WO2014036764A1 - 混合光纤放大器及其增益、增益斜率的调整方法 - Google Patents

混合光纤放大器及其增益、增益斜率的调整方法 Download PDF

Info

Publication number
WO2014036764A1
WO2014036764A1 PCT/CN2012/082101 CN2012082101W WO2014036764A1 WO 2014036764 A1 WO2014036764 A1 WO 2014036764A1 CN 2012082101 W CN2012082101 W CN 2012082101W WO 2014036764 A1 WO2014036764 A1 WO 2014036764A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
fiber amplifier
slope
erbium
adjusting
Prior art date
Application number
PCT/CN2012/082101
Other languages
English (en)
French (fr)
Inventor
付成鹏
张翠红
熊涛
乐孟辉
陶金涛
余振宇
景运瑜
卜勤练
余春平
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US14/426,047 priority Critical patent/US9722559B2/en
Publication of WO2014036764A1 publication Critical patent/WO2014036764A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Definitions

  • the invention belongs to the field of optical communication technologies, and in particular relates to a hybrid optical fiber amplifier and a method and a device for adjusting the gain and the gain slope.
  • RFA and EDFA will cooperate with each other in the communication system to compensate each other.
  • RFA and EDFA are independently used and independently adjusted. There is no unified control platform to adjust the amplification gain and gain coefficient of the amplifier, so that it is difficult to achieve the expected combination of the existing RFA and EDFA. Magnification effect.
  • the gain adjustment principle is: The gain generated on the erbium-doped fiber in the EDFA is kept constant, and the gain change of the EDFA is the gain generated by the erbium-doped fiber.
  • the present invention provides a hybrid optical fiber amplifier, which aims to solve the problem that the existing independently adjusted RFA and EDFA cannot achieve the expected amplification effect due to lack of unified control, and the existing EDFA noise index of the built-in VOA is large. problem.
  • the present invention is achieved by a hybrid optical fiber amplifier comprising: a Raman fiber amplifier and an erbium doped fiber amplifier without a variable attenuator, the Raman fiber amplifier comprising a pump signal combiner, and the pump a pump laser group connected to the reflective end of the pump signal combiner, an out-of-band narrow-band filter connected to the output of the pump signal combiner, and a photodetector connected to the transmissive end of the out-of-band narrow-band filter
  • the erbium doped fiber amplifier includes a sequentially coupled input coupler, an erbium doped fiber, an output coupler, and an input photodetector coupled to the small end of the input coupler, coupled to the small end of the output coupler Outputting a photodetector, the output of the out-of-band narrowband filter being connected to an input of the input clutch, the hybrid fiber amplifier further comprising means for coordinated control of the Raman fiber according to an expected amplification requirement
  • a control module that adjusts the gain and/or
  • Another object of the present invention is to provide a method for adjusting a gain and a gain slope of a hybrid optical fiber amplifier including a Raman fiber amplifier and an erbium doped fiber amplifier that does not have a variable attenuator, and the adjustment method includes:
  • the present invention performs coordinated control of the RFA and/or EDFA through a control module, and adjusts the RFA and/or EDFA according to the expected amplification requirement, including the total gain of the hybrid aperture amplifier ⁇ 3 ⁇ 4 and/or the total gain slope 3 ⁇ 4.
  • the gain and / or gain slope can achieve the desired amplification.
  • the EDFA in the hybrid optical fiber amplifier of the present invention does not include VOA, there is no problem of noise index degradation due to VOA attenuation, and waste of pump energy, since there is no VOA attenuation, under the same gain condition.
  • the pump power will be much smaller, which will help improve the transient characteristics: It also simplifies the structure of the EDFA, making the gain control method simpler and more reliable. It can greatly reduce the cost and reduce the work while improving the performance of the product. Consumption. DRAWINGS
  • FIG. 1 is a structural diagram of a hybrid optical fiber amplifier according to a preferred embodiment of the present invention.
  • Figure 2 is a schematic diagram of the gain of EDPA without VOA at different gains
  • Figure 3 is a schematic diagram of adjusting the gain of the hybrid fiber amplifier by adjusting the EDFA gain ⁇ 3 ⁇ 4 and the RFA gain slope;
  • solid 5 is a schematic diagram of adjusting EDFA gain G E , RFA gain G R , RFA gain slope T R to achieve gain variation of the hybrid optical fiber amplifier;
  • FIG. 6 is a schematic diagram of adjusting the RFA gain slope 3 ⁇ 4 to achieve a change in the gain slope of the hybrid fiber amplifier.
  • FIG. 7 is a schematic diagram of adjusting the EDFA gain slope T E , RFA gain G R to achieve a change in the gain slope of the hybrid fiber amplifier;
  • FIG. 8 is a schematic diagram of adjusting the EDFA gain slope T E , the RFA gain slope T R , and the RFA gain G R to achieve a change in the gain slope of the hybrid fiber amplifier;
  • Figure 9 is a block diagram showing the configuration of an apparatus for adjusting the gain and gain slope of a hybrid optical fiber amplifier according to a preferred embodiment of the present invention. Specific travel mode
  • the hybrid fiber amplifier provided by the invention integrates the RFA and the EDFA without VOA, and controls the RFA and EDFA to adjust the amplification parameters through the control module, including controlling the RFA to adjust the gain and/or the gain slope, and controlling the EDFA to adjust the gain to make the mixing.
  • the amplification effect of the fiber amplifier is in line with the pre- Period requirements.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Fig. 1 is a view showing the configuration of a hybrid optical fiber amplifier according to a first embodiment of the present invention, and only parts related to the embodiment of the present invention are shown for convenience of explanation.
  • the hybrid fiber amplifier provided by the embodiment of the invention comprises: a Raman fiber amplifier 1 and an erbium doped fiber amplifier 2 without a variable attenuator, the Raman fiber amplifier 1 comprising a pump signal combiner 11, and the pump a pump laser group 12 connected to the reflection end of the pulse signal combiner 11 , an out-of-band narrow band filter 13 connected to the output end of the pump signal combiner 11 and a transmission end connected to the out-of-band narrow band filter 13 Photodetector 14, the erbium doped fiber amplifier 2 includes a sequentially coupled input coupler 21, an erbium doped fiber 22, an output coupler 23, and an input photodetector 24 coupled to the small end of the input coupler 21 An output photodetector 25 coupled to the small end of the output coupler 23, the output of the out-of-band narrowband filter 13 is coupled to an input of the input coupler 21, the hybrid fiber amplifier further comprising Amplifying the control module 3 that controls the Raman fiber amplifier 1 and/or the erbium doped fiber
  • the gain and gain slope of the Raman fiber amplifier 1 are flexibly adjustable, and the gain and gain slope of the fiber amplifier 2 can also be adjusted, and the control module 3 is used to realize the adjustment.
  • the control module 3 can be a CPU and its peripheral circuits.
  • the control module 3 can calculate the optical power value detected by the input photodetector 23 and the output photodetector 25 of the erbium-doped fiber amplifier 2, according to the expected amplification requirements. Adjusting the algorithm to control the erbium-doped fiber amplifier 2 to change the gain or gain slope, and controlling the pump laser group 12 to adjust the pump power of different wavelengths according to the adjustment algorithm of the photodetector 14 and the Raman optical amplifier 1 to realize the adjustment gain And the gain slope.
  • the pump laser group 12 is a 14 (30 to 1499 nm pump laser, and the pump laser group 12 includes at least two different pump wavelengths, so as to be able to compensate for the erbium-doped fiber amplifier 2 The gain slope variation caused by the change in the gain slope.
  • the gain and gain slope of the Raman fiber amplifier i can be adjusted to meet the amplification requirements.
  • the gain of the erbium doped fiber amplifier 2 can be adjusted, or even simultaneously adjusted.
  • the gain of the Raman fiber amplifier 1 and the erbium doped fiber amplifier 2 and the gain slope of the Raman fiber amplifier 1 satisfy a larger range of gain and gain slope adjustment requirements.
  • the expected amplification requirement is usually to adjust the total gain without changing the total gain slope of the hybrid fiber amplifier, or to adjust the total gain slope if the total gain of the hybrid fiber amplifier is constant, and the control module 3 controls the pull.
  • the MANN fiber amplifier 1 and the erbium doped fiber amplifier 2 are used to achieve the above-mentioned expected amplification requirements.
  • Embodiments of the present invention provide a method for adjusting a gain and a gain slope of a hybrid optical fiber amplifier.
  • the hybrid optical fiber amplifier as shown in the first example, includes a Raman optical fiber amplifier and an erbium doped fiber amplifier that does not include a variable attenuator.
  • the adjustment method provided in this embodiment includes the following steps: Step S201, adjusting the gain G R of the Raman fiber amplifier, the gain slope, and/or adjusting the gain of the floor fiber amplifier ⁇ 3 ⁇ 4, the gain slope T E according to the expected amplification requirement, and adjusting the total gain of the hybrid fiber amplifier G H and / or total gain slope.
  • the total gain of the hybrid fiber amplifier (3 ⁇ 4 is the sum of the Raman fiber amplifier gain G R and the erbium-doped fiber amplifier gain G E
  • the total gain slope of the hybrid fiber amplifier is 3 ⁇ 4 is the Laraman fiber amplifier gain
  • the sum of the slope T R and the erbium-doped fiber amplifier gain slope 3 ⁇ 4 is the expected amplification adjustment effect of the hybrid fiber amplifier, including the total gain G H and/or the total gain slope 3 ⁇ 4, according to the expected amplification Requirement, adjust the gain of the Raman fiber amplifier ⁇ 3 ⁇ 4, the gain slope and / or adjust the gain of the fiber amplifier G E , the gain slope T E , for example, you can adjust the total gain if the total gain slope T H is constant G H , if only the Raman fiber amplifier gain G R can not meet the gain requirement, the erbium-doped fiber amplifier gain G E can be adjusted simultaneously, and the gain slope of the Raman fiber amplifier can be adjusted to compensate for the gain
  • the EDFA provided by the embodiment of the present invention does not include the VOA, adjusting the EDFA gain G E directly by increasing the pump power will inevitably cause the EDFA gain slope T E to change, and also adjusting the EDFA gain slope 3 ⁇ 4 will inevitably cause the EDFA gain G E Variety.
  • the gain words of the EDFA without VOA at different gains are shown, and the gain variation of the EDFA gain in the range of 16 to 20 dB is shown, for 1529 to 1568 nm.
  • the EDFA gain G E changes by about 0.85dB per ldB, and is inversely proportional to dT E threshold ⁇ oc
  • the relationship UU 85 is satisfied, where ⁇ ? £ is the amount of change in the gain of the erbium-doped fiber amplifier, and dT E is the amount of change in the gain slope ⁇ ⁇ of the erbium-doped fiber amplifier.
  • the RFA gain adjustment can be performed by using the out-of-band ASE power
  • the RFA gain slope adjustment can be performed by adjusting the power of different pump wavelengths.
  • the EDFA gain total output power- ASE compensation power (related to gain) - input power
  • the Raman fiber amplifier can just compensate for this change in gain slope by adjusting the ratio of pump power. It also causes the EDFA gain after adjusting the EDFA gain slope T E .
  • the Raman fiber amplifier can also compensate for the adjustment of the EDFA gain slope T E .
  • the hybrid fiber amplifier provided by the embodiment of the present invention is technically feasible. In order to make the adjustment process of the hybrid amplifier of the present invention more clear, several specific adjustment embodiments are described below.
  • Embodiment 3 In this embodiment, the expected amplification requirement is to adjust the total gain G He without changing the total gain slope of the hybrid fiber amplifier 13 ⁇ 4.
  • the erbium-doped fiber amplifier gain G E is adjusted, the Raman fiber amplifier gain G R remains unchanged, and the Raman fiber amplifier gain slope T R is adjusted to compensate for the gain slope due to the erbium-doped fiber amplifier gain G E variation.
  • the total gain slope of the hybrid amplifier is kept constant at 0 ⁇ 4, as shown in Figure 3, by adjusting the EDFA gain (3 ⁇ 4 and RFA gain slope T).
  • R is a schematic diagram of the gain variation of the hybrid fiber amplifier.
  • the EDFA gain G E is 18 dB in the initial state
  • the gain slope T E is 0,
  • the RFA gain 03 ⁇ 4 is 10 dB
  • the gain slope is 0.
  • first adjust the EDFA gain (3 ⁇ 4 from 18dB to 20dB RFA gain G R remains unchanged to 10dB). Because of the benefit (3 ⁇ 4 in the adjustment process from 18dB to 20dB, the gain changes by 2dB, then according to Port 0 '85 relationship, can get EDFA gain slope T E is reduced by 1.7dB, from 0 to
  • the RFA gain slope T R must be increased by 1.7dB, so that the total gain of the hybrid amplifier can be changed from 28dB to 3QdB, and the total gain slope of the hybrid amplifier. Keep 0 unchanged.
  • the actual trip is four:
  • the expected amplification requirement is to adjust the total gain G H with the total gain slope of the hybrid fiber amplifier 3 ⁇ 4 unchanged.
  • the amplification requirement is expected to adjust the total gain G H with the total gain slope of the hybrid fiber amplifier unchanged.
  • the gain of the erbium-doped amplifier and the gain of the Raman fiber amplifier G R are adjusted, and the gain slope T R of the Raman fiber amplifier is adjusted to compensate for the change in gain slope due to the change of the erbium-doped fiber amplifier gain ⁇ 3 ⁇ 4.
  • the ED A gain G E , the RFA gain G R , and the RFA gain slope T R provide a schematic diagram of the gain variation of the hybrid fiber amplifier.
  • the EDFA gain G E is 18 dB in the initial state
  • the gain slope is 0,
  • the RFA gain (3 ⁇ 4 is 10 dB).
  • the gain slope 1 ⁇ is 0.
  • the EDFA gain G E is adjusted from 18dB to 20dB, the RFA gain is G R 10dB to 14dB, and the overall gain is from 28dB to 34dB. Adjustment, but since the EDFA gain G E is adjusted from 1 B to 20 dB, the gain slope is changed from 0 to -1.7 dB.
  • the gain slope 3 ⁇ 4 changes due to the change in gain G E , Therefore, the RFA gain slope ⁇ must be increased by 1.7dB at the same time to keep the total gain slope of the hybrid amplifier constant, so that the total gain of the hybrid amplifier can be changed from 28dB to 30dB, while the total gain slope of the hybrid amplifier remains unchanged at 0.
  • both the RFA and the EDFA gain can be adjusted, and the gain can be adjusted to a large fan to accommodate multiple span losses.
  • the total total gain G H is achieved under the condition that the total gain slope T H of the hybrid fiber amplifier is constant by different adjustment methods.
  • the adjustment method described in the fourth embodiment can be implemented. If the total gain adjustment range of the hybrid amplifier needs to be further expanded, the adjustment method described in the third embodiment can be implemented.
  • the dynamic gain adjustment can be realized by the adjustment method disclosed in Embodiment 5.
  • the erbium-doped fiber amplifier gain G E is adjusted indirectly by adjusting the erbium-doped fiber amplifier gain slope T E
  • the Raman fiber amplifier gain slope T R is adjusted to compensate for the adjustment of the erbium-doped fiber amplifier gain slope T E .
  • the gain slope is adjusted to achieve the adjustment gain (3 ⁇ 4, and the first embodiment directly adjusts the erbium-doped fiber amplifier gain G E .
  • the EDFA gain G E is 18 dB in the initial state, and the gain slope is 0 ⁇ 4.
  • the expected amplification requirement is to adjust the total gain G H with the total gain slope of the hybrid fiber amplifier 3 ⁇ 4 unchanged.
  • the gain of the erbium-doped fiber amplifier is adjusted indirectly by adjusting the gain slope of the erbium-doped fiber amplifier, and the gain of the Raman fiber amplifier is also adjusted, and the gain slope T R of the Raman fiber amplifier is adjusted to compensate the erbium-doped fiber amplifier. The amount of adjustment of the gain slope T E .
  • This embodiment differs from the fifth embodiment in that the present embodiment indirectly adjusts the gain of the erbium-doped fiber amplifier by the gain slope of the erbium-doped erbium amplifier (3 ⁇ 4, and the fifth embodiment directly adjusts the gain of the erbium-doped fiber amplifier G E .
  • the present embodiment indirectly adjusts the gain of the erbium-doped fiber amplifier by the gain slope of the erbium-doped erbium amplifier (3 ⁇ 4, and the fifth embodiment directly adjusts the gain of the erbium-doped fiber amplifier G E .
  • the EDFA gain G E is 1MB in the initial state.
  • the gain slope T E is 0, the RFA gain is 3 ⁇ 43 ⁇ 4 is 10dB, and the gain slope T R is 0.
  • the expected amplification requirement is to adjust the total gain slope ⁇ ⁇ under the condition that the total gain G H of the hybrid fiber amplifier is constant.
  • the total gain slope T H of the hybrid fiber amplifier needs to be changed from 0 dB to 4 dB, and the total gain G H of the hybrid amplifier remains unchanged at 28 dB.
  • the hybrid fiber amplifier is realized only by adjusting the RFA gain slope T R .
  • Schematic diagram of gain slope change in the figure, the initial state EDFA gain G E is 1MB, EDFA gain slope is 0, RFA gain (3 ⁇ 4 is 10dB, gain slope T R is 0, adjust RFA gain slope from OdB to 4dB, RFA The gain (3 ⁇ 4 and EDFA gain G E remain the same, so that the total gain slope of the hybrid amplifier varies from 0dB to 4dB, while the total gain of the hybrid amplifier (3 ⁇ 4 remains 2 B unchanged).
  • the DCM insertion loss may be different from the design standard value, which may cause the EDFA gain spectrum to be generated.
  • Gain slope in general, IdB insertion loss variation also causes a gain slope of -0,85dB.
  • the traditional gain-variable EDFA compensates for DCM insertion loss and standard value insertion loss by adjusting the VOA loss.
  • the variation of the gain slope caused by the variation, and in this embodiment, the variation of the gain slope due to the insertion loss of the DCM and the insertion loss of the standard value can be compensated only by setting the variation amount of the Raman gain slope.
  • the adjustment amount of the EDFA gain ⁇ 3 ⁇ 4 is compensated by adjusting the EDFA gain (3 ⁇ 4 indirectly adjusting the EDFA gain slope T E while adjusting the RFA gain ⁇ 3 ⁇ 4.
  • the EDFA is assumed.
  • the gain and gain slopes satisfy the mathematical relationship of DD () ' 85 , if needed to reduce the slope adjustment
  • the total gain slope T H of the hybrid fiber amplifier needs to be changed from (B to -2 dB, and the total gain G H of the hybrid amplifier remains unchanged at 2 MB.
  • the adjustment EDFA gain slope T E RFA gain is given.
  • the expected amplification requirement is to adjust the total gain slope T H if the total gain GH of the hybrid fiber amplifier is constant.
  • the EDFA gain slope is adjusted indirectly by adjusting the EDFA gain G E , and the RFA gain slope T R is also adjusted, and the RFA gain is adjusted to compensate for the EDFA gain adjustment amount.
  • EDFA gain and gain slope satisfy mathematical relationship ⁇ 0 0 '85, if desired to reduce the slope adjustment 2dB, then found according to the mathematical relationship, simply increasing the gain of EDFA It can be 2.4dB.
  • the total gain slope T H of the hybrid fiber amplifier needs to be changed from OdB to -4dB, and the total gain of the hybrid amplifier remains unchanged at 28dB, as shown in Figure 8, which shows the adjustment of the EDFA gain slope T E and the RFA gain slope T R .
  • the RFA gain G R is a schematic diagram of the gain slope variation of the hybrid fiber amplifier. In the figure, the EDFA gain is ⁇ 18 ⁇ 4 in the initial state, the EDFA gain slope is 0, the RFA gain is 0 dB, and the gain slope is 0. Here, the EDFA gain is obtained.
  • the RFA gain slope and the EDFA gain slope can be mutually compensated, and the gain slope can be adjusted in a wide range, which can be positively and positively. Since there is no VOA in the EDFA, the gain slope adjustment does not introduce an additional noise index.
  • Example 11
  • the expected amplification requirement is that the total gain G H of the hybrid fiber amplifier is constant.
  • the total gain slope T H is adjusted downward.
  • the erbium-doped fiber amplifier gain slope T E is adjusted while the Raman fiber amplifier gain is adjusted (3 ⁇ 4 to compensate for the gain variation due to the erbium-doped fiber amplifier gain slope T E variation.
  • This embodiment differs from the ninth embodiment in that the present embodiment directly adjusts the gain slope of the erbium-doped fiber amplifier 3 ⁇ 4, and the embodiment of the shot is: over-adjusting the EDFA gain (3 ⁇ 4 indirectly adjusting the EDFA gain slope T E , see also Figure 7.
  • the EDFA gain is ⁇ 3 ⁇ 4 is 18dB
  • the EDFA gain slope is 0,
  • the RFA gain is 10dB
  • the gain slope is 1 ⁇ 4.
  • Gain slope 3 ⁇ 4 is reduced by 2dB, then gain (3 ⁇ 4 will increase
  • the expected amplification requirement is to adjust the total gain slope T H if the total gain GH of the hybrid fiber amplifier is constant.
  • the present embodiment directly adjusts the EDFA gain slope T E
  • the tenth embodiment adjusts the EDFA gain slope ⁇ ⁇ by adjusting the EDFA gain ⁇ 3 ⁇ 4 .
  • ⁇ 3 Refer to Figure 8, in the initial state; EDFA gain G E is 18dB, EDFA gain slope is 0, FA gain ⁇ ! ⁇ 10dB, the gain slope T R is 0, the total gain G H needs to be maintained at 28dB, and the total gain slope 3 ⁇ 4 varies from 0dB to -4dB, where the EDFA gain slope T E and the RFA gain slope are adjusted from 0 to -2dB.
  • the mixed light field is realized by different adjustment methods; the total gain is adjusted to 3 ⁇ 4 without changing the total gain (3 ⁇ 4).
  • it can be The adjustment method of adjusting the RFA gain slope 3 ⁇ 4 is realized. If the gain slope of the single wavelength pumped RFA is not adjustable, it can be realized by the adjustment method described in Embodiment 9 or Embodiment 11. In some special cases, The pump power limit of FA, under certain gain conditions, can not reach the required gain slope. Simply adjusting the gain slope of RFA or EDFA cannot meet the slope adjustment requirement. In this case, the slope of both can be adjusted. This is achieved by the method of Embodiment 10 or Embodiment 12.
  • the adjustment control unit 90 is configured to include a total gain G H and/or a hybrid fiber amplifier according to an expected amplification requirement.
  • the Raman optical fiber amplifier and/or the erbium doped fiber amplifier are adjusted by a total gain slope of 3 ⁇ 4, and the adjustment control unit 90 includes a Raman adjustment module 901 and/or an erbium adjustment module 902, wherein the Raman adjustment module 901 is used for The gain of the Raman fiber amplifier is adjusted by ⁇ 3 ⁇ 4, the gain slope T R , and the adjustment module 902 is used to adjust the gain G E and the gain slope of the erbium-doped amplifier.
  • the adjustment control unit 90 of the embodiment implements the function of the adjustment module of the first embodiment, and the adjustment control unit 90 can select an appropriate amplification control method according to the expected amplification requirement and the amplification capability of the FA and the EDFA in the hybrid amplifier.
  • the RFA is controlled by the Raman adjustment module 01 and/or the corresponding amplification operation of the BDFA 1 row is controlled by the Pan adjustment module 902.
  • the erbium-doping adjustment module 902 can adjust the gain slope of the RFA according to the gain slope compensation method of the intermediate-level access loss, and the erbium adjustment module 902 and the Raman adjustment module 901 can also obtain the self-requirement according to the mathematical relationship between the EDFA gain and the gain slope.
  • the gain and gain slope of the RFA in the hybrid fiber amplifier provided by the embodiment of the present invention can be dynamically adjusted, and the gain and gain slope dynamic adjustment can be realized by the EDFA without VOA.
  • the total gain adjustment for the hybrid fiber amplifier can be achieved by While adjusting the RFA gain and EDFA gain, the total gain slope adjustment of the hybrid fiber amplifier adjusts the FA gain slope individually or simultaneously adjusts the gain slope of the EFA and EDFA.
  • the hybrid optical fiber amplifier provided by the embodiment of the present invention can control the RFA and the EDFA to perform corresponding joint adjustment according to the expected amplification requirement, and can achieve the expected adjustment effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种混合光纤放大器及其增益、增益斜率的调整方法,混合光纤放大器包括RFA(1)和不含有可变衰减器的EDFA(2),RFA包括泵浦信号合波器(11)、泵浦激光器组(12)、带外窄带滤波器(13)以及光电探测器(14),EDFA包括顺次连接的输入耦合器(21)、掺铒光纤(22)、输出耦合器(23),以及输入光电探测器(21)、输出光电探测器(25),混合光纤放大器还包括用于根据预期放大要求协调控制EDFA(2)和/或RFA(1)调整增益和/或增益斜率的控制模块(3)。通过控制模块(3)协调控制EDFA(2)和RFA(1),可以达到预期放大效果,此外,由于EDFA(2)不含有可变衰减器,因此可以避免由于可变衰减器带来的一系列问题。混合光纤放大器及其增益、增益斜率的调整方法适用于光通信技术领域。

Description

说 明 书 混合光纤放大器及其增益、 增益斜率的调整方法 技术领域
本发明属于光通信技术领域, 尤其涉及一种混合光纤放大器及其增益、 增 益斜率的调整方法及装置。 背景技术
在光通信领域中为了使得光信号能够传输更远距离, 光纤放大器成为必不 可少的器件之一, 拉曼光纤放大器( Raman fiber amplifier, FA )与掺铒光纤 放大器( erbium-doped fiber amplifier, EDFA )已经在通信系统中得到 t广泛应 用, 随着 相干通信系统的逐步商用, 系统对 RFA的需求也会越来越大, 同时由于 RFA的增益介质就是传输光纤本身,增益系数相对较低, 在改善系统 的光信噪比 ( Optical Signal Noise Ratio , OSNR )方面有独特的优势, 但在功 率提升方面性价比较差, 而 EDPA相比 FA来说噪声指数较大,但在信号功率 放大方面比 RFA有更高的性价比, 因此可以考虑将 RFA与 EDFA在通信系统 中将相互配合, 相互补偿。 但是现有技术中, RFA与 EDFA都是独立使用、 独 立调整的, 没有一个统一控制平台的来调整放大器的放大增益和增益系数, 使 得仅仅将现有的 RFA与 EDFA组合使用, 很难达到预期的放大效果。
此外由于现有的 EDFA内置有可变衰减器(VOA ) , 其增益调整原理是: 使得 EDFA中的掺铒光纤上产生的增益保持不变, EDFA的增益变化就是通过 掺铒光纤上产生的增益减去 VOA的衰减值来实现,亦即当需要调整减小 EDFA 增益时, 通过增大 VOA的衰减值来实现, EDFA增益每减小 ldB, TOA的衰 减值将增大 ldB, 这样带来的结果就是 EDFA在小增益时噪声指数比在大增益 时大很多, 同时泵浦激光器也将由于 VOA的衰减值浪费艮多能量。 发明内容
鉴于上述问题, 本发明的 的在于提供混合光纤放大器, 旨在解决现有独 立调整的 RFA和 EDFA由于没有统一控制,无法达到预期的放大效果, 以及现 有内置 VOA的 EDFA噪声指数较大的技术问题。
本发明是这样实现的, 一种混合光纤放大器, 包括: 拉曼光纤放大器和不 含有可变衰减器的掺铒光纤放大器,所迷拉曼光纤放大器包括泵浦信号合波器、 与所述泵浦信号合波器反射端连接的泵浦激光器组.、 与所述泵浦信号合波器输 出端连接的带外窄带滤波器以及与所迷带外窄带滤波器透射端连接的光电探测 器, 所述掺铒光纤放大器包括顺次连接的输入耦合器、掺铒光纤、输出耦合器, 以及与所述输入耜合器小端连接的输入光电探测器、 与所迷输出耦合器小端连 接的输出光电探测器, 所述带外窄带滤波器的输出端连接到输入輛合器的输入 端, 所迷混合光纤放大器还包括用于根据预期放大要求协调控制所迷拉曼光纤 放大器和 /或掺铒光纤放大器调整增益和 /或增益斜率的控制模块。
本发明的另一目的在于提供一种混合光纤放大器的增益、 增益斜率的调整 方法, 所述混合光纤放大器包括拉曼光纤放大器和不舍有可变衰减器的掺铒光 纤放大器, 所述调整方法包括:
根据预期放大要求., 调整拉曼光纤放大器的增益 GR、 增益斜率 和 /或调 整摻铒光纤放大器的增益 GE、 增益斜率 , 实现调整所迷混合光纤放大器的 总增益 GH和 /或总增益斜率 TH
通过上述技术方案, 本发明通过一控制模块对 RFA和 /或 EDFA进行协调 控制, 根据预期放大要求, 包括混合光紆放大器的总增益 <¾和 /或总增益斜率 ¾, 调整 RFA和 /或 EDFA的增益和 /或增益斜率, 可以达到预期的放大效果。 此外, 由于本发明所述的混合光纤放大器中的 EDFA不包括 VOA, 因此也不会 出现因 VOA衰减带来的噪声指数劣化、泵浦能量浪费的问题,由于不存在 VOA 衰减, 相同增益情况下泵浦功率会小很多, 有助于改善瞬态特性:, 同时也简化 了 EDFA的结构, 使得增益控制方法更为简单, 性能更可靠, 在提高产品性能 的同时, 可以大幅降低成本, 降低功耗。 附图说明
图 1是本发明的较佳实施例提供的混合光纤放大器的结构图;
图 2是不带 VOA的 EDPA在不同增益下的增益谦示意图;
图 3是调整 EDFA增益 <¾与 RFA增益斜率 实现混合光纤放大器增益变 化的示意图;
图 4是只通过 RFA增益 GR实现混合光紆放大器增益变化的示意图; 固 5是调整 EDFA增益 GE、 RFA增益 GR、 RFA增益斜率 TR实现混合光 纤放大器增益变化的示意图;
图 6是调整 RFA增益斜率 ¾实现混合光纤放大器增益斜率变化的示意图 图 7是调整 EDFA增益斜率 TE、. RFA增益 GR实现混合光纤放大器增益斜 率变化的示意图;
图 8是调整 EDFA增益斜率 TE、 RFA增益斜率 TR、 RFA增益 GR实现混 合光纤放大器增益斜率变化的示意图;
图 9是本发明的较佳实施例混合光纤放大器的增益、 增益斜率的调整装置 的结构方框图。 具体实旅方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描迷的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
本发明提供的混合光纤放大器将 RFA和不带 VOA的 EDFA集成为一体, 通过控制模块控制所迷 RFA和 EDFA调整放大参数, 包括控制 RFA调整增益 和 /或增益斜率,控制 EDFA调整增益, 使得混合光纤放大器的放大效果符合预 期要求。
为了说明本发明所述的技术方案:, 下面通过具体实施例来进行说明。
实施例一:
图 1示出了本发明第一实施例提供的混合光纤放大器的结构图, 为了便于 说明仅示出了与本发明实施例相关的部分。
本发明实施例提供的混合光纤放大器包括: 拉曼光纤放大器 1和不含有可 变衰减器的掺铒光纤放大器 2,所述拉曼光纤放大器 1包括泵浦信号合波器 11、 与所述泵浦信号合波器 11反射端连接的泵浦激光器組 12.、 与所述泵浦信号合 波器 11输出端连接的带外窄带滤波器 13以及与所述带外窄带滤波器 13透射端 连接的光电探测器 14, 所述摻铒光纤放大器 2包括顺次连接的输入耦合器 21、 掺铒光纤 22、 输出耦合器 23, 以及与所述输入耦合器 21小端连接的输入光电 探测器 24、 与所述输出耦合器 23小端连接的输出光电探测器 25, 所迷带外窄 带滤波器 13的输出端连接到输入耦合器 21的输入端, 所述混合光纤放大器还 包括用于根据预期放大要求、控制所述拉曼光纤放大器 1和 /或掺铒光纤放大器 2调整增益和 /或增益斜率的控制模块 3。
本发明实旄例中, 拉曼光纤放大器 1的增益和增益斜率灵活可调, 捧铒光 纤放大器 2的增益和增益斜率亦可调, 通过控制模块 3来实现上迷调整, 具体 实现时, 所述控制模块 3可以为一块 CPU及其外围电路, 所述控制模块 3可以 根椐掺铒光纤放大器 2的输入光电探测器 23和输出光电探测器 25检测出的光 功率值, 根据预期放大要求的调整算法, 来控制掺铒光纤放大器 2改变增益或 增益斜率, 同时根据光电探测器 14和拉曼光紆放大器 1的调整算法,控制泵浦 激光器组 12调节不同波长的泵浦功率, 实现调整增益和增益斜率。
作为优选的实施方式, 所迷泵浦激光器组 12为 14(30〜1499nm的泵浦激光 器,所述泵浦激光器组 12至少包含两种不同的泵浦波长,使得能够补偿由于掺 铒光纤放大器 2的增益斜率变化带来的增益波动的劣化。
在一般情况下, 可以通过调整拉曼光纤放大器 i的增益和增益斜率来满足 放大要求, 若为了实现大范围的增益及增益斜率的调节, 可以通过调整掺铒光 纤放大器 2的增益, 甚至同时调整拉曼光纤放大器 1和掺铒光纤放大器 2的增 益以及拉曼光纤放大器 1的增益斜率来满足更大范围的增益及增益斜率的调整 要求。
在实际情况中, 预期放大要求通常是在混合光纤放大器总增益斜率不变的 情况下调整总增益, 或者, 在混合光纤放大器总增益不变的情况下调整总增益 斜率, 控制模块 3通过控制拉曼光纤放大器 1和成掺铒光纤放大器 2, 来实现 上述预期放大要求。 实施例二:
本发明实施例提供了一种混合光纤放大器的增益、 增益斜率的调整方法, 所述混合光纤放大器如实旄例一所示, 包括拉曼光纤放大器和不含有可变衰减 器的掺铒光纤放大器, 本实施例提供的所述调整方法, 包括下述步骤: 步骤 S201、 根据预期放大要求, 调整拉曼光纤放大器的增益 GR、 增益斜 率 和/或调整楼铒光纤放大器的增益 <¾、 增益斜率 TE, 实现, 调整所述混合 光纤放大器的总增益 GH和 /或总增益斜率 。
本步骤中, 所述混合光纤放大器的总增益 (¾为拉曼光纤放大器增益 GR与 掺铒光纤放大器增益 GE之和, 所述混合光纤放大器的总增益斜率 ¾为拉拉曼 光纤放大器增益斜率 TR与掺铒光纤放大器增益斜率 ¾之和, 所迷预期的放大 要求是所述混合光纤放大器预期的放大调整效果, 包括总增益 GH和 /或总增益 斜率 ¾, 根据所述预期放大要求, 调整拉曼光纤放大器的增益 <¾、 增益斜率 和/或调整眷铒光纤放大器的增益 GE、 增益斜率 TE, 比如可以要求在总增益 斜率 TH不变的情况下, 调整总增益 GH, 若仅仅调整拉曼光纤放大器增益 GR 无法满足增益要求, 可同时调整掺铒光纤放大器增益 GE, 并调整拉曼光纤放大 器增益斜率 来#偿由于掺铒光纤放大器增益改变的情况下引起的增益斜率 的变化。
同样, 在本调整方法中, 通常的预期放大要求是在混合光纤放大器总增益 斜率 TH不变的情况下调整总增益 GH,或者,在混合光纤放大器总增益 GH不变 的情况下调整总增益斜率 ¾。
由于本发明实施例提供的 EDFA不包括 VOA,因此直接通过增加泵浦功率 来调整 EDFA增益 GE的同时必然会引起 EDFA增益斜率 TE变化, 同样调整 EDFA增益斜率 ¾必然会引起 EDFA增益 GE变化。作为一种具体的实施方式, 参照图 2,示出了不带 VOA的 EDFA在不同增益下的增益语,图中示出了 EDFA 增益在 16〜20dB范围内的增益变化情况, 对 1529~1568nm整个 C波段范围内, EDFA增益 GE每变化 ldB, EDFA增益斜率 将变化 0.85dB左右, 且呈反比 dTEΠ Λ o c
例变化, 即满足关系 U U 85, 其中 Λ?£为所述掺铒光纤放大器增益 的变化量, dTE为所迷掺铒光纤放大器增益斜率 τΕ的变化量。
作为具体的实施方式 , 本实施例中, 可以通过带外 ASE功率进行 RFA增 益调整, 可以通过调节不同泵浦波长的功率进行 RFA增益斜率调整, 在调整 EDFA增益时, EDFA增益 =总输出功率 -ASE补偿功率(与增益相关) -输入功 率, 改变 EDFA增益时,调节泵浦功率使得总输出功率减去 ASE补偿功率再减 去输入功率的值达到目标要求的增益即可, 只不过在达到 11标增益后, EDFA 的增益会产生一个增益斜率, 而拉曼光纤放大器恰好又能够通过调节泵浦功率 的比例来补偿这种增益斜率的变化, 同样在调整 EDFA增益斜率 TE后会引起 EDFA增益 <¾变化, 而拉曼光纤放大器也可以补偿 EDFA增益斜率 TE的调整 量。 ¾此本发明实施例提供的混合光纤放大器在技术上是可行的。 为了使得更为清楚地了解本发明所迷的混合放大器的调整过程, 下面描迷 几个具体的调整实施例。
实施例三: 在本实施例中,预期放大要求为在混合光纤放大器总增益斜率 1¾不变的情 况下调整总增益 GHe
本实施例中, 调整掺铒光纤放大器增益 GE, 拉曼光纤放大器增益 GR保持 不变, 同时调整拉曼光纤放大器增益斜率 TR来补偿由于摻铒光纤放大器增益 GE变化引起的增益斜率的变化 β
比如需要实现调整混合放大器总增益 GH从 28dB到 3MB增益的变化, 混 合放大器的总增益斜率 ¾保持 0不变, 如图 3所示, 给出了通过调整 EDFA 增益 (¾与 RFA增益斜率 TR实现混合光纤放大器增益变化的示意图, 图示中, 初始态下 EDFA增益 GE为 18dB, 增益斜率 TE为 0, RFA增益 0¾为 10dB, 增 益斜率 为 0, 为了实现混合放大器总增益 GH从 2 B变化到 3QdB, 这里首 先调节 EDFA增益 (¾从 18dB到 20dB, RFA增益 GR保持不变为 10dB» 由于 益(¾在从 18dB向 20dB的调整过程中, 增益改变了 2dB, 那么根据 口0'85关系 , 可以得到 EDFA增益斜率 TE变小了 1.7dB, 由 0变成了
Figure imgf000007_0001
-1.7dB, 因此为了保持混合放大器总增益斜率 ¾为 0不变, RFA增益斜率 TR 必须增大 1.7dB, 这样即可实现混合放大器总增益从 28dB变化到 3QdB, 而混 合放大器的总增益斜率保持 0不变。 实旅倒四:
在本实施例中,预期放大要求为在混合光纤放大器总增益斜率 ¾不变的情 况下调整总增益 GH
本实施例中, 只调整拉曼光紆放大器增益 GR, 同时保持拉曼光纤放大器增 益斜率 1^与掺铒光纤放大器增益 GE不变。
同样假设需要实现调整混合放大器总增益 <¾从 28dB到 30dB增益的变化, 混合放大器的总增益斜率 ¾保持 0不变, 如图 4所示, 给出了只通过 RFA增 益 <¾实现混合光纤放大器增益变化的示意图, 图示中, 初始态下 EDFA增益 GE为 18dB, 增益斜率 TE为 0, RFA增益<¾为 10dB, 增益斜率 为0, 为了 实现混合放大器总增益 <¾从 28dB变化到 30dB, 这里就直接调节 RFA增益 Gi^ lOdB调整到 12dB, 其它均保持不变, 这样即可实现混合放大器总增益从 28dB变化到 30dB,. 而混合放大器的总增益斜率保持 0不变。 实施例五:
在本实施例中,预期放大要求为在混合光纤放大器总增益斜率 不变的情 况下调整总增益 GH
本实施例中, 调整掺铒光奸放大器增益 与拉曼光纤放大器增益 GR, 同 时调整拉曼光纤放大器增益斜率 TR来补偿由于掺铒光纤放大器增益 <¾变化引 起的增益斜率变化。
比如, 假设需要实现调整混合放大器总增益 <¾从 28dB到 34dB增益的变 化, 混合放大器的总增益斜率 ¾保持 0不变, 如图 5所示, 给出了同时调整 ED A增益 GE、 RFA增益 GR、 RFA增益斜率 TR实现混合光纤放大器增益变化 的示意图, 图示中, 初始态下 EDFA增益 GE为 18dB , 增益斜率 为 0 , RFA 增益 (¾为 10dB,增益斜率 1^为0, 为了实现混合放大器总增益 GH从 28dB变 化到 34dB, 这里调整 EDFA增益 GE从 18dB到 20dB, RFA增益 GR 10dB 到 14dB, 总体增益实现了从 28dB到 34dB的调节, 但是由于 EDFA增益 GE 在从 1 B到 20dB的调整过程中,增益斜率 从 0变成了 -1.7dB, 由于没有可 调衰减器补偿, 增益 GE变化导致的增益斜率 ¾的变化, 所以 RFA增益斜率 Τ^ϋ、须同时增大 1.7dB才能保持混合放大器总增益斜率不变, 这样即可实现混 合放大器总增益从 28dB变化到 30dB,而混合放大器的总增益斜率保持 0不变。
本实施例中, RFA与 EDFA增益均可调整, 增益可调范扇大, 适应多种跨 距损耗。
上迷实施例三到实施例五通过不同的调整方法实现了在混合光纤放大器总 增益斜率 TH不变的情况下周整总增益 GH。 一般情况下, 可以通过实施例四所 述的调整方法实现, 若需要进一步扩大混合放大器的总增益调整范围, 可以通 过实施例三所述的调整方法实现, 若还需要进一步实现混合放大器大范画动态 增益调整, 可以通过实施例五所迷的调整方法实现。 实施例
在本实施例中,预期放大要求为在混合光纤放大器总增益斜率 TH不变的情 况下调整总增益 <¾。
本实施例中,通过调整掺铒光纤放大器增益斜率 TE间接调整掺铒光纤放大 器增益 GE, 同时调整拉曼光纤放大器增益斜率 TR来补偿掺铒光纤放大器增益 斜率 TE的调整量。
比如需要实现调整混合放大器总增益 GH从 28dB到 30dB增益的变化, 混 合放大器的总增益斜率 TH保持 0不变, 同样如图 3所示,本实施例与实施例三 不同之处在于, 本实施例是调整增益斜率 ¾来实现调整增益(¾, 而实施例一 是直接调整掺铒光纤放大器增益 GE,图示中,初始态下 EDFA增益 GE为 18dB, 增益斜率 ¾为 0, RFA增益(¾为 10dB,增益斜率 T&为 0,在调整过程中 FA 增益(¾保持不变为 10dB, 需要将 EDFA增益(¾在从 18dB调整到 20dB, 增 益改变了 2dB, 口0'85关系, 可以得到 EDFA增益斜率 TE
Figure imgf000008_0001
小了 l,7dB, 由 0变成了 -1.7dB, 因此这里将 EDFA增益斜率 TE调整到 -1.7dB, 即可实现 EDFA增益(¾由 18dB调整到 20dB, 为了保持混合放大器总增益斜 率 TH为 0不变, RFA增益斜率!^必须增大 l,7dB, 最终实现混合放大器总增 益从 2 B变化到 30dB, 而混合放大器的总增益斜率保持 0不变。 实施例七:
在本实施例中,预期放大要求为在混合光纤放大器总增益斜率 ¾不变的情 况下调整总增益 GH。 本实施例中,通过调整掺铒光纤放大器增益斜率 间接调整掺铒光纤放大 器增益 <¾, 同时也调整拉曼光纤放大器增益 <¾, 并调整拉曼光纤放大器增益 斜率 TR来补偿掺铒光纤放大器增益斜率 TE的调整量。
本实施例与实施例五不同之处在于 , 本实施例通过整掺铒光圩放大器增益 斜率 间接调整掺铒光纤放大器增益(¾, 而实施例五是直接调整掺铒光纤放 大器增益 GE。 同样假设需要实现调整混合放大器总增益 GH从 28dB到 34dB增 益的变化, 混合放大器的总增益斜率 TH保持 0不变, 如图 5所示, 图示中, 初 始态下 EDFA增益 GE为 1MB, 增益斜率 TE为 0, RFA增益 ¾¾为 10dB, 增益 斜率 TR为 0, 这里需将 EDFA增益 (¾从 1 B到 20dB, RFA增益 (¾从 10dB 到 14dB, 为了实现 EDFA增益 <¾从 18dB到 20dB, 通过调整增益斜 从 0 变成了 -〗t7dB即可, 此外为了补偿斜率, RFA增益斜率 必须同时增大 1.7dB 才能保持混合放大器总增益斜率不变。 实施例八:
在本实施例中, 预期放大要求为在混合光纤放大器总增益 GH不变的倩况 下调整总增益斜率 τΗ
本实施例中, 只调整 RFA增益斜率 TR, 同时保持 RFA增益(¾与 EDFA 增益 (¾不变。
比如需要实现混合光纤放大器总增益斜率 TH从变化 OdB到 4dB,混合放大 器的总增益 GH保持 28dB不变, 如图 6所示, 给出了只通过调整 RFA增益斜 率 TR实现混合光纤放大器增益斜率变化的示意图, 图示中, 初始状态下 EDFA 增益 GE为 1MB, EDFA增益斜率为 0, RFA增益 (¾为 10dB, 增益斜率 TR为 0, 调整 RFA增益斜率 从 OdB到 4dB, RFA增益 (¾与 EDFA增益 GE都保 持不变,这样即可实现混合放大器总增益斜率 从 OdB变化到 4dB,而混合放 大器的总增益 (¾保持 2 B不变。
在一种可能的实现方式中, 对于有中间级接入的 EDFA, 比如接入有色散 补偿器(DCM )的 EDFA, 由于 DCM插损与设计标准值可能存在差别, 这会 引起 EDFA增益谱产生增益斜率, 通常来说, IdB的插损变化也会引起 -0,85dB 的增益斜率的变化, 传统的增益可变的 EDFA是通过调整 VOA的损耗来补偿 由于 DCM的插损与标准值插损变化引起的增益斜率变化, 而本实施例中, 只 通过设置拉曼增益斜率的变化量即可补偿这种由于 DCM的插损与标准值插损 变化引起的增益斜率变化。 实施例九:
在本实施例中, 预期放大要求为在混合光纤放大器总增益 GH不变的情况 下调整总增益斜率 。
本实施例中, 通过调整 EDFA增益 (¾间接调整 EDFA增益斜率 TE, 同时 调整 RFA增益 <¾来补偿 EDFA增益 <¾的调整量。在本实施例中,假设 EDFA 的增益和增益斜率满足 D D ()'85的数学关系, 若需要将斜率调整减小
2dB, 那么根据所述数学关系可知, 只需将 EDFA的增益增大 2.4dB即可。
比如, 需要实现混合光纤放大器总增益斜率 TH从( B变化到 -2dB, 混合 放大器的总增益 GH保持 2MB不变, 如图 7所示, 给出了调整 EDFA增益斜率 TE、 RFA增益(¾实现混合光纤放大器增益斜率变化的示意图, 图示中, 初始 状态下 EDFA增益(¾为 18dB, EDFA增益斜率为 0, RFA增益 (¾为 10dB, 增益斜率 为 0,这里将 EDFA增益 GE增大 2.4dB,即从 18dB调整到 20.4dB, 可以间接实现将 EDFA增益斜率 ¾从 OdB调整到 -2dB, 此外还要将 RFA增益 从 lOdB调整到 7.6dB, 以补偿 EDFA增益 GE增大量, 这样即可实现混合放 大器总增益斜率 TH从(MB变化到 -2dB, 而混合放大器的总增益(¾保持 28dB 不变。 实施例十:
在本实施例中, 预期放大要求为在混合光纤放大器总增益 GH不变的情况 下调整总增益斜率 TH
本实施例中, 通过调整 EDFA增益 GE间接调整 EDFA增益斜率 , 同时 也调整 RFA增益斜率 TR,并调整 RFA增益 来补偿 EDFA增益 的调整量。 同样在本实施例中,假设 EDFA的增益和增益斜率满足^^ 00'85的数学关 系, 若需要将斜率调整减小 2dB, 那么根据所述数学关系可知, 只需将 EDFA 的增益增大 2.4dB即可。
比如, 需要实现混合光纤放大器总增益斜率 TH从 OdB变化到 -4dB, 混合 放大器的总增益 保持 28dB不变,如图 8所示, 给出了调整 EDFA增益斜率 TE、 RFA增益斜率 TR、 RFA增益 GR实现混合光纤放大器增益斜率变化的示意 图, 图示中, 初始状态下 EDFA增益 <¾为 18dB, EDFA增益斜率为 0, RFA 增益 0&为 10dB, 增益斜率 为 0, 这里将 EDFA增益(¾增大 2.4dB, 即从 18dB调整到 20,4(iB, 可以间接实现将 EDFA增益斜 TE从 OdB调整到 -2dB, 此外为了达到混合光纤放大器总增益斜率 ¾从 OdB变化到 -4dB, 还需将 RFA 增益斜率 从 OdB调整到 -2dB:, 另外, 还要将 RFA增益 <¾从 10dB调整到 7.6dB, 以补偿 EDFA增益 <¾增大量, 这样即可实现混合放大器总增益斜率 ¾ 从 OdB变化到 -4dB, 而混合放大器的总增益 (¾保持 28dB不变。
本实施例中, RFA增益斜率和 EDFA增益斜率可相互补偿, 增益斜率可调 范围大, 可正可副》 由于没有 EDFA中没有 VOA, 增益斜率调整也不会引入额 外的噪声指数为代价。 实施例十一:
在本实施例中 , 预期放大要求为在混合光纤放大器总增益 GH不变的情况 下调整总增益斜率 TH
本实施例中, 调整掺铒光纤放大器增益斜率 TE, 同时调整拉曼光纤放大器 增益 (¾来补偿由于掺铒光纤放大器增益斜率 TE变化引起的增益变化。
本实施例与实施例九的不同之处在于 , 本实施例是直接调整掺铒光纤放大 器增益斜率 ¾, 而实施例丸是通:过调整 EDFA增益(¾间接调整 EDFA增益斜 率 TE, 同样参照图 7, 初始状态下 EDFA增益 <¾为 18dB, EDFA增益斜率为 0, RFA增益 为 10dB, 增益斜率 1¾为 0, 艮据 EDFA的增益和增益斜牟满 足 口 D 0'85的数学关系, 将增益斜率 ¾减小 2dB, 那么增益 (¾就会增大
2.4dB, 此时将 RFA增益 (¾从10(18调整到 7.6dB, 即可以补偿 EDFA增益 GE 增大量, 最终实现了混合放大器总增益斜率 ¾从 OdB变化到 -2dB, 而混合放 大器的总增益 GH保持 28dB不变。 实施例十二:
在本实施例中, 预期放大要求为在混合光纤放大器总增益 GH不变的情况 下调整总增益斜率 TH
本实 例中, 整掺铒光纤放大器增益斜率 和拉曼光纤放大器增益斜率 TR> 同时调整拉曼光纤放大器增益 GR来补偿由于饵光紆放大器增益斜率 ¾变 化引起的增益变化。
本实施例与实施例十不同之处在于,本实施倒直接调整 EDFA增益斜率 TE, 而实施例十通过调整 EDFA增益 <¾.间接调整 EDFA增益斜率 ΤΕ。 ί¾样参照图 8, 初始状态下; EDFA增益 GE为 18dB, EDFA增益斜率为 0, FA增益 ^!^为 10dB, 增益斜率 TR为 0, 需要实现总增益 GH保持 28dB不变, 总增益斜率 ¾ 从 OdB变化到 -4dB, 这里将 EDFA增益斜率 TE和 RFA增益斜率 从 0调整 到 -2dB, 此时 EDFA增益 (¾从 18dB变化到 20.4dB, 将 R A增益 0&从 10dB 调整到 7.6dB即可补偿 EDFA增益 GE增大量, 从而保证总增益 GH保持 28dB 不变。
上述实施例八至实旄例十二通过不同的调整方法实现了在混合光野;欲大器 总增益 (¾不变的情况下调整总增益斜率 ¾。 一般情况下, 可以通过实施八所 述仅调整 RFA增益斜率 ¾的调整方法实现, 如果对于单波长泵浦的 RFA, 其 增益斜率不可调, 可以通过实施例九或实施例十一所述的调整方法实现, 在某 些特殊情况下, 由于 FA的泵浦功率限制, 在某些增益情况下, 无法达到要求 的增益斜率,单純调整 RFA或 EDFA的增益斜率无法满足斜率调节要求,此时 可以通过调整两者的斜率来实现, 即可以通过实施例十或实施例十二所迷的方 法实现。
特別需要说明的是,在一些光通信系统中,对于包含有色散补偿器 (DCM ) 中间级的 EDFA,. 现有技术中, 为了补偿由于 DCM插损引起的增益斜率的变 化, 通常需要引入颠外的 VOA, 而在本发明中, 可以通过实施例八所述方法通 过调整 RFA增益斜率来 hi尝 EDFA中间级不同的 DCM插损引起的增益斜率变 化。 实施例十三:
本实施例提供了一种混合光纤放大器的增益、 增益斜率的调整装置, 如图 9所示, 包括调整控制单元 90, 用于根据预期放大要求, 包括混合光纤放大器 的总增益 GH和 /或总增益斜率 ¾, 调整拉曼光纤放大器和 /或掺铒光纤放大器, 所述调整控制单元 90包括拉曼调整模块 901和 /或掺铒调整模块 902,其中,所 迷拉曼调整模块 901用于调整拉曼光纤放大器的增益 <¾、 增益斜率 TR, 所述 调整模块 902用于调整掺铒光忏放大器的增益 GE、 增益斜率 ¾。
本实施例所述的调整控制单元 90实现了实施例一所述调整模块的功能,调 整控制单元 90可以根据预期放大要求以及混合放大器中的 FA和 EDFA的放 大能力, 选择合适的放大控制方法, 通过拉曼调整模块 01控制 RFA和 /或通 过番铒调整模块 902控制 BDFA 1行相应的放大操作。比如,掺铒调整模块 902 可以根据中间级接入损耗的增益斜率补偿方法调整 RFA的增益斜率 ,摻铒调整 模块 902和拉曼调整模块 901还可以根据 EDFA增益与增益斜率的数学关系得 到自身需要的调整量, 并对 RFA和 EDFA傲出相应调整。 综上,本发明实施例提供的混合光纤放大器中的 RFA的增益和增益斜率可 动态调整, EDFA的无需 VOA亦可实现增益和增益斜率动态调整,对于混合光 纤放大器的总增益调整可通过单独或同时调整 RFA增益和 EDFA增益,混合光 纤放大器的总增益斜率调整单独调整 FA增益斜率或同时调整 EFA与 EDFA 的增益斜率。 本发明实施例提供的混合光纤放大器可以根据预期放大要求, 控 制 RFA和 EDFA进行相应联合调整, 可以达到预期的调整效果。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范 ¾之内。

Claims

权 利 要 求 书
1、 一种混合光纤放大器, 其特征在于, 所述混合光纤放大器包括: 拉曼光 纤放大器(1 )和不含有可变衰减器的掺铒光纤放大器(2 ) , 所述拉曼光纤放 大器( 1 )包括泵浦信号合波器( 11 )、 与所述泵浦信号^^波器( 11 )反射端连 接的泵浦激光器組(12 )、 与所述泵浦信号合波器(11 )输出端连接的带外窄 带滤波器 (: 13 )以及与所述带外窄带滤波器( 13 )透射端连接的光电探测器( 14 ) , 所述掺铒光纤放大器(2 )包括顺次连接的输入耦合器(21 )、楼铒光纤(22 )、 输出耦合器(23 ) , 以及与所述输入耦合器(21 )小端连接的输入光电探测器
( 24 ) 与所迷输出挺合器(23 )小端连接的输出光电探测器(25 ), 所述带 外窄带滤波器(13 )的输出端连接到输入鶫合器(21 )的输入端, 所述混合光 纤放大器还包括用于根据预期放大要求、 控制所述拉曼光纤放大器(1 )和 /或 掺铒光纤放大器(2 )调整增益和 /或增益斜率的控制模块(3 ) 。
2、 如权利要求 1所述混合光纤放大器, 其特征在于, 所述控制模块(3 ) 用于控制所述拉曼光纤放大器(1 )和 /或掺铒光纤放大器(2 ) , 使得在混合光 纤放大器总增益斜率不变的情况下谓整总增益。
3、 如权利要求 1所迷混合光纤放大器, 其特征在于, 所迷控制模块(3 ) 用于控制所迷拉曼光纤放大器( 1 )和 /或摻铒光纤放大器(2 ) , 使得在混合光 纤放大器总增益不变的情况下调整总增益斜率。
4、一种混合光纤放大器的增益、增益斜率的调整方法, 其特征在于, 所述 混合光纤放大器包括拉曼光纤放大器和不含有可变衰减器的掺铒光纤放大器, 所述调整方法包括:
根据预期放大要求, 调整拉曼光纤放大器的增益 GR、 增益斜率 和/或调 整掺铒光纤放大器的增益 <¾、 增益斜率 , 实现调整所述混合光 放大器的 总增益 (¾和/或总增益斜率 TH
5、如权利要求 4所迷混合光圩放大器的增益、增益斜率的调整方法,其特 征在于, 所述根据预期放大要求, 调整拉曼光纤放大器的增益 <¾、 增益斜率 1¼和/或调整掺铒光纤放大器的增益 (¾、 增益斜率 TE, 实现调整所迷混合光纤 放大器的总增益 (¾和 /或总增益斜率 ¾, 具体包括:
调整拉曼光 if放大器的增益 GR、 增益斜率 1¾和/或调整掺铒光纤放大器的 增益 (¾、 增益斜率 ¾, 实现调整所述在混合光纤放大器总增益斜率 TH不变的 情况下调整总增益 GH:
6、如权利要求 4所述混合光纤放大器的增益、增益斜率的调整方法 >其特 征在于, 所述根据预期放大要求, 调整拉曼光纤放大器的增益(¾、 增益斜率 ¾和/或调整掺铒光纤放大器的增益 GE、 增益斜率 ¾, 实现调整所述混合光纤 放大器的总增益 (¾和 /或总增益斜率 ¾, 具体包括:
调整拉曼光纤放大器的增益 GR、 增益斜率 和/或调整掺铒光纤放大器的 增益 (¾、 增益斜率 TE, 实现调整所迷在混合光紆放大器总增益 <¾不变的情况 下调整总增益斜率 TH。 7、如权利要求 5.所述混合光纤放大器的增益、增益斜率的调整方法,其特 征在于, 所述调整拉曼光纤放大器的增益 GR、 增益斜率 1^和/或调整掺铒光纤 放大器的增益 GE、 增益斜率 ¾, 实现调整所述在混合光纤放大器总增益斜率 不变的情况下调整总增益 (¾:, 包括:
调整掺铒光纤放大器增益 , 拉曼光纤放大器增益 <¾保持不变, 同时调 整拉曼光纤放大器增益斜率 TR来补偿由于掺铒光紆放大器增益 GE变化引起的 增益斜率的变化;
或者,只调整拉曼光纤放大器增益 <¾, 同时保持拉曼光纤放大器增益斜率 TR与掺铒光纤放大器增益 <¾不变;
或者, 调整摻铒光幹放大器增益 <¾与拉曼光 if放大器增益 GR, 同时调整 拉曼光纤放大器增益斜率 TR来补偿由于掺铒光纤放大器增益(¾变化引起的增 益斜率变化;
或者,通过调整掺铒光纤放大器增益斜率 ¾间接调整掺铒光纤放大器增益 GE, 同时调整拉曼光纤放大器增益斜率 TR来补偿掺铒光纤放大器增益斜率 TE 的调整量;
或者,通过调整掺铒光纤放大器增益斜率 ¾间接调整掺铒光纤放大器增益 GE, 同时也调整拉曼光纤放大器增益 GR, 并调整拉曼光纤放大器增益斜率 ¾ 来补偿 4耳光纤放大器增益斜率 ¾的调整量。
8、如权利要求 6所迷混合光圩放大器的增益、增益斜率的调整方法,其特 征在于, 所述调整拉曼光纤放大器的增益 、 增益斜率 和/或调整掺铒光纤 放大器的增益 GE、 增益斜率 TE, 实现调整所迷在混合光纤放大器总增益 GH不 变的情况下调整总增益斜率 TH, 包括:
只调整拉曼光纤放大器增益斜率 TR, 同时保持拉曼光纤放大器增益 GR与 摻铒光纤放大器增益 GE不变;
或者,通过调整掺铒光纤放大器增益 (¾间接调整掺铒光纤放大器增益斜率 ¾,同时调整拉曼光纤放大器增益 GR来补偿掺铒光纤放大器增益 GE的调整量; 或者,通过调整掺铒光纤放大器增益 GE间接调整掺铒光纤放大器增益斜率 ¾, 同时也调整拉曼光纤放大器增益斜率 , 并调整拉曼光纤放大器增益 <¾ 来补偿掺铒光纤放大器增益 GE的调整量;
或者, 调整掺铒光纤放大器增益斜率 , 同时调整拉曼光纤放大器增益 GR来#偿由于掺铒光纤放大器增益斜率 TE变化引起的增益变化;
或者, 整掺铒光紆放大器增益斜率 TE和拉曼光纤放大器增益斜率 ¾, 同 时调整拉曼光纤放大器增益 <¾来补偿由于饵光仟放大器增益斜率 变化引起 的增益变化。
9、 如权利要求 7或 8所述混合光纤放大器的增益、 增益斜率的调整方法, 其特征在于, 在一定波长范围内,调整掺铒光纤放大器增益 <¾的同时,掺铒光 纤放大器增益斜率 成比例变化; 调整楼铒光纤放大器增益斜率 I 的同时, 掺铒光纤放大器增益 GE成比例变化。
10、 如权利要求 9所述混合光纤放大器的增益.、 增益斜率的调整方法, 其 特征在于, 在 1529~1568nm波长范围内, 掺铒光纤放大器增益 <¾和增益斜率
TE的变化关系为 ^^口 D 0-85 ,其中^ £为所述掺铒光纤放大器增益 的变 化量, dTE为所述掺铒光纤放大器增益斜率 TE的变化量。
11、 如权利要求 9所述混合光纾放大器的增益、 增益斜率的调整方法, 其 特征在于, 所迷调整掺铒光纤放大器增益 GE和益斜率 根据输入光电探测器 和输出光电探测器检测的光功率值来调整实现, 所述调整拉曼光纤放大器增益 GR通过控制带外放大自发辐射功率来实现,所迷调整拉曼光纤放大器增益斜率 ¾通过控制泵浦激光器组中不同泵浦波长的泵浦功率来实现。
PCT/CN2012/082101 2012-09-05 2012-09-27 混合光纤放大器及其增益、增益斜率的调整方法 WO2014036764A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/426,047 US9722559B2 (en) 2012-09-05 2012-09-27 Hybrid fiber amplifier and method for adjusting gain and gain slope thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210325897.6A CN102843192B (zh) 2012-09-05 2012-09-05 混合光纤放大器及其增益、增益斜率的调整方法及装置
CN201210325897.6 2012-09-05

Publications (1)

Publication Number Publication Date
WO2014036764A1 true WO2014036764A1 (zh) 2014-03-13

Family

ID=47370285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082101 WO2014036764A1 (zh) 2012-09-05 2012-09-27 混合光纤放大器及其增益、增益斜率的调整方法

Country Status (3)

Country Link
US (1) US9722559B2 (zh)
CN (1) CN102843192B (zh)
WO (1) WO2014036764A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166708B (zh) * 2013-03-14 2015-09-09 武汉光迅科技股份有限公司 一种提高遥泵系统输出光信噪比的方法
CN104242036B (zh) * 2014-10-11 2017-03-15 无锡市德科立光电子技术有限公司 拉曼光纤放大器自动增益控制方法和拉曼光纤放大器
CN104821481B (zh) * 2015-05-15 2017-08-25 中国电子科技集团公司第八研究所 一种基于双反馈结构的混合分立式高非线性光纤放大器
CN104993872B (zh) * 2015-06-10 2017-07-07 无锡市德科立光电子技术有限公司 拉曼光纤放大器增益补偿及瞬态控制方法
CN105207719B (zh) 2015-08-25 2017-06-27 武汉光迅科技股份有限公司 级联Hybrid放大器的控制方法及系统
CN105871468B (zh) * 2016-03-30 2018-04-20 武汉光迅科技股份有限公司 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器
CN110350977B (zh) * 2017-06-28 2022-05-13 武汉光迅科技股份有限公司 一种混合光纤放大器ase补偿参数使用方法
US11349275B2 (en) 2018-06-12 2022-05-31 Ofs Fitel, Llc Complementary optical fiber-based amplifiers with built-in gain flattening
WO2019241907A1 (zh) * 2018-06-19 2019-12-26 华为技术有限公司 一种增益控制方法及拉曼光纤放大器
CN114745053A (zh) * 2019-09-27 2022-07-12 海思光电子有限公司 光放大器及光放大器的增益调节方法
CN111698033B (zh) * 2020-05-21 2021-08-13 武汉光迅科技股份有限公司 混合光纤放大器、光信号放大方法及光通信系统
CN112953643B (zh) * 2021-01-27 2022-07-26 电子科技大学 一种fm-edfa自动增益控制装置
CN117579157B (zh) * 2024-01-17 2024-04-09 北京融为科技有限公司 星地激光下行信号处理系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441950B1 (en) * 2000-11-03 2002-08-27 Onetta, Inc. Distributed raman amplifier systems with transient control
US6441952B1 (en) * 2001-07-03 2002-08-27 Avanex Corporation Apparatus and method for channel monitoring in a hybrid distributed Raman/EDFA optical amplifier
US20030174390A1 (en) * 2001-12-10 2003-09-18 Motoki Kakui Optical amplifier and optical communication system including the same
CN2631132Y (zh) * 2003-07-03 2004-08-04 复旦大学 一种混合型宽带光纤放大器
CN101262283A (zh) * 2007-03-09 2008-09-10 日本电气株式会社 光放大器、光放大器控制器及其控制方法
CN101588208A (zh) * 2008-05-23 2009-11-25 中兴通讯股份有限公司 功率管理方法和装置
US20110255151A1 (en) * 2008-10-23 2011-10-20 Roberto Magri Optical Network Amplifier Node and Method of Channel Power Depletion Compensation
CN102307068A (zh) * 2011-06-24 2012-01-04 武汉光迅科技股份有限公司 一种实现目标拉曼增益锁定的方法及其拉曼光纤放大器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9911665D0 (en) * 1999-05-19 1999-07-21 Cit Alcatel An optical amplifier
JP2004301991A (ja) * 2003-03-31 2004-10-28 Fujitsu Ltd 光増幅制御ユニットおよび光増幅制御方法
US7522334B2 (en) * 2004-02-19 2009-04-21 Corvis Equipment Corporation Optical communication systems including optical amplifiers and amplification methods with flat noise figure profile
US7405870B2 (en) * 2006-06-26 2008-07-29 Bti Photonic Systems Inc. Method and apparatus for amplified spontaneous emission corrected automatic signal power control of an optical amplifier
US7715092B2 (en) * 2006-10-03 2010-05-11 Jds Uniphase Corporation Dynamic raman tilt compensation
US8643941B2 (en) * 2009-12-14 2014-02-04 Finisar Israel Ltd. Automatic measurement and gain control of distributed Raman amplifiers
US8817365B2 (en) * 2012-07-19 2014-08-26 Finisar Israel Ltd. Hybrid optical amplifier with optimized noise figure
US9461437B2 (en) * 2013-03-13 2016-10-04 Xtera Communications, Inc. Tilt control through optical pump power adjustment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441950B1 (en) * 2000-11-03 2002-08-27 Onetta, Inc. Distributed raman amplifier systems with transient control
US6441952B1 (en) * 2001-07-03 2002-08-27 Avanex Corporation Apparatus and method for channel monitoring in a hybrid distributed Raman/EDFA optical amplifier
US20030174390A1 (en) * 2001-12-10 2003-09-18 Motoki Kakui Optical amplifier and optical communication system including the same
CN2631132Y (zh) * 2003-07-03 2004-08-04 复旦大学 一种混合型宽带光纤放大器
CN101262283A (zh) * 2007-03-09 2008-09-10 日本电气株式会社 光放大器、光放大器控制器及其控制方法
CN101588208A (zh) * 2008-05-23 2009-11-25 中兴通讯股份有限公司 功率管理方法和装置
US20110255151A1 (en) * 2008-10-23 2011-10-20 Roberto Magri Optical Network Amplifier Node and Method of Channel Power Depletion Compensation
CN102307068A (zh) * 2011-06-24 2012-01-04 武汉光迅科技股份有限公司 一种实现目标拉曼增益锁定的方法及其拉曼光纤放大器

Also Published As

Publication number Publication date
CN102843192B (zh) 2016-05-11
US9722559B2 (en) 2017-08-01
US20150214913A1 (en) 2015-07-30
CN102843192A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2014036764A1 (zh) 混合光纤放大器及其增益、增益斜率的调整方法
US6429966B1 (en) Multistage optical amplifier with Raman and EDFA stages
US6747790B2 (en) Optical amplifier for amplifying multi-wavelength light
US6310716B1 (en) Amplifier system with a discrete Raman fiber amplifier module
EP1249901B1 (en) Band-expanding method for optical amplifiers and optical transmission apparatus
JP6202917B2 (ja) 雑音指数を最適化したハイブリッド光学増幅器
CN105093778A (zh) 光放大器及相关方法
Mori et al. Gain flattened Er^ sup 3+^-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region
US7145718B2 (en) Control method of optical fiber amplifier and optical transmission system
US6903868B2 (en) Wideband erbium doped fiber amplifier capable of minimizing band crosstalk
US6384962B1 (en) Method and apparatus to perform automatic gain equalization using raman amplifiers
JP4192364B2 (ja) 光増幅器
JP3901859B2 (ja) 光増幅器
JP2004006887A (ja) 光伝送装置及び波長多重光通信システム
KR100326119B1 (ko) 씨드-빔을 이용한 엘-밴드 광섬유 증폭기
JP2007067235A (ja) 光増幅器
JP2003258346A (ja) 光増幅装置及び減衰量調整方法
CN112655122A (zh) 宽增益带宽c波段光纤放大器
JP3551417B2 (ja) 波長多重用光増幅器
JP2005286151A (ja) チルト補償機能を有する多段光増幅器
JP2004511007A (ja) ラマン増幅器
JP2004296581A (ja) 光増幅装置およびその制御方法
JP3379104B2 (ja) 波長多重伝送用光増幅器
JP3551419B2 (ja) 光伝送装置及び波長多重光通信システム
JP2002344052A (ja) 光通信システムの利得固定平坦型光増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14426047

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884328

Country of ref document: EP

Kind code of ref document: A1