WO2020047938A1 - 烟灶联动的控制方法及烟灶联动系统 - Google Patents

烟灶联动的控制方法及烟灶联动系统 Download PDF

Info

Publication number
WO2020047938A1
WO2020047938A1 PCT/CN2018/109358 CN2018109358W WO2020047938A1 WO 2020047938 A1 WO2020047938 A1 WO 2020047938A1 CN 2018109358 W CN2018109358 W CN 2018109358W WO 2020047938 A1 WO2020047938 A1 WO 2020047938A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooker
fan
temperature
cooking state
hood
Prior art date
Application number
PCT/CN2018/109358
Other languages
English (en)
French (fr)
Inventor
韩杰
杜长河
戴相录
季俊生
Original Assignee
佛山市顺德区美的洗涤电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811028216.3A external-priority patent/CN109237547B/zh
Priority claimed from CN201811028207.4A external-priority patent/CN109237539B/zh
Priority claimed from CN201811028209.3A external-priority patent/CN109237541B/zh
Priority claimed from CN201811028210.6A external-priority patent/CN109237542A/zh
Priority claimed from CN201811026546.9A external-priority patent/CN109237529B/zh
Application filed by 佛山市顺德区美的洗涤电器制造有限公司 filed Critical 佛山市顺德区美的洗涤电器制造有限公司
Publication of WO2020047938A1 publication Critical patent/WO2020047938A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes

Definitions

  • the present application relates to the technical field of cooking appliances, and in particular, to a smoke stove linkage control method and a smoke stove linkage system.
  • the wind speed gear of the hood is generally adjusted according to the firepower of the stove, but the firepower status of the stove and the oil smoke concentration are not completely corresponding, and adjustment may be made according to the firepower. Mistakes. For example, at the beginning of cooking, when the fire power is large but the oil smoke is small, if the fan gear of the hood is turned on at this time, it will cause serious waste of electrical energy and cause noise pollution. For another example, when the food is fried on a low fire, the firepower is small but the oil fume is large. If the fan gear of the hood is turned on at this time, the oil fume will not be cleaned and the kitchen will be polluted. Therefore, how to reasonably control the wind power of the hood to meet the oil absorption demand of the hood when the user is cooking has become an urgent problem.
  • Embodiments of the present application provide a smoke stove linkage control method and a smoke stove linkage system.
  • the smoke stove linkage control method is used for a stove and a smoke machine, and the control method includes:
  • the smoke stove linkage control method determines the cooking state of the stove; and controls the wind force of the fan of the smoke machine according to the cooking state of the stove, so that the smoke machine can automatically adjust the appropriate wind force to suck the oil fume generated during the cooking process. Therefore, it can play the role of saving electric energy and making the extraction of oil fume cleaner.
  • An embodiment of the present application further provides a smoke stove linkage system, which includes a stove, a smoke machine, and a control device, the control device is connected to the stove and the smoke machine, and the control device includes a judgment module and A processing module, the determining module is configured to determine a cooking state of the cooker, and the processing module is configured to control a wind force of a fan of the smoke machine according to the cooking state of the cooker.
  • the cooking state of the stove is judged; and the wind force of the fan of the smoke machine is controlled according to the cooking state of the stove, so that the smoke machine can automatically adjust the appropriate wind force to suck oil fume generated during cooking, Thereby, it can play a role of saving electric energy and making sucking of oil fume cleaner.
  • An embodiment of the present application further provides a smoke stove linkage system for a stove and a smoke machine.
  • the smoke stove linkage system includes a processor and a memory, and the memory stores one or more programs, and the one or more programs It is configured to be executed by the processor, and the program includes a control method for performing any one of the applications.
  • the cooking state of the stove is judged; and the wind force of the fan of the smoke machine is controlled according to the cooking state of the stove, so that the smoke machine can automatically adjust the appropriate wind force to suck oil fume generated during cooking, Thereby, it can play a role of saving electric energy and making sucking of oil fume cleaner.
  • FIG. 1 is a flowchart of a smoke stove linkage control method according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a smoke stove linkage system according to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a smoke stove linkage system according to an embodiment of the present application.
  • FIG. 4 is another flowchart of a smoke stove linkage control method according to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a smoke stove linkage system according to an embodiment of the present application.
  • FIG. 6 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 7 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 8 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 9 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 10 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 11 is another schematic diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 12 is another schematic diagram of a smoke stove linkage system according to an embodiment of the present application.
  • FIG. 13 is a graph showing a change in temperature of the pot during cooking with water according to the embodiment of the present application.
  • FIG. 14 is a graph showing a change in temperature of a pot during anhydrous cooking according to an embodiment of the present application.
  • FIG. 15 is still another flowchart of a smoke stove linkage control method according to an embodiment of the present application.
  • FIG. 16 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 17 is another flowchart of a method for controlling a smoke stove linkage according to an embodiment of the present application.
  • FIG. 18 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 19 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 20 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 21 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 22 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 23 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 24 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 25 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 26 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 27 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 28 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 29 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 30 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 31 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 32 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 33 is another schematic structural diagram of a smoke stove linkage system according to an embodiment of the present application.
  • FIG. 34 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 35 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 36 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 37 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 38 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 39 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 40 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 41 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 42 is still another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 43 is another flowchart of the smoke stove linkage control method according to the embodiment of the present application.
  • FIG. 44 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • FIG. 45 is another schematic block diagram of the smoke stove linkage system according to the embodiment of the present application.
  • Tobacco stove linkage system 100 smoke machine 10, first detection signal receiving unit 12, first wind adjustment unit 14, lighting device 16, first control signal reception unit 18, second detection signal reception unit 11, second wind adjustment unit 13.
  • Cooker 20 first temperature sensor 22, first temperature signal processing unit 24, first firepower signal detection unit 26, first firepower signal processing unit 28, first detection signal transmitting unit 29, first control signal transmitting unit 21
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality" is two or more, unless specifically defined otherwise.
  • connection should be understood in a broad sense unless explicitly stated and limited otherwise.
  • they may be fixed connections or removable.
  • Connection, or integral connection can be mechanical, electrical, or can communicate with each other; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements relationship.
  • connection, or integral connection can be mechanical, electrical, or can communicate with each other; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements relationship.
  • a smoke stove linkage control method is applied to a smoke machine 10 and a stove 20.
  • Control methods include:
  • Step S1 determining the cooking state of the cooker 20.
  • step S3 the wind power of the fan of the hood 10 is controlled according to the cooking state of the cooker 20.
  • the smoke stove linkage system 100 includes a smoke machine 10, a stove 20, and a control device 50.
  • the control device 50 includes a determination module 110 and a processing module 120.
  • the control device 50 is connected to the hood 10 and the cooker 20.
  • the smoke stove linkage control method in the embodiment of the present application may be implemented by the smoke stove linkage system 100 in the embodiment of the present application, and may be applied to the cooker 20 and the smoke machine 10.
  • steps S1 and S3 of the method for controlling a smoke stove linkage may be implemented by the control device 50. That is, the determination module 110 is configured to determine the cooking state of the cooker 20; and the processing module 120 is configured to control the wind power of the fan of the hood 10 according to the cooking state of the cooker 20.
  • the cooking state of the cooker 20 is determined; and the wind power of the fan of the smoke machine 10 is controlled according to the cooking state of the stove 20, so that the smoke machine 10 can be automatically adjusted Appropriate wind force is used to suck the oil fume generated during the cooking process, which can save electricity and make the sucking of oil fume cleaner.
  • the control device 50 includes a collection module 130.
  • Step S1 includes:
  • Step S10 collecting the temperature of the pot 30
  • step S20 the cooking state of the cooker 20 is determined according to the temperature of the cooker 30.
  • steps S10 and S20 of the method for controlling a smoke stove linkage according to the embodiment of the present application may be implemented by the control device 50.
  • the collection module 130 is used to collect the temperature of the cooker 30;
  • the determination module 110 is used to determine the cooking state of the cooker 20 according to the temperature of the cooker 30.
  • the cooking state of the stove 20 is determined by the current temperature of the pot 30, so that the cooking status of the stove 20 can be accurately obtained, which is convenient and efficient.
  • the cooker 20 includes a first temperature sensor 22, a first temperature signal processing unit 24, a first firepower signal detection unit 26, a first firepower signal processing unit 28, and a first detection signal transmitting unit 29.
  • the hood 10 includes a first detection signal receiving unit 12 and a first wind power adjusting unit 14. Please refer to FIG. 5.
  • the control device 50 of this embodiment is disposed in the hood 10.
  • the first temperature sensor 22 feeds back a temperature signal to the first temperature signal processing unit 24 and the first firepower signal detection unit 26.
  • the thermal power signal is fed back to the first thermal power signal processing unit 28.
  • the first temperature signal processing unit 24 and the first thermal power signal processing unit 28 respectively transmit the processed temperature signal and thermal power signal to the first detection signal transmitting unit 29 of the cooker 20.
  • the first detection signal transmitting unit 29 then transmits the temperature signal and the firepower signal to the first detection signal receiving unit 12 in a wired or wireless communication manner.
  • the first detection signal receiving unit 12 feeds back the temperature signal and the fire power signal to the control device 50 of the hood 10.
  • the control device 50 determines the temperature of the cooker 30 through calculation and determines the cooking state of the cooker 20 according to the temperature of the cooker 30. Then, according to the cooking state of the cooker 20 and the temperature of the cooker, an adjustment strategy for the working state of the fan of the hood 10 is determined and a control signal is generated.
  • the control device 50 sends an operation instruction of a control signal to the first wind power adjusting unit 14 of the hood 10 so that the hood 10 automatically adjusts the wind force of the fan of the hood 10 according to the operation instruction.
  • the hood 10 further includes a lighting device 16.
  • the control device 50 sends an operation instruction of a control signal to the first wind regulation unit 14 and the lighting device 16 of the hood 10, so that the hood 10 The wind force of the fan of the fog machine 10 and the working state of the lighting device 16 are automatically adjusted according to the operation instruction.
  • the control device 50 is disposed in the cooker 20.
  • the first temperature sensor 22 feeds back a temperature signal to the first temperature signal processing unit 24 and the first fire signal detection unit 26.
  • the thermal power signal is fed back to the first thermal power signal processing unit 28.
  • the first temperature signal processing unit 24 and the first thermal power signal processing unit 28 respectively transmit the processed temperature signal and thermal power signal to the control device 50.
  • the control device 50 determines the temperature of the cooker 30 through calculation and determines the cooking state of the cooker 20 according to the temperature of the cooker 30. Then, the working state adjustment strategy of the hood 10 is determined according to the cooking state and the bottom temperature, and a control signal is generated.
  • the control device 50 feeds back a control signal to the first control signal transmitting unit 21.
  • the first control signal transmitting unit 21 transmits a control signal to the first control signal receiving unit 18 of the cigarette machine 10 by means of wired or wireless communication.
  • the first control signal receiving unit 18 sends a control signal to the first wind power adjustment unit 14 so that the smoke machine 10 automatically adjusts the wind force of the fan of the smoke machine 10 according to the operation instruction.
  • the hood 10 includes a processor or a controller or a computer board or a control board connected to the first control signal receiving unit 18 and the first wind regulation unit 14 for processing the cooker 20
  • the transmitted signals control the operation of the hood 10 itself.
  • the hood 10 further includes a lighting device 16, and the control device 50 sends an operation instruction of a control signal to the first wind regulation unit 14 and the lighting device 16 of the hood 10, so that the hood 10 The wind force of the fan of the fog machine 10 and the working state of the lighting device 16 are automatically adjusted according to the operation instruction.
  • the first detection signal transmitting unit 29 and the first detection signal receiving unit 12 may communicate through a wired or wireless method.
  • the communication method may be Bluetooth communication, infrared communication, WIFI communication, radio frequency communication, and laser communication. And one or more of Zigbee communication.
  • the first control signal receiving unit 18 and the first control signal transmitting unit 21 can communicate through a wired or wireless method.
  • the communication method can be Bluetooth communication, infrared communication, WIFI communication, radio frequency communication, laser communication, and Zigbee communication. One or more.
  • part or all of the functions of the control device 50 may be implemented by the controller or processor of the hood 10 and / or the cooker 20, or a control board, or a computer board, or produced by the control device 50.
  • a separate control box or control terminal including a controller, a processor, a control board, or a computer board is installed on the cooker 20 or the hood 10, or other positions outside the cooker 20 or the hood 10.
  • the first temperature sensor 22 may be an anti-dry burning temperature probe disposed in a burner of a cooker.
  • the temperature of the cooker 30 is obtained by the anti-drying temperature probe of the cooker 20.
  • the anti-drying temperature probe is used to detect the temperature of the pot 30.
  • the temperature of the cooker 30 can be understood as the temperature data output by a temperature sensor (such as an anti-drying temperature probe), and it is not necessarily related to whether the cooker 30 is placed on the cooker 20.
  • a temperature sensor such as an anti-drying temperature probe
  • the cooker 30 elastically abuts against the dry-burning temperature probe so that the dry-burning temperature probe can obtain a more accurate temperature of the cooker.
  • the temperature of the pot 30 is detected by a temperature sensor disposed on the pot 30.
  • the pot 30 is a smart pot, which includes a second temperature sensor 32, a second temperature signal processing unit 34, and a second temperature signal transmitting unit 36.
  • the cooker 20 includes a second thermal power signal detecting unit 23, a second thermal power signal processing unit 25, and a second thermal power signal transmitting unit 27.
  • the hood 10 includes a second detection signal receiving unit 11 and a second wind power adjusting unit 13.
  • the control device 50 is provided on the fog machine 10.
  • the second temperature sensor 32 of the cooker feeds back the temperature signal to the second temperature signal processing unit 34, and the second temperature signal processing unit 34 transmits the processed temperature signal to the second temperature signal transmitting unit 36.
  • the second thermal power signal detecting unit 23 feeds back the thermal power signal to the second thermal power signal processing unit 25.
  • the first thermal power signal processing unit 28 transmits the thermal power signal to the second thermal power signal transmitting unit 27.
  • the second temperature signal transmitting unit 36 then transmits the temperature signal to the second detection signal receiving unit 11 in a wired or wireless manner, and the second firepower signal transmitting unit 27 then transmits the firepower signal to the second detection signal in a wired or wireless manner.
  • the second detection signal receiving unit 11 feeds back the temperature signal and the fire power signal to the control device 50.
  • the control device 50 determines the temperature of the cooker 30 through calculation and determines the cooking state of the cooker 20 according to the temperature of the cooker 30.
  • the working state adjustment strategy of the hood 10 is determined and a control signal is generated.
  • the control device 50 sends an operation instruction of the control signal to the second wind power adjusting unit 13 of the hood 10, so that the hood 10 automatically adjusts the wind force of the fan of the hood 10 according to the operation instruction.
  • the second temperature sensor 32 may be disposed in an interlayer at the bottom of the pot body of the cookware, and the second temperature signal processing unit 34 and the second temperature signal transmitting unit 36 may be provided at a handle of the cookware 30, and the handle is connected to the side of the pot body.
  • the hood 10 further includes a lighting device 16, and the control device 50 sends an operation instruction of a control signal to the second wind regulation unit 13 and the lighting device 16 of the hood 10, so that the hood 10 The wind force of the fan of the fog machine 10 and the working state of the lighting device 16 are automatically adjusted according to the operation instruction.
  • the temperature of the pot 30 is detected by a temperature sensor 31 disposed on the pot 30.
  • the temperature sensor 31 may be a wireless passive temperature sensor.
  • the wireless passive temperature sensor does not need a power supply, and can send the collected temperature data wirelessly, and the second detection signal receiving unit 11 can receive temperature data transmitted from the wireless passive temperature sensor 31.
  • the temperature sensor 31 may be disposed on the bottom of the cooker 30.
  • the temperature of the pot 30 is detected by a wireless passive temperature sensor 31 disposed on the pot 30.
  • the hood 10 also includes a lighting device 16, and the control device 50 sends an operation instruction of a control signal to the second wind adjustment unit 13 and the luminaire 16 of the hood 10, so that the hood 10 automatically adjusts the wind power of the fan of the hood 10 according to the operation instruction. And control the operating state of the lighting device 16.
  • the cooking state of the cooker 20 may be a watery cooking state or a waterless cooking state.
  • Cooking with water can be stewed, boiled, boiled, steamed and other cooking methods with water.
  • Anhydrous cooking includes waterless cooking methods such as frying, frying, and frying.
  • Curve, curve 2 is the temperature curve of the temperature and time of the cookware with poor thermal conductivity, as shown in Figure 13: the first stage: when the cooker 20 starts to heat, the temperature of the cooker 30 gradually rises; the second stage: when When the water in the pot is boiling, the temperature of the pot 30 is in a constant or nearly constant state, that is to say, there is a boiling section at this time; the third step: when the water in the pot is dried, the temperature of the pot 30 rises again.
  • the boiling temperature of the cookware of curve 1 and curve 2 are different.
  • the magnitude of the boiling temperature of the cookware is related to the thermal conductivity of the cookware 30. For example, the better the thermal conductivity of the cookware 30, the lower the boiling temperature of the cookware.
  • the temperature curve 3 of the temperature and time of the cooker 30 fluctuates greatly and there is no obvious law, as shown in FIG. 14.
  • the cooking state of the cooker includes a water cooking state and a waterless cooking state.
  • Step S3 includes:
  • step S31 it is determined whether the cooker 20 is in a water-cooking state or an water-cooking state
  • Step S32 when the cooker is in a cooking state with water, control the fan of the hood 10 to run with a preset wind force;
  • step S34 when the cooker is in an anhydrous cooking state, the fan of the hood 10 is controlled to run with a wind force that is positively related to the current temperature of the cooker 30.
  • the control method of this embodiment can be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S31, S32, and S34 of the smoke stove linkage control method according to the embodiment of the present application can be realized by the control device 50. That is, the processing module 120 is configured to determine whether the cooker 20 is in a water-cooked state or an anhydrous cooking state. When the cooker 30 is in a water-cooked state, the fan of the hood 10 is controlled to run with a preset wind force; In the anhydrous cooking state, the fan of the hood 10 is controlled to operate with a wind force that is positively related to the current temperature of the cooker 30.
  • the wind power of the fan of the hood 10 is controlled according to the cooking state of the cooker 20, so that the wind power of the fan can be accurately controlled so that the hood can meet the demand for oil fume during cooking, and the user experience is good.
  • the fan of the hood 10 can be controlled to run at a preset wind. It can be understood that, in one embodiment, the fan of the hood 10 is controlled to run at a preset position to implement the fan. The preset wind is output. In another embodiment, the fan of the hood 10 is controlled to run at a preset speed or according to a preset speed relationship curve to realize the output of the wind by the fan.
  • the fan of the hood 10 can be controlled to operate with a wind force that is positively related to the current temperature of the cooker 30.
  • the positive correlation between the wind power of the fan and the current temperature of the cooker 30 includes the following cases: different wind power of the fan may correspond to different temperature ranges of the cooker 30.
  • the wind force includes three different wind forces F1, F2, and F3, where F1 ⁇ F2 ⁇ F3, the temperature range of the pot 30 corresponding to F1 is [T11, T12], and the temperature range of the pot 30 corresponding to F2 is ( T12, T13], the temperature range of the pot 30 corresponding to F3 is (T13, T14].
  • the fan can be controlled to run in F1.
  • the fan can be controlled to run in F2; when the current temperature of the cooker 30 is in the range of (T13, T14], the fan can be controlled to run in F3.
  • the wind of the fan can also pass the speed of the fan And / or gear.
  • the cooking state of the cooker 20 in different situations can be automatically identified through the collected temperature of the cooker 30, such as being in a water-cooking state or an anhydrous cooking state.
  • the cooker 30 is in a cooking state that produces less oil fume, such as stewing, boiling, boiling, steaming, etc.
  • the cooker 20 is in a cooking state with water. This can save power.
  • the fan of the hood 10 can be controlled to run in a wind that is positively related to the current cooker temperature. For example, The temperature of the cooker is high, and it is run by the wind of a larger fan, so as to ensure that the oil fume can be sucked clean by the hood 10.
  • step S20 includes steps:
  • Step S210 Determine whether there is a boiling section according to the temperature of the pot 30;
  • step S220 determining that the cooking state of the cooker 30 is a cooking state with water
  • step S230 determines that the cooking state of the cooker 30 is an anhydrous cooking state.
  • the control method of this embodiment can be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S210, S220, and S230 of the smoke stove linkage control method according to the embodiment of the present application can be realized by the control device 50. That is, the determination module 110 is configured to determine whether there is a boiling segment according to the temperature of the cooker 30; if so, the processing module 120 is used to determine that the cooking state of the cooker 30 is a water-cooking state; if not, the processing module 120 is used to determine the cooker The cooking state of 30 is an anhydrous cooking state.
  • the cooking state of the cooker is determined by judging whether there is a boiling section, which has high accuracy and is easy to obtain.
  • the boiling section can be understood as the temperature section reached by the pot 30 when the pot 30 is in the boiling stage in the cooking state with water. It should be noted that when the water in the pot boils, the temperature of the water in the pot is maintained at a stable temperature section. At this time, the heat transmitted to the outer surface of the pot 30 is the temperature of the outer surface of the pot 30. Will be maintained at a stable temperature range.
  • the temperature fluctuation range of the outer surface of the cookware 30 can be understood as a boiling section.
  • the cooking state with water can be a cooking state that produces less oily fumes such as stewing, boiling, boiling, and steaming.
  • the anhydrous cooking state may be a cooking state that generates a lot of oil fume such as frying, frying, and frying.
  • step S210 includes:
  • step S522 it is determined whether the collected temperature number of the pots 30 is greater than a preset number
  • step S524 calculating a rate of change of the temperature of the inner pot 30 within a preset duration
  • step S525 it is determined whether the temperature change rate of the inner pot 30 is less than or equal to the preset value. If so, in step S526, it is determined that the pot 30 has a boiling section and the current temperature of the pot 30 is used as the pot boiling temperature. If not, in step S528, it is determined that there is no boiling section in the pan 30.
  • the control method of this embodiment can be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S522, S524, S525, and S526 of the smoke stove linkage control method according to the embodiment of the present application can be realized by the control device 50. That is, the judgment module 110 is used to judge whether the collected temperature of the cookware 30 is greater than a preset quantity; if so, calculate the rate of temperature change of the cookware 30 within the preset duration; Whether the temperature change rate is less than or equal to the preset value. If yes, determine whether the cooking appliance 30 has a boiling section and use the current temperature of the cooking appliance 30 as the cooking appliance boiling temperature; if not, determine that the cooking appliance 30 does not have a cooking appliance boiling temperature.
  • the control method of the foregoing embodiment determines whether a boiling segment exists in the cooking utensil 30 by calculating a temperature change rate of the internal cooking utensil 30 within a preset duration. In this way, the cooking state of the cooking utensil can be accurately and quickly determined and the boiling temperature of the cooking utensil can be obtained.
  • the rate of change of the temperature of the inner pot 30 in the preset period in this embodiment can be obtained by any of the following embodiments.
  • step S210 includes:
  • step S622 it is determined whether the temperature number of the collected pots 30 is greater than a preset number
  • S624 calculate the sum of the absolute value of the difference between the temperature of the inner pot 30 of the preset duration and the average value of the temperature of the inner pot 30 of the preset duration;
  • step S625 it is determined whether the sum of the absolute values of the differences between the temperature of the inner pot 30 of the preset duration and the average value of the temperature of the inner pot 30 of the preset duration is less than or equal to the preset value. If so, S626, determine the pot 30 A boiling section exists and the current temperature of the cookware 30 is used as the boiling temperature of the cookware 30; if not, S628, it is determined that there is no boiling section of the cookware 30.
  • the control method of this embodiment can be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S622, S624, S625, S626, and S628 of the smoke stove linkage control method of the embodiment of the present application can be implemented by the control device 50.
  • the determining module 110 is configured to determine whether the collected temperature of the cookware 30 is greater than a preset quantity; if so, calculate an average value of the temperature of the preset cookware 30 and the preset cookware 30 The sum of the absolute values of the differences; determine whether the sum of the absolute values of the differences between the temperature of the inner pot 30 of the preset duration and the average value of the inner pot 30 of the preset duration is less than or equal to the preset value, and if so, determine The cooking utensil 30 has a boiling section, and the current temperature of the cooking utensil 30 is used as the cooking utensil boiling temperature of the cooking utensil 30. If not, it is determined that there is no boiling section of the pan 30.
  • the control method of the above embodiment determines whether there is a boiling section in the cooker 30 by calculating the sum of the average value of the temperature of the inner cooker 30 and the absolute value of the difference between the preset temperatures in the preset duration. In this way, the cooker can be accurately and quickly determined The cooking state and get the boiling temperature of the pot.
  • N k> N
  • T kN T k
  • N + 1 cooking utensils in a range from T kN to T k are calculated.
  • (i kN to k), a large SUB indicates a large temperature change.
  • SUB is less than or equal to the preset value, it means that the temperature change of the pot 30 is small.
  • the pot 30 is in a state of stewing, boiling, boiling, steaming and boiling, and the cooker 20 is in a state of cooking with water.
  • the current temperature data T k of the pot 30 is used as the pot boiling temperature T b .
  • T b T k
  • the cookware 30 is also considered to be Water cooking state.
  • the preset duration can be set to different values, and the size of the preset value can also be adjusted to the preset value corresponding to the duration of the preset duration according to the actual situation, which is not limited here.
  • the preset duration can be 2 minutes, and the temperature data of a pot is collected every two seconds.
  • the value of N can be 60, the preset value can be 10, and if k is 80, then T kN to T k
  • the temperature data of the N + 1 cookware 30 in the interval can be understood as: within 2 minutes, a total of 61 cookware 30 temperature data from T20 to T80.
  • the specific value of the preset duration may be related to the required temperature of the cookware 30.
  • step S210 includes steps:
  • step S722 it is determined whether the temperature quantity of the collected pots 30 is greater than a preset quantity
  • step S724 calculating the slope of the temperature of the cookware 30 with respect to time within the preset duration
  • step S725 it is determined whether the temperature-to-time slope of the inner pot 30 is less than or equal to the preset slope. If so, in step S726, it is determined that the pot 30 has a boiling section and the current temperature of the pot 30 is used as the pot boiling temperature. ; If not, step S728, it is determined that there is no boiling section of the pan 30.
  • the control method of this embodiment can be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S722, S724, S725, and S726 of the smoke stove linkage control method according to the embodiment of the present application can be realized by the control device 50. That is, the judgment module 110 is used to judge whether the collected temperature of the cookware 30 is greater than a preset quantity; if it is, calculate the slope of the temperature of the cookware 30 within a preset duration versus time; judge the cookware 30 within a preset duration Whether the slope of the temperature versus time is less than or equal to the preset slope. If yes, determine that the boiling device 30 has a boiling segment and use the current temperature of the boiling device 30 as the boiling temperature of the utensil; if not, determine that the boiling device 30 does not have a boiling segment.
  • the control method of the foregoing embodiment determines whether a boiling segment exists in the cooking utensil 30 by calculating the slope of the temperature of the cooking utensil 30 within a preset period of time. In this way, the cooking state of the cooking utensil and the boiling temperature of the cooking utensil can be accurately and quickly determined.
  • the time length of the preset duration may be different values, and accordingly, the size of the preset value may be adjusted correspondingly to the preset value corresponding to the duration of the preset duration according to the actual situation, which is not described here. limit.
  • the temperature data of a pot is collected every two seconds.
  • the preset duration is 2 minutes
  • the value of N is 60
  • the preset slope is 0.5. If k is 80, the interval from T kN to T k
  • the temperature data of the N + 1 pots 30 can be understood as: within 2 minutes, a total of 61 pots 30 temperature data from T 20 to T 80 .
  • step S210 includes steps:
  • step S822 it is determined whether the temperature quantity of the collected pots 30 is greater than a preset quantity
  • step S824 calculate the variance of the temperature of the pot 30 within the preset duration
  • step S825 it is determined whether the variance is less than or equal to the preset variance. If so, in step S826, it is determined that there is a boiling segment in the pot 30 and the current temperature of the pot 30 is used as the boiling temperature of the pot; if not, in step S828, it is determined whether the pot 30 There is a boiling section.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S822, S824, S825, and S826 of the smoke stove linkage control method according to the embodiment of the present application may be realized by the control device 50. That is, the judgment module 110 is used to judge whether the collected temperature of the cookware 30 is greater than a preset quantity; if so, calculate the variance of the temperature of the cookware 30 within a preset time period; determine whether the variance is less than or equal to the preset variance, If yes, determine that there is a boiling segment in the pot 30 and use the current temperature of the pot 30 as the boiling temperature of the pot; if not, determine that there is no boiling segment in the pot 30.
  • the control method of the above embodiment determines whether a boiling segment exists in the cooking utensil 30 by calculating the variance of the temperature of the cooking utensil 30 within a preset duration. In this way, the cooking state of the cooking utensil 20 can be accurately and quickly determined and the boiling temperature of the cooking utensil can be obtained.
  • N + 1 temperature data variances (VA in the interval from T kN to T k in a preset time period) are calculated.
  • VA temperature data variances
  • a large VA indicates a large temperature change of the cookware 30.
  • the VA is less than or equal to the preset value (the temperature change of the pot 30 is small), that is, the pot 30 is in a state of stewing, cooking, boiling, steaming and boiling, and the temperature data T k at this time is used as the pot boiling temperature T b .
  • the cookware 30 is also considered to be Water cooking state.
  • the time length of the preset duration may be different values, and accordingly, the size of the preset value may be adjusted correspondingly to the preset value corresponding to the duration of the preset duration according to the actual situation, which is not described here. limit.
  • the preset duration is 2 minutes, and the temperature data of a cooker is collected every two seconds.
  • the value of N is 60 and the preset value is 0.01.
  • the temperature data of the N + 1 pots 30 can be understood as: within 2 minutes, a total of 61 pots 30 temperature data from T 20 to T 80 . It can be understood that these specific numerical values and the specific numerical values given in the following embodiments are merely examples to illustrate the implementation of the present application, and should not be construed as limiting the present application. Since the temperature data of the cookware 30 is obtained every other time period, when the temperature data of a certain number of the cookware 30 is obtained, there will be a corresponding duration of obtaining the temperature data of these number of the cookware 30. . That is, the specific value of the preset duration may be related to the required temperature of the cookware 30.
  • step S210 includes steps:
  • step S922 it is determined whether the collected temperature number of the pots 30 is greater than a preset number
  • step S924 calculate the standard deviation of the temperature of the inner pot 30 within a preset duration
  • step S925 it is determined whether the standard deviation is less than or equal to a preset standard deviation. If yes, step S926, it is determined that there is a boiling segment in the pot 30 and the current temperature of the pot 30 is used as the boiling temperature of the pot; if not, step S928 is determined in There is no boiling section.
  • the control method of this embodiment can be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S922, S924, S925, and S926 of the smoke stove linkage control method according to the embodiment of the present application can be realized by the control device 50.
  • the determination module 110 is configured to determine whether the collected temperature of the cookware 30 is greater than a preset quantity; if so, calculate a standard deviation of the temperature of the cookware 30 within a preset duration; determine whether the standard deviation is less than or equal to a preset The standard deviation, if yes, it is determined that there is a boiling section in the pot 30 and the current temperature of the pot 30 is used as the boiling temperature of the pot; if not, it is determined that there is no boiling section in the pot 30.
  • the control method of the above embodiment determines whether there is a boiling section of the pot 30 by calculating the standard deviation of the temperature of the pot 30 within a preset time period. In this way, the cooking state of the pot 30 and the pot temperature can be accurately and quickly determined .
  • N + 1 temperature data standard deviations in the interval from T kN to T k in a preset time period are calculated ( STD).
  • a large STD indicates a large temperature change in the cookware 30.
  • the STD is less than or equal to the preset value (the temperature change of the pot 30 is small), that is, the pot 30 is in the state of stewing, cooking, boiling, steaming and boiling, and the temperature data T k at this time is used as the pot boiling temperature T b .
  • the cookware 30 is also considered to be Water cooking state.
  • the time length of the preset duration may be different values, and accordingly, the size of the preset value may be adjusted correspondingly to the preset value corresponding to the duration of the preset duration according to the actual situation, which is not described here. limit.
  • the preset duration is 2 minutes, and the temperature data of a pot is collected every two seconds.
  • the value of N is 60 and the preset value is 0.1.
  • the temperature data of the N + 1 pots 30 can be understood as: within 2 minutes, a total of 61 pots 30 temperature data from T 20 to T 80 . It can be understood that these specific numerical values and the specific numerical values given in the following embodiments are merely examples to illustrate the implementation of the present application, and should not be construed as limiting the present application. Since the temperature data of the cookware 30 is obtained every other time period, when the temperature data of a certain number of the cookware 30 is obtained, there will be a corresponding duration of obtaining the temperature data of these number of the cookware 30. . That is, the specific value of the preset duration may be related to the required temperature of the cookware 30.
  • step S50 the fan of the hood 10 is controlled to operate with wind force that is positively related to the current temperature of the cooker 30, that is, controlled according to a control strategy in which the cooker is in an anhydrous cooking state.
  • the first temperature sensor 22 collects temperature data of one pot 30 every two seconds.
  • the fan controlling the fan 10 is operated in a small gear.
  • the fan of the fog machine 10 is controlled to operate in the middle position.
  • the fan of the fog machine 10 is controlled to operate in a large gear.
  • the fan of the smoke machine 10 is controlled to operate in a stir-fry position.
  • control device 50 includes a detection module 160 and a startup module 170.
  • the control method further includes steps:
  • step S410 it is detected whether the cooker 20 is turned on. If so, in step S412, the fan of the hood 10 is turned on;
  • step S414 it is detected whether the cooker 20 is turned off. If so, in step S416, when the cooker 20 is in a cooking state with water before the cooker 20 is turned off, the fan of the fan 10 is controlled to continue to run with the first wind for a first preset period of time to turn off the fan 10 Fan: Step S418, when the cooker 20 is in an anhydrous cooking state before being turned off, the fan of the hood 10 is controlled to run with a second wind greater than the first wind for a second preset period of time, and then the fan of the hood 10 is turned off.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S410, S412, S414, S416, and S418 of the smoke stove linkage control method of the embodiment of the present application may be implemented by the control device 50. That is, the detection module 160 is used to detect whether the cooker is turned on. If so, the startup module 170 is used to turn on the fan of the hood 10. The detection module 160 is used to detect whether the cooker 20 is turned off.
  • the processing module 120 is used to control the fan of the hood 10 to continue to run with the first wind for a first preset period of time to turn off the fan of the hood 10; when the cooker 20 is in an anhydrous cooking state before being turned off, the processing module 120 is used The fan of the hood 10 is turned off after the fan of the hood 10 is operated for a second preset period of time with a second wind greater than the first wind.
  • the first firepower signal detection unit 26 detects the firepower data of the cooker 20, and the first firepower signal processing unit 28 determines whether the cooker 20 has been turned on and can convert the cooker 20 based on the firepower data collected by the first firepower signal detection unit 26.
  • the signal that the cooker 20 has been turned on is sent to the control device 50 through the first detection signal transmitting unit 29.
  • the cooker 20 is a gas stove
  • turning on the stove 20 can be understood as ignition of the gas stove
  • turning off the stove 20 can be understood as turning off the gas stove.
  • the cooker 20 can also be an induction cooker.
  • the opening of the cooker 20 can be understood as the induction cooker being turned on, and the closing of the cooker 20 can be understood as the induction cooker being turned off.
  • the wind power of the fan of the hood 10 can be adjusted by the gear position of the wind turbine, that is, the first wind power and the second wind power can be realized by the gear positions of different wind turbines.
  • the smoke machine 10 of this embodiment can recognize that the cooker 20 starts to be turned on by the fire signal of the control device 50 of the smoke machine 10, and the smoke machine 10 is turned on at this time.
  • the cooker 20 is in a cooking state with water, that is, the cooker 30 may be in a cooking state such as stewing, boiling, boiling, steaming, etc., and less oil fume is generated during cooking.
  • the control device 50 It can be recognized that the cooker 20 has been turned off by the firepower signal fed back to the control device 50 of the hood 10, and the control device 50 can control the fan of the hood 10 to continue running for a period of time in a smaller gear (first gear) to suck clean Oil left over from the kitchen.
  • the control device 50 can pass The firepower signal fed back to the control device 50 of the hood 10 recognizes that the cooker 20 has been turned off.
  • the control device 50 can control the fan of the hood 10 to continue to operate for a period of time in a larger gear (second gear) to suck up the rest of the kitchen. Fume.
  • the wind speed of the fan of the hood 10 can be adjusted by the rotation speed of the fan, that is, the first wind speed and the second wind speed can be achieved by different rotation speeds of the fans.
  • the smoke machine 10 in this embodiment can recognize that the cooker 20 starts to be turned on through the fire signal of the control device 50 of the smoke machine 10, and the smoke machine 10 is turned on at this time.
  • the cooker 20 When the cooker 20 is in a cooking state with water, that is, the cooker 30 may be in a cooking state such as stewing, boiling, boiling, steaming, etc., and less oil fume is generated during cooking.
  • the control device 50 may The firepower signal fed back to the control device 50 of the hood 10 recognizes that the cooker 20 has been turned off.
  • the control device 50 can control the fan of the hood 10 to continue to run at a first preset speed for a period of time to suck the remaining oil smoke from the kitchen.
  • the control device 50 may pass feedback The fire signal from the control device 50 of the hood 10 recognizes that the cooker 20 has been turned off.
  • the control device 50 can control the fan of the hood 10 to continue to run at the second preset speed for a period of time to suck the remaining oil smoke from the kitchen.
  • the fog machine 10 includes a lighting device 16, and the control method further includes:
  • Step S420 detecting whether the cooker 20 is turned on, and if so, step S422, turning on the fan and the lighting device 16 of the hood 10;
  • step S424 it is detected whether the cooker 20 is turned off. If so, in step S426, when the cooker 20 is in the cooking state with water before the cooker 20 is turned off, the fan of the smoke machine 10 is controlled to continue to run with the first wind for the first preset period of time to turn off the fan of the smoke machine. And the lighting device 16; step S428, when the cooker 20 is in an anhydrous cooking state before being turned off, the fan of the smoke machine is controlled to run with a second wind greater than the first wind force for a second preset period of time and the fan and lighting device of the smoke machine 10 is turned off 16.
  • the control method of this embodiment may be implemented by the smoke stove linkage system according to the embodiment of the present application, wherein steps S420, S422, S424, S426, and S428 of the smoke stove linkage control method according to the embodiment of the present application may be implemented by the control device 50. That is, the detection module 160 is used to detect whether the cooker is turned on. If so, the startup module 170 is used to turn on the fan and the lighting device 16 of the hood 10; the detection module 160 is used to detect whether the cooker is turned off.
  • the processing module 120 is used to control the fan of the hood 10 to continue to run with the first wind for a first preset period of time to turn off the fan and the lighting device 16 of the hood 10; when the cooker 20 is in the waterless state before being turned off In the cooking state, the processing module 120 is configured to control the fan of the hood 10 to turn off the fan of the hood 10 and the lighting device 16 after the fan of the hood 10 is operated for a second preset period of time with a second wind greater than the first wind.
  • the wind power of the fan of the hood 10 can be adjusted by the gear position of the wind turbine, that is, the first wind power and the second wind power can be realized by the gear positions of different wind turbines.
  • the smoke machine 10 in this embodiment can recognize that the cooker 20 starts to be turned on through the fire signal of the control device 50 of the smoke machine 10, and at this time, the fan and the lighting device 16 of the smoke machine 10 are turned on.
  • the cooker 20 is cooking with water, that is, the cooker 30 may be in a cooking state such as stewing, boiling, boiling, steaming, etc., and less oil fume is generated during cooking.
  • the control device 50 can pass The firepower signal fed back to the control device 50 of the hood 10 recognizes that the cooker 20 has been turned off.
  • the control device 50 can control the fan of the hood 10 to continue to run for a period of time in a smaller gear position (first gear position) to suck up the rest of the kitchen.
  • the cooker 20 When the cooker 20 is cooking without water, that is, the cooker 30 may be in a cooking state such as frying, frying, and frying at this time, and less oil fume is generated during cooking.
  • the control device 50 can feedback to The fire signal from the control device 50 of the hood 10 recognizes that the cooker 20 has been turned off.
  • the control device 50 can control the fan of the hood 10 to continue to run for a period of time in a larger gear (second gear) to suck the remaining oil smoke from the kitchen. And still provide lighting to the user.
  • the wind speed of the fan of the hood 10 can be adjusted by the rotation speed of the fan, that is, the first wind speed and the second wind speed can be achieved by different rotation speeds of the fans.
  • the smoke machine 10 in this embodiment can recognize that the cooker 20 starts to be turned on through the fire signal of the control device 50 of the smoke machine 10, and at this time, the fan and the lighting device 16 of the smoke machine 10 are turned on.
  • the cooker 20 is in a cooking state with water, that is, the cooker 30 may be in a cooking state such as stewing, boiling, boiling, steaming, etc., and less oil fume is generated during cooking.
  • the control device 50 may It is recognized by the firepower signal fed back to the control device 50 of the hood 10 that the cooker 20 has been turned off.
  • the control device 50 can control the fan of the hood 10 to continue to run at a smaller preset speed (first preset speed) for a period of time to suck. Clean the remaining oil fume in the kitchen and still provide lighting for the user.
  • the control device 50 may pass feedback The fire signal to the control device 50 of the hood 10 recognizes that the cooker 20 has been turned off.
  • the control device 50 can control the fan of the hood 10 to continue to run for a period of time at a larger preset speed (second preset speed) to suck the kitchen clean.
  • the remaining oil fume and lighting device 16 can still provide lighting to the user.
  • the wind power of the fan of the hood 10 is determined by the speed of the fan of the hood 10.
  • the speed of the fan of the hood 10 is based on the current temperature of the cooker 30 and the hood 10.
  • the preset relationship between the speed of the fan and the temperature of the pot 30 is obtained, and the control method further includes:
  • Step S620 determine whether the absolute value of the difference between the fan speed of the fan 10 and the current fan speed obtained through the preset relationship is greater than or equal to the preset difference. If so, step S622, the current The rotation speed of the fan of the hood 10 is adjusted to the rotation speed of the fan of the hood 10 obtained through a preset relationship. If not, step S624 keeps the current rotation speed of the fan of the hood 10 unchanged.
  • the control method of this embodiment can be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S620, S622, and S624 of the smoke stove linkage control method according to the embodiment of the present application can be realized by the control device 50.
  • the control device 50 is configured to determine whether the absolute value of the difference between the fan speed of the fan 10 and the current fan speed obtained through the preset relationship is greater than or equal to the preset difference.
  • the speed of the fan of the fan 10 is adjusted to the speed of the fan of the fan 10 obtained through a preset relationship. If not, the current speed of the fan of the fan 10 is kept unchanged.
  • the hood 10 can adjust the rotation speed of the fan in time according to the actual temperature of the cooker 30, so that the fan can suck oil fume clean at a proper rotation speed and can save electrical energy.
  • the temperature of the collected pots 30 is less than or equal to a preset number, the temperature of the pots is not enough at this time to determine whether the cooking state of the cooker is in a water-cooked state or an anhydrous cooking state.
  • the rotation speed of the fan of the hood 10 is obtained according to the current temperature of the cooker 30 and the preset relationship between the wind power of the hood fan and the temperature of the cooker 30.
  • the wind power of the fan of the hood 10 and the cooker 30 may be established.
  • the first preset function relationship of the temperature is obtained by using the current temperature of the cooker 30 and the first preset function relationship to obtain the rotation speed of the fan of the hood 10.
  • the collected temperature of the pot 30 is greater than a preset number, it is determined whether the cooking state is in a water-cooked state or an anhydrous cooking state by determining whether there is a boiling temperature of the pot.
  • the rotation speed of the fan of the hood 10 is obtained according to the current temperature of the pot 30 and the first preset function relationship.
  • the rotation speed of the fan of the hood 10 is obtained according to a preset relationship between the current temperature of the cooker and the wind of the fan of the hood 10 and the temperature of the cooker 30.
  • the second preset function relationship between the wind power of the fan of the hood 10 and the temperature of the cookware is obtained from the current temperature of the cookware 30 (boiling temperature of the cookware) and the second preset function relationship. 10 fan speed.
  • the first preset function relationship and the second preset function relationship may be set in advance, which is not limited herein.
  • the specific cooking state of the cooker or the cooking state of the cooker 20 is an anhydrous cooking state, it can be obtained according to a first preset function relationship between the rotation speed of the fan of the hood 10 and the temperature of the cooker 30
  • the rotation speed of the fan of the hood 10 is controlled by the control device 50 to control the fan of the hood 10 to run at a corresponding speed.
  • the preset number is 60
  • the first temperature sensor 22 collects temperature data of one pot 30 every two seconds.
  • the number of temperature of the collected pots 30 is less than or equal to a preset number (60)
  • the current temperature of the collected pots 30 is T 1
  • the current temperature of the collected pot 30 is T 2
  • Y k f 1 ( T k )
  • Y k f 1 ( T k )
  • the speed of the fan of the smoke machine 10 and the temperature of the cooker 30 can be determined.
  • the second preset function relationship of the current temperature (boiler boiling temperature) obtains the rotation speed of the fan of the hood 10, and the control device 50 issues a control instruction to control the fan of the hood 10 to operate at a corresponding rotation speed.
  • the dry state because the cooking pot temperature boiling temperature the rotational speed may be 30 with the tool pot 30 and the current temperature T k of the fan hood 10 is not present
  • the first preset function relationship obtains the rotation speed Y k of the fan of the hood 10, and determines that the rotation speed Y k of the fan of the hood 10 is compared with the current speed of the fan of the hood 10, and the current speed of the fan of the hood 10 is The speed W k-1 obtained through a single operation. If
  • is less than the preset difference B, it means that the difference between the current speed of the fan of the fan 10 and the speed of the fan obtained through the preset relationship is small, and the fan speed of the fan 10 is not updated. , That is, W k W k-1 .
  • the preset number is 60
  • the first temperature sensor 22 collects temperature data of one pot 30 every two seconds.
  • the number of collected temperature of the cookware 30 is less than or equal to a preset number (60)
  • the current temperature T k of the cookware 30 and the speed of the fan of the fan 10 and the first prediction of the temperature of the cookware 30 Set the functional relationship to obtain the fan speed Y k of the fan 10, and determine whether the fan speed Y k of the fan 10 is compared with the fan speed W k-1 of the fan 10, if
  • Or equal to the preset difference B, the current speed W k of the hood 10 needs to be adjusted to the speed Y k of the fan of the hood 10 corresponding to the current temperature of the cooker 30, and the operation of the fan is controlled by the speed Y k to reach The required wind power of the fan, that is, the current speed of the fan 10 is adjusted as: W k Y k .
  • the preset number is 60
  • the first temperature sensor 22 collects temperature data of one pot 30 every two seconds.
  • the current temperature T k of the pot 30 pot boiling the second predetermined function of the temperature T b
  • the rotational speed of the fan 10 and the smoke pot temperature of 30 Y k access to speed fan hood 10 determines the rotation speed of the fan hood 10 and hood 10 Y k The speed of the fan W k-1 is compared.
  • first embodiment, the second embodiment, the third embodiment, and the fourth embodiment are only specific examples of the control method of the present application.
  • the control method of the implementation manner of the present application may be combined and designed into other implementation manners according to actual conditions. There are no restrictions.
  • Embodiment 1 (see FIG. 25):
  • the cooker 20 is turned on.
  • the fire signal detection unit detects that the switch is on, and the control device 50 sends an instruction to turn on the lighting device 16 and the fan of the smoke machine 10.
  • the fire signal detection unit detects whether it is turned off. If shutdown is detected, proceed to step A4; if shutdown is not detected, proceed to step A7.
  • the control device 50 determines whether there is a boiling temperature T b of the cookware. If T b exists, go to step A5; if T b does not exist, go to step A6.
  • the control device 50 sends an instruction to the wind power adjusting unit and the lighting device 16 to control the fan 10 to run the first preset duration ⁇ T 1 in the middle position and then turn off the fan and the lighting device 16.
  • the control device 50 sends an instruction to the wind regulation unit and the lighting device 16 to control the fan 10 to run the second preset time period ⁇ T 2 in a large gear and turn off the fan and the lighting device 16.
  • the control device 50 generates a small gear signal of the fog machine 10.
  • the control device 50 generates a mid-range signal of the hood 10.
  • A13 Compare the collected T k with a preset third preset temperature T 3. If T k ⁇ T3, proceed to step 14; if T k ⁇ T3, proceed to step 15.
  • the control device 50 generates a large gear signal of the fog machine 10.
  • the control device 50 generates a stir-up gear signal of the fog machine 10.
  • Step 17 Calculate the standard deviation (STD) of N + 1 temperature data in the interval from T kN to T k . Compare STD with the preset value A. If STD ⁇ A (that is, there is a boiling temperature Tb for the pot), enter Step 17; if STD ⁇ A (that is, there is no boiling temperature Tb for the cookware), go to Step 9.
  • STD standard deviation
  • the boiling temperature T b T k of the cooker is present and set, and the control device 50 generates a signal of a preset gear position of the fog machine 10.
  • the control device 50 sends an instruction to the wind regulation unit to adjust the gear position of the fog machine 10.
  • Embodiment 2 (see FIG. 26):
  • the cooker 20 is turned on.
  • the fire signal detection unit detects that the switch is on, and the control device 50 sends an instruction to switch on the lighting device 16 and the fan of the smoke machine 10, and the initial speed of the given fan is W 0 .
  • the fire signal detection unit detects whether it is turned off. If shutdown is detected, proceed to step A4; if shutdown is not detected, proceed to step A7.
  • the control device 50 determines whether there is a boiling temperature T b of the cookware. If the presence of Tb proceeds to step A5; if there T b, proceeds to step A6.
  • the control device 50 sends an instruction to the wind power adjusting unit and the lighting device 16, and the fan 10 turns off the fan and the lighting device 16 after running the first preset duration ⁇ T 1 at the speed W c1 .
  • the control device 50 sends instructions to the wind power adjustment unit and the lighting device 16, and the fan 10 runs the motor for a second preset duration ⁇ T 2 at the speed W c2 to turn off the motor and the lighting.
  • the function f 1 is a positive correlation function with respect to T k when it is in an anhydrous cooking state such as frying, frying, or frying, or in a non-boiled region such as stewed, boiled, boiled, and steamed in a non-boiling region.
  • Step 11 Calculate the standard deviation (STD) of N + 1 temperature data in the interval from T kN to T k . Compare STD with the preset value A. If STD ⁇ A (that is, there is a boiling temperature Tb for the pot), enter Step 11; if STD ⁇ A (indicating that there is no boiling temperature Tb for the cookware), go to Step 9.
  • STD standard deviation
  • the control device 50 sends a command to the motor wind regulation unit to adjust the rotation speed of the fog machine 10.
  • Embodiment 3 (see FIG. 27):
  • the cooker 20 is turned on.
  • the fire signal detecting unit detects that the fan is turned on, and the control device 50 sends an instruction to turn on the fan of the smoke machine 10.
  • the fire signal detection unit detects whether it is turned off. If shutdown is detected, proceed to step A4; if shutdown is not detected, proceed to step A7.
  • the control device 50 determines whether there is a boiling temperature T b of the cookware. If T b exists, go to step A5; if T b does not exist, go to step A6.
  • the control device 50 sends an instruction to the wind power adjustment unit to control the hood 10 to turn off the fan after running the first preset duration ⁇ T 1 in the middle position.
  • the control device 50 sends an instruction to the wind regulation unit to control the fan 10 to run the second preset time period ⁇ T 2 in a large gear and turn off the fan.
  • the control device 50 generates a small gear signal of the fog machine 10.
  • the control device 50 generates a mid-range signal of the hood 10.
  • A13 Compare the collected T k with a preset third preset temperature T 3. If T k ⁇ T3, proceed to step 14; if T k ⁇ T3, proceed to step 15.
  • the control device 50 generates a large gear signal of the fog machine 10.
  • the control device 50 generates a stir-up gear signal of the fog machine 10.
  • the boiling temperature T b T k of the cooker is present and set, and the control device 50 generates a signal of a preset gear position of the fog machine 10.
  • the control device 50 sends an instruction to the wind regulation unit to adjust the gear position of the fog machine 10.
  • Embodiment 4 (see FIG. 28):
  • the cooker 20 is turned on.
  • the fire signal detection unit detects the start, the control device 50 sends an instruction to start the fan, and the initial speed of the given fan is W0.
  • the fire signal detection unit detects whether it is turned off. If shutdown is detected, proceed to step A4; if shutdown is not detected, proceed to step A7.
  • the control device 50 determines whether there is a boiling temperature Tb of the pan. If Tb exists, go to step A5; if Tb does not exist, go to step A6.
  • the control device 50 sends an instruction to the wind power adjusting unit, and the cigarette machine 10 runs the motor for a first preset duration ⁇ T1 at the speed Wc1, and then turns off the motor.
  • the control device 50 sends an instruction to the wind regulation unit, and the cigarette machine 10 runs the motor for a second preset time period ⁇ T2 at the speed Wc2.
  • the control device 50 sends a command to the motor wind regulation unit to adjust the rotation speed of the fog machine 10.
  • control method includes:
  • step S312 it is determined whether the cooker 30 is off the pot. If it is, in step S314, the fan of the hood 10 is controlled to run with the first preset wind; if not, the process proceeds to step S20 to judge the cooking of the cooker 20 according to the temperature of the cooker 30 status.
  • the smoke stove linkage control method of the embodiment of the present application can be implemented by the smoke stove linkage system 100 of the embodiment of the present application, and can be applied to the cooker 20 and the smoke machine 10.
  • steps S312 and S314 of the method for controlling a smoke stove linkage may be implemented by the control device 50. That is, the determination module 110 is used to determine whether the cooker 30 is off the pot. If so, the processing module 120 is used for the fan of the smoke machine 10 to operate with the first preset wind force; if not, the determination module 110 is based on the cooker 30's Temperature judges cooking state of cooker 20
  • the wind power of the fan of the smoke machine 10 is controlled according to whether the cooker 30 is off the pot, and the cooker 20 is judged based on the current temperature of the cooker 30
  • the wind force of the fan of the hood 10 is controlled according to the cooking state of the cooker 20, so that the hood 10 can automatically adjust the appropriate wind force to suck the oil fume generated during the cooking process, so that it can play a role in saving electricity and making oil fume.
  • the suction is cleaner.
  • the fan of the hood 10 is controlled to run with a first preset wind force.
  • the hood 10 can be controlled to run at a preset gear position, for example, a small gear position.
  • the fog machine 10 can be controlled to run at a preset speed.
  • the cooker 30 in this embodiment is in a state of being off the pot, it can be understood that the cooker 30 is not placed on the cooker 20.
  • the timer can be started from the time when the cooker 30 leaves the cooker 20, and the timer 20 is determined to be off-the-pot when the time length is longer than the preset off-pot length. Because in some food cooking scenarios, during the cooking process, the cooker leaves the cooker 20 once or a few times, in fact, the food cooked by the cooker 30 has not changed, which can make the control method more accurate.
  • whether the pot 30 is in an off-pot state can be determined by the heating rate of the pot 30 detected by a contact temperature sensor installed on the cooker 20 without a sitting pot detection.
  • a contact temperature sensor installed on the cooker 20 without a sitting pot detection.
  • the temperature change value ⁇ T within a preset time period t is calculated, when the temperature change value ⁇ T is greater than a first predetermined value, it is determined that the cooker 30 is in the off-pot state.
  • the slope ⁇ T / t of the temperature within a preset time period t is calculated.
  • the slope ⁇ T / t of the temperature is greater than a second predetermined value, it is determined that the cooker 30 is in the off-pot state.
  • the cooker 20 when the cooker 20 is heating, calculate the temperature change value ⁇ T and the temperature slope ⁇ T / t within a preset time period t.
  • the temperature change value ⁇ T is greater than a first predetermined value and the temperature slope ⁇ T / t is greater than a second predetermined value, It is determined that the pot 30 is in the off-pot state.
  • a non-contact temperature sensor installed on the cooker 20 can be used to detect whether the temperature of the cooker 30 fluctuates greatly.
  • the preset time period t is calculated, when the temperature change value ⁇ T is greater than the first predetermined value, it is determined that the pan 30 is in the off-pot state.
  • the slope ⁇ T / t of the temperature within a preset time period t is calculated.
  • the slope ⁇ T / t of the temperature is greater than a second predetermined value, it is determined that the cooker 30 is in the off-pot state.
  • the cooker 20 when the cooker 20 is heating, calculate the temperature change value ⁇ T and the temperature slope ⁇ T / t within a preset time period t.
  • the temperature change value ⁇ T is greater than a first predetermined value and the temperature slope ⁇ T / t is greater than a second predetermined value, It is determined that the pot 30 is in the off-pot state.
  • a position sensor connected to the contact temperature sensor is used to detect whether the pot 30 is in an off-pot state.
  • the image sensor on the cooker 20 may be installed to detect whether the cooker 30 is off the pot without the cooker 20 being turned off.
  • a weight sensor may be mounted on the pan support during cooking. During the cooking process, it is determined whether the pot 30 is off the pot by measuring the weight carried by the pot support. For example, when the measured weight is close to a preset range, it is determined that the pot 30 is off the pot.
  • the means for determining whether the cookware 30 is in the off-pot state may adopt any one of the above embodiments or a combination of two or more.
  • control device 50 includes a processing module 210, an acquisition module 220, and an acquisition module 230.
  • Step S1 includes:
  • Step S1010 acquiring a cooking state instruction of the cooker 20 and determining a cooking state of the cooker 20 according to the cooking state instruction of the cooker 20;
  • Step S3 includes:
  • Step S1020 collecting the temperature of the pot 30
  • step S1030 the wind force of the fan of the hood 10 is controlled according to the cooking state and the temperature of the cooker 30.
  • Steps S1010, S1020, and S1030 of the smoke stove linkage control method according to the embodiment of the present application may be implemented by the control device 50. That is, the obtaining module 220 is used to obtain the cooking state instruction of the cooker 20, the processing module 210 is used to determine the cooking state of the cooker 20 according to the cooking state instruction of the cooker 20; the acquisition module 230 is used to collect the temperature of the cooker 30; the processing module 210 is used to control the wind force of the fan of the hood 10 according to the cooking state and the temperature of the pot 30.
  • the wind power of the fan of the smoke machine 10 is controlled by acquiring the cooking state instruction of the stove 20 and the temperature of the cooker 30, so that the smoke machine 10 can automatically adjust suitable
  • the wind power is used to suck the oil fume generated during cooking, which can save electricity and make the sucking of oil fume cleaner.
  • the smoke stove linkage system 100 further includes a user input device 40, and the user input device 40 is connected to the control device 50.
  • the user input device 40 may be provided on the smoke machine 10 or the cooker 20, and the user may use the user input device 40 inputs a cooking state instruction, and the control device 50 can obtain the cooking state input by the user from the user input device 40.
  • the cooking state includes a water cooking state or a waterless cooking state.
  • the user input device 40 can be inputted with cooking with water.
  • an anhydrous cooking method such as frying, frying, or frying
  • the user can input anhydrous cooking on the user input device 40.
  • the cooking state of the cooker includes a water cooking state and a waterless cooking state.
  • Step S1030 includes:
  • step S1031 when the cooker 20 is in a cooking state with water, the fan of the hood 10 is controlled to run with a first positively correlated wind force with the current temperature of the cooker 30;
  • step S1032 when the cooker 20 is in an anhydrous cooking state, the fan of the hood 10 is controlled to run with a second positive correlation with the current temperature of the cooker 30.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S1031 and S1032 of the smoke stove linkage control method according to the embodiment of the present application may be realized by the control device 50. That is, the processing module 210 is configured to control the fan of the hood 10 to operate with a first positive correlation with the current temperature of the cooker 30 when the cooker 20 is in a cooking state with water; when the cooker 20 is in a waterless cooking state At this time, the fan of the fog machine 10 is controlled to operate with the second positively related wind force of the current temperature of the cooker 30.
  • the wind power of the fan of the hood 10 can be controlled according to the cooking state of the cooker 20, and the wind power of the fan can be accurately controlled so that the hood can meet the demand for oil fume during cooking, and the user experience is good.
  • the fan of the hood 10 can be controlled to communicate with the pan
  • the first positive correlation between the wind power of the fan and the current temperature of the cooker 30 includes the following cases: different wind power of the fan may correspond to different temperature ranges of the cooker 30.
  • the wind force includes three different wind forces F1, F2, and F3, where F1 ⁇ F2 ⁇ F3, the temperature range of the pot 30 corresponding to F1 is [T11, T12], and the temperature range of the pot 30 corresponding to F2 is ( T12, T13], the temperature range of the pot 30 corresponding to F3 is (T13, T14].
  • the fan can be controlled to run in F1.
  • the fan can be controlled to run in F2; when the current temperature of the cooker 30 is in the range of (T13, T14], the fan can be controlled to run in F3.
  • the wind of the fan can also pass the speed of the fan And / or gear.
  • the fan of the hood 10 can be controlled to communicate with the pot 30
  • the current temperature is second positively correlated with wind operation.
  • the second positive correlation between the wind power of the fan and the current temperature of the cooker 30 includes the following cases: different wind power of the fan may correspond to different temperature ranges of the cooker 30.
  • wind power includes three different wind powers: F4, F5, and F6, where F4 ⁇ F5 ⁇ F6, the temperature range of the pot 30 corresponding to F4 is [T21, T22], and the temperature range of the pot 30 corresponding to F5 is ( T22, T23], the temperature range of the pot 30 corresponding to F6 is (T23, T24].
  • F4 ⁇ F5 ⁇ F6 the temperature range of the pot 30 corresponding to F4 is [T21, T22] range
  • the temperature range of the pot 30 corresponding to F5 is ( T22, T23] range
  • the temperature range of the pot 30 corresponding to F6 is (T23, T24].
  • the wind of the fan can also pass the speed of the fan And / or gear.
  • the cooker 30 when the cooker 30 is in a cooking state that produces less oily fumes such as stewing, boiling, boiling, and steaming, the cooker 20 is in a cooking state with water.
  • the fan of the hood 10 can be controlled to control the fan of the hood 10 and the current The wind operation with the first positive correlation of the temperature of the cooker, for example, a smaller wind starts to operate, and as the temperature of the cooker 30 increases, the wind power of the fan is gradually increased.
  • the fan of the hood 10 can be controlled by the wind operation that has the second positive correlation with the current cooker temperature. For example, for example, a larger wind force starts to run, and as the temperature of the cooker 30 increases, the wind force of the fan is gradually increased, thereby ensuring that the oil smoke can be sucked clean by the hood 10.
  • the cooker 20 includes a plurality of burners 25, and the control method includes:
  • Step S2010 collecting the temperature of the cookware 30 corresponding to each stove head 25;
  • Step S1 includes:
  • Step S2020 judging the cooking state of each burner 25 according to the temperature of the pot 30;
  • Step S3 includes:
  • Step S2030 Determine the wind power of the fan of the smoke machine 10 corresponding to each burner 25 according to the cooking state of each burner 25;
  • step S2040 the maximum wind force among the wind forces of the fans of the plurality of smoke machines 10 is taken as the running wind force of the smoke machines 10;
  • step S2050 the fan 10 is controlled to run in wind power.
  • the smoke stove linkage control method in the embodiment of the present application can be implemented by the smoke stove linkage system 100 in the embodiment of the present application, and can be applied to the cooker 20 and the smoke machine 10.
  • steps S2010, S2020, S2030, S2040, and S2050 of the method for controlling a smoke stove linkage according to the embodiment of the present application may be implemented by the control device 50.
  • the control device 50 includes a processing module 310, an acquisition module 320, and a determination module 340.
  • the collection module 320 is used to collect the temperature of the cookware 30 corresponding to each stove head 25; the determination module 340 is used to determine the cooking state of each stove head 25 according to the temperature of the cookware 30; the processing module 310 is used to The wind power of the fans of the hoods 10 corresponding to each burner 25 is determined according to the cooking state of each burner 25; the processing module 310 is configured to use the maximum wind force of the wind power of the fans of the plurality of hoods 10 as the hood 10 The processing module 310 is configured to control the hood 10 to run in wind operation.
  • the wind power of the fan of the smoke machine 10 corresponding to each stove head 25 is determined according to the cooking state of each stove head 25, and a plurality of smoke machines are determined.
  • the maximum wind power of the wind power of the 10 fan is used as the running wind power of the hood 10. In this way, the hood 10 can automatically adjust the appropriate wind to absorb the oil fume generated during the cooking process of the multiple burners 25, which can save the power and Makes the extraction of oil fume cleaner.
  • each cooker 20 includes two or more burners 25.
  • the cooking state of each burner 25 may be inconsistent, that is, each burner 25 The degree of the generated oil fume is different. Therefore, in order to be able to suck the oil fume to the maximum extent, in this embodiment, when a plurality of stoves 25 are working at the same time, the control device 50 can determine according to the temperature of each pot 30 The cooking state of each burner 25, and the wind power of the smoke machine 10 corresponding to each burner 25 is determined according to specific calculations, and then the maximum wind force of the wind power of the smoke machine 10 corresponding to each burner 25 is determined as The running wind of the fan, that is, the hood 10 eventually runs at the maximum wind, so that the fume generated during cooking can be sucked out to the maximum extent.
  • the cooker 20 includes three stove heads 25a, 25b, and 25c.
  • the control device 50 can determine the cooking state of the pot 30 according to the temperature of the pot 30 placed on the stove 25a, for example, cooking with water, and determine that the wind power of the fan is a small gear.
  • the control device 50 can determine the cooking state of the pot 30 according to the temperature of the pot 30 placed on the stove 25b, for example, waterless cooking, and determine that the wind power of the fan is in the middle range.
  • the control device 50 can determine the cooking state of the pot 30 according to the temperature of the pot 30 placed on the stove 25c, for example, waterless cooking, and determine that the wind power of the fan is a large gear.
  • the control device 50 may compare the wind power of the fan determined by each burner 25, and finally use the maximum wind power (large gear) as the operating wind power of the fog machine 10.
  • the cooker 20 includes three stove heads 25a, 25b, and 25c.
  • the control device 50 can determine the cooking state of the pot 30 according to the temperature of the pot 30 placed on the stove 25a, for example, cooking with water, and determine the wind speed of the fan to be a speed.
  • the control device 50 can determine the cooking state of the pot 30 according to the temperature of the pot 30 placed on the stove 25b, for example, waterless cooking, and determine that the wind speed of the fan is b.
  • the control device 50 can determine the cooking state of the pot 30 according to the temperature of the pot 30 placed on the stove 25c, for example, waterless cooking, and determine the wind speed of the fan to be c.
  • the speed of a is smaller than the speed of b, and the speed of b is smaller than the speed of c.
  • the control device 50 may compare the wind power of the fan determined by each burner 25, and finally use the maximum wind power (c speed) as the operating wind power of the fog machine 10.
  • step S1 includes:
  • Step S3010 use the image sensor 60 to collect an image of the cooker 20;
  • Step S3020 Determine the smoke state of the cooker 20 and the cooking state of the cooker 20 according to the image of the cooker 20;
  • Step S3 includes:
  • step S3030 the wind power of the fan of the hood 10 is controlled according to the smoke state of the cooker 20 and the cooking state of the cooker 20.
  • the smoke stove linkage control method in the embodiment of the present application can be implemented by the smoke stove linkage system 100 in the embodiment of the present application, and can be applied to the cooker 20 and the smoke machine 10.
  • steps S3010, S3020, and S3030 of the method for controlling a smoke stove linkage according to the embodiment of the present application may be implemented by the control device 50.
  • the control device 50 includes a processing module 410, a collection module 420, and a determination module 430.
  • the acquisition module 420 is used to collect an image of the cooker 20 using the image sensor 60; the determination module 430 is used to determine the smoke state of the cooker 20 and the cooking state of the cooker 20 according to the image of the cooker 20; the processing module 410 is used to determine the cooker 20 according to the image of the cooker 20
  • the smoke state and cooking state of the cooker 20 control the wind power of the fan of the hood 10.
  • the smoke status of the stove 20 and the cooking status of the stove 20 are determined by the image of the stove 20 collected by the image sensor 60, and according to the smoke of the stove 20
  • the state and the cooking state of the cooker 20 control the wind power of the fan of the hood 10, so that the wind power of the hood 10 can be adjusted to an appropriate wind force to suck the oil fume generated during cooking, so that it can play a role of saving electricity and making the oil fume Suck cleaner.
  • the image sensor 60 may be disposed on the hood 10.
  • the image sensor 60 captures an image of the cooker from top to bottom. After the image sensor 60 captures the image of the cooker 20, the image of the cooker 20 may be transmitted. Go to the control device 50 for processing.
  • the image sensor 60 is disposed at a location other than the hood 10 and the cooker 20, such as on a wall, and the image sensor 60 collects an image of the cooker 20 from above. After the image sensor 60 collects the image of the cooker 20, it can transmit the image of the cooker 20 to the control device 50 for processing.
  • the smoke state can be the smoke density.
  • the embodiment of the present application collects an image of the cooker 20 through the image sensor 60, and the control device 50 can determine the smoke state of the cooker 20 and the cooking state of the cooker 20 according to the image of the cooker 20.
  • the smoke state that is, when the smoke concentration is the same
  • the wind power of the fan of the smoke machine 10 is also different.
  • the image sensing sensor detects a smoke concentration value of 100
  • the smoke machine 10 is controlled to operate with a mid-range wind force.
  • the hood 10 is controlled to operate with large-scale wind power.
  • the wind force of the fan is not limited here, and can be adjusted according to the actual situation.
  • step S3020 includes steps:
  • Step S1220 Compare the image of the cooker 20 with a plurality of preset images in the image database, and the preset image corresponds to a smoke state;
  • step S1240 the smoke state of the preset image matching the image of the cooker 20 is used as the smoke state of the cooker 20.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S1220 and S1240 of the smoke stove linkage control method according to the embodiment of the present application may be realized by the control device 50.
  • the control device 50 includes a determination module 430. That is, the judgment module 430 is configured to compare the image of the cooker 20 with a plurality of preset images in the image database, and the preset image corresponds to a smoke state; and the preset image that matches the image of the cooker 20 The smoke state is the smoke state of the cooker 20.
  • the smoke state of the cooker 20 is obtained by comparing the image of the cooker 20 with a plurality of preset images in the image database, which is convenient, efficient, and highly accurate.
  • the image database of this embodiment can be understood as a series of experiments to collect images of different smoke states, each image corresponding to a smoke state, and preset images of these different smoke states are stored in the image database.
  • the image database includes a plurality of sub-image databases, and each model of the cooker 20 corresponds to a sub-database.
  • the image sensor 60 collects images of the cooker 20, and the image processing unit in the control device 50 can combine the images of the cooker 20 with the
  • the preset images in the image database are searched and compared, for example, the sub-database is searched according to the model of the cooker 20, so that the smoke status of the cooker can be identified faster and more accurately.
  • the preset image matching the image of the cooker 20 can be understood as using the image with the highest similarity as the image matching the image of the cooker, or selecting any one of a plurality of images with similarity greater than a preset value as the Matching the image of the cooker image.
  • the smoke state corresponding to the preset image is used as the Smoke status.
  • step S3020 includes steps:
  • Step S1260 Process the image of the cooker 20 to obtain image features corresponding to the image of the cooker 20;
  • Step S1280 Obtain the smoke state of the cooker 20 according to the correspondence between the image features corresponding to the image of the cooker 20 and the image features and the smoke state.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S1260 and S1280 of the smoke stove linkage control method according to the embodiment of the present application may be realized by the control device 50. That is, the judgment module 430 is configured to process the image of the cooker 20 to obtain the image features corresponding to the image of the cooker 20; and obtain the cooker 20 according to the correspondence between the image features corresponding to the image of the cooker 20 and the image features and the state of the smoke. Smoke status.
  • the control device 50 of this embodiment may process and analyze the image of the cooker 20 to obtain corresponding image features.
  • the image feature corresponding to the image of the cooker 20 may be the number of oil fume particles in the image and the image Image features such as contrast.
  • the correspondence between image features and smoke status is established by using big data analysis methods. For example, a function correspondence between image features and smoke density can be established.
  • the image sensor 60 collects the image of the cooker 20, and the image processing unit in the control device 50 can analyze and confirm the image feature corresponding to the image of the cooker 20, and then solve the smoke state corresponding to the image feature
  • the control device 50 calls the smoke state as the smoke state of the cooker 20.
  • step S3020 includes steps:
  • Step S1210 Compare the image of the cooker 20 with a plurality of preset images in the image database, and the preset image corresponds to a cooking state;
  • step S1230 the cooking state corresponding to the preset image matching the image of the cooker 20 is used as the cooking state of the cooker 20.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S210 and S230 of the smoke stove linkage control method according to the embodiment of the present application may be realized by the control device 50. That is, the determination module 430 is used to compare the image of the cooker 20 with a plurality of preset images in the image database, and the preset image corresponds to a cooking state; the determination module 430 will match the preset image with the image of the cooker 20 The corresponding cooking state is the cooking state of the cooker 20.
  • the cooking state of the cooker 20 includes a water cooking state and a waterless cooking state.
  • Cooking with water can be stewed, boiled, boiled, steamed and other cooking methods with water.
  • Anhydrous cooking includes waterless cooking methods such as frying, frying, and frying.
  • the image database of this embodiment can be understood as the collection of images of the cooker 20 in the water cooking state and the cooker 20 in the waterless cooking state by performing a large number of experiments, each image corresponding to one
  • the cooking mode includes water cooking state or waterless cooking state, and preset images of these different cooking states are stored in an image database.
  • the image sensor 60 collects the image of the cooker 20, and the image processing unit in the control device 50 can search and compare the image of the cooker 20 with a preset image in the image database, for example, find a sub-database according to the model of the cooker 20, This can identify the cooking state of the cooker 20 faster and more accurately.
  • the preset image matching the image of the cooker 20 can be understood as taking the image with the highest similarity as the image matching the image of the cooker 20, or selecting any one of a plurality of images with similarity greater than a preset value as Picture matching the image of the cooker 20.
  • the similarity between the image of the cooker 20 and one of the preset images in the image database is greater than a preset value
  • the watered state or no water corresponding to the preset image is called.
  • the cooking state is the cooking state of the cooker 20.
  • step S3020 includes steps:
  • Step S1250 Process the image of the cooker 20 to obtain image features corresponding to the image of the cooker 20, and the image features correspond to a cooking state;
  • step S1270 the cooking state of the cooker 20 is obtained according to the correspondence between the image features corresponding to the image of the cooker 20 and the image features and the cooking state.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S1250 and S1270 of the smoke stove linkage control method according to the embodiment of the present application may be realized by the control device 50. That is, the determination module 430 is configured to process the image of the cooker 20 to obtain image features corresponding to the image of the cooker 20, the image features corresponding to a cooking state, and according to the image features and image features and cooking states corresponding to the image of the cooker 20 Corresponding relationship to obtain the cooking state of the cooker 20.
  • the control device 50 of this embodiment may process and analyze the image of the cooker 20 to obtain corresponding image features.
  • the image feature corresponding to the image of the cooker 20 may be the number of oil fume particles in the image and the image Image features such as contrast.
  • the correspondence between image features and cooking states is established using analysis methods of big data.
  • the function correspondence between image features and cooking states with and without water can be established.
  • the image sensor 60 collects the image of the cooker 20, and the image processing unit in the control device 50 can analyze and confirm the image feature corresponding to the image of the cooker 20, and then solve the water feature corresponding to the image feature.
  • the cooking state or the anhydrous cooking state can be established.
  • the control device 50 calls the watery cooking state or the anhydrous cooking state as the cooking state of the cooker 20.
  • the smoke state includes a smoke density
  • step S3030 includes steps:
  • Step S1320 when the cooker 20 is in a cooking state with water, control the fan of the hood 10 to operate with a first wind force that is positively related to the smoke concentration;
  • step S1340 when the cooker 20 is in an anhydrous cooking state, the fan of the fog machine 10 is controlled to operate with a second wind force that is positively related to the smoke concentration.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S1320 and S1340 of the smoke stove linkage control method according to the embodiment of the present application may be realized by the control device 50. That is, the control device 50 is configured to control the fan of the hood 10 to operate with the first wind force that is positively related to the smoke concentration when the cooker 20 is in a water-cooking state; and control the smoke when the cooker 20 is in a water-free cooking state The fan of the machine 10 operates with a second wind force that is positively related to the smoke concentration.
  • the wind power of the fan of the hood 10 is controlled according to the cooking state of the cooker 20, so that the wind power of the fan can be accurately controlled so that the hood 10 can meet the demand for oil fume during cooking, and the user experience is good.
  • the cooker 20 when the cooker is in a cooking state that produces less oily fumes such as stewing, cooking, boiling, and steaming, the cooker 20 is in a cooking state with water.
  • Wind-powered operation for example with a small initial wind, can save electricity.
  • the fan of the hood 10 can be controlled to operate with a second wind force that is positively related to the smoke concentration, for example, to A relatively large initial wind power operation ensures that the soot can be sucked clean by the hood 10.
  • the second wind force is greater than the first wind force.
  • the fan of the hood 10 when the cooker 20 is in a cooking state with water, the fan of the hood 10 may be controlled to operate with a wind force that is positively related to the smoke concentration of the cooker 20.
  • the positive correlation between the wind power of the fan and the smoke concentration of the cooker 20 includes the following cases: different wind powers of the fan may correspond to the smoke concentration range of the cooker 20.
  • the wind force includes three different wind forces F1, F2, and F3, where F1 ⁇ F2 ⁇ F3, and the smoke concentration range of the cooker 20 corresponding to F1 is [H11, H12], and the smoke concentration range of the cooker 20 corresponding to F2 is ( H12, H13], the smoke concentration range of the cooker 20 corresponding to F3 is (H13, H14], when the current smoke concentration of the cooker 20 is in the range of [H11, H12], the fan can be controlled to run in F1; when the cooker 20's current When the smoke concentration is in the range of (H12, H13), the fan can be controlled to run in F2; when the current smoke concentration of the cooker 20 is in the range of (H13, H14], the fan can be controlled to run in F3.
  • the wind of the fan can also pass the speed of the fan And / or gear.
  • the fan of the hood 10 can be controlled to operate with wind force that is positively related to the current temperature of the cooker 30.
  • the positive correlation between the wind power of the fan and the smoke concentration of the cooker 20 includes the following cases: different wind powers of the fan may correspond to the smoke concentration range of the cooker 20.
  • wind power includes three different wind powers: F4, F5, and F6, where F4 ⁇ F5 ⁇ F6, the smoke concentration range of the cooker 20 corresponding to F4 is [H11, H12], and the smoke concentration range of the cooker 20 corresponding to F5 is ( H12, H13], the smoke concentration range of the cooker 20 corresponding to F6 is (H13, H14].
  • F4 ⁇ F5 ⁇ F6
  • the smoke concentration range of the cooker 20 corresponding to F4 is [H11, H12]
  • the smoke concentration range of the cooker 20 corresponding to F5 is ( H12, H13]
  • the smoke concentration range of the cooker 20 corresponding to F6 is (H13, H14].
  • the wind of the fan can also pass the speed of the fan And / or gear.
  • the wind speed of the fan of the hood 10 is determined by the rotation speed of the fan of the hood 10.
  • the preset relationship between the wind power of the fan and the smoke state of the cooker 20 is acquired, and the control method further includes steps:
  • S3040 Determine whether the absolute value of the difference between the rotation speed of the fan of the hood 10 corresponding to the current smoke state of the cooker 20 and the rotation speed of the fan of the hood 10 corresponding to the smoke state of the cooker 20 at the previous time is greater than a preset difference If yes, S3042, adjust the current fan speed of the fan 10 to the current fan speed corresponding to the smoke state of the cooker 20; if not, S3044, keep the current fan speed of the fan 10 unchanged.
  • the control method of this embodiment may be implemented by the smoke stove linkage system 100 according to the embodiment of the present application, wherein steps S3040, S3042, and S3044 of the smoke stove linkage control method of the embodiment of the present application may be realized by the control device 50. That is, the control device 50 is configured to determine the absolute value of the difference between the rotation speed of the fan of the hood 10 corresponding to the current smoke state of the cooker 20 and the rotation speed of the fan of the hood 10 corresponding to the smoke state of the cooker 20 at the previous time. Is the value greater than the preset difference? If yes, adjust the current fan speed of the fan 10 to the current fan speed of the fan 20 corresponding to the current smoke state of the cooker 20; if not, keep the current fan speed of the fan 10 constant.
  • the hood 10 can adjust the rotation speed of the fan in time according to the smoke state of the actual cooker 20 so that the fan can suck the oil fume clean at a proper rotation speed and can save electricity.
  • the fan of the cooker 10 may be obtained according to a first preset function relationship between the current smoke concentration H k of the cooker 20 and the speed of the fan of the cooker 10 and the smoke concentration of the cooker 20. Y k speed, the current speed of the fan determines the rotational speed of the fan hood 10.
  • hood 10 and Y k compared fan hood 10 is a current rotation speed acquired by the speed calculation fan W k-1, If
  • greater than a preset difference value B, then the current speed of the fan to adjust the hood 10 to the current smoke density cooker fan 20 of the hood 10 corresponding to the rotational speed of Y k, to The rotation speed Y k is used to control the operation of the fan to achieve the required wind force of the fan, that is, the current rotation speed of the fog machine 10 is adjusted to W k Y k .
  • the speed Y of the fan of the fan 10 can be obtained according to a current relationship between the smoke concentration H k of the current cooker 20 and the second preset function of the fan speed of the fan 20 and the smoke concentration of the fan 20 k , to determine the speed Y k of the fan of the hood 10 is compared with the current speed of the fan of the hood 10.
  • the current speed of the fan of the hood 10 is the speed W k-1 obtained by the last calculation of the fan, if
  • is greater than the preset difference B, the current fan speed of the fan 10 is adjusted to the fan speed Y k of the fan 10 corresponding to the current smoke concentration of the cooker 20, and the speed Y k To control the operation of the fan to achieve the required wind power of the fan, that is, the current speed of the fan 10 is adjusted to W k Y k .
  • the smoke stove linkage system 100 includes a processor 510 and a memory 520.
  • the memory 520 stores one or more programs, and the one or more programs are configured to be executed by the processor 510.
  • the programs include A control method for performing any of the above.
  • the cooking state of the stove 20 is judged; and the wind force of the fan of the smoke machine 10 is controlled according to the cooking state of the stove 20, so that the smoke machine 10 can automatically adjust the appropriate wind force to absorb the cooking process
  • the fume produced in the process can save electricity and make the fume extraction cleaner.
  • the smoke machine includes a smoke stove linkage system 100, a first detection signal receiving unit 12, and a first wind power adjusting unit 14.
  • the processor 510 is connected to the first detection signal receiving unit 12 and the first wind power adjusting unit 14.
  • the cooker 20 includes a first temperature sensor 22, a first temperature signal processing unit 24, a first firepower signal detection unit 26, a first firepower signal processing unit 28, and a first detection signal transmitting unit 29.
  • the first temperature sensor 22 feeds back the temperature signal to the first temperature signal processing unit 24, and the first thermal power signal detection unit 26 feeds back the thermal power signal to the first thermal power signal processing unit 28.
  • the first temperature signal processing unit 24 and the first thermal power signal processing unit 28 respectively transmit the processed temperature signal and thermal power signal to the first detection signal transmitting unit 29 of the cooker 20.
  • the first detection signal transmitting unit 29 then transmits the temperature signal and the firepower signal to the first detection signal receiving unit 12 in a wired or wireless communication manner.
  • the first detection signal receiving unit 12 feeds back the temperature signal and the fire power signal to the control device 50 of the hood 10.
  • the processor 510 determines the temperature of the cooker 30 through calculation and determines the cooking state of the cooker 20 according to the temperature of the cooker 30. Then, according to the cooking state of the cooker 20 and the temperature of the cooker, an adjustment strategy for the working state of the fan of the hood 10 is determined and a control signal is generated.
  • the processor 510 sends an operation instruction of a control signal to the first wind power adjusting unit 14 of the smoke machine 10, so that the smoke machine 10 automatically adjusts the wind force of the fan of the smoke machine 10 according to the movement instruction.
  • the cooker 20 includes a smoke stove linkage system 100, a first temperature sensor 22, a first temperature signal processing unit 24, and a first firepower signal detection unit 26.
  • the processor 510 is connected to the first temperature sensor 22, the first temperature signal processing unit 24, the first thermal power signal detection unit 26, the first thermal power signal processing unit 28, and the first detection signal transmitting unit 29.
  • the hood according to the embodiment of the present application includes a first detection signal receiving unit 12 and a first wind power adjusting unit 14.
  • the first temperature sensor 22 feeds back the temperature signal to the first temperature signal processing unit 24, and the first thermal power signal detection unit 26 feeds back the thermal power signal to the first thermal power signal processing unit 28.
  • the first temperature signal processing unit 24 and the first thermal power signal processing unit 28 respectively transmit the processed temperature signal and thermal power signal to the control device 50.
  • the processor 510 determines the temperature of the cooker 30 through calculation and determines the cooking state of the cooker 20 according to the temperature of the cooker 30. Then, the working state adjustment strategy of the hood 10 is determined according to the cooking state and the bottom temperature, and a control signal is generated.
  • the processor 510 feeds back a control signal to the first control signal transmitting unit 21.
  • the first control signal transmitting unit 21 transmits a control signal to the first control signal receiving unit 18 of the cigarette machine 10 by means of wired or wireless communication.
  • the first control signal receiving unit 18 sends a control signal to the first wind power adjustment unit 14 so that the smoke machine 10 automatically adjusts the wind force of the fan of the smoke machine 10 according to the operation instruction.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for performing a particular logical function or step of a process
  • the scope of the preferred embodiments of the present application includes additional executions, which may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a ordered list of executable instructions that may be considered to perform a logical function may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system that includes a processor, or another system that can fetch and execute instructions from an instruction execution system, device, or device) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the present application may be executed by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit having a logic function for performing a logic function on a data signal
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • a person of ordinary skill in the art can understand that performing all or part of the steps carried by the foregoing implementation method can be completed by a program instructing related hardware.
  • the program can be stored in a computer-readable storage medium, and the program is executing , Including one or a combination of the steps of the method embodiments.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or software functional modules. When the integrated module is executed in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Abstract

一种烟灶联动系统(100)及控制方法,烟灶联动系统(100)包括灶具(20)、烟机(10)、处理器(510)、存储器(520)和控制装置(50),存储器(520)存储有一个或多个程序,一个或多个程序被配置成由处理器(510)执行,控制装置(50)连接灶具(20)和烟机(10),控制装置(50)包括判断模块(110)和处理模块(120),判断模块(110)用于判断灶具(20)的烹饪状态,处理模块(120)用于根据灶具(20)的烹饪状态控制烟机(10)的风机的风力;控制方法包括:判断灶具(20)的烹饪状态,根据灶具(20)的烹饪状态控制烟机(10)的风机的风力;该系统和控制方法可自动调整合适的风力以吸取烹饪过程中产生的油烟,可以节省电能,油烟的吸取更干净。

Description

烟灶联动的控制方法及烟灶联动系统
优先权信息
本申请请求2018年09月04日向中国国家知识产权局提交的、专利申请号为201811028216.3、201811028207.4、201811028210.6、201811028209.3及201811026546.9的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及烹饪电器技术领域,特别涉及一种烟灶联动的控制方法和烟灶联动系统。
背景技术
在相关技术的烟灶联动系统中,一般是根据灶具的火力大小调整烟机的风速档位,但是灶具的火力状态和油烟浓度不是完全对应的关系,根据火力大小调整烟机档位可能出现判断失误的情况。例如,刚开始进行烹饪时,此时火力很大但油烟较小,若此时烟机的风机档位开启为大档位会造成电能严重浪费并引起噪声污染。又例如,小火煎炸食物时,火力很小但油烟很大,若此时烟机的风机档位开启为小档位会导致油烟抽吸不干净、污染厨房。因此,如何合理地控制烟机的风力以满足用户的烹饪时烟机的吸油需求成为亟待解决的问题。
发明内容
本申请的实施方式提供一种烟灶联动的控制方法及烟灶联动系统。
本申请的实施方式的烟灶联动的控制方法用于灶具和烟机,所述控制方法包括:
判断所述灶具的烹饪状态;及
根据所述灶具的烹饪状态控制所述烟机的风机的风力。
本申请实施方式的烟灶联动的控制方法,通过判断灶具的烹饪状态;及根据灶具的烹饪状态控制烟机的风机的风力,这样烟机可自动调整合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
本申请实施方式还提供一种烟灶联动系统,所述烟灶联动系统包括灶具、烟机和控制装置,所述控制装置连接所述灶具和所述烟机,所述控制装置包括判断模块和处理模块,所述判断模块用于判断所述灶具的烹饪状态,所述处理模块用于根据所述灶具的烹饪状态控制所述烟机的风机的风力。
本申请实施方式的烟灶联动系统中,通过判断灶具的烹饪状态;及根据灶具的烹饪状态控制烟机的风机的风力,这样烟机可自动调整合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
本申请实施方式还提供一种烟灶联动系统,用于灶具和烟机,所述烟灶联动系统包括处理器和存储器,所述存储器存储有一个或多个程序,所述一个或多个程序被配置成由所述处理器执行,所述程序包括用于执行本申请任一项所述的控制方法。
本申请实施方式的烟灶联动系统中,通过判断灶具的烹饪状态;及根据灶具的烹饪状态控制烟机的风机的风力,这样烟机可自动调整合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的烟灶联动的控制方法的流程图。
图2是本申请实施方式的烟灶联动系统的结构示意图。
图3是本申请实施方式的烟灶联动系统的模块示意图。
图4是本申请实施方式的烟灶联动的控制方法的另一流程图。
图5是本申请实施方式的烟灶联动系统的另一模块示意图。
图6是本申请实施方式的烟灶联动系统的又一模块示意图。
图7是本申请实施方式的烟灶联动系统的再一模块示意图。
图8是本申请实施方式的烟灶联动系统的再一模块示意图。
图9是本申请实施方式的烟灶联动系统的再一模块示意图。
图10是本申请实施方式的烟灶联动系统的再一模块示意图。
图11是本申请实施方式的烟灶联动系统的再一模块示意图。
图12是本申请实施方式的烟灶联动系统的再一模块示意图。
图13是本申请实施方式的有水烹饪时锅具的温度的变化曲线图。
图14是本申请实施方式的无水烹饪时锅具的温度的变化曲线图。
图15是本申请实施方式的烟灶联动的控制方法的又一流程图。
图16是本申请实施方式的烟灶联动的控制方法的再一流程图。
图17是本申请实施方式的烟灶联动的控制方法的再一流程图。
图18是本申请实施方式的烟灶联动的控制方法的再一流程图。
图19是本申请实施方式的烟灶联动的控制方法的再一流程图。
图20是本申请实施方式的烟灶联动的控制方法的再一流程图。
图21是本申请实施方式的烟灶联动的控制方法的再一流程图。
图22是本申请实施方式的烟灶联动的控制方法的再一流程图。
图23是本申请实施方式的烟灶联动的控制方法的再一流程图。
图24是本申请实施方式的烟灶联动的控制方法的再一流程图。
图25是本申请实施方式的烟灶联动的控制方法的再一流程图。
图26是本申请实施方式的烟灶联动的控制方法的再一流程图。
图27是本申请实施方式的烟灶联动的控制方法的再一流程图。
图28是本申请实施方式的烟灶联动的控制方法的再一流程图。
图29是本申请实施方式的烟灶联动的控制方法的再一流程图。
图30是本申请实施方式的烟灶联动的控制方法的再一流程图。
图31是本申请实施方式的烟灶联动系统的再一模块示意图。
图32是本申请实施方式的烟灶联动的控制方法的再一流程图。
图33是本申请实施方式的烟灶联动系统的另一结构示意图。
图34是本申请实施方式的烟灶联动的控制方法的再一流程图。
图35是本申请实施方式的烟灶联动系统的又一模块示意图。
图36是本申请实施方式的烟灶联动的控制方法的再一流程图。
图37是本申请实施方式的烟灶联动系统的再一模块示意图。
图38是本申请实施方式的烟灶联动的控制方法的再一流程图。
图39是本申请实施方式的烟灶联动的控制方法的再一流程图。
图40是本申请实施方式的烟灶联动的控制方法的再一流程图。
图41是本申请实施方式的烟灶联动的控制方法的再一流程图。
图42是本申请实施方式的烟灶联动的控制方法的再一流程图。
图43是本申请实施方式的烟灶联动的控制方法的再一流程图。
图44是本申请实施方式的烟灶联动系统的再一模块示意图。
图45是本申请实施方式的烟灶联动系统的再一模块示意图。
主要元件符号说明:
烟灶联动系统100、烟机10、第一检测信号接收单元12、第一风力调节单元14、照明装置16、第一控制信号接收单元18、第二检测信号接收单元11、第二风力调节单元13、灶具20、第一温度传感器22、第一温度信号处理单元24、第一火力信号检测单元26、第一火力信号处理单元28、第一检测信号发射单元29、第一控制信号发射单元21、第二火力信号检测单元23、第二火力信号处理单元25、第二火力信号发射单元27、锅具30、第二温度传感器32、第二温度信号处理单元34、第二温度信号发射单元36、无线无源温度传感器31、用户输入装置40、控制装置50、图像传感器60。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1至图3,本申请实施方式的烟灶联动的控制方法用于烟机10和灶具20。控制方法包括:
步骤S1,判断灶具20的烹饪状态;及
步骤S3,根据灶具20的烹饪状态控制烟机10的风机的风力。
本申请实施方式的烟灶联动系统100包括烟机10、灶具20和控制装置50,控制装置50包括判断模块110和处理模块120。控制装置50连接烟机10和灶具20。作为例子,本申请实施方式的烟灶联动的控制方法可以由本申请实施方式的烟灶联动系统100实现,并可应用于灶具20和烟机10。
其中,本申请实施方式的烟灶联动的控制方法的步骤S1及S3可以由控制装置50实现。也就是说,判断模块110用于判断灶具20的烹饪状态;及处理模块120用于根据灶具20的烹饪状态控制烟机10的风机的风力。
本申请实施方式的烟灶联动的控制方法和烟灶联动系统100中,通过判断灶具20的烹饪状态;及根据灶具20的烹饪状态控制烟机10的风机的风力,这样烟机10可自动调整合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
请一并参阅图3至图4,控制装置50包括采集模块130,步骤S1包括:
步骤S10,采集锅具30的温度;
步骤S20,根据锅具30的温度判断灶具20的烹饪状态。
其中,本申请实施方式的烟灶联动的控制方法的步骤S10及S20可以由控制装置50实现。也就是说,采集模块130用于采集锅具30的温度;判断模块110用于根据锅具30的温度判断灶具20的烹饪状态。
本申请实施方式的烟灶联动的控制方法和烟灶联动系统100中,通过锅具30的当前温度判断出灶具20的烹饪状态,这样可以准确地获取灶具20的烹饪状态,方便高效。
具体地,灶具20包括第一温度传感器22、第一温度信号处理单元24、第一火力信号检测单元26、第一火力信号处理单元28和第一检测信号发射单元29。烟机10包括第一检测信号接收单元12和第一风力调节单元14。请参阅图5,在一个实施例中,本实施方式的控制装置50设置在烟机10内,第一温度传感器22将温度信号反馈给第一温度信号处理单元24,第一火力信号检测单元26将火力信号反馈给第一火力信号处理单元28。第一温度信号处理单元24和第一火力信号处理单元28分别将处理好的温度信号和火力信号传递给灶具20的第一检测信号发射单元29。第一检测信号发射单元29接着将温度信号和火力信号利用有线或无线通信的方式传递给第一检测信号接收单元12。第一检测信号接收单元12将温度信号和火力信号反馈给烟机10的控制装置50,控制装置50通过运算来确定锅具30的温度并根据锅具30的温度确定灶具20的烹饪状态。然后,根据灶具20的烹饪状态和锅具的温度确定烟机10的风机工作状态调整策略并产生控制信号。控制装置50向烟机10的第一风力调节单元14发送控制信号的动作指令,使烟机10根据动作指令自动调整烟机10的风机的风力。
在另外一个实施方式中,请参阅图6,烟机10还包括照明装置16,控制装置50向烟机10的第一风力调节单元14和照明装置16发送控制信号的动作指令,使烟机10根据动作指令自动调整烟机10的风机的风力和控制照明装置16的工作状态。
在又一个实施例中,请参阅图7,本实施方式的控制装置50设置在灶具20内,第一温度传感器22将温度信号反馈给第一温度信号处理单元24,第一火力信号检测单元26将火力信号反馈给第一火力信号处理单元28。第一温度信号处理单元24和第一火力信号处理单元28分别将处理好的温度信号和火力信号传递给控制装置50。控制装置50通过运算来确定锅具30的温度并根据锅具30的温度确定灶具20的烹饪状态。然后,根据烹饪状态和锅底温度确定烟机10工作状态调整策略并产生控制信号。控制装置50将控制信号反馈给第一控制信号发射单元21。第一控制信号发射单元21通过有线或无线通信的方式将控制信号传递给烟机10的第一控制信号接收单元18。第一控制信号接收单元18将控制信号发送给第一风力调节单元14,使烟机10根据动作指令自动调整烟机10的风机的风力。可以理解,虽然图7中并未示出,烟机10包括与第一控制信号接收单元18和第一风力调节单元14连接的处理器或控制器或电脑板或控制板,用于处理灶具20发送的信号和控制烟机10自身的运行。
在再一个实施方式中,请参阅图8,烟机10还包括照明装置16,控制装置50向烟机10的第一风力调节单元14和照明装置16发送控制信号的动作指令,使烟机10根据动作指令自动调整烟机10的风机的风力和控制照明装置16的工作状态。
需要说明的是,第一检测信号发射单元29和第一检测信号接收单元12可以通过有线或者无线的方式进行通信,例如,通信方式可以为蓝牙通信、红外通信、WIFI通信、射频通信、激光通信及Zigbee通信中的一种或者多种。第一控制信号接收单元18和第一控制信号发射单元21可以通过有线或者无 线的方式进行通信,例如,通信方式可以为蓝牙通信、红外通信、WIFI通信、射频通信、激光通信及Zigbee通信中的一种或者多种。
可以理解,在其它实施方式中,控制装置50的部分功能或全部功能可由烟机10和/或灶具20本身的控制器或处理器、或控制板,或电脑板来实现,或控制装置50制作成单独的包括控制器、处理器、控制板或电脑板的控制盒或控制终端,安装在灶具20或烟机10上,或灶具20或烟机10外的其它位置。
在某些实施方式中,第一温度传感器22可为设置在灶具的燃烧器中的防干烧温度探头。锅具30的温度由灶具20的防干烧温度探头获取。防干烧温度探头用于检测锅具30的温度。
需要说明的是,在本申请实施方式的烟灶联动的控制过程中,控制烟机10的风机的风力与锅具30实际上有没有放置在灶具20上并没有必然联系,而所采集到的锅具30的温度可以理解为温度传感器(如防干烧温度探头)所输出的温度数据,与灶具20上是否放置有锅具30也没有必然联系。在图2的示例中,当锅具30放置在灶具20上时,锅具30与防干烧温度探头弹性抵接,以使防干烧温度探头获取到更准确的锅具的温度。
在某些实施方式中,锅具30的温度由设置在锅具30的温度传感器来检测。请参阅图9,在一个实施例子中,锅具30为智能锅具,其包括第二温度传感器32、第二温度信号处理单元34和第二温度信号发射单元36。灶具20包括第二火力信号检测单元23、第二火力信号处理单元25及第二火力信号发射单元27。烟机10包括第二检测信号接收单元11和第二风力调节单元13。控制装置50设置在烟机10上。锅具的第二温度传感器32将温度信号反馈给第二温度信号处理单元34,第二温度信号处理单元34将处理好的温度信号传递给第二温度信号发射单元36。第二火力信号检测单元23将火力信号反馈给第二火力信号处理单元25。第一火力信号处理单元28将火力信号传递给第二火力信号发射单元27。第二温度信号发射单元36接着将温度信号通过有线或者无线的方式传递给第二检测信号接收单元11,第二火力信号发射单元27接着将火力信号通过有线或者无线的方式传递给第二检测信号接收单元11。第二检测信号接收单元11将温度信号和火力信号反馈给控制装置50,控制装置50通过运算来确定锅具30的温度并根据锅具30的温度确定灶具20的烹饪状态。然后,根据烹饪状态和锅具30的温度确定烟机10工作状态调整策略并产生控制信号。控制装置50向烟机10的第二风力调节单元13发送控制信号的动作指令,使烟机10根据动作指令自动调整烟机10的风机的风力。第二温度传感器32可设置在锅具的锅体底部的夹层内,第二温度信号处理单元34和第二温度信号发射单元36可设置在锅具30的把手,把手连接锅体的侧边。
在另一个实施方式中,请参阅图10,烟机10还包括照明装置16,控制装置50向烟机10的第二风力调节单元13和照明装置16发送控制信号的动作指令,使烟机10根据动作指令自动调整烟机10的风机的风力和控制照明装置16的工作状态。
在又一个实施方式中,请参阅图11,锅具30的温度由设置在锅具30的温度传感器31来检测。温度传感器31可为无线无源温度传感器。无线无源温度传感器不需电源供电,并可以通过无线方式将采集到的温度数据发送出去,并且第二检测信号接收单元11可以接收来自无线无源温度传感器31发射的温度数据。温度传感器31可设置在锅具30的底部。
在再一个实施方式中,请参阅图12,锅具30的温度由设置在锅具30的无线无源温度传感器31来检测。烟机10还包括照明装置16,控制装置50向烟机10的第二风力调节单元13和照明装置16发送控制信号的动作指令,使烟机10根据动作指令自动调整烟机10的风机的风力和控制照明装置16的工作状态。
可以理解,灶具20的烹饪状态可以为有水烹饪状态或者无水烹饪状态。有水烹饪可为炖、煮、煲、蒸等有水烹饪方式。无水烹饪包括煎、炒、炸等无水烹饪方式。当灶具20处于有水烹饪状态时,经发明人研究发现,锅具30的温度时间曲线1和2具有典型的三段分布特点,曲线1为导热性较好的锅具的温度与时间的温度曲线,曲线2为导热性较差的锅具的温度与时间的温度曲线,如图13所示:第一段:灶具20在开始加热时,锅具30的温度逐渐上升;第二段:当锅具内水分沸腾时,锅具30的温度处于恒定或近似恒定的状态,也就是说此时存在沸腾段;第三段:当锅具内水分烧干时,锅具30的温度再次上升。其中,曲线1和曲线2的锅具沸腾温度不相同,一般地,锅具沸腾温度的大小与锅具30的导热性相关,如锅具30的导热性越好,锅具沸腾温度越小。当灶具20处于无水烹饪状态时,其锅具30的温度与时间的温度曲线3波动较大,无明显规律,如图14所示。
请参阅图3及图15,在某些实施方式中,灶具的烹饪状态包括有水烹饪状态和无水烹饪状态,步骤S3包括:
步骤S31,判断灶具20是处于有水烹饪状态还是无水烹饪状态;
步骤S32,当灶具处于有水烹饪状态时,控制烟机10的风机以预设风力运行;及
步骤S34,当灶具处于无水烹饪状态时,控制烟机10的风机以与锅具30的当前温度正相关的风力运行。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式 的烟灶联动的控制方法的步骤S31、S32及S34可以由控制装置50实现。也就是说,处理模块120用于判断灶具20是处于有水烹饪状态还是无水烹饪状态,当灶具30处于有水烹饪状态时,控制烟机10的风机以预设风力运行;及当灶具20处于无水烹饪状态时,控制烟机10的风机以与锅具30的当前温度正相关的风力运行。
如此,根据灶具20的烹饪状态控制烟机10的风机的风力,如此,可以准确地控制风机的风力以使烟机能满足烹饪时的吸油烟需求,用户体验性好。
具体地,当灶具20处于有水烹饪状态,可以控制烟机10的风机以预设风力运行,可以理解为,在一个实施例中,控制烟机10的风机以预设档位运行来实现风机输出预设风力,在另外一个实施例中,控制烟机10的风机以预设转速运行或者根据预设转速关系曲线运行来实现风机输出预设风力。
当灶具处于无水烹饪状态,可以控制烟机10的风机以与锅具30的当前温度正相关的风力运行。例如,锅具30的当前温度越高,风机的风力就越大。需要指出的是,风机的风力与锅具30的当前温度正相关包括以下这种情况:风机的不同风力可对应于锅具30的不同的温度范围。例如,风力包括F1、F2和F3三个不同风力,其中F1<F2<F3,F1所对应的锅具30的温度范围是[T11,T12],F2所对应的锅具30的温度范围是(T12,T13],F3所对应的锅具30的温度范围是(T13,T14],当锅具30的当前温度处于[T11,T12]范围时,可控制风机以F1运行;当锅具30的当前温度处于(T12,T13]范围时,可控制风机以F2运行;当锅具30的当前温度处于(T13,T14]范围时,可控制风机以F3运行。风机的风力也可通过风机的转速和/或档位来调整。
具体地,在本实施方式可通过采集到的锅具30的温度自动识别出灶具20不同情境的烹饪状态,例如处于有水烹饪状态或者无水烹饪状态。当锅具30处于炖、煮、煲、蒸等产生油烟较少的烹饪状态时,灶具20处于有水烹饪状态,可以控制烟机10的风机以预设风力运行,例如较小的风力运行,从而可以节省电能。当锅具30处于煎、炒、炸等产生油烟较多的烹饪状态时,灶具20处于无水烹饪状态,则可以控制烟机10的风机与当前的锅具温度正相关的风力运行,例如,锅具的温度较高,以较大的风机的风力运行,从而保证能使得油烟抽被烟机10吸干净。
请参阅图3及图16,在某些实施方式中,步骤S20包括步骤:
步骤S210,根据锅具30的温度判断是否存在沸腾段;
若是,步骤S220,确定灶具30的烹饪状态为有水烹饪状态;
若否,步骤S230,确定灶具30的烹饪状态为无水烹饪状态。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S210、S220及S230可以由控制装置50实现。也就是说,判断模块110用于根据锅具30的温度判断是否存在沸腾段;若是,处理模块120用于确定灶具30的烹饪状态为有水烹饪状态;若否,处理模块120用于确定灶具30的烹饪状态为无水烹饪状态。
如此,通过判断是否存在沸腾段来确定灶具的烹饪状态,准确性高,简单易得。
沸腾段可理解为锅具30处于有水烹饪状态的沸腾阶段时锅具30所达到的温度段。需要说明的是,当锅具内的水沸腾时锅具内水的温度会维持在一个稳定的温度段,此时,热量传输至锅具30的外表面是锅具30的外表面的温度也会维持在一个稳定的温度段。锅具30外表面的温度的波动范围可以理解为沸腾段。有水烹饪状态可以为炖、煮、煲、蒸等产生油烟较少的烹饪状态。无水烹饪状态可以为处于煎、炒、炸等产生油烟较多的烹饪状态。
请参阅图3及图17,在某些实施方式中,步骤S210包括:
步骤S522,判断采集到的锅具30的温度数量是否大于预设数量;
若是,步骤S524,计算预设时长内锅具30的温度的变化率;
步骤S525,判断预设时长内锅具30的温度的变化率是否小于或等于预设值,若是,步骤S526,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,步骤S528,确定锅具30不存在沸腾段。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S522、S524、S525及S526可以由控制装置50实现。也就是说,判断模块110用于判断采集到的锅具30的温度数量是否大于预设数量;若是,计算预设时长内锅具30的温度的变化率;判断预设时长内锅具30的温度的变化率是否小于或等于预设值,若是,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,确定锅具30不存在锅具沸腾温度。
上述实施方式的控制方法通过计算预设时长内锅具30的温度的变化率来确定锅具30是否存在沸腾段,如此,可以准确并快速地确定灶具的烹饪状态和获得锅具沸腾温度。
需要说明的是,本实施方式中的预设时长内锅具30的温度的变化率可以由以下任一实施方式来获取。
请参阅图3及图18,在某些实施方式中,步骤S210包括:
步骤S622,判断采集到的锅具30的温度数量是否大于预设数量;
若是,S624,计算预设时长内锅具30的温度与预设时长内锅具30的温度的平均值之差的绝对值 之和;
步骤S625,判断预设时长内锅具30的温度与预设时长内锅具30的温度的平均值之差的绝对值之和是否小于或等于预设值时,若是,S626,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具30的锅具沸腾温度;若否,S628,确定锅具30不存在沸腾段。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S622、S624、S625、S626及S628可以由控制装置50实现。也就是说,判断模块110用于判断采集到的锅具30的温度数量是否大于预设数量;若是,计算预设时长内锅具30的温度与预设时长内锅具30的温度的平均值之差的绝对值之和;判断预设时长内锅具30的温度与预设时长内锅具30的温度的平均值之差的绝对值之和是否小于或等于预设值时,若是,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具30的锅具沸腾温度。若否,确定锅具30不存在沸腾段。
上述实施方式的控制方法通过计算预设时长内锅具30的温度平均值与预设温度的差的绝对值之和来确定锅具30是否存在沸腾段,如此,可以准确地并快速地确定灶具的烹饪状态和获得锅具沸腾温度。
具体地,在一个实施例中,当采集到的锅具的温度T k的数量大于预设定值N时(即k>N),计算T k-N至T k的区间内N+1个锅具30的温度的数据的平均值T mean,计算得到预设时长内锅具30的温度平均值与锅具30的单个温度Ti之差的绝对值之和可以表示为:SUB=∑|T i-T mean|(i=k-N至k),SUB大则表示温度变化大。当SUB小于或者等于预设值时,则表示锅具30的温度变化小,可以认为锅具30处于炖、煮、煲、蒸烹饪状态且水分沸腾,灶具20处于有水烹饪状态,将此时的锅具30的当前温度数据T k作为锅具沸腾温度T b。需要指出的是,当将锅具的当前温度T k作为锅具沸腾温度T b,也就是说,T b=T k,此后,若出现SUB大于预设值,也认为锅具30是处于有水烹饪状态。需要说明的是,预设时长可设置为不同值,相应地可以根据实际情况,预设值的大小也可对应调整为与预设时长的时间长度所对应的预设值,在此不作限制。在一个例子中,预设时长可为2分钟,每隔两秒采集一个锅具的温度数据,N的值可为60,预设值可为10,若k为80,则T k-N至T k的区间内N+1个锅具30的温度的数据可以理解为:在2分钟内,T20至T80一共61个锅具30的温度数据。可以理解,这些具体数值及以下实施方式所举的具体数值只是作为例子来说明本申请的实施,而不应理解为对本申请的限制。由于锅具30的温度数据是每隔一个时长来获取的,因此,当获取到一定数量的锅具30的温度数据时,相应地会有一个获取到这些数量的锅具30的温度数据的时长。也就是说,预设时长的具体数值可与所需要的锅具30的温度数量相关联。
请参阅图3及图19,在某些实施方式中,步骤S210包括步骤:
步骤S722,判断采集到的锅具30的温度数量是否大于预设数量;
若是,步骤S724,计算预设时长内锅具30的温度对时间的斜率;
步骤S725,判断预设时长内锅具30的温度对时间的斜率是否小于或等于预设斜率,若是,步骤S726,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,步骤S728,确定锅具30不存在沸腾段。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S722、S724、S725及S726可以由控制装置50实现。也就是说,判断模块110用于判断采集到的锅具30的温度数量是否大于预设数量;若是,计算预设时长内锅具30的温度对时间的斜率;判断预设时长内锅具30的温度对时间的斜率是否小于或等于预设斜率,若是,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,确定锅具30不存在沸腾段。
上述实施方式的控制方法通过计算预设时长内锅具30的温度对时间的斜率来确定锅具30是否存在沸腾段,如此,可以准确并快速地确定灶具的烹饪状态和获得锅具沸腾温度。
具体地,在一个实施例中,当采集到的锅具的温度T k的数量大于预设定值N时(即k>N),在预设时长的T k-N至T k的区间内,获取线性拟合T k-N至T k随时间变化的锅具30的温度对时间的斜率,即拟合得到y=ax+b,如果a小于或者等于预设斜率,则判定锅具30处于炖、煮、煲、蒸烹饪状态且水分沸腾,灶具20处于有水烹饪状态,将此时的温度数据T k作为锅具沸腾温度T b;需要指出的是,当将锅具的当前温度T k作为锅具沸腾温度T b,也就是说,T b=T k,此后,若出现a大于预设斜率,也认为锅具30是处于有水烹饪状态。需要说明的是,预设时长的时间长度可为不同值,相应地可以根据实际情况,预设值的大小也可对应调整为与预设时长的时间长度所对应的预设值,在此不作限制。在一个例子中,每隔两秒采集一个锅具的温度数据,预设时长为2分钟,N的值为60,预设斜率为0.5,若k为80,则T k-N至T k的区间内N+1个锅具30的温度的数据可以理解为:在2分钟内,T 20至T 80一共61个锅具30的温度数据。可以理解,这些具体数值及以下实施方式所举的具体数值只是作为例子来说明本申请的实施,而不应理解为对本申请的限制。由于锅具30的温度数据是每隔一个时长来获取的,因此,当获取到一定数量的锅具30的温度数据时,相应地会有一个获取到这些数量的锅具30的温度数据的时长。也就是说,预设时长的具体数值可与所需要的锅具30的温度数量相关联。
请参阅图3及图20,在某些实施方式中,步骤S210包括步骤:
步骤S822,判断采集到的锅具30的温度数量是否大于预设数量;
若是,步骤S824,计算预设时长内锅具30的温度的方差;
步骤S825,判断方差是否小于或等于预设方差,若是,步骤S826,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,步骤S828,确定锅具30不存在沸腾段。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S822、S824、S825及S826可以由控制装置50实现。也就是说,判断模块110用于判断采集到的锅具30的温度数量是否大于预设数量;若是,计算预设时长内锅具30的温度的方差;判断方差是否小于或等于预设方差,若是,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,确定锅具30不存在沸腾段。
上述实施方式的控制方法通过计算预设时长内锅具30的温度的方差来确定锅具30是否存在沸腾段,如此,可以准确并快速地确定灶具20的烹饪状态和获得锅具沸腾温度。
具体地,当采集的温度数据T k的数量大于预设定值N时(即k>N),计算在预设时长中,T k-N至T k的区间内N+1个温度数据方差(VA),VA大则表示锅具30的温度变化大。当VA小于或者等于预设值时(锅具30的温度变化小),即锅具30处于炖、煮、煲、蒸烹饪状态且水分沸腾,将此时的温度数据T k作为锅具沸腾温度T b。需要指出的是,当将锅具的当前温度T k作为锅具沸腾温度T b,也就是说,T b=T k,此后,若出现VA大于预设值,也认为锅具30是处于有水烹饪状态。需要说明的是,预设时长的时间长度可为不同值,相应地可以根据实际情况,预设值的大小也可对应调整为与预设时长的时间长度所对应的预设值,在此不作限制。在一个例子中,预设时长为2分钟,每隔两秒采集一个锅具的温度数据,N的值为60,预设值为0.01,若k为80,则T k-N至T k的区间内N+1个锅具30的温度的数据可以理解为:在2分钟内,T 20至T 80一共61个锅具30的温度数据。可以理解,这些具体数值及以下实施方式所举的具体数值只是作为例子来说明本申请的实施,而不应理解为对本申请的限制。由于锅具30的温度数据是每隔一个时长来获取的,因此,当获取到一定数量的锅具30的温度数据时,相应地会有一个获取到这些数量的锅具30的温度数据的时长。也就是说,预设时长的具体数值可与所需要的锅具30的温度数量相关联。
请参阅图3及图21,在某些实施方式中,步骤S210包括步骤:
步骤S922,判断采集到的锅具30的温度数量是否大于预设数量;
若是,步骤S924,计算预设时长内锅具30的温度的标准差;
步骤S925,判断标准差是否小于或等于预设标准差,若是,步骤S926,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,步骤S928,确定锅具30不存在沸腾段。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S922、S924、S925及S926可以由控制装置50实现。也就是说,判断模块110用于判断采集到的锅具30的温度数量是否大于预设数量;若是,计算预设时长内锅具30的温度的标准差;判断标准差是否小于或等于预设标准差,若是,确定锅具30存在沸腾段并将锅具30的当前温度作为锅具沸腾温度;若否,确定锅具30不存在沸腾段。
上述实施方式的控制方法通过计算预设时长内锅具30的温度的标准差来确定锅具30是否存在沸腾段,如此,可以准确并快速地确定锅具30的烹饪状态和获得锅具沸腾温度。
具体地,当采集的温度数据T k的数量大于预设定值N时(即k>N),计算在预设时长中,T k-N至T k的区间内N+1个温度数据标准差(STD),STD大则表示锅具30的温度变化大。当STD小于或者等于预设值时(锅具30的温度变化小),即锅具30处于炖、煮、煲、蒸烹饪状态且水分沸腾,将此时的温度数据T k作为锅具沸腾温度T b。需要指出的是,当将锅具的当前温度T k作为锅具沸腾温度T b,也就是说,T b=T k,此后,若出现STD大于预设值,也认为锅具30是处于有水烹饪状态。需要说明的是,预设时长的时间长度可为不同值,相应地可以根据实际情况,预设值的大小也可对应调整为与预设时长的时间长度所对应的预设值,在此不作限制。在一个例子中,预设时长为2分钟,每隔两秒采集一个锅具的温度数据,N的值为60,预设值为0.1,若k为80,则T k-N至T k的区间内N+1个锅具30的温度的数据可以理解为:在2分钟内,T 20至T 80一共61个锅具30的温度数据。可以理解,这些具体数值及以下实施方式所举的具体数值只是作为例子来说明本申请的实施,而不应理解为对本申请的限制。由于锅具30的温度数据是每隔一个时长来获取的,因此,当获取到一定数量的锅具30的温度数据时,相应地会有一个获取到这些数量的锅具30的温度数据的时长。也就是说,预设时长的具体数值可与所需要的锅具30的温度数量相关联。
需要指出的是,在上面的实施方式中,当采集到的锅具30的温度数量小于或者等于预设数量时,此时,采集到的锅具的温度数量不足以确定灶具具体的烹饪状态,在这种情况下,进入步骤S50,控制烟机10的风机以与锅具30的当前温度正相关的风力运行,即按照灶具处于无水烹饪状态的控制策略来控制。
具体地,在一个实施例中,第一温度传感器22每隔两秒采集一个锅具30的温度数据。当采集到的锅具30的温度的数量小于或者等于预设数量,当采集到的锅具30的温度小于第一预设温度时,控制烟机10的风机以小档位运行。当采集到的锅具30的温度大于第一预设温度小于第二预设温度时, 控制烟机10的风机以中档位运行。当采集到的锅具30的温度大于第二预设温度小于第三预设温度时,控制烟机10的风机以大档位运行。当采集到的锅具30的温度大于第三预设温度小于第四预设温度时,控制烟机10的风机以爆炒档位运行。
请参阅图3及图22,在某些实施方式中,控制装置50包括检测模块160和启动模块170,控制方法还包括步骤:
步骤S410,检测灶具20是否开启,若是,步骤S412,开启烟机10的风机;
步骤S414,检测灶具20是否关闭,若是,步骤S416,当灶具20在关闭前处于有水烹饪状态时,控制烟机10的风机以第一风力继续运行第一预设时段后关闭烟机10的风机;步骤S418,当灶具20在关闭前处于无水烹饪状态,控制烟机10的风机以大于第一风力的第二风力运行第二预设时段后关闭烟机10的风机。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S410、S412、S414、S416及S418可以由控制装置50实现。也就是说,检测模块160用于检测灶具是否开启,若是,启动模块170用于开启烟机10的风机;检测模块160用于检测灶具20是否关闭,若是,当灶具20在关闭前处于有水烹饪状态时,处理模块120用于控制烟机10的风机以第一风力继续运行第一预设时段后关闭烟机10的风机;当灶具20在关闭前处于无水烹饪状态,处理模块120用于控制烟机10的风机以大于第一风力的第二风力运行第二预设时段后关闭烟机10的风机。
如此,通过开启灶具20开启来控制烟机10开启、关闭灶具20来延时关闭烟机10的风机,这样可以保证烟机10在灶具20开始工作时能及时开启并且在灶具20关闭时仍能自动以预设风力运行预设时间以吸干净烹饪后厨房剩余的油烟,用户体验性好。
具体地,结合图5,第一火力信号检测单元26检测灶具20的火力数据,第一火力信号处理单元28根据第一火力信号检测单元26采集到的火力数据判断灶具20是否已经开启并且可将灶具20已经开启的信号通过第一检测信号发射单元29发送至控制装置50。
需要说明的是,若灶具20为燃气灶,灶具20的开启可以理解为燃气灶点火,灶具20的关闭可以理解为燃气灶熄火。当然灶具20也可以为电磁炉,灶具20的开启可以理解为电磁炉开启,灶具20的关闭可以理解为电磁炉关闭。
在某些实施方式中,烟机10的风机的风力可以通过风机的档位来调整,也就是说,第一风力和第二风力可通过不同风机的档位来实现。
可以理解,本实施方式的烟机10可通过反馈给烟机10的控制装置50的火力信号识别出灶具20开始开启,此时开启烟机10。当灶具20处于有水烹饪状态时,也就是说,锅具30此时可能处于炖、煮、煲、蒸等烹饪状态,烹饪时所产生的油烟较少,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以较小的档位(第一档位)继续运行一段时间以吸干净厨房剩余的油烟。当灶具20处于无水烹饪状态时,也就是说,锅具30此时可能处于煎、炒、炸等烹饪状态,烹饪时所产生的油烟较大,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以较大的档位(第二档位)继续运行一段时间以吸干净厨房剩余的油烟。
在某些实施方式中,烟机10的风机的风力可以通过风机的转速来调整,也就是说,第一风力和第二风力可通过不同风机的转速来实现。
可以理解,本实施方式烟机10可通过反馈给烟机10的控制装置50的火力信号识别出灶具20开始开启,此时开启烟机10。当灶具20处于有水烹饪状态,也就是说,锅具30此时可能处于炖、煮、煲、蒸等烹饪状态,烹饪时所产生的油烟较少,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以第一预设转速继续运行一段时间以吸干净厨房剩余的油烟。当灶具20处于无水烹饪状态,也就是说,锅具30此时可能处于煎、炒、炸等烹饪状态,烹饪时所产生的油烟较大,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以第二预设转速继续运行一段时间以吸干净厨房剩余的油烟。
请参阅图23,在某些实施方式中,烟机10包括照明装置16,控制方法还包括:
步骤S420,检测灶具20是否开启,若是,步骤S422,开启烟机10的风机和照明装置16;
步骤S424,检测灶具20是否关闭,若是,步骤S426,当灶具20在关闭前处于有水烹饪状态时,控制烟机10的风机以第一风力继续运行第一预设时段后关闭烟机的风机和照明装置16;步骤S428,当灶具20在关闭前处于无水烹饪状态,控制烟机的风机以大于第一风力的第二风力运行第二预设时段后关闭烟机10的风机和照明装置16。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S420、S422、S424、S426及S428可以由控制装置50实现。也就是说,检测模块160用于检测灶具是否开启,若是,启动模块170用于开启烟机10的风机和照明装置16;检测模 块160用于检测灶具是否关闭,若是,当灶具20在关闭前处于有水烹饪状态时,处理模块120用于控制烟机10的风机以第一风力继续运行第一预设时段后关闭烟机10的风机和照明装置16;当灶具20在关闭前处于无水烹饪状态,处理模块120用于控制烟机10的风机以大于第一风力的第二风力运行第二预设时段后关闭烟机10的风机和照明装置16。
如此,通过开启灶具20开启来控制烟机10开启和照明装置16、关闭灶具20来延时关闭烟机10的风机,和照明装置16,这样可以保证烟机10在灶具20开始工作时能及时开启风机和照明装置16,并且在灶具20关闭时风机仍能自动以预设风力运行预设时间以吸干净烹饪后厨房剩余的油烟和仍能给用户提供照明,用户体验性好。
在某些实施方式中,烟机10的风机的风力可以通过风机的档位来调整,也就是说,第一风力和第二风力可通过不同风机的档位来实现。
可以理解,本实施方式烟机10可通过反馈给烟机10的控制装置50的火力信号识别出灶具20开始开启,此时开启烟机10的风机和照明装置16。当灶具20处于有水烹饪,也就是说,锅具30此时可能处于炖、煮、煲、蒸等烹饪状态,烹饪时所产生的油烟较少,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以较小的档位(第一档位)继续运行一段时间以吸干净厨房剩余的油烟和仍能给用户提供照明。当灶具20处于无水烹饪,也就是说,锅具30此时可能处于煎、炒、炸等烹饪状态,烹饪时所产生的油烟较少,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以较大的档位(第二档位)继续运行一段时间以吸干净厨房剩余的油烟和仍能给用户提供照明。
在某些实施方式中,烟机10的风机的风力可以通过风机的转速来调整,也就是说,第一风力和第二风力可通过不同风机的转速来实现。可以理解,本实施方式烟机10可通过反馈给烟机10的控制装置50的火力信号识别出灶具20开始开启,此时开启烟机10的风机和照明装置16。当灶具20处于有水烹饪状态,也就是说,锅具30此时可能处于炖、煮、煲、蒸等烹饪状态,烹饪时所产生的油烟较少,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以较小的预设转速(第一预设转速)继续运行一段时间以吸干净厨房剩余的油烟和仍能给用户提供照明。当灶具20处于无水烹饪状态,也就是说,锅具30此时可能处于煎、炒、炸等烹饪状态,烹饪时所产生的油烟较大,当灶具20关闭时,控制装置50可通过反馈给烟机10的控制装置50的火力信号识别出灶具20已经关闭,控制装置50可控制烟机10的风机以较大的预设转速(第二预设转速)继续运行一段时间以吸干净厨房剩余的油烟和照明装置16仍能给用户提供照明。
请参阅图3及图24,在某些实施方式中,烟机10的风机的风力由烟机10的风机的转速决定,烟机10的风机的转速根据锅具30的当前温度和烟机10的风机的转速与锅具30的温度的预设关系获取,控制方法还包括:
步骤S620,判断通过预设关系获取的烟机10的风机的转速与当前的烟机10的风机的转速的差值的绝对值是否大于或者等于预设差值,若是,步骤S622,将当前的烟机10的风机的转速调整为通过预设关系获取的烟机10的风机的转速,若否,步骤S624,保持当前烟机10的风机的转速不变。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S620、S622及S624可以由控制装置50实现。控制装置50用于判断通过预设关系获取的烟机10的风机的转速与当前的烟机10的风机的转速的差值的绝对值是否大于或者等于预设差值,若是,将当前的烟机10的风机的转速调整为通过预设关系获取的烟机10的风机的转速,若否,保持当前烟机10的风机的转速不变。
如此,这样烟机10可根据实际的锅具30的温度及时调整风机的转速以使得风机以合适的转速将油烟吸取干净并且可以节省电能。
可以理解,当采集到的锅具30的温度的数量小于或者等于预设数量时,此时锅具的温度数量尚不足以确定灶具的烹饪状态是处于有水烹饪状态还是无水烹饪状态,此时,烟机10的风机的转速根据锅具30的当前温度和烟机的风机的风力与锅具30的温度的预设关系获取,例如,可以建立烟机10的风机的风力与锅具30的温度的第一预设函数关系,通过锅具30的当前温度和第一预设函数关系获取烟机10的风机的转速。当采集到的锅具30的温度的数量大于预设数量时,通过判断是否存在锅具沸腾温度来确定烹饪状态是处于有水烹饪状态还是无水烹饪状态,此时,当烹饪状态是处于无水烹饪状态,根据锅具30的当前温度和第一预设函数关系获取烟机10的风机的转速。当烹饪状态是处于有水烹饪状态,此时,烟机10的风机的转速根据锅具的当前温度和烟机10的风机的风力与锅具30的温度的预设关系获取,例如,可以建立在有水烹饪状态时,烟机10的风机的风力与锅具的温度的第二预设函数关系,通过锅具30的当前温度(锅具沸腾温度)和第二预设函数关系获取烟机10的风机的转速。第一预设函数关系和第二预设函数关系可以预先设置,在此不作限定。
具体地,在某些实施方式中,烟机10的风机的转速与锅具30的温度的第一预设函数关系可以表 示为:Y k=f 1(T k)。在本实施方式中,当尚未确定灶具具体的烹饪状态或灶具20的烹饪状态为无水烹饪状态时,可根据烟机10的风机的转速与锅具30的温度的第一预设函数关系获取烟机10的风机的转速,控制装置50发出控制指令,控制烟机10的风机以对应的转速运行。
具体地,在一个实施例中,预设数量为60个,第一温度传感器22每隔两秒采集一个锅具30的温度数据。当采集到的锅具30的温度的数量小于或者等于预设数量(60个),而采集到的锅具30的当前温度为T 1,并根据烟机10的风机的转速与锅具30的温度的第一预设函数关系:Y k=f 1(T k),可获知与温度T 1所对应的烟机10的风机的转速为Y 1,以转速Y 1来控制风机的运行,达到所需的风机的风力;当采集到的锅具30的当前温度为T 2,并根据烟机10的风机的转速与锅具30的温度的第一预设函数关系:Y k=f 1(T k),可获知与温度T 2所对应的烟机10的风机的转速为Y 2,以转速Y 2来控制风机的运行,达到所需的风机的风力,以此类推。
在某些实施方式中,烟机10的风机的转速与锅具30的温度的第二预设函数关系可以表示为:Y k=f 2(T k)。在本实施方式中,当采集到的锅具30的温度数量大于预设数量时且存在锅具沸腾温度,即灶具处于有水烹饪状态,可根据烟机10的风机的转速与锅具30的当前温度(锅具沸腾温度)的第二预设函数关系获取烟机10的风机的转速,控制装置50发出控制指令,控制烟机10的风机以对应的转速运行。
需要说明的是,在一个实施例中,在无水烹饪状态下由于不存在锅具沸腾温度,可根据锅具30的当前温度T k和烟机10的风机的转速与锅具30的温度的第一预设函数关系获取烟机10的风机的转速Y k,判断烟机10的风机的转速Y k与烟机10的风机的当前转速相比较,烟机10的风机的当前转速为风机上一次通过运算所获取的转速W k-1,若|Y k-W k-1|大于或者等于预设差值B,则将当前的烟机的风机的转速调整为锅具的当前温度所对应的烟机的风机的转速Y k,以转速Y k来控制风机的运行,达到所需的风机的风力,也就是说,烟机10的当前转速调整为W k=Y k。若|Y k-W k-1|小于预设差值B,则说明烟机10的风机的当前转速与通过预设关系获取的风机的转速差别比较小,则不更新烟机10的风机转速,也就是说,W k=W k-1
在另一个实施例中,预设数量为60个,第一温度传感器22每隔两秒采集一个锅具30的温度数据。当采集到的锅具30的温度的数量小于或者等于预设数量(60个),可根据锅具30的当前温度T k和烟机10的风机的转速与锅具30的温度的第一预设函数关系获取烟机10的风机的转速Y k,判断烟机10的风机的转速Y k与烟机10的风机的转速W k-1相比较,若|Y k-W k-1|大于或者等于预设差值B,则需要将烟机10的当前转速W k调整为锅具30的当前温度对应的烟机10的风机的转速Y k,以转速Y k来控制风机的运行,达到所需的风机的风力,也就是说,烟机10的当前转速调整为:W k=Y k。若|Y k-W k-1|小于预设差值B,则说明烟机10的前一次的风机的转速与通过第一预设函数关系获取的风机的转速差别比较小,则不更新烟机10的风机转速,也就是说,W k=W k-1。即仍然以转速W k-1来控制风机的运行,达到所需的风机的风力。
在另一个实施例中,预设数量为60个,第一温度传感器22每隔两秒采集一个锅具30的温度数据。当采集到的锅具30的温度的数量大于预设数量(60个)且在有水烹饪状态,有水烹饪状态存在锅具沸腾温度,可根据锅具30的当前温度T k(锅具沸腾温度T b)和烟机10的风机的转速与锅具30的温度的第二预设函数关系获取烟机10的风机的转速Y k,判断烟机10的风机的转速Y k与烟机10的风机的转速W k-1相比较,若|Y k-W k-1|大于或者等于预设差值B,则需要将烟机10的当前转速调整为锅具30的当前温度对应的烟机10的风机的转速Y k,以转速Y k来控制风机的运行,达到所需的风机的风力,也就是说,烟机10的当前转速可调整为:W k=Y k。若|Y k-W k-1|小于预设差值B,则说明烟机10的风机的当前转速与通过第二预设函数关系获取的风机的转速差别比较小,则保持当前烟机的风机的转速不变,也就是说,W k=W k-1,即仍然以转速W k-1来控制风机的运行,达到所需的风机的风力。
以下具体地实施例一、实施例二、实施例三及实施例四是根据上述实施方式的控制方法的整体描述。需要说明的是,实施例一、实施例二、实施例三及实施例四只是本申请的控制方法的具体实施例,本申请实施方式控制方法可根据实际情况组合设计为其他的实施方式,在此不作限制。
实施例一(参阅图25):
A1、灶具20开启。
A2、火力信号检测单元检测到开启,控制装置50发送指令,开启烟机10的照明装置16和风机。
A3、火力信号检测单元检测是否关闭。若检测到关闭,进入步骤A4;若未检测到关闭,进入步骤A7。
A4、控制装置50判断是否存在锅具沸腾温度T b。若存在T b,进入步骤A5;若不存在T b,进入步骤A6。
A5、控制装置50向风力调节单元和照明装置16发送指令,控制烟机10以中档位运行第一预设时长ΔT 1后关闭风机和照明装置16。
A6、控制装置50向风力调节单元和照明装置16发送指令,控制烟机10以大档位运行第二预设时长ΔT 2后关闭风机和照明装置16。
A7、控制装置50每隔预设时间读取温度传感器探测的温度数据,记为T k(k=1到n,每读取一次,k自动增加1)。
A8、将采集温度数据数量k与预设量值N进行比较。若k>N,进入步骤16;若k≤N,进入步骤9。
A9、将采集的Tk与预先设定的第一预设温度T1进行比较。若T k<T1,进入步骤10;若T k≥T1,进入步骤11。
A10、控制装置50产生烟机10的小档位信号。
A11、将采集的T k与预先设定的第二预设温度T2进行比较。若T k<T2,进入步骤12;若T k≥T2,进入步骤13。
A12、控制装置50产生烟机10的中档位信号。
A13、将采集的T k与预先设定的第三预设温度T3进行比较。若T k<T3,进入步骤14;若T k≥T3,进入步骤15。
A14、控制装置50产生烟机10的大档位信号。
A15、控制装置50产生烟机10的爆炒档位信号。
A16、计算T k-N至T k的区间内N+1个温度数据的标准差(STD),将STD与预设值A进行比较,若STD<A(即表明存在锅具沸腾温度Tb),进入步骤17;若STD≥A(即表明不存在锅具沸腾温度Tb),进入步骤9。
A17、存在并设定锅具沸腾温度T b=T k,控制装置50产生烟机10的预设档位的信号。
A18、控制装置50向风力调节单元发送指令,调整烟机10的档位。
实施例二(参阅图26):
A1、灶具20开启。
A2、火力信号检测单元检测到开启,控制装置50发送指令,开启烟机10照明装置16和风机,给定风机的初始转速为W 0
A3、火力信号检测单元检测是否关闭。若检测到关闭,进入步骤A4;若未检测到关闭,进入步骤A7。
A4、控制装置50判断是否存在锅具沸腾温度T b。若存在Tb,进入步骤A5;若不存在T b,进入步骤A6。
A5、控制装置50向风力调节单元和照明装置16发送指令,烟机10以转速W c1运行第一预设时长ΔT 1后关闭风机和照明装置16。
A6、控制装置50向风力调节单元和照明装置16发送指令,烟机10以转速W c2运行第二预设时长ΔT 2后关闭电机和照明。
A7、控制装置50每隔预设时间读取温度传感器探测的温度数据,记为T k(k=1到n,每读取一次,k自动增加1)。
A8、将采集温度数据次数k与预设量值N进行比较。若k>N,进入步骤10;若k≤N,进入步骤9。
A9、给定烟机10的风机的转速与锅具30的温度的第一预设函数关系:Y k=f 1(T k)。(函数f 1是煎、炒、炸等无水烹饪状态或处于炖、煮、煲、蒸等有水烹饪状态的非沸腾区域时,关于T k的正相关函数)。
A10、计算T k-N至T k的区间内N+1个温度数据的标准差(STD),将STD与预设值A进行比较,若STD<A(即表明存在锅具沸腾温度Tb),进入步骤11;若STD≥A(即表明不存在锅具沸腾温度Tb),进入步骤9。
A11、存在并设定锅具沸腾温度T b=T k,给定Y k=f 2(T k)。(函数f 2是炖、煮、煲、蒸等烹饪状态沸腾区域时,关于T k的正相关函数。)
A12、将Y k和W k-1差值的绝对值与预设差值B进行比较。若|Y k-W k-1|<B,进入步骤14;若|Y k-W k-1|≥B,调节烟机10风机的转速,进入步骤13。
A13、更新电机转速W k,设定W k=Y k
A14、不更新电机转速W k,设定W k=W k-1
A15、控制装置50向电机风力调节单元发送指令,调整烟机10的转速。
实施例三(参阅图27):
A1、灶具20开启。
A2、火力信号检测单元检测到开启,控制装置50发送指令,开启烟机10的风机。
A3、火力信号检测单元检测是否关闭。若检测到关闭,进入步骤A4;若未检测到关闭,进入步骤A7。
A4、控制装置50判断是否存在锅具沸腾温度T b。若存在T b,进入步骤A5;若不存在T b,进入步骤A6。
A5、控制装置50向风力调节单元发送指令,控制烟机10以中档位运行第一预设时长ΔT 1后关闭 风机。
A6、控制装置50向风力调节单元发送指令,控制烟机10以大档位运行第二预设时长ΔT 2后关闭风机。
A7、控制装置50每隔预设时间读取温度传感器探测的温度数据,记为T k(k=1到n,每读取一次,k自动增加1)。
A8、将采集温度数据次数k与预设量值N进行比较。若k>N,进入步骤16;若k≤N,进入步骤9。
A9、将采集的T k与预先设定的第一温度T1进行比较。若T k<T1,进入步骤10;若T k≥T1,进入步骤11。
A10、控制装置50产生烟机10的小档位信号。
A11、将采集的T k与预先设定的第二预设温度T2进行比较。若T k<T2,进入步骤12;若T k≥T2,进入步骤13。
A12、控制装置50产生烟机10的中档位信号。
A13、将采集的T k与预先设定的第三预设温度T3进行比较。若T k<T3,进入步骤14;若T k≥T3,进入步骤15。
A14、控制装置50产生烟机10的大档位信号。
A15、控制装置50产生烟机10的爆炒档位信号。
A16、计算T k-N至T k的区间内N+1个温度数据的标准差(STD),将STD与预设值A进行比较,若STD<A(即表明存在锅具沸腾温度T b),进入步骤17;若STD≥A(即表明不存在锅具沸腾温度T b),进入步骤9。
A17、存在并设定锅具沸腾温度T b=T k,控制装置50产生烟机10的预设档位的信号。
A18、控制装置50向风力调节单元发送指令,调整烟机10的档位。
实施例四(参阅图28):
A1、灶具20开启。
A2、火力信号检测单元检测到开启,控制装置50发送指令,开启风机,给定风机的初始转速为W0。
A3、火力信号检测单元检测是否关闭。若检测到关闭,进入步骤A4;若未检测到关闭,进入步骤A7。
A4、控制装置50判断是否存在锅具沸腾温度Tb。若存在Tb,进入步骤A5;若不存在Tb,进入步骤A6。
A5、控制装置50向风力调节单元发送指令,烟机10以转速Wc1运行第一预设时长ΔT1后关闭电机。
A6、控制装置50向风力调节单元发送指令,烟机10以转速Wc2运行第二预设时长ΔT2后关闭电机。
A7、控制装置50每隔预设时间读取温度传感器探测的温度数据,记为Tk(k=1到n,每读取一次,k自动增加1)。
A8、将采集温度数据次数k与预设量值N进行比较。若k>N,进入步骤10;若k≤N,进入步骤9。
A9、给定烟机10的风机的转速与锅具30的温度的第一预设函数关系:Yk=f1(Tk)。(函数f1是煎、炒、炸等无水烹饪状态或处于炖、煮、煲、蒸等有水烹饪状态的非沸腾区域时,关于T k的正相关函数)。
A10、计算T k-N至T k的区间内N+1个温度数据的标准差(STD),将STD与预设值A进行比较,若STD<A(即表明存在锅具沸腾温度T b),进入步骤11;若STD≥A(即表明不存在锅具沸腾温度T b),进入步骤9。
A11、存在并设定锅具沸腾温度T b=T k,给定Y k=f 2(T k)。(函数f2是炖、煮、煲、蒸等烹饪状态沸腾区域时,关于T k的正相关函数。)
A12、将Y k和W k-1差值的绝对值与预设差值B进行比较。若|Y k-W k-1|<B,进入步骤14;若|Y k-W k-1|≥B,调节烟机10风机的转速,进入步骤13。
A13、更新电机转速W k,设定W k=Y k
A14、不更新电机转速W k,设定W k=W k-1
A15、控制装置50向电机风力调节单元发送指令,调整烟机10的转速。
请参阅图3及图29,,在某些实施方式中,控制方法包括:
步骤S312,判断锅具30是否处于离锅状态,若是,步骤S314,控制烟机10的风机以第一预设风力运行;若否,进入步骤S20,根据锅具30的温度判断灶具20的烹饪状态。
本申请实施方式的烟灶联动的控制方法可以由本申请实施方式的烟灶联动系统100实现,并可应 用于灶具20和烟机10。
其中,本申请实施方式的烟灶联动的控制方法的步骤S312及S314可以由控制装置50实现。也就是说,判断模块110用于判断锅具30是否处于离锅状态,若是,处理模块120用于烟机10的风机以第一预设风力运行;若否,判断模块110根据锅具30的温度判断灶具20的烹饪状态
本申请实施方式的烟灶联动的控制方法和烟灶联动系统100中,根据锅具30是否处于离锅状态来控制烟机10的风机的风力,及通过锅具30的当前温度判断出灶具20的烹饪状态后再根据灶具20的烹饪状态控制烟机10的风机的风力,这样烟机10可自动调整合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
具体地,当锅具30处于离锅状态,控制烟机10的风机以第一预设风力运行,在一个实施方式中,可以控制烟机10以预设档位运行,例如,小档位。在另外一个实施方式中,可以控制烟机10以预设转速运行。
需要说明的是,本实施方式所说的锅具30处于离锅状态可以理解锅具30没有放置在灶具20上的状态。较佳地,当要判断锅具30是否处于离锅状态时,可从锅具30离开灶具20开始计时,且计时时长大于预设离锅时长时,才会确定锅具20处于离锅状态。因为在某些食物烹饪场景下,在烹饪过程中,锅具会有一次或几次短时间离开灶具20,而实际上锅具30所烹饪的食物并没有变化,这样可使控制方法更加准确。
在一个实施例中,可通过安装有带坐锅检测接触式温度传感器检测锅具30是否离锅。
在另一个实施例中,在烹饪过程中,可通过安装在灶具20上的不带坐锅检测的接触式温度传感器检测到的锅具30的升温速率来判断锅具30是否处于离锅状态,在灶具20加热时,当计算预设时长t内的温度变化值ΔT,当温度变化值ΔT大于第一预定值时,则确定锅具30处于所述离锅状态。或者在灶具20加热时,计算预设时长t内的温度的斜率ΔT/t,当温度的斜率ΔT/t大于第二预定值时,则确定锅具30处于所述离锅状态。或者在灶具20加热时,计算预设时长t内的温度变化值ΔT和温度的斜率ΔT/t,当温度变化值ΔT大于第一预定值和温度的斜率ΔT/t大于第二预定值时,则确定锅具30处于所述离锅状态。
在又一个实施例中,在烹饪过程中,可通过安装在灶具20上的非接触式温度传感器,检测锅具30的温度是否大幅度波动,在灶具20加热时,当计算预设时长t内的温度变化值ΔT,当温度变化值ΔT大于第一预定值时,则确定锅具30处于所述离锅状态。或者在灶具20加热时,计算预设时长t内的温度的斜率ΔT/t,当温度的斜率ΔT/t大于第二预定值时,则确定锅具30处于所述离锅状态。或者在灶具20加热时,计算预设时长t内的温度变化值ΔT和温度的斜率ΔT/t,当温度变化值ΔT大于第一预定值和温度的斜率ΔT/t大于第二预定值时,则确定锅具30处于所述离锅状态。在再一个实施方式中,通过接触式温度传感器连接的位置传感器检测锅具30是否处于离锅状态。
在再一个实施例中,在烹饪过程中,可通过安装灶具20上的图像传感器在灶具20未关火的情况下来检测锅具30是否处于离锅状态。
在再一个实施例中,在烹饪过程中,可在锅支架上安装重量传感器。在烹饪过程中通过测量锅支架所承受的重量,判别是否锅具30是否处于离锅状态。如当测量到的重量接近于零的预设范围内,判定锅具30处于离锅状态。
可以理解,在某些实施方式中,判断锅具30是否处于离锅状态的手段可采用上述实施例中的任意一种或两种以上的组合。
请参阅图30及图31,在某些实施方式中,控制装置50包括处理模块210、获取模块220及采集模块230,步骤S1包括:
步骤S1010,获取灶具20的烹饪状态指令并根据灶具20的烹饪状态指令确定灶具20的烹饪状态;
步骤S3包括:
步骤S1020,采集锅具30的温度;
步骤S1030,根据烹饪状态和锅具30的温度控制烟机10的风机的风力。
本申请实施方式的烟灶联动的控制方法的步骤S1010、S1020及S1030可以由控制装置50实现。也就是说,获取模块220用于获取灶具20的烹饪状态指令,处理模块210用于根据灶具20的烹饪状态指令确定灶具20的烹饪状态;采集模块230用于采集锅具30的温度;处理模块210用于根据烹饪状态和锅具30的温度控制烟机10的风机的风力。
本申请实施方式的烟灶联动的控制方法和烟灶联动系统100中,通过获取灶具20的烹饪状态指令和锅具30的温度控制烟机10的风机的风力,这样烟机10可自动调整合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
具体地,请参阅图31,烟灶联动系统100还包括用户输入装置40,用户输入装置40连接控制装置50,用户输入装置40可设置在烟机10或者灶具20上,用户可通过用户输入装置40输入烹饪状态指令,而控制装置50可以从用户输入装置40上获取用户所输入的烹饪状态。例如,烹饪状态包括有水烹饪状态或无水烹饪状态。当用户想进行炖、煮、煲、蒸等有水烹饪方式时可在用户输入装置40上输 入有水烹饪。当用户想进行煎、炒、炸等无水烹饪方式时可在用户输入装置40上输入无水烹饪。
请参阅图31及图32,在某些实施方式中,灶具的烹饪状态包括有水烹饪状态和无水烹饪状态,步骤S1030包括:
步骤S1031,当灶具20处于有水烹饪状态时,控制烟机10的风机以与锅具30的当前温度的第一正相关的风力运行;
步骤S1032,当灶具20处于无水烹饪状态时,控制烟机10的风机以与锅具30的当前温度的第二正相关的风力运行。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S1031及S1032可以由控制装置50实现。也就是说,处理模块210用于当灶具20处于有水烹饪状态时,控制烟机10的风机以与锅具30的当前温度的第一正相关的风力运行;当灶具20处于无水烹饪状态时,控制烟机10的风机以与锅具30的当前温度的第二正相关的风力运行。
如此,根据灶具20的烹饪状态控制烟机10的风机的风力,可以准确地控制风机的风力以使烟机能满足烹饪时的吸油烟需求,用户体验性好。
具体地,在一个实施例中,当用户通过用户输入装置40输入的是有水烹饪状态时,也就是说,此时锅具30进行有水烹饪状态,可以控制烟机10的风机以与锅具30的当前温度的第一正相关的风力运行,例如,锅具30的当前温度越高,风机的风力就越大。需要指出的是,风机的风力与锅具30的当前温度第一正相关包括以下这种情况:风机的不同风力可对应于锅具30的不同的温度范围。例如,风力包括F1、F2和F3三个不同风力,其中F1<F2<F3,F1所对应的锅具30的温度范围是[T11,T12],F2所对应的锅具30的温度范围是(T12,T13],F3所对应的锅具30的温度范围是(T13,T14],当锅具30的当前温度处于[T11,T12]范围时,可控制风机以F1运行;当锅具30的当前温度处于(T12,T13]范围时,可控制风机以F2运行;当锅具30的当前温度处于(T13,T14]范围时,可控制风机以F3运行。风机的风力也可通过风机的转速和/或档位来调整。
在另一个实施例中,当用户通过用户输入装置40输入的是无水烹饪状态时,也就是说,此时锅具30内进行无水烹饪,可以控制烟机10的风机以与锅具30的当前温度第二正相关的风力运行。例如,锅具30的当前温度越高,风机的风力就越大。需要指出的是,风机的风力与锅具30的当前温度的第二正相关包括以下这种情况:风机的不同风力可对应于锅具30的不同的温度范围。例如,风力包括F4、F5和F6三个不同风力,其中F4<F5<F6,F4所对应的锅具30的温度范围是[T21,T22],F5所对应的锅具30的温度范围是(T22,T23],F6所对应的锅具30的温度范围是(T23,T24],当锅具30的当前温度处于[T21,T22]范围时,可控制风机以F4运行;当锅具30的当前温度处于(T22,T23]范围时,可控制风机以F5运行;当锅具30的当前温度处于(T23,T24]范围时,可控制风机以F6运行。风机的风力也可通过风机的转速和/或档位来调整。
具体地,当锅具30处于炖、煮、煲、蒸等产生油烟较少的烹饪状态时,灶具20处于有水烹饪状态,可以控制烟机10的风机以控制烟机10的风机与当前的锅具温度第一正相关的风力运行,例如较小的风力开始运行,随着锅具30的温度的增加,逐渐增大风机的风力。当锅具30处于煎、炒、炸等产生油烟较多的烹饪状态时,灶具20处于无水烹饪状态,则可以控制烟机10的风机与当前的锅具温度第二正相关的风力运行,例如,例如较大的风力开始运行,随着锅具30的温度的增加,逐渐增大风机的风力,从而保证能使得油烟抽被烟机10吸干净。
请参阅图33、图34及图35,灶具20包括多个炉头25,控制方法包括:
步骤S2010,采集每个炉头25所对应的锅具30的温度;
步骤S1包括:
步骤S2020,根据锅具30的温度判断每个炉头25的烹饪状态;
步骤S3包括:
步骤S2030,根据每个炉头25的烹饪状态确定与每个炉头25所对应的烟机10的风机的风力;
步骤S2040,将多个烟机10的风机的风力中的最大风力作为烟机10的运行风力;
步骤S2050,控制烟机10以运行风力运行。
本申请实施方式的烟灶联动的控制方法可以由本申请实施方式的烟灶联动系统100实现,并可应用于灶具20和烟机10。其中,本申请实施方式的烟灶联动的控制方法的步骤S2010、S2020、S2030、S2040及S2050可以由控制装置50实现。控制装置50包括处理模块310、采集模块320、和判断模块340。也就是说,采集模块320用于采集每个炉头25所对应的锅具30的温度;判断模块340用于根据锅具30的温度判断每个炉头25的烹饪状态;处理模块310用于根据每个炉头25的烹饪状态确定与每个炉头25所对应的烟机10的风机的风力;处理模块310用于将多个烟机10的风机的风力中的最大风力作为烟机10的运行风力;处理模块310用于控制烟机10以运行风力运行。
上述实施方式的烟灶联动的控制方法和烟灶联动系统100中,根据每个炉头25的烹饪状态确定与每个炉头25所对应的烟机10的风机的风力并将多个烟机10的风机的风力中的最大风力作为烟机10的运行风力,这样烟机10可自动调整合适的风力以吸取多个炉头25烹饪过程中产生的油烟,从而可 以起到节省电能的作用和使得油烟的吸取更干净。
具体地,每个灶具20包括两个或者两个以上的炉头25,当多个炉头25同时工作时,由于每个炉头25的烹饪状态可能不一致,也就是说,每个炉头25所产生的油烟的程度不同,因此,为了能够最大程度地将油烟吸取干净,在本实施方式中,当多个炉头25同时工作时,控制装置50可根据每个锅具30的温度判断出每个炉头25的烹饪状态,并且根据具体的运算确定每个炉头25所对应的烟机10的风力,然后在将每个炉头25所对应的烟机10的风力中的最大风力作为风机的运行风力,也就是说,烟机10最终以最大风力运行,如此,这样可以最大程度地将烹饪过程中产生的油烟吸取干净。
请参阅图33,在一个实施例中,灶具20包括三个炉头25a、25b及25c。控制装置50可根据放置在炉头25a上的锅具30的温度判断出锅具30所处的烹饪状态,例如为有水烹饪,确定风机的风力为小档位。控制装置50可根据放置在炉头25b上的锅具30的温度判断出锅具30所处的烹饪状态,例如为无水烹饪,确定风机的风力为中档位。控制装置50可根据放置在炉头25c上的锅具30的温度判断出锅具30所处的烹饪状态,例如为无水烹饪,确定风机的风力为大档位。控制装置50可以比较每个炉头25所确定的风机的风力,最终将最大风力(大档位)作为烟机10的运行风力。
在另外一个实施例中,灶具20包括三个炉头25a、25b及25c。控制装置50可根据放置在炉头25a上的锅具30的温度判断出锅具30所处的烹饪状态,例如为有水烹饪,确定风机的风力为a转速。控制装置50可根据放置在炉头25b上的锅具30的温度判断出锅具30所处的烹饪状态,例如为无水烹饪,确定风机的风力为b转速。控制装置50可根据放置在炉头25c上的锅具30的温度判断出锅具30所处的烹饪状态,例如为无水烹饪,确定风机的风力为c转速。其中a转速小于b转速,b转速小于c转速。控制装置50可以比较每个炉头25所确定的风机的风力,最终将最大风力(c转速)作为烟机10的运行风力。
请参阅图36及图37,步骤S1包括:
步骤S3010,利用图像传感器60采集灶具20的图像;
步骤S3020,根据灶具20的图像确定灶具20的烟雾状态和灶具20的烹饪状态;
步骤S3包括:
步骤S3030,根据灶具20的烟雾状态和灶具20的烹饪状态控制烟机10的风机的风力。
本申请实施方式的烟灶联动的控制方法可以由本申请实施方式的烟灶联动系统100实现,并可应用于灶具20和烟机10。其中,本申请实施方式的烟灶联动的控制方法的步骤S3010、S3020及S3030可以由控制装置50实现。控制装置50包括处理模块410、采集模块420及判断模块430。也就是说,采集模块420用于利用图像传感器60采集灶具20的图像;判断模块430用于根据灶具20的图像确定灶具20的烟雾状态和灶具20的烹饪状态;处理模块410用于根据灶具20的烟雾状态和灶具20的烹饪状态控制烟机10的风机的风力。
本申请实施方式的烟灶联动的控制方法和烟灶联动系统100中,通过图像传感器60所采集的灶具20图像来确定灶具20的烟雾状态和灶具20的烹饪状态,并且再根据灶具20的烟雾状态和灶具20的烹饪状态控制烟机10的风机的风力,这样可将烟机10的风力调整至合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
具体地,在一个实施例中,图像传感器60可设置在烟机10上,图像传感器60从上向下拍摄灶具的图像,图像传感器60采集到灶具20的图像后,可将灶具20的图像传输至控制装置50进行处理。在另外一个实施例中,图像传感器60设置在烟机10和灶具20外的其他位置,例如墙壁上,图像传感器60从侧上方采集灶具20的图像。图像传感器60采集到灶具20的图像后,可将灶具20的图像传输至控制装置50进行处理。
需要指出的是,烟雾状态可以为烟雾浓度。
在进行烹饪的过程中,本申请实施方式通过图像传感器60采集灶具20的图像,控制装置50可根据灶具20的图像确定灶具20的烟雾状态和灶具20的烹饪状态,需要说明的是,在同样的烟雾状态下,也就是说在烟雾浓度相同时,如果灶具20是处于不同的烹饪状态,则烟机10的风机的风力也是不相同的。例如,若图像传感传感器检测到烟雾浓度值为100,若此时灶具20是处于有水烹饪状态,则控制烟机10以中档位的风力运行。若此时灶具20是处于无水烹饪状态,则控制烟机10以大档位的风力运行。风机的风力在此不作限制,可根据实际情况进行调节。
请参阅图37及图38,在某些实施方式中,步骤S3020包括步骤:
步骤S1220,将灶具20的图像与图像数据库中的多个预设图像进行对比,预设图像对应有一个烟雾状态;
步骤S1240,将与灶具20的图像相匹配的预设图像的烟雾状态作为灶具20的烟雾状态。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S1220及S1240可以由控制装置50实现。控制装置50包括判断模块430。也就是说,判断模块430用于将灶具20的图像与图像数据库中的多个预设图像进行对比,预设图像对应有一个烟雾状态;及将与灶具20的图像相匹配的预设图像的烟雾状态作为灶具20的烟雾状态。
如此,通过将灶具20的图像与图像数据库中的多个预设图像进行对比来获取灶具20的烟雾状态,方便高效,准确度高。
具体地,本实施方式的图像数据库可以理解为通过进行大量的实验采集不同烟雾状态的图像,每个图像对应一个烟雾状态,这些不同烟雾状态的预设图像存储在图像数据库中。图像数据库包括包含多个子图像数据库,每个型号的灶具20对应有一个子数据库,在进行烹饪时,图像传感器60采集灶具20的图像,控制装置50中的图像处理单元可以将灶具20的图像与图像数据库中的预设图像进行查找对比,例如根据灶具20的型号查找子数据库,这样可更快和更准确地识别出灶具的烟雾状态。灶具20的图像相匹配的预设图像,可以理解为,以相似度最高的图像作为与灶具的图像相匹配的图像,或者选择相似度大于预设值中的多个图像中的任意一个作为与灶具的图像相匹配的图。在一个实施例中,当灶具20的图像与图像数据库中的预设图像的其中一张预设图像的相似度大于预设值时,则调用该预设图像所对应的烟雾状态作为灶具20的烟雾状态。
请参阅图37及图39,在某些实施方式中,步骤S3020包括步骤:
步骤S1260,处理灶具20的图像以得到灶具20的图像所对应的图像特征;
步骤S1280,根据灶具20的图像所对应的图像特征与图像特征和烟雾状态的对应关系得到灶具20的烟雾状态。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S1260及S1280可以由控制装置50实现。也就是说,判断模块430用于处理灶具20的图像以得到灶具20的图像所对应的图像特征;及根据灶具20的图像所对应的图像特征与图像特征与烟雾状态的对应关系得到灶具20的烟雾状态。
如此,通过将灶具20的图像所对应的图像特征与图像特征与烟雾状态的对应关系来获取灶具20的烟雾状态,方便高效,准确度高。
具体地,本实施方式的控制装置50可以对灶具20的图像进行处理分析以得到相对应的图像特征,例如,灶具20的图像所对应的图像特征可以为图像中的油烟的颗粒数量及图像的对比度等图像特征。然后,利用大数据的分析手段建立图像特征和烟雾状态的对应关系,例如,可以建立图像特征和烟雾浓度的函数对应关系。当用户在进行烹饪时,图像传感器60采集灶具20的图像,控制装置50中的图像处理单元可以对灶具20的图像所对应的图像特征进行分析确认,进而求解出该图像特征所对应的烟雾状态,最后,控制装置50调用该烟雾状态作为灶具20的烟雾状态。
请参阅图37及图40,在某些实施方式中,步骤S3020包括步骤:
步骤S1210,将灶具20的图像与图像数据库中的多个预设图像进行对比,预设图像对应一个烹饪状态;
步骤S1230,将与灶具20的图像相匹配的预设图像对应的烹饪状态作为灶具20的烹饪状态。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S210及S230可以由控制装置50实现。也就是说,判断模块430用于将灶具20的图像与图像数据库中的多个预设图像进行对比,预设图像对应一个烹饪状态;判断模块430将与灶具20的图像相匹配的预设图像对应的烹饪状态作为灶具20的烹饪状态。
如此,通过将灶具20的图像与图像数据库中的多个预设图像进行对比来获取灶具20的烹饪状态,方便高效,准确度高。
需要说明的是,灶具20的烹饪状态包括有水烹饪状态和无水烹饪状态。有水烹饪可为炖、煮、煲、蒸等有水烹饪方式。无水烹饪包括煎、炒、炸等无水烹饪方式。
具体地,本实施方式的图像数据库可以理解为通过进行大量的实验采集多种烹饪方式下的有水烹饪状态的灶具20的图像和无水烹饪状态的灶具20的图像,每个图像对应一种烹饪方式,有水烹饪状态或者无水烹饪状态,这些不同烹饪状态的预设图像存储在图像数据库中。在进行烹饪时,图像传感器60采集灶具20的图像,控制装置50中的图像处理单元可以将灶具20的图像与图像数据库中的预设图像进行查找对比,例如根据灶具20的型号查找子数据库,这样可更快和更准确地识别出灶具20的烹饪状态。灶具20的图像相匹配的预设图像,可以理解为,以相似度最高的图像作为与灶具20的图像相匹配的图像,或者选择相似度大于预设值中的多个图像中的任意一个作为与灶具20的图像相匹配的图。在一个实施例中,当灶具20的图像与图像数据库中的预设图像的其中一张预设图像的相似度大于预设值时,则调用该预设图像所对应的有水状态或者无水烹饪状态作为灶具20的烹饪状态。
请参阅图37及图41,在某些实施方式中,步骤S3020包括步骤:
步骤S1250,处理灶具20的图像以得到灶具20的图像所对应的图像特征,图像特征对应一个烹饪状态;
步骤S1270,根据灶具20的图像所对应的图像特征与图像特征和烹饪状态的对应关系得到灶具20的烹饪状态。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S1250及S1270可以由控制装置50实现。也就是说,判断模块430用于 处理灶具20的图像以得到灶具20的图像所对应的图像特征,图像特征对应一个烹饪状态,及根据灶具20的图像所对应的图像特征与图像特征和烹饪状态的对应关系得到灶具20的烹饪状态。
具体地,本实施方式的控制装置50可以对灶具20的图像进行处理分析以得到相对应的图像特征,例如,灶具20的图像所对应的图像特征可以为图像中的油烟的颗粒数量及图像的对比度等图像特征。然后,利用大数据的分析手段建立图像特征和烹饪状态的对应关系,例如,可以建立图像特征和有水烹饪状态及无水烹饪状态的函数对应关系。当用户在进行烹饪时,图像传感器60采集灶具20的图像,控制装置50中的图像处理单元可以对灶具20的图像所对应的图像特征进行分析确认,进而求解出该图像特征所对应的有水烹饪状态或者无水烹饪状态,最后,控制装置50调用该有水烹饪状态或者无水烹饪状态作为灶具20的烹饪状态。
请参阅图37及图42,在某些实施方式中,烟雾状态包括烟雾浓度,步骤S3030包括步骤:
步骤S1320,当灶具20处于有水烹饪状态时,控制烟机10的风机以与烟雾浓度正相关的第一风力运行;
步骤S1340,当灶具20处于无水烹饪状态时,控制烟机10的风机以与烟雾浓度正相关的第二风力运行。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式的烟灶联动的控制方法的步骤S1320及S1340可以由控制装置50实现。也就是说,控制装置50用于当灶具20处于有水烹饪状态时,控制烟机10的风机以与烟雾浓度正相关的第一风力运行;及当灶具20处于无水烹饪状态时,控制烟机10的风机以与烟雾浓度正相关的第二风力运行。
如此,根据灶具20的烹饪状态控制烟机10的风机的风力,如此,可以准确地控制风机的风力以使烟机10能满足烹饪时的吸油烟需求,用户体验性好。
需要说明的是,当锅具处于炖、煮、煲、蒸等产生油烟较少的烹饪状态时,灶具20处于有水烹饪状态,可以控制烟机10的风机以与烟雾浓度正相关的第一风力运行,例如以较小的初始风力运行,从而可以节省电能。当锅具处于煎、炒、炸等产生油烟较多的烹饪状态时,灶具20处于无水烹饪状态,则可以控制烟机10的风机以与烟雾浓度正相关的第二风力运行,例如,以较大的初始风力运行,从而保证能使得油烟抽被烟机10吸干净。
具体地,在一个实施例中,第二风力大于第一风力。在灶具20处于有水状态时,烟机10的风机以与烟雾浓度正相关的第一风力运行可以理解为建立烟机10的风机的转速与灶具20的烟雾浓度的第一预设函数关系:Y k=f 1(H k)。在灶具20处于无水状态时,烟机10的风机以与烟雾浓度正相关的第二风力运行可以理解为建立烟机10的风机的转速与灶具20的烟雾浓度的第二预设函数关系:Y k=f 2(H k)。需要指出的是,当图像传感器60还没判断出灶具20的烹饪状态时,可控制烟机10的转速以第二预设函数关系运行。
具体的,在另外一个实施例中,当灶具20处于有水烹饪状态,可以控制烟机10的风机以与灶具20的烟雾浓度正相关的风力运行。例如,灶具20的烟雾浓度越大,风机的风力就越大。需要指出的是,风机的风力与灶具20的烟雾浓度正相关包括以下这种情况:风机的不同风力可对应于灶具20的烟雾浓度范围。例如,风力包括F1、F2和F3三个不同风力,其中F1<F2<F3,F1所对应的灶具20的烟雾浓度范围是[H11,H12],F2所对应的灶具20的烟雾浓度范围是(H12,H13],F3所对应的灶具20的烟雾浓度范围是(H13,H14],当灶具20的当前烟雾浓度处于[H11,H12]范围时,可控制风机以F1运行;当灶具20的当前烟雾浓度处于(H12,H13]范围时,可控制风机以F2运行;当灶具20的当前烟雾浓度处于(H13,H14]范围时,可控制风机以F3运行。风机的风力也可通过风机的转速和/或档位来调整。
具体的,当灶具20处于无水烹饪状态,可以控制烟机10的风机以与锅具30的当前温度正相关的风力运行。例如,灶具20的烟雾浓度越大,风机的风力就越大。需要指出的是,风机的风力与灶具20的烟雾浓度正相关包括以下这种情况:风机的不同风力可对应于灶具20的烟雾浓度范围。例如,风力包括F4、F5和F6三个不同风力,其中F4<F5<F6,F4所对应的灶具20的烟雾浓度范围是[H11,H12],F5所对应的灶具20的烟雾浓度范围是(H12,H13],F6所对应的灶具20的烟雾浓度范围是(H13,H14],当灶具20的当前烟雾浓度处于[H11,H12]范围时,可控制风机以F4运行;当灶具20的当前烟雾浓度处于(H12,H13]范围时,可控制风机以F5运行;当灶具20的当前烟雾浓度处于(H13,H14]范围时,可控制风机以F6运行。风机的风力也可通过风机的转速和/或档位来调整。
请参阅图37及图43,在某些实施方式中,烟机10的风机的风力由烟机10的风机的转速决定,烟机10的风机的转速根据当前灶具20的烟雾状态与烟机10的风机的风力和灶具20的烟雾状态的预设关系获取,控制方法还包括步骤:
S3040,判断当前灶具20的烟雾状态所对应的烟机10的风机的转速与上一时刻灶具20的烟雾状态所对应的烟机10的风机的转速的差值的绝对值是否大于预设差值,若是,S3042,将当前烟机10的风机的转速调整为当前灶具20的烟雾状态所对应的烟机10的风机的转速,若否,S3044,保持当前烟机10的风机的转速不变。
本实施方式的控制方法可以由本申请实施方式的烟灶联动系统100实现,其中,本申请实施方式 的烟灶联动的控制方法的步骤S3040、S3042及S3044可以由控制装置50实现。也就是说,控制装置50用于判断当前灶具20的烟雾状态所对应的烟机10的风机的转速与上一时刻灶具20的烟雾状态所对应的烟机10的风机的转速的差值的绝对值是否大于预设差值,若是,将当前烟机10的风机的转速调整为当前灶具20的烟雾状态所对应的烟机10的风机的转速,若否,保持当前烟机10的风机的转速不变。
如此,这样烟机10可根据实际的灶具20的烟雾状态及时调整风机的转速以使得风机以合适的转速将油烟吸取干净并且可以节省电能。
具体地,当灶具20处于有水烹饪状态时,可根据当前灶具20的烟雾浓度H k和烟机10的风机的转速与灶具20的烟雾浓度的第一预设函数关系获取烟机10的风机的转速Y k,判断烟机10的风机的转速Y k与烟机10的风机的当前转速相比较,烟机10的风机的当前转速为风机上一次通过运算所获取的转速W k-1,若|Y k-W k-1|大于预设差值B,则将当前的烟机10的风机的转速调整为当前灶具20的烟雾浓度所对应的烟机10的风机的转速Y k,以转速Y k来控制风机的运行,达到所需的风机的风力,也就是说,烟机10的当前转速调整为W k=Y k。若|Y k-W k-1|小于或者等于预设差值B,则说明烟机10的风机的当前转速与通过预设关系获取的风机的转速差别比较小,则不更新烟机10的风机转速,也就是说,W k=W k-1
当灶具20处于无水烹饪状态时,可根据当前灶具20的烟雾浓度H k和烟机10的风机的转速与灶具20的烟雾浓度的第二预设函数关系获取烟机10的风机的转速Y k,判断烟机10的风机的转速Y k与烟机10的风机的当前转速相比较,烟机10的风机的当前转速为风机上一次通过运算所获取的转速W k-1,若|Y k-W k-1|大于预设差值B,则将当前的烟机10的风机的转速调整为当前灶具20的烟雾浓度所对应的烟机10的风机的转速Y k,以转速Y k来控制风机的运行,达到所需的风机的风力,也就是说,烟机10的当前转速调整为W k=Y k。若|Y k-W k-1|小于或者等于预设差值B,则说明烟机10的风机的当前转速与通过预设关系获取的风机的转速差别比较小,则不更新烟机10的风机转速,也就是说,W k=W k-1
请参阅图44,本发明实施方式提供的烟灶联动系统100包括处理器510和存储器520,存储器520存储有一个或多个程序,一个或多个程序被配置成由处理器510执行,程序包括用于执行上述任一项的控制方法。
本申请实施方式的烟灶联动系统100中,通过判断灶具20的烹饪状态;及根据灶具20的烹饪状态控制烟机10的风机的风力,这样烟机10可自动调整合适的风力以吸取烹饪过程中产生的油烟,从而可以起到节省电能的作用和使得油烟的吸取更干净。
具体地,在一个实施例中,请参阅图44,本申请实施方式的烟机包括本申请的烟灶联动系统100、第一检测信号接收单元12及第一风力调节单元14。处理器510连接第一检测信号接收单元12及第一风力调节单元14。灶具20包括第一温度传感器22、第一温度信号处理单元24、第一火力信号检测单元26、第一火力信号处理单元28和第一检测信号发射单元29。第一温度传感器22将温度信号反馈给第一温度信号处理单元24,第一火力信号检测单元26将火力信号反馈给第一火力信号处理单元28。第一温度信号处理单元24和第一火力信号处理单元28分别将处理好的温度信号和火力信号传递给灶具20的第一检测信号发射单元29。第一检测信号发射单元29接着将温度信号和火力信号利用有线或无线通信的方式传递给第一检测信号接收单元12。第一检测信号接收单元12将温度信号和火力信号反馈给烟机10的控制装置50,处理器510通过运算来确定锅具30的温度并根据锅具30的温度确定灶具20的烹饪状态。然后,根据灶具20的烹饪状态和锅具的温度确定烟机10的风机工作状态调整策略并产生控制信号。处理器510向烟机10的第一风力调节单元14发送控制信号的动作指令,使烟机10根据动作指令自动调整烟机10的风机的风力。
在另一个实施例中,请参阅图45,本申请实施方式的灶具20包括本申请的烟灶联动系统100、第一温度传感器22、第一温度信号处理单元24、第一火力信号检测单元26、第一火力信号处理单元28和第一检测信号发射单元29。处理器510连接第一温度传感器22、第一温度信号处理单元24、第一火力信号检测单元26、第一火力信号处理单元28和第一检测信号发射单元29。本申请实施方式的烟机包括第一检测信号接收单元12及第一风力调节单元14。第一温度传感器22将温度信号反馈给第一温度信号处理单元24,第一火力信号检测单元26将火力信号反馈给第一火力信号处理单元28。第一温度信号处理单元24和第一火力信号处理单元28分别将处理好的温度信号和火力信号传递给控制装置50。处理器510通过运算来确定锅具30的温度并根据锅具30的温度确定灶具20的烹饪状态。然后,根据烹饪状态和锅底温度确定烟机10工作状态调整策略并产生控制信号。处理器510将控制信号反馈给第一控制信号发射单元21。第一控制信号发射单元21通过有线或无线通信的方式将控制信号传递给烟机10的第一控制信号接收单元18。第一控制信号接收单元18将控制信号发送给第一风力调节单元14,使烟机10根据动作指令自动调整烟机10的风机的风力。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施 方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (31)

  1. 一种烟灶联动的控制方法,用于灶具和烟机,其特征在于,所述控制方法包括:
    判断所述灶具的烹饪状态;及
    根据所述灶具的烹饪状态控制所述烟机的风机的风力。
  2. 如权利要求1所述的控制方法,其特征在于,判断所述灶具的烹饪状态,包括:
    采集锅具的温度;
    根据所述锅具的温度判断所述灶具的烹饪状态。
  3. 如权利要求2所述的控制方法,其特征在于,所述灶具的烹饪状态包括有水烹饪状态和无水烹饪状态,根据所述灶具的烹饪状态控制所述烟机的风机的风力,包括:
    当所述灶具处于所述有水烹饪状态时,控制所述烟机的风机以预设风力运行;
    当所述灶具处于所述无水烹饪状态时,控制所述烟机的风机以与所述锅具的当前温度正相关的风力运行。
  4. 如权利要求3所述的控制方法,其特征在于,根据所述锅具的温度判断所述灶具的烹饪状态,包括:
    根据所述锅具的温度判断是否存在沸腾段;
    若是,确定所述灶具的烹饪状态为所述有水烹饪状态;
    若否,确定所述灶具的烹饪状态为所述无水烹饪状态。
  5. 如权利要求4所述的控制方法,其特征在于,根据所述锅具的温度判断是否存在沸腾段,包括:
    判断采集到的所述锅具的温度的数量是否大于预设数量;
    若是,计算预设时长内所述锅具的温度的变化率,当所述温度的变化率小于或等于预设值时,确定所述锅具存在所述沸腾段并将所述锅具的当前温度作为所述锅具的锅具沸腾温度;
    当所述温度的变化率大于所述预设值时,确定所述锅具不存在所述沸腾段。
  6. 如权利要求5所述的控制方法,其特征在于,所述预设时长内所述锅具的温度的变化率包括以下至少一种:
    所述预设时长内所述锅具的温度与所述预设时长内锅具的温度的平均值之差的绝对值之和;
    所述预设时长内所述锅具的温度对时间的斜率;
    所述预设时长内所述锅具的温度的方差;
    所述预设时长内所述锅具的温度的标准差。
  7. 如权利要求3所述的控制方法,其特征在于,所述控制方法还包括:
    检测所述灶具是否开启,若是,开启所述烟机的风机;
    检测所述灶具是否关闭,若是,当所述灶具在关闭前处于所述有水烹饪状态时,控制所述烟机的风机以第一风力继续运行第一预设时段后关闭所述烟机的风机;当所述灶具在关闭前处于所述无水烹饪状态,控制所述烟机的风机以大于所述第一风力的第二风力运行第二预设时段后关闭所述烟机的风机。
  8. 如权利要求3所述的控制方法,其特征在于,所述烟机包括照明装置,所述控制方法还包括:
    检测所述灶具是否开启,若是,开启所述烟机的风机和所述照明装置;
    检测所述灶具是否关闭,若是,当所述灶具在关闭前处于所述有水烹饪状态时,控制所述烟机的风机以第一风力继续运行第一预设时段后关闭所述烟机的风机和所述照明装置;当所述灶具在关闭前处于所述无水烹饪状态,控制所述烟机的风机以大于所述第一风力的第二风力运行第二预设时段后关闭所述烟机的风机和所述照明装置。
  9. 如权利要求5所述的控制方法,其特征在于,所述控制方法还包括:
    当采集到的所述锅具的温度的数量小于或者等于所述预设数量时,控制所述烟机的风机以与所述锅具的当前温度正相关的风力运行。
  10. 如权利要求2所述的控制方法,其特征在于,所述烟机的风机的风力由所述烟机的风机的转速决定,所述烟机的风机的转速根据所述锅具的当前温度和所述烟机的风机的转速与所述锅具的温度的预设关系获取,所述控制方法还包括:
    判断通过所述预设关系获取的所述烟机的风机的转速与当前的所述烟机的风机的转速的差值的绝对值是否大于或者等于预设差值,若是,将当前的所述烟机的风机的转速调整为通过所述预设关系获取的所述烟机的风机的转速,若否,保持当前所述烟机的风机的转速不变。
  11. 如权利要求2所述的控制方法,其特征在于,所述锅具的温度由以下至少一种获取:
    利用设置在所述灶具的温度传感器获取所述锅具的温度;
    利用设置在所述锅具的温度传感器获取所述锅具的温度。
  12. 如权利要求2所述的控制方法,其特征在于,所述控制方法,包括:
    判断所述锅具是否处于离锅状态,若是,控制所述烟机的风机以第一预设风力运行;
    若否,进入根据所述锅具的温度判断所述灶具的烹饪状态的步骤。
  13. 如权利要求12所述的控制方法,其特征在于,所述控制方法包括:
    在所述锅具离开所述灶具的计时时长大于预设离锅时长时,确定所述锅具处于所述离锅状态。
  14. 如权利要求12所述的控制方法,其特征在于,所述判断所述锅具是否处于离锅状态,包括以下至少一种:
    通过接触式温度传感器检测所述锅具是否处于所述离锅状态;
    通过非接触式温度传感器检测所述锅具是否处于所述离锅状态;
    通过接触式温度传感器连接的位置传感器检测所述锅具是否处于所述离锅状态;
    通过图像传感器检测所述锅具是否处于所述离锅状态;
    通过所述灶具的锅支架上的重量传感器检测所述锅具是否处于所述离锅状态。
  15. 如权利要求1所述的控制方法,其特征在于,判断所述灶具的烹饪状态,包括:
    获取所述灶具的烹饪状态指令并根据所述灶具的烹饪状态指令确定所述灶具的烹饪状态;
    根据所述灶具的烹饪状态控制所述烟机的风机的风力,包括:
    采集锅具的温度;
    根据所述烹饪状态和所述锅具的温度控制所述烟机的风机的风力。
  16. 如权利要求15所述的控制方法,其特征在于,所述烹饪状态包括有水烹饪状态和无水烹饪状态,根据所述烹饪状态和所述锅具温度控制所述烟机的风机的风力,包括:
    当所述灶具处于所述有水烹饪状态时,控制所述烟机的风机以与所述锅具的当前温度的第一正相关的风力运行;
    当所述灶具处于所述无水烹饪状态时,控制所述烟机的风机以与所述锅具的当前温度的第二正相关的风力运行。
  17. 如权利要求1所述的控制方法,其特征在于,所述灶具包括多个炉头,所述控制方法包括:
    采集每个所述炉头所对应的锅具的温度;
    判断所述灶具的烹饪状态,包括:
    根据所述锅具的温度判断每个所述炉头的烹饪状态;
    根据所述灶具的烹饪状态控制所述烟机的风机的风力,包括:
    根据每个所述炉头的烹饪状态确定与每个所述炉头所对应的所述烟机的风机的风力;
    将多个所述烟机的风机的风力中的最大风力作为所述烟机的运行风力;
    控制所述烟机以所述运行风力运行。
  18. 如权利要求17所述的控制方法,其特征在于,所述炉头的烹饪状态包括有水烹饪状态和无水烹饪状态,所述根据每个所述炉头的烹饪状态确定与每个所述炉头所对应的所述烟机的风机的风力的步骤包括:
    当所述炉头处于所述有水烹饪状态时,确定所述烟机的风机的风力为预设风力;
    当所述炉头处于所述无水烹饪状态时,确定所述烟机的风机的风力为与所述锅具的当前温度正相关的风力。
  19. 如权利要求1所述的控制方法,其特征在于,判断所述灶具的烹饪状态,包括:
    利用图像传感器采集所述灶具的图像;
    根据所述灶具的图像确定所述灶具的烟雾状态和所述灶具的烹饪状态;
    根据所述灶具的烹饪状态控制所述烟机的风机的风力,包括:
    根据所述灶具的烟雾状态和所述灶具的烹饪状态控制所述烟机的风机的风力。
  20. 如权利要求19所述的控制方法,其特征在于,根据所述灶具的图像确定所述灶具的烟雾状态,包括:
    将所述灶具的图像与图像数据库中的多个预设图像进行对比,所述预设图像对应有一个烟雾状态;
    将与所述灶具的图像相匹配的所述预设图像的烟雾状态作为所述灶具的烟雾状态;
    或,处理所述灶具的图像以得到所述灶具的图像所对应的图像特征;
    根据所述灶具的图像所对应的图像特征与图像特征和烟雾状态的对应关系得到所述灶具的烟雾状态。
  21. 如权利要求19所述的控制方法,其特征在于,根据所述灶具的图像确定所述灶具的烹饪状态,包括:
    将所述灶具的图像与图像数据库中的多个预设图像进行对比,所述预设图像对应一个烹饪状态;
    将与所述灶具的图像相匹配的所述预设图像对应的烹饪状态作为所述灶具的烹饪状态;
    或,处理所述灶具的图像以得到所述灶具的图像所对应的图像特征,所述图像特征对应一个烹饪状态;
    根据所述灶具的图像所对应的图像特征与图像特征和烹饪状态的对应关系得到所述灶具的烹饪状态。
  22. 一种烟灶联动系统,其特征在于,所述烟灶联动系统包括灶具、烟机和控制装置,所述控制装 置连接所述灶具和所述烟机,所述控制装置包括判断模块和处理模块,所述判断模块用于判断所述灶具的烹饪状态,所述处理模块用于根据所述灶具的烹饪状态控制所述烟机的风机的风力。
  23. 如权利要求22所述的烟灶联动系统,其特征在于,所述控制装置包括采集模块,所述采集模块用于采集锅具的温度;所述判断模块用于根据所述锅具的温度判断所述灶具的烹饪状态。
  24. 如权利要求23所述的烟灶联动系统,其特征在于,所述灶具的烹饪状态包括有水烹饪状态和无水烹饪状态,当所述灶具处于所述有水烹饪状态时,所述处理模块用于控制所述烟机的风机以预设风力运行;
    当所述灶具处于所述无水烹饪状态时,所述处理模块用于控制所述烟机的风机以与所述锅具的当前温度正相关的风力运行。
  25. 如权利要求23所述的烟灶联动系统,其特征在于,所述判断模块用于判断所述锅具是否处于离锅状态,若是,所述处理模块用于控制所述烟机的风机以第一预设风力运行;
    若否,所述判断模块用于根据所述锅具的温度判断所述灶具的烹饪状态。
  26. 如权利要求25所述的烟灶联动系统,其特征在于,所述控制装置包括确定模块,在所述锅具离开所述灶具的计时时长大于预设离锅时长时,所述确定模块用于确定所述锅具处于所述离锅状态。
  27. 如权利要求22所述的烟灶联动系统,其特征在于,所述控制装置包括获取模块,所述获取模块用于获取所述灶具的烹饪状态指令,所述处理模块用于根据所述灶具的烹饪状态指令确定所述灶具的烹饪状态;所述采集模块用于采集锅具的温度;所述处理模块用于根据所述烹饪状态和所述锅具的温度控制所述烟机的风机的风力。
  28. 如权利要求23所述的烟灶联动系统,其特征在于,所述烹饪状态包括有水烹饪状态和无水烹饪状态,当所述灶具处于所述有水烹饪状态时,所述处理模块用于控制所述烟机的风机以与所述锅具的当前温度的第一正相关的风力运行;
    当所述灶具处于所述无水烹饪状态时,所述处理模块用于控制所述烟机的风机以与所述锅具的当前温度的第二正相关的风力运行。
  29. 如权利要求22所述的烟灶联动系统,其特征在于,所述灶具包括多个炉头,所述控制装置包括采集模块,所述采集模块用于采集每个所述炉头所对应的锅具的温度;所述判断模块用于根据所述锅具的温度判断每个所述炉头的烹饪状态;
    所述处理模块用于根据每个所述炉头的烹饪状态确定与每个所述炉头所对应的所述烟机的风机的风力,将多个所述烟机的风机的风力中的最大风力作为所述烟机的运行风力,及控制所述烟机以所述运行风力运行。
  30. 如权利要求22所述的烟灶联动系统,其特征在于,所述控制装置包括采集模块,所述采集模块用于利用图像传感器采集所述灶具的图像;所述判断模块用于根据所述灶具的图像确定所述灶具的烟雾状态和所述灶具的烹饪状态;所述处理模块用于根据所述灶具的烟雾状态和所述灶具的烹饪状态控制所述烟机的风机的风力。
  31. 一种烟灶联动系统,用于灶具和烟机,其特征在于,所述烟灶联动系统包括处理器和存储器,所述存储器存储有一个或多个程序,所述一个或多个程序被配置成由所述处理器执行,所述程序包括用于执行权利要求1-21任一项所述的控制方法。
PCT/CN2018/109358 2018-09-04 2018-10-08 烟灶联动的控制方法及烟灶联动系统 WO2020047938A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201811028216.3A CN109237547B (zh) 2018-09-04 2018-09-04 烟灶联动的控制方法和烟灶联动系统
CN201811028209.3 2018-09-04
CN201811026546.9 2018-09-04
CN201811028207.4A CN109237539B (zh) 2018-09-04 2018-09-04 烟灶联动的控制方法和烟灶联动系统
CN201811028207.4 2018-09-04
CN201811028209.3A CN109237541B (zh) 2018-09-04 2018-09-04 烟灶联动的控制方法和烟灶联动系统
CN201811028210.6A CN109237542A (zh) 2018-09-04 2018-09-04 烟灶联动的控制方法和烟灶联动系统
CN201811028216.3 2018-09-04
CN201811026546.9A CN109237529B (zh) 2018-09-04 2018-09-04 烟灶联动的控制方法和烟灶联动系统
CN201811028210.6 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020047938A1 true WO2020047938A1 (zh) 2020-03-12

Family

ID=69722948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109358 WO2020047938A1 (zh) 2018-09-04 2018-10-08 烟灶联动的控制方法及烟灶联动系统

Country Status (1)

Country Link
WO (1) WO2020047938A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105015A (en) * 1977-03-09 1978-08-08 William C. Isom Exhaust hood energy saving device
CN102121906A (zh) * 2011-01-31 2011-07-13 无锡中星微电子有限公司 烟雾检测系统、油烟机智能控制系统及油烟机智能控制方法
CN203771504U (zh) * 2014-03-06 2014-08-13 宁波方太厨具有限公司 油烟机烟雾检测装置
CN104251506A (zh) * 2014-09-25 2014-12-31 九阳股份有限公司 智能呼吸油烟机的吸烟控制方法及油烟机
CN105333477A (zh) * 2015-11-18 2016-02-17 广东美的厨房电器制造有限公司 烟灶联动控制系统和方法
CN105864836A (zh) * 2016-05-27 2016-08-17 广东万家乐燃气具有限公司 一种利用灶具传感器对吸油烟机进行控制的系统
CN107314404A (zh) * 2017-07-26 2017-11-03 华帝股份有限公司 一种温度控制的方法及装置
CN107339248A (zh) * 2016-04-30 2017-11-10 华帝股份有限公司 一种高可靠性的油烟检测方法
CN107620991A (zh) * 2017-08-10 2018-01-23 深圳益创信息科技有限公司 一种智能抽油烟方法及抽油烟机
CN107687660A (zh) * 2017-10-19 2018-02-13 广东超人节能厨卫电器有限公司 燃气灶具与无按键式烟机的联动安防系统
CN107781879A (zh) * 2017-11-07 2018-03-09 佛山市云米电器科技有限公司 油烟处理装置与方法
CN108386883A (zh) * 2018-03-07 2018-08-10 杭州老板电器股份有限公司 烟机与烹饪厨具的联动控制方法、装置及系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105015A (en) * 1977-03-09 1978-08-08 William C. Isom Exhaust hood energy saving device
CN102121906A (zh) * 2011-01-31 2011-07-13 无锡中星微电子有限公司 烟雾检测系统、油烟机智能控制系统及油烟机智能控制方法
CN203771504U (zh) * 2014-03-06 2014-08-13 宁波方太厨具有限公司 油烟机烟雾检测装置
CN104251506A (zh) * 2014-09-25 2014-12-31 九阳股份有限公司 智能呼吸油烟机的吸烟控制方法及油烟机
CN105333477A (zh) * 2015-11-18 2016-02-17 广东美的厨房电器制造有限公司 烟灶联动控制系统和方法
CN107339248A (zh) * 2016-04-30 2017-11-10 华帝股份有限公司 一种高可靠性的油烟检测方法
CN105864836A (zh) * 2016-05-27 2016-08-17 广东万家乐燃气具有限公司 一种利用灶具传感器对吸油烟机进行控制的系统
CN107314404A (zh) * 2017-07-26 2017-11-03 华帝股份有限公司 一种温度控制的方法及装置
CN107620991A (zh) * 2017-08-10 2018-01-23 深圳益创信息科技有限公司 一种智能抽油烟方法及抽油烟机
CN107687660A (zh) * 2017-10-19 2018-02-13 广东超人节能厨卫电器有限公司 燃气灶具与无按键式烟机的联动安防系统
CN107781879A (zh) * 2017-11-07 2018-03-09 佛山市云米电器科技有限公司 油烟处理装置与方法
CN108386883A (zh) * 2018-03-07 2018-08-10 杭州老板电器股份有限公司 烟机与烹饪厨具的联动控制方法、装置及系统

Similar Documents

Publication Publication Date Title
CN109237541B (zh) 烟灶联动的控制方法和烟灶联动系统
CN109237529B (zh) 烟灶联动的控制方法和烟灶联动系统
CN109237539B (zh) 烟灶联动的控制方法和烟灶联动系统
CN109237540B (zh) 防干烧的控制方法和防干烧系统
CN203940496U (zh) 一种带红外传感测温的吸油烟机
CN109152497A (zh) 空气炸锅
CN105299716A (zh) 抽油烟机及其烟汽检测方法和风速调节方法
JP6106847B2 (ja) レンジフード
CN203549972U (zh) 一种吸油烟机智能控制系统
CN203848364U (zh) 一种带多个温度探头的吸油烟机
CN112050270B (zh) 一种吸油烟机的控制方法
CN109237534B (zh) 烟灶联动的控制方法和烟灶联动系统
CN109237531B (zh) 防干烧的控制方法和防干烧系统
CN105222196A (zh) 一种自动控制的吸油烟机及其控制方法
CN109237547B (zh) 烟灶联动的控制方法和烟灶联动系统
TWM570400U (zh) Range hood with thermal image detection
JP5828121B2 (ja) レンジフード
CN203869130U (zh) 一种内置式温度探头的吸油烟机
CN106510491B (zh) 采用热风煎烤食物的食品加工机的煎烤方法及控制装置
WO2020047938A1 (zh) 烟灶联动的控制方法及烟灶联动系统
CN110567007B (zh) 一种半桥电磁炉锅具检测方法、装置及半桥电磁炉
JP2012032102A (ja) レンジフード
CN109237542A (zh) 烟灶联动的控制方法和烟灶联动系统
CN110848774A (zh) 一种灶具和空气调节设备联动方法及系统
WO2020047934A1 (zh) 防干烧的控制方法及防干烧系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18932374

Country of ref document: EP

Kind code of ref document: A1