器。对于泵浦波长超过2个波长的拉曼光纤放大器,将泵浦波长分为两组,短波长泵浦激光器一组,长波长泵浦激光器一组,每组内的各个波长的泵浦功率之间具有固定的比例关系,并保持不变。当调节负斜率时,保持短波长组泵浦功率最大(由于每一组内的泵浦激光器的泵浦功率是按照固定比例调的,因此,该组中有一个波长的泵浦功率达到最大值,即保持该组内其它各泵浦激光器的泵浦光功率不再变)。当调节正斜率时,保持长波长组泵浦功率最大(由于每一组内的泵浦激光器的泵浦功率是按照固定比例调的,因此,该组中有一个波长的泵浦功率达到最大值,即保持该组内其它各泵浦激光器的泵浦光功率不再变)。
在本发明实施例2中给与了一种适用于当前拉曼光纤放大器的各种输入信号均能实现的最大增益GAIN MASK。从而,也为本实用新型所提出的系统在具体控制过程中提供了一种快速响应的优选实现方案,如图4所示,所述方法还包括:
在步骤301中,判断目标增益是否在GAIN MASK范围之内。
在步骤302中,如果目标增益在GAIN MASK范围之内,则直接锁定到目标增益。
在步骤303中,如果目标增益在GAIN MASK范围之内外,则将增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
优选的,为了使分布式拉曼光纤放大器能够满足会出现一些突发脉冲光的场景,优选的在步骤303之后还可以通过以下步骤304进行安全性调整,具体的:
若出现泵浦输出功率达到最大输出功率值,按照预设的第二步进长度逐次递减放大器的增益,直到输出泵浦输出光功率余量达到预设第一距离,将拉曼放大器的增益锁定在满足当前输出泵浦输出光功率余量达到预设第一距离的增益下。
实施例3:
本发明实施例还提供了一种特定应用场景下,适用本发明实施例2所提出的GAIN MASK的实现方案。其中,所述特定应用场景是指所述GAIN MASK被设定为可选配置的功能,则方法在具体实现过程中便需要对于GAIN MASK的是能状态进行判断,从而完成整个方案流程。具体的将结合实施例1所示的系统进行阐述,如图5所示,包括:
在步骤401中,中心处理单元1判断拉曼放大器的GAIN MASK使能状态,根据GAIN MASK的状态,判断目标增益是否被限制在GAIN MASK的增益范围之内。
当GAIN MASK使能状态处于使能状态时;如果目标增益不大于GAIN MASK,执行步骤403,中心处理单元1直接将拉曼增益锁定到目标增益中,结束本轮调整过程。如果目标增益大于GAIN MASK,执行步骤404,拉曼放大器的锁定增益将被限制在GAIN MASK范围内,超过GAIN MASK的目标增益设置将被强制锁定在满足GAIN MASK的最大增益,结束本轮调整过程。
当GAIN MASK使能状态处于非使能时,进入步骤403,拉曼放大器的锁定增益将可以设置到最接近目标增益的增益下。具体方式包括:判断目标增益是否在GAIN MASK范围之内,如果目标增益在GAIN MASK范围之内,则中心处理单元直接将拉曼放大器的实际锁定增益锁定到目标增益。如果目标增益在GAIN MASK范围之外,则中心处理单元先将拉曼放大器的实际锁定增益锁定到增益锁定到对应的GAIN MASK增益的最大值。并进入步骤405。
在步骤405中,按照设定的步进值,逐步递增拉曼放大器实际的锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
在步骤406中,若出现泵浦输出功率达到最大输出功率值,按照模块预设的步进逐次递减拉曼放大器的实际锁定增益,直到输出泵浦输出光功率余量达到预设的第一距离。此时,中心处理单元将拉曼放大器的目标锁定增益锁定在当前增益。
在步骤407中,持续进行当前增益和目标增益比较,并实时监测泵浦激光器。如果出现至少一个泵浦激光器达到最大输出功率,则回跳到步骤406,按照 预设的步进逐次递减放大器的锁定增益,直到输出泵浦输出光功率余量达到预设距离第一距离。此时,中心处理单元将拉曼放大器的目标锁定增益锁定在当前增益。
在步骤407中,持续进行当前增益和目标增益比较,当锁定增益小于目标增益,且出现泵浦输出光功率小于存储的最大输出光功率值的差值大于预设第二距离时,启动增益调整:按照设定的步进逐次递增放大器的锁定增益,直到放大器的锁定增益达到目标增益,或出现泵浦输出功率达到最大输出功率值。若出现泵浦输出功率达到最大输出功率值,按照设定的步进逐次递减放大器的锁定增益,直到输出泵浦输出光功率余量达到预设的第一距离。此时,中心处理单元将拉曼放大器的增益锁定在当前增益。
在本发明实施例中,拉曼放大器包含GAIN MASK,且具有GAIN MASK使能功能,当GAIN MASK使能为使能状态时,可将拉曼放大器的增益限制在GAIN MASK范围之内,此时无论光纤线路如何切换,拉曼放大器均可满足增益锁定,不会发生增益变化,使剩余通道的锁定增益不变,从而最大限度地降低通道切换引起的过冲和欠冲幅度,保证通信线路的误码性能。
另一方面,当GAIN MASK使能为非使能状态时,拉曼放大器可以将其实际锁定增益最大限度地接近目标增益,此时拉曼放大器可以充分利用拉曼放大器的泵浦输出光功率,提升放大器的实际增益,最大限度的改善线路的噪声指数,有利于改进光纤线路稳态时的误码性能。当光纤线路发生通道切换,导致信号光功率改变时,拉曼放大器通过逐步递增或递减的方式进行增益切换,有效避免剩余光通道的增益发生突变和出现光功率过冲和欠冲。
实施例4:
本发明实施例还提供一种拉曼光纤放大器的增益动态控制装置,如图6所示,装置包括至少一个处理器21;以及,与所述至少一个处理器21通信连接的存储器22;
处理器21和存储器22可以通过总线或者其它方式连接,图6中以通过总线连接为例。
存储器22作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序和非易失性计算机可执行程序,如实施例2中的拉曼光纤放大器的增益动态控制方法。处理器21通过运行存储在存储器22中的非易失性软件程序和指令,从而执行拉曼光纤放大器的增益动态控制方法。
存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其它非易失性固态存储器件。在一些实施例中,存储器22可选包括相对于处理器21远程设置的存储器,这些远程存储器可以通过网络连接至处理器21。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令/模块存储在所述存储器22中,当被所述一个或者多个处理器21执行时,执行上述实施例1中的拉曼光纤放大器的增益动态控制方法,例如,执行以上描述的图2-5所示的各个步骤。
值得说明的是,上述装置内的单元之间的信息交互、执行过程等内容,由于与本发明的处理方法实施例2和实施例3基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种拉曼光纤放大器的增益动态控制系统,包括由一个或者多个泵浦激光器构成的拉曼光纤放大器,用于控制所述一个或者多个泵浦激光器工作状态的中心处理单元,对应所述拉曼光纤放大器还设置有带外ASE检测电路和输出功率检测电路,其中,泵浦激光器的控制电路、带外ASE检测电路和输出功率检测电路分别连接中心处理单元,其特征在于,所述系统具体包括:
    配置系统,在关泵的状态下,使拉曼放大的输入信号光功率在最大输入功率,中心处理单元将所有泵浦激光器的输出光功率设置为最大输出泵浦功率,得到当前拉曼放大器的增益G M和增益斜率tilt M
    保持指定的第一泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最小斜率,得到相应的拉曼增益G NM和增益斜率tilt NM
    调整泵浦输出光功率,保证指定的第二泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最大斜率,得到相应的拉曼增益G PM和增益斜率tilt PM
    以增益斜率为第一维度参数,增益为第二维度参数,拟合所述(tilt NM,G NM)和(tilt M,G M)得到tilt<tilt M时增益计算公式中的K和B得到K N,B N,以及拟合所述(tilt M,G M)和(tilt PM,G PM)得到tilt≥tilt M时增益计算公式中的K和B得到K P,B P;其中,所述增益计算公式为G=K*Tilt+B;
    计算得到拉曼光纤放大器所有tilt对应的最大增益G,有所述计算得到的最大增益G构成GAIN MASK模型。
  2. 根据权利要求1所述的拉曼光纤放大器的增益动态控制系统,其特征在于,所述保持指定的第一泵浦激光器的输出光功率在最大输出功率,还包括:
    中心处理单元通过输出功率检测电路,获得输出功率值;
    中心处理单元根据带外ASE检测电路,得到带外ASE功率,并根据带外ASE功率和增益间线性关系,计算拉曼放大器的当前增益;
    中心处理单元根据当前的输出功率值、带外ASE功率和拉曼增益,计算带内ASE功率,从而得到输入信号功率,并确定所述输入信号功率达到最大值。
  3. 根据权利要求2所述的拉曼光纤放大器的增益动态控制系统,其特征在于,所述第一泵浦激光器和第二泵浦激光器,具体:
    对于双泵浦波长的拉曼光纤放大器,当调节负斜率时,短波长泵浦为所属第一泵浦激光器;当调节正斜率时,长波长泵浦为所述第二泵浦激光器。
  4. 根据权利要求1所述的拉曼光纤放大器的增益动态控制系统,其特征在于,所述系统还包括:
    中心处理单元判断目标增益是否在GAIN MASK范围之内;
    如果目标增益在GAIN MASK范围之内,则中心处理单元通过带外ASE检测电路获取的带外ASE值,直接将拉曼光纤放大器锁定到目标增益;
    如果目标增益在GAIN MASK范围之内外,则中心处理单元将将拉曼光纤放大器增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
  5. 一种拉曼光纤放大器的增益动态控制方法,其特征在于,方法包括:
    将所有泵浦激光器的输出光功率设置为最大输出泵浦功率,得到当前拉曼放大器的增益G M和增益斜率tilt M
    保持指定的第一泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最小斜率,得到相应的拉曼增益G NM和增益斜率tilt NM
    调整泵浦输出光功率,保证指定的第二泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最大斜率,得到相应的拉曼增益G PM和增益斜率tilt PM
    以增益斜率为第一维度参数,增益为第二维度参数,拟合所述(tilt NM,G NM)和(tilt M,G M)得到tilt<tilt M时增益计算公式中的K和B得到K N,B N,以及拟合所述(tilt M,G M)和(tilt PM,G PM)得到tilt≥tilt M时增益计算公式中的K和B得到K P,B P;其中,计算公式为G=K*Tilt+B;
    计算得到拉曼光纤放大器所有tilt对应的最大增益G,有所述计算得到的最大增益G构成GAIN MASK模型。
  6. 根据权利要求5所述的拉曼光纤放大器的增益动态控制方法,其特征在于,所述保持指定的第一泵浦激光器的输出光功率在最大输出功率,调整其它波长的泵浦激光器的输出光功率值,使放大器的增益斜率达到最小斜率,得到相应的拉曼增益G NM和增益斜率tilt NM,具体包括:
    获取带外ASE功率,并根据带外ASE功率和增益间线性关系,计算拉曼放大器的当前增益;
    根据当前的输出功率值、带外ASE功率和拉曼增益,计算带内ASE功率,从而得到输入信号功率;
    确定所述输入信号功率达到最大值;保持对应指定的第一泵浦激光器工作在最大输出功率下,调整其它波长的泵浦激光器的输出光功率值,使增益斜率达到最小斜率tilt NM,从而完成此增益斜率下拉曼最大增益G NM的调整。
  7. 根据权利要求6所述的拉曼光纤放大器的增益动态控制方法,其特征在于,所述第一泵浦激光器和第二泵浦激光器,具体:
    对于双泵浦波长的拉曼光纤放大器,当调节负斜率时,短波长泵浦为所属第一泵浦激光器;当调节正斜率时,长波长泵浦为所述第二泵浦激光器。
  8. 根据权利要求6所述的拉曼光纤放大器的增益动态控制方法,其特征在于,在分布式拉曼光纤放大器具体工作时,所述方法还包括:
    判断目标增益是否在GAIN MASK范围之内;
    如果目标增益在GAIN MASK范围之内,则直接锁定到目标增益;
    如果目标增益在GAIN MASK范围之内外,则将增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
  9. 一种拉曼光纤放大器的增益动态控制方法,其特征在于,方法包括:
    判断目标增益是否在GAIN MASK范围之内;
    如果目标增益在GAIN MASK范围之内,则直接锁定到目标增益;
    如果目标增益在GAIN MASK范围之内外,则将增益锁定到对应的GAIN MASK增益的最大值,然后按照预设的第一步进长度,逐步递增锁定增益,直到达到目标增益或者出现至少一个泵浦激光器达到最大输出功率。
  10. 一种拉曼光纤放大器的增益动态控制装置,其特征在于,装置包括至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被程序设置为执行权利要求5-8任一所述的拉曼光纤放大器的增益动态控制方法。
PCT/CN2018/123701 2018-09-04 2018-12-26 一种拉曼光纤放大器的增益动态控制方法、装置和系统 WO2020048052A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/273,574 US12074407B2 (en) 2018-09-04 2018-12-26 Method, device and system for dynamically controlling gain of Raman optical fiber amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811028093.3A CN109103741B (zh) 2018-09-04 2018-09-04 一种拉曼光纤放大器的增益动态控制方法、装置和系统
CN201811028093.3 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020048052A1 true WO2020048052A1 (zh) 2020-03-12

Family

ID=64865131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123701 WO2020048052A1 (zh) 2018-09-04 2018-12-26 一种拉曼光纤放大器的增益动态控制方法、装置和系统

Country Status (3)

Country Link
US (1) US12074407B2 (zh)
CN (1) CN109103741B (zh)
WO (1) WO2020048052A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310791B (zh) * 2020-10-23 2021-10-12 武汉光迅电子技术有限公司 一种增益调节方法和光纤放大器
CN115733544A (zh) * 2021-08-30 2023-03-03 中兴通讯股份有限公司 拉曼放大器增益的检测方法、装置、电子设备和存储介质
CN114665963B (zh) * 2022-02-25 2023-03-24 北京中昱光通科技有限公司 一种改善拉曼放大器增益差异绝对值的方法及装置
CN115189773B (zh) * 2022-07-13 2023-06-27 武汉光迅科技股份有限公司 一种拉曼光纤放大器多维补偿的控制方法及系统
CN115955292B (zh) * 2022-12-02 2024-02-02 江西科技师范大学 一种实现超宽带通信系统自动优化光信噪比与光谱平坦度的方法
CN117033456B (zh) * 2023-06-13 2024-03-22 上海频准激光科技有限公司 一种用于光纤激光器的推荐系统
CN117691451B (zh) * 2023-12-12 2024-08-02 上海频准激光科技有限公司 一种光信号功率调节系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054489A2 (en) * 1999-05-19 2000-11-22 Alcatel An optical amplifier
US20020171917A1 (en) * 2001-05-17 2002-11-21 Lelic Muhidin A. Optical amplifier performance controller and method of use
CN1416229A (zh) * 2001-10-31 2003-05-07 日本电气株式会社 光纤传输系统,喇曼增益斜率测量设备及其测量方法
US9577403B2 (en) * 2013-09-26 2017-02-21 Cisco Technology, Inc. Multi-wavelength distributed raman amplification set-up
CN107437721A (zh) * 2017-08-31 2017-12-05 武汉光迅科技股份有限公司 一种分布式拉曼光纤放大器的增益瞬态控制系统和方法
CN108885382A (zh) * 2016-03-30 2018-11-23 日本电气株式会社 激发光源设备和增益均衡方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969647B2 (en) * 2007-10-08 2011-06-28 Jds Uniphase Corporation Apparatus and method for flattening gain profile of an optical amplifier
CN101789829A (zh) * 2009-12-22 2010-07-28 高致慧 分布式拉曼光纤放大器增益控制方法及装置
CN102307068B (zh) 2011-06-24 2015-04-01 武汉光迅科技股份有限公司 一种实现目标拉曼增益锁定的方法及其拉曼光纤放大器
US8854726B2 (en) * 2012-03-13 2014-10-07 Adva Optical Networking Se Method for controlling signal gain of a Raman amplifier
US8873135B2 (en) * 2012-12-21 2014-10-28 Ciena Corporation Extended dynamic range optical amplifier
US9455546B2 (en) * 2015-01-21 2016-09-27 Cisco Technology, Inc. Raman-based static and dynamic tilt control in an optical system
JP6453447B2 (ja) * 2015-04-14 2019-01-16 日本電信電話株式会社 光ファイバ設計方法
CN106936509B (zh) * 2015-12-29 2020-04-28 海思光电子有限公司 一种拉曼瞬态效应控制方法和装置
CN107370542B (zh) * 2016-05-11 2019-12-27 上海诺基亚贝尔股份有限公司 一种光功率均衡方法及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054489A2 (en) * 1999-05-19 2000-11-22 Alcatel An optical amplifier
US20020171917A1 (en) * 2001-05-17 2002-11-21 Lelic Muhidin A. Optical amplifier performance controller and method of use
CN1416229A (zh) * 2001-10-31 2003-05-07 日本电气株式会社 光纤传输系统,喇曼增益斜率测量设备及其测量方法
US9577403B2 (en) * 2013-09-26 2017-02-21 Cisco Technology, Inc. Multi-wavelength distributed raman amplification set-up
CN108885382A (zh) * 2016-03-30 2018-11-23 日本电气株式会社 激发光源设备和增益均衡方法
CN107437721A (zh) * 2017-08-31 2017-12-05 武汉光迅科技股份有限公司 一种分布式拉曼光纤放大器的增益瞬态控制系统和方法

Also Published As

Publication number Publication date
CN109103741B (zh) 2019-11-26
US12074407B2 (en) 2024-08-27
CN109103741A (zh) 2018-12-28
US20210344163A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020048052A1 (zh) 一种拉曼光纤放大器的增益动态控制方法、装置和系统
WO2019041682A1 (zh) 一种分布式拉曼光纤放大器的增益瞬态控制系统和方法
EP0932228B1 (en) Split-pumped dual stage optical fiber amplifier
JP6202917B2 (ja) 雑音指数を最適化したハイブリッド光学増幅器
JP4188573B2 (ja) 光増幅器の増幅帯域拡大方法、光増幅器、及び増設ユニット
WO2014036764A1 (zh) 混合光纤放大器及其增益、增益斜率的调整方法
US9252558B2 (en) Optical amplifier
JP2010097185A (ja) ラマン増幅器およびその制御方法
WO2015109449A1 (zh) 确定拉曼光放大器的增益的方法、装置和拉曼光放大器
WO2013097104A1 (zh) 一种均衡链路性能的方法和装置
CN113169797B (zh) 用于相互控制光交换机中放大和切换状态的方法和装置
JP4094905B2 (ja) ラマン光増幅器
JP2001168426A (ja) ブロック利得等化器
JPWO2004040719A1 (ja) 光増幅器の制御装置及び制御方法
US20030169479A1 (en) Method and apparatus for achieving flat broadband raman gain
US8427739B2 (en) Optical amplifier
US8441721B2 (en) System and method of Raman amplifier pump control
US7365903B2 (en) Apparatus and method for all-optical control of gain and gain flattening on an optical amplifier
Yun et al. Dynamic erbium-doped fiber amplifier with automatic gain flattening
CN112583489A (zh) 一种光网络功率控制自动方法及装置、存储介质
CN108242967B (zh) 一种功率调整方法及装置
US20220131330A1 (en) Optical amplifier and gain adjustment method for optical amplifier
JP6052295B2 (ja) ラマン増幅器および利得制御方法
US11916590B2 (en) Distributed in-service spectrum power compensation
KR100772510B1 (ko) 광증폭기의 이득 및 이득 평탄화 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932574

Country of ref document: EP

Kind code of ref document: A1