WO2020047786A1 - 一种具有交错式微结构的柔性压力传感器及其制造方法 - Google Patents

一种具有交错式微结构的柔性压力传感器及其制造方法 Download PDF

Info

Publication number
WO2020047786A1
WO2020047786A1 PCT/CN2018/104236 CN2018104236W WO2020047786A1 WO 2020047786 A1 WO2020047786 A1 WO 2020047786A1 CN 2018104236 W CN2018104236 W CN 2018104236W WO 2020047786 A1 WO2020047786 A1 WO 2020047786A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
carbon nanotube
microstructure
nanotube film
flexible
Prior art date
Application number
PCT/CN2018/104236
Other languages
English (en)
French (fr)
Inventor
李晖
谢振文
王磊
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2018/104236 priority Critical patent/WO2020047786A1/zh
Publication of WO2020047786A1 publication Critical patent/WO2020047786A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Definitions

  • the invention belongs to the technical field of sensor manufacturing and packaging, and particularly relates to a flexible pressure sensor with a staggered microstructure and a manufacturing method thereof.
  • the diameter of the internal cylinder of this sensor is between 6um and 65um, and the sensitivity increases with the diameter of the cylinder, ranging from 0.03 to 17 / kPa. When the diameter of the cylinder is 20um, the pressure of 2Pa can be measured.
  • the PDMS solution was spin-coated on microstructured and non-microstructured glass, respectively, and heated at 65 ° C for two hours.
  • the cured PDMS film was peeled from the glass, and its surface was made hydrophilic by oxygen plasma treatment.
  • the PDMS film was placed on a hot plate and heated to 100 ° C.
  • the silver nanowire solution was sprayed on the thin film with microstructure and smooth using a spray gun, and then annealed at 120 ° C for 4 hours. Then, a dielectric layer is sandwiched between the two films with silver nanowires by a lamination method, and the wires are led out from both sides to complete the production of the sensor.
  • the sensor produced by this method has a sensitivity of 1.1 / kPa and a response time of less than 1 second, and can measure a pressure of about 1Pa.
  • the PDMS film was further immersed in a dimethylformamide solution for 12 hours, so that the polystyrene beads were completely dissolved away, thereby preparing a PDMS film having a porous structure.
  • the PDMS film with a porous structure was sandwiched between two 1cmx1.5cm ITO / PET films to complete the production of the sensor.
  • the highest sensitivity of the sensor is 0.63 / kPa, the lowest can measure the pressure of 2.42Pa, and has high stability.
  • SWCNTs single-walled carbon nanotube
  • methylpyrrolidone concentrate it to 0.25 mg / ml, and then centrifuge at 8000 rpm for 30 minutes to remove debris.
  • a photo-etching method was used to fabricate a silicon mold with pyramidal grooves.
  • the PDMS solution was applied to the mold and treated at 150 ° C for 15 minutes. After the PDMS was cured, it was separated from the mold.
  • In order to spray SWCNTs onto the PDMS film first heat the PDMS film to 180 ° C, and place the spray gun 10cm above the film. By controlling the number of sprays, the conductivity of the conductive layer is controlled.
  • the sensor made in this way can measure a pressure of 7.3Pa, is very stable, and its transparency is very high.
  • the flexible pressure sensor based on a cylindrical structure array has a smaller linear interval, which limits its wide application range.
  • the flexible sensor using sprayed gold nanowires combined with a dielectric material has a very low sensitivity and increased response time when a pressure of more than 500 Pa is applied, which is only suitable for measuring small pressures.
  • the flexible sensor based on the porous structure has good stability and high transparency, its sensitivity is relatively low, only 0.63 / kPa, which is doomed to be not widely used.
  • the flexible pressure sensor in the prior art has insufficient measurement range, sensitivity, and response time, and the measurement effect is not good.
  • the present invention aims to solve at least one of the above technical problems, and provides a flexible pressure sensor with a staggered microstructure and a manufacturing method thereof.
  • the measurement effect of the flexible pressure sensor is good.
  • a flexible pressure sensor with a staggered microstructure comprising a first flexible substrate, a carbon nanotube film, and a second flexible substrate, the carbon nanotube film is disposed on the first flexible substrate and the substrate. Between the second flexible substrates, the carbon nanotube film is connected with an extraction electrode;
  • a first microstructure is provided on one side of the first flexible substrate, and the first microstructure includes a plurality of first protrusions that are convex in a spherical crown or convex in a spherical band, and the carbon nanotube film.
  • One side of the first flexible substrate having the first microstructure is attached, and one side of the second flexible substrate is provided with a second microstructure.
  • the second microstructure includes a plurality of spherical crowns or A second protruding portion having a convex shape of a ball band, the first protruding portion is offset from the second protruding portion, and the second protruding portion is in contact with the carbon nanotube film.
  • the first convex portion is semi-spherical, and / or the second convex portion is semi-spherical.
  • the first flexible substrate and the second flexible substrate are made of polydimethylsiloxane.
  • a gap is formed between the top of the second raised portion and the carbon nanotube film.
  • the top of the first raised portion faces the plane between two adjacent second raised portions; the top of the second raised portion faces the two adjacent first Plane between raised parts.
  • An embodiment of the present invention also provides a method for manufacturing a flexible pressure sensor, which is used to manufacture the above-mentioned flexible pressure sensor with a staggered microstructure, including the following steps:
  • the side of the second flexible substrate having the second microstructure faces the side of the first flexible substrate to which the carbon nanotube film is affixed, and the first convex portion and the second microstructure in the first microstructure are made.
  • the second convex portion in the substrate is misaligned, and the first flexible substrate and the second flexible substrate are adhered, so that the second convex portion is in contact with the carbon nanotube film;
  • An electrode is drawn on both sides of the carbon nanotube film.
  • the step of preparing the first flexible substrate includes:
  • a silicon wafer mold having a plurality of hemispherical groove structures is produced by using photo-etching technology
  • the first flexible substrate is released from the silicon wafer mold.
  • preparing the carbon nanotube film includes the following steps:
  • the carbon nanotube film removed by air drying in deionized water.
  • the step of preparing the second flexible substrate includes:
  • a silicon wafer mold having a plurality of hemispherical groove structures is produced by using photo-etching technology
  • the polydimethylsiloxane and the cross-linking agent are mixed and stirred at a weight ratio of 10: 1 to obtain a mixed solution, and then the mixed solution is spin-coated on the silicon wafer mold and heated and cooled to place the silicon The semi-cured PDMS film on the wafer mold is separated to obtain a second flexible substrate.
  • the invention provides a flexible pressure sensor with a staggered microstructure and a manufacturing method thereof.
  • the staggered hemispherical internal structure is combined with the high conductivity of carbon nanotubes to greatly improve the linear measurement range and sensitivity of the sensor.
  • the production method makes the production of flexible sensors more stable and reliable, reduces the production cost, improves the production efficiency, high transparency and high sensitivity and other characteristics make it more widely used, and improves various performance parameters of flexible pressure sensors , Such as: measurement range, sensitivity and response time, etc., can fully fit three-dimensional complex static / dynamic surfaces and complete contact pressure measurement, and has high stability, precision, accuracy and reliability, short response time, and applicable Wide range and long service life.
  • FIG. 1 is a schematic partial cross-sectional view of a flexible pressure sensor with a staggered microstructure according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a silicon wafer mold in a method for manufacturing a flexible pressure sensor according to an embodiment of the present invention
  • FIG. 3 is a schematic plan view of a silicon wafer mold in a method for manufacturing a flexible pressure sensor according to an embodiment of the present invention
  • FIG. 4 is a schematic reference flowchart of a method for manufacturing a flexible pressure sensor according to an embodiment of the present invention.
  • setting and “connection” should be understood in a broad sense.
  • the terms “setting” and “connecting” may be directly set and connected, and may also be set and connected indirectly through a centered component and a centered structure.
  • a flexible pressure sensor with a staggered microstructure includes a first flexible substrate 10, a second flexible substrate 20 and a carbon nanotube film 30, and the first flexible substrate 10 and the second
  • the flexible substrate 20 can be made of the same material and has good adhesion and packaging performance.
  • the first flexible substrate 10 and the second flexible substrate 20 are both highly transparent, flexible and stretchable, and biocompatible.
  • Polydimethylsiloxane ie: Polydimethylsiloxane (Abbreviated as PDMS) as a flexible base material.
  • the carbon nanotube film 30 is disposed between the first flexible substrate 10 and the second flexible substrate 20.
  • the carbon nanotube film 30 is connected to an extraction electrode (not shown in the figure), and the electrodes may be paired.
  • the first and second flexible substrates 10 and 20 respectively encapsulate the carbon nanotube film 30 between the first and second flexible substrates 10 and 20.
  • Carbon nanotubes also known as bucky tubes, are one-dimensional quantum materials with a radial dimension of the order of nanometers and an axial dimension of the order of micrometers. Both ends of the tube are sealed or basically sealed.
  • Carbon nanotubes are mainly composed of carbon atoms arranged in hexagons. Keep a fixed distance between layers. Carbon nanotubes have good mechanical properties.
  • the tensile strength of CNTs reaches 50 to 200 GPa, which is 100 times that of steel, but the density is only 1/6 of steel, at least an order of magnitude higher than conventional graphite fibers. Its elastic modulus can reach 1TPa. , Equivalent to the elastic modulus of diamond, about 5 times that of steel. For a single-walled carbon nanotube with an ideal structure, its tensile strength is about 800 GPa.
  • a first microstructure is provided on one side of the first flexible substrate 10, and the first microstructure includes a plurality of first protrusions 11 having a spherical crown shape or a spherical band shape, that is, the first protrusions.
  • At least a part of the outer surface of the rising portion 11 is a spherical crown shape or a spherical band shape.
  • the carbon nanotube film 30 is attached to a side of the first flexible substrate 10 having the first microstructure, and a second microstructure is disposed on one side of the second flexible substrate 20.
  • the second microstructure includes The plurality of second protrusions 21 are convex in the shape of a spherical crown or convex in the shape of a spherical belt, that is, at least a part of the outer surface of the second convex portion 21 is in the shape of a spherical crown or a spherical belt.
  • Each of the first convex portions 11 and the second convex portions 21 may be in an array shape, for example, an array along the length and width directions or an array along the radial direction and the circumferential direction.
  • the external shape of the sensor may be a polygon, a circle, a special shape, or the like.
  • the carbon nanotube film 30 is entirely adhered to the side of the first flexible substrate 10 having the first protrusion 11, and the carbon nanotube film 30 is adhered to the side of the first flexible substrate 10 having the first protrusion 11, that is, carbon nano
  • the tube film 30 is completely adhered to the outer surface of the first convex portion 11, and the carbon nanotube film 30 is adhered to the surface of the first flexible substrate 10 at a region corresponding to the non-first convex portion 11.
  • the carbon nanotube film 30 includes a first bonding portion 31 bonded to the first protruding portion 11 and a second bonding portion 32 bonded to a plane of the first flexible substrate 10.
  • the first bonding portion 31 has a spherical crown shape or a ball band shape
  • the second bonding portion 32 has a flat shape.
  • the first protruding portion 11 is offset from the second protruding portion 21, and a side surface of the second protruding portion 21 is in contact with the carbon nanotube film 30.
  • the first protrusions 11 are offset from the second protrusions 21, that is, the central axis corresponding to the first protrusions 11 is directed to a region of the second flexible substrate 20 that is not the second protrusions 21.
  • the corresponding central axis of the second raised portion 21 is directed to a region of the first flexible substrate 10 that is not the first raised portion 11.
  • the side surface of the second convex portion 21 may be in tangential contact with the first bonding portion 31 (spherical surface or spherical belt shape) of the carbon nanotube film 30.
  • the hemispherical first protrusion 11 and the second protrusion 21 are easy to form and have a large surface area.
  • the hemispherical microstructure array deforms, changes the contact area of the inner film (carbon nanotube film 30), the resistance of the sensor changes, and the resistance of the sensor has a linear relationship with the applied pressure.
  • the change in resistance can be measured to determine the applied pressure.
  • the first protrusions 11 and the second protrusions 21 are staggered and connected to the carbon nanotube film 30. Whatever the direction and the smaller the amount of deformation can be, The contact area of the carbon nanotube film 30 changes, thereby realizing the pressure measurement function, which has the advantages of wide measurement range, high sensitivity, and short response time, and has a good measurement effect.
  • the shapes and sizes of the first convex portion 11 and the second convex portion 21 may be the same.
  • the shapes and sizes of the first protrusions 11 and the second protrusions 21 may also be different, and the shape and size of the carbon nanotube film 30 and the second protrusions 21 after being adhered to the first protrusions 11 are covered. the same.
  • the first convex portion 11 is hemispherical (that is, a sphere with a tangent plane as a diameter plane), and / or the second convex portion 21 is hemispherical (that is, a sphere with a diametric plane as a cut plane) lack).
  • the shapes of the first convex portion 11 and the second convex portion 21 may also have other structures, such as a cylindrical shape at the lower end and a hemispherical (spherical crown) shape at the upper end.
  • the first raised portion 11 and the second raised portion 21 are made higher.
  • the first flexible substrate 10 and the second flexible substrate 20 are made of polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the top of the second convex portion 21 and the carbon nanotube film 30 (the carbon nanotube film 30 in the axial direction of the second convex portion 21 in the axial direction, that is, the carbon nanotube film 30 is attached to the non-first convex portion).
  • the second bonding portion 32) in the region of the rising portion 11 has a gap, which is helpful to further improve the measurement accuracy.
  • the top of the first raised portion 11 faces the plane between two adjacent second raised portions 21; the top of the second raised portion 21 faces two adjacent The plane between the first protrusions 11, that is, except for the first protrusions 11 and the second protrusions 21 in the edge region, the adjacent first protrusions 11 are relative to the corresponding second protrusions.
  • the central axis of 21 is symmetrical, and the adjacent second convex portions 21 are symmetrical with respect to the central axis of the corresponding first convex portion 11.
  • the electrodes on both sides of the flexible pressure sensor may be connected to a voltage measurement module, and the voltage measurement module may be connected to a power module.
  • the flexible pressure sensor with staggered microstructure adopts a staggered hemispherical internal structure, combined with the high conductivity of carbon nanotubes, greatly improving the linear measurement range and sensitivity of the sensor, and simple fabrication.
  • the method makes the production of flexible sensors more stable and reliable, reduces the production cost, improves the production efficiency, high transparency and high sensitivity and other characteristics make it more widely used, and improves various performance parameters of flexible pressure sensors, such as : Measurement range, sensitivity and response time, etc., can fully meet the 3D complex static / dynamic surface and complete the measurement of contact pressure, and has high stability, precision, accuracy and reliability, short response time and wide application range. And long service life.
  • the invention also provides a method for manufacturing a flexible pressure sensor, which is used to manufacture the above-mentioned flexible pressure sensor with staggered microstructure. Referring to FIGS. 1 to 4, the method includes the following steps:
  • the side of the second flexible substrate 20 having the second microstructure faces the side of the first flexible substrate 10 on which the carbon nanotube film 30 is affixed, and the first protrusions 11 and The second protrusions 21 in the second microstructure are misaligned, and the first flexible substrate 10 and the second flexible substrate 20 are bonded together, so that the second protrusions 21 are in phase with the carbon nanotube film 30. contact;
  • the electrodes are drawn on two sides of the carbon nanotube film 30.
  • the first convex portion 11 and the second convex portion 21 may have a hemispherical shape.
  • the step of preparing the first flexible substrate 10 includes:
  • a silicon wafer mold 40 having a plurality of hemispherical groove structures 41 is manufactured by using a photo-etching technique
  • the mixed solution is cooled and solidified to form the first flexible substrate 10;
  • the first flexible substrate 10 is released from the silicon wafer mold 40.
  • preparing the carbon nanotube film 30 includes the following steps:
  • the carbon nanotube film 30 removed from the deionized water is air-dried.
  • the step of preparing the second flexible substrate 20 includes:
  • a silicon wafer mold having a plurality of hemispherical groove structures is produced by using photo-etching technology
  • the polydimethylsiloxane and the cross-linking agent are mixed and stirred at a weight ratio of 10: 1 to obtain a mixed solution, and then the mixed solution is spin-coated on the silicon wafer mold and heated and cooled to place the silicon The semi-cured PDMS film on the wafer mold is separated to obtain a second flexible substrate 20.
  • the first step a silicon wafer mold having a hemispherical groove structure is fabricated by using a photo-etching technique.
  • Second step Mix polydimethylsiloxane (PDMS) with a cross-linking agent at a weight ratio of 10: 1 and stir for 15 minutes to obtain a mixed solution, and then spin-mix the mixed solution with silicon having a hemispherical groove structure Wafer mold and heated at 90 ° C for 50 minutes.
  • PDMS polydimethylsiloxane
  • Step 3 The mixed solution obtained above is cooled at room temperature, and after curing, the PDMS film having a hemispherical microstructure is separated from the silicon wafer to obtain a first flexible substrate 10.
  • Step 4 Mix the hydrogen chloride and hydrogen peroxide solution at a ratio of 3: 1 (volume ratio), add 3 to 8 grams (for example, 5 grams) of carbon nanotube powder to the mixed solution, and then place at 50 ° C to 75 ° C ( (Eg 60 ° C) for 1 to 6 (eg 4 hours).
  • the fifth part adding the treated carbon nanotubes to the dimethylformamide solution for vacuum leakage, and finally obtaining a carbon nanotube film 30 attached to the leakage film.
  • Step 6 Insert the leakage membrane obliquely into the deionized water at a 45-degree inclination angle, and separate the next carbon nanotube film with a thickness of 10 nm to 70 nm (for example, 50 nm) on a 200-300 micron-thick carbon nanotube film .
  • Step 7 Air-dry the carbon nanotube film removed from the deionized water with a stream of nitrogen.
  • Step 8 Laminate the carbon nanotube film with a PDMS film (first flexible substrate 10) having a hemispherical microstructure, and heat at 200-210 ° C for 20 to 60 minutes (for example, 35 minutes).
  • Step 9 Apply the mixed solution (PDMS solution) prepared in Step 2 on a mold (silicon wafer mold) with a hemispherical groove structure, heat it at 90 ° C for half an hour, and then set the solution temperature to After cooling at room temperature, the semi-cured PDMS film on the silicon wafer is separated to obtain a semi-cured second flexible substrate 20.
  • a mold silicon wafer mold
  • Step 10 The first flexible substrate 10 with the carbon nanotube film is adhered to the semi-cured second flexible substrate 20, and heated at 90 ° C. for 30 minutes to perform tight adhesion (see FIG. 1).
  • Step 11 Lead out electrodes on both sides of the carbon nano-film (carbon nanotube film) in the middle layer to complete the production of the flexible pressure sensor.
  • a method for manufacturing a flexible pressure sensor includes firstly preparing a silicon wafer mold having a hemispherical groove structure, and pouring a PDMS solution into the silicon wafer mold to produce a PDMS substrate having a hemispherical microstructure. Then, a carbon nanotube film is prepared, and the film with carbon nanotubes and a PDMS film with a hemispherical structure are bonded. A semi-cured PDMS film with a semi-cured hemispherical structure is produced in the same way. It is closely adhered to the PDMS film with a carbon nanotube film, and electrodes are drawn on both sides of the carbon nanotube film to complete the preparation process of the flexible sensor.
  • the manufactured flexible sensor solves the problems of low sensitivity, small measurement range, large hysteresis, and susceptibility to interference from external environmental noise in the prior art of the flexible sensor.
  • PDMS polydimethylsiloxane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明适用于传感器制作和封装技术领域,公开了一种具有交错式微结构的柔性压力传感器及其制造方法。柔性压力传感器包括第一、第二柔性基底,碳纳米管薄膜设置于第一、第二柔性基底之间;第一、第二柔性基底的一面分别设置有多个呈球冠凸起状或呈球带凸起状且错位的第一、第二凸起部,碳纳米管薄膜贴覆于第一柔性基底具有第一凸起部的一面。制造方法用于制造上述柔性压力传感器。本发明所提供的一种具有交错式微结构的柔性压力传感器及其制造方法,采用交错式的半球形内部结构,结合碳纳米管的高导电性,提高了传感器的线性测量范围以及灵敏度,稳定性、精度、准确度和可靠性高,且响应时间短。

Description

一种具有交错式微结构的柔性压力传感器及其制造方法 技术领域
本发明属于传感器制作和封装技术领域,尤其涉及一种具有交错式微结构的柔性压力传感器及其制造方法。
背景技术
最近几年,随着经济和社会的快速发展,人们生活品质大大提高,促进了人们对健康问题的关注,人们期待将柔性电子传感技术用于可穿戴式电子皮肤并期望其可以像人的皮肤一样感受外界的温度、压力、形变或纹理等复杂信号,并且通过电子皮肤将外界刺激转化为可传输的电信号来输出甚至传达大脑的命令。传统的传感器大多基于金属和半导体材料, 其便携性、柔韧性和可穿戴特性差。由于柔性传感器生物相容性好,同时兼具可穿戴性、实时监测、非侵入式等一系列优点,柔性传感器的开发逐渐成为研究热点。研究人员采用多种不同的手段提高了柔性压力传感器的性能指标,如灵敏度、量程、重复性以及一致性等等,进一步扩展了柔性压力传感器的应用范围。
近年来的制作柔性压力传感器的工艺主要有以下几种:
(1)将PDMS与交联剂混合,并将其涂覆在干净的硅片上,在90℃下退火一个小时,静置一段时间后,将固化的PDMS薄膜从硅片上剥离下来,并裁剪成1.5cmx1.5cm大小,在进行亲水性处理之后,采用化学沉淀法在PDMS基片表面上生成聚吡咯(PPy)膜,并通过使用真空蒸汽法使得PDMS基底与PPy膜之间的很好的粘附在一起。采用光蚀刻技术制作具有圆柱形阵列的硅薄片,并用磁控溅射的方法在圆柱阵列上镀一层100nm的金薄膜。最后将硅薄片与PDMS薄膜紧密贴合在一起,并在PPy膜的两端引出导线,完成传感器的制备。此传感器内部圆柱直径在6um到65um之间,灵敏度随着圆柱直径增大而增大,范围在0.03到17/kPa之间。在圆柱直径为20um时能测量2Pa的压力。
(2)分别将0.3mol/L的聚乙烯吡咯烷酮(PVP),2mmol/L的NaCl溶液以及0.1mol/L的AgNO3溶液加入到乙二醇溶液中,并以200rpm的速度搅拌混合。之后将溶液涂覆在带有聚四氟乙烯涂层的不锈钢高压锅中,加热到160℃并保持12个小时以确保银纳米线的生成。之后再室温下冷却一个小时,依次将银纳米线放入丙酮,乙醇以及去离子水溶液中进行离心处理。将得到的银纳米线加入到正丁基乙醇中。将PDMS溶液分别旋涂在有微结构和无微结构的玻璃上,放在65℃下加热两个小时。将固化的PDMS薄膜从玻璃上剥离,采用氧等离子处理使其表面具有亲水性。将PDMS薄膜放在加热板上加热到100℃,使用喷枪将银纳米线溶液分别喷涂在带有微结构和光滑的薄膜上,滞后将其置于120℃下退火4小时。然后采用层压的方法将两层带有银纳米线的薄膜夹着一层介电层,并从两侧引出导线完成传感器的制作。此方法制作的传感器具有1.1/kPa的灵敏度以及小于1秒的响应时间,可以测量1Pa左右的压力。
(3)用丙酮、异丙醇以及去离子水清洗1.2x1.2cm的硅片,将AZ1512光刻胶旋涂在清洗后硅片上,之后用氧等离子处理样品。将聚苯乙烯乳胶微球溶液滴涂在硅片上,堆叠出带有面心立方结构的聚苯乙烯珠子层。在聚苯乙烯珠子层溶液完全蒸发之后,将PDMS溶液旋涂在硅片上,然后在80℃下加热2.5小时。将样品浸入丙酮溶液中除去光刻胶层,使得PDMS薄膜从基底上脱离。再把PDMS薄膜浸在二甲基甲酰胺溶液中12小时,使得聚苯乙烯珠子完全溶解掉,从而制得具有多孔结构的PDMS薄膜。最后将带有多孔结构的PDMS薄膜夹在两层1cmx1.5cm的ITO/PET薄膜之间,完成传感器的制作。传感器的灵敏度最高可达0.63/kPa,最低可以测量2.42Pa的压力,并具有很高的稳定性。
(4)制作单壁碳纳米管(SWCNTs)溶液,将SWCNTs放进甲基吡咯烷酮中,浓缩到0.25mg/ml,然后以8000rpm速度离心30分钟,移除杂物。采用光蚀刻的方法制作具有金字塔凹槽的硅模具,将PDMS溶液涂抹在模具上,在150℃下处理15分钟,在PDMS固化后,将其与模具分离。为了将SWCNTs喷涂到PDMS薄膜上,先将PDMS薄膜加热到180℃,喷枪置于薄膜上方10cm,通过控制喷涂次数,控制其导电层的导电系数。最后将PET/ITO薄膜与PDMS薄膜紧紧贴合在一起,并在两块薄膜的两端引出导线,完成传感器的制作。这种方式制作的传感器可以测量7.3Pa的压力,十分的稳定,并且其透明度十分高。
尽管上述的柔性传感器可以实现对外界压力的测量,可是还存在一些缺点。
1.    基于圆柱形结构阵列的柔性压力传感器随着圆柱直径的增大,其测量的线性区间越小,限制了其应用大的范围。
2.    采用喷涂金纳米线方式结合介电材料的柔性传感器的在施加大于500Pa的压力时,其灵敏度变得非常低并响应时间也在增加,只适合测量较小的压力。
3.    基于多孔结构的柔性传感器虽然有较好的稳定性及较高的透明度,但是其灵敏度比较低,只有0.63/kPa,注定其应用不广。
4.    基于喷涂单壁碳纳米管的柔性压力传感器,喷涂过程较难控制,容易出现碳纳米管分布不均等现象。
   综上,现有技术中的柔性压力传感器其测量范围、灵敏度和响应时间具有不足,测量效果欠佳。
技术问题
本发明旨在至少解决上述技术问题之一,提供了一种具有交错式微结构的柔性压力传感器及其制造方法,柔性压力传感器的测量效果佳。
技术解决方案
本发明的技术方案是:一种具有交错式微结构的柔性压力传感器,包括第一柔性基底、碳纳米管薄膜和第二柔性基底,所述碳纳米管薄膜设置于所述第一柔性基底和所述第二柔性基底之间,所述碳纳米管薄膜连接有引出电极;
所述第一柔性基底的一面设置有第一微结构,所述第一微结构包括多个呈球冠凸起状或呈球带凸起状的第一凸起部,所述碳纳米管薄膜贴覆于所述第一柔性基底具有所述第一微结构的一面,所述第二柔性基底的一面设置有第二微结构,所述第二微结构包括多个呈球冠凸起状或呈球带凸起状的第二凸起部,所述第一凸起部与所述第二凸起部错位设置,且所述第二凸起部与所述碳纳米管薄膜相接触。
可选地,所述第一凸起部呈半球状,且/或,所述第二凸起部呈半球状。
可选地,可选地,所述第一柔性基底和第二柔性基底采用聚二甲基硅氧烷制成。
可选地,贴覆于所述第一凸起部顶部处的所述碳纳米管薄膜与所述第二柔性基底的表面具有间隙。
可选地,所述第二凸起部的顶部与所述碳纳米管薄膜具有间隙。
可选地,所述第一凸起部的顶部朝向于两个相邻所述第二凸起部之间的平面;所述第二凸起部的顶部朝向于两个相邻所述第一凸起部之间的平面。
本发明实施例还提供了一种柔性压力传感器的制造方法,用于制造上述的一种具有交错式微结构的柔性压力传感器,包括以下步骤:
制备一面具有第一微结构的第一柔性基底;
制备一面具有第二微结构且呈半固化状的第二柔性基底;
制备碳纳米管薄膜并将所述碳纳米管薄膜贴于所述第一柔性基底具有第一微结构的一面;
将所述第二柔性基底具有第二微结构的一面朝向所述第一柔性基底贴有所述碳纳米管薄膜的一面,且使第一微结构中的第一凸起部与第二微结构中的第二凸起部错位,并将所述第一柔性基底和第二柔性基底贴合,使所述第二凸起部与所述碳纳米管薄膜相接触;
于所述碳纳米管薄膜的两侧引出电极。
可选地,制备所述第一柔性基底的步骤包括:
采用光蚀刻技术制作出具有多个半球形凹槽结构的硅晶片模具;
以10:1的重量比将聚二甲基硅氧烷与交联剂混合且搅拌得到混合溶液,然后将所述混合溶液旋涂于所述硅晶片模具上并加热;
混合溶液冷却固化形成所述第一柔性基底;
将所述第一柔性基底自所述硅晶片模具上脱离。
可选地,制备所述碳纳米管薄膜包括以下步骤:
以3:1的比例混合氯化氢与过氧化氢溶液,在氯化氢与过氧化氢混合溶液中加入碳纳米管粉末,之后置于60℃下加热4小时,再加入到二甲基甲酰胺溶液中进行抽真空渗漏,得到一层附着在渗漏膜上的碳纳米管膜;
将渗漏膜以斜插入去离子水中,在所述碳纳米管膜上分离下一层50nm厚的碳纳米管薄膜;
风干在去离子水上取出的所述碳纳米管薄膜。
可选地,制备所述第二柔性基底的步骤包括:
采用光蚀刻技术制作出具有多个半球形凹槽结构的硅晶片模具;
以10:1的重量比将聚二甲基硅氧烷与交联剂混合且搅拌得到混合溶液,然后将所述混合溶液旋涂于所述硅晶片模具上并加热并冷却,将所述硅晶片模具上半固化状的PDMS薄膜分离得到第二柔性基底。
有益效果
本发明所提供的一种具有交错式微结构的柔性压力传感器及其制造方法,采用交错式的半球形内部结构,结合碳纳米管的高导电性,大大提高了传感器的线性测量范围以及灵敏度,简易的制作方法使得柔性传感器的制作更为稳定可靠,并且降低了制作成本,提高了制作的效率,高透明度和高灵敏度等特性使其应用范围更加广泛,且改善了柔性压力传感器的各项性能参数,如:测量范围,灵敏度和响应时间等,能够完全贴合三维复杂静/动态表面的同时完成接触压力的测量,且稳定性、精度、准确度和可靠性高,还具有响应时间短、适用范围广、使用寿命长等优点。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种具有交错式微结构的柔性压力传感器的局部剖面示意图;
图2是本发明实施例提供的一种柔性压力传感器的制造方法中硅晶片模具的剖面示意图;
图3是本发明实施例提供的一种柔性压力传感器的制造方法中硅晶片模具的平面示意图;
图4是本发明实施例提供的一种柔性压力传感器的制造方法中的流程参考示意示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,术语“设置”、“连接”应做广义理解,例如,可以是直接设置、连接,也可以通过居中元部件、居中结构间接设置、连接。
另外,本发明实施例中若有“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系的用语,其为基于附图所示的方位或位置关系或常规放置状态或使用状态,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的结构、特征、装置或元件必须具有特定的方位或位置关系、也不是必须以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在具体实施方式中所描述的各个具体技术特征和各实施例,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如通过不同的具体技术特征/实施例的组合可以形成不同的实施方式,为了避免不必要的重复,本发明中各个具体技术特征/实施例的各种可能的组合方式不再另行说明。
如图1所示,本发明实施例提供的一种具有交错式微结构的柔性压力传感器,包括第一柔性基底10、第二柔性基底20和碳纳米管薄膜30,第一柔性基底10和第二柔性基底20可以采用相同的材料制成,其粘结封装性能佳,本实施例中,第一柔性基底10和第二柔性基底20均采用具有高透明度、柔性和拉伸性好以及生物相容性好等优点的聚二甲基硅氧烷(即:Polydimethylsiloxane ,简称PDMS)作为柔性基底材料。所述碳纳米管薄膜30设置于所述第一柔性基底10和所述第二柔性基底20之间,所述碳纳米管薄膜30连接有引出电极(图中未示出),电极可以成对设置且分别设置于碳纳米管薄膜30的两侧;第一柔性基底10和所述第二柔性基底20将碳纳米管薄膜30封装于第一柔性基底10和所述第二柔性基底20之间。碳纳米管又名巴基管,是一种径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端封口或基本封口的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离。碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。所述第一柔性基底10的一面设置有第一微结构,所述第一微结构包括多个呈球冠凸起状或呈球带凸起状的第一凸起部11,即第一凸起部11外表面的至少部分呈球冠状或呈球带状。所述碳纳米管薄膜30贴覆于所述第一柔性基底10具有所述第一微结构的一面,所述第二柔性基底20的一面设置有第二微结构,所述第二微结构包括多个呈球冠凸起状或呈球带凸起状的第二凸起部21,即第二凸起部21外表面的至少部分呈球冠状或呈球带状。各第一凸起部11、第二凸起部21可呈阵列状,例如沿长宽方向的阵列或沿径向、周向的阵列等,传感器的外形可呈多边形、圆形、异形等。碳纳米管薄膜30整体贴合于第一柔性基底10具有第一凸起部11的一面,碳纳米管薄膜30贴覆于第一柔性基底10具有第一凸起部11的一面,即碳纳米管薄膜30完全贴合于第一凸起部11的外表面,对应于非第一凸起部11区域处,碳纳米管薄膜30贴于第一柔性基底10的表面。即碳纳米管薄膜30包括贴合于第一凸起部11的第一贴合部分31和贴合于第一柔性基底10平面的第二贴合部分32。第一贴合部分31相应地呈球冠状或呈球带状,第二贴合部分32呈平面状。所述第一凸起部11与所述第二凸起部21错位设置,且所述第二凸起部21的侧面与所述碳纳米管薄膜30相接触。所述第一凸起部11与所述第二凸起部21错位设置,即第一凸起部11所对应的中轴线指向于第二柔性基底20中非第二凸起部21的区域,第二凸起部21所对应的中轴线指向于第一柔性基底10中非第一凸起部11的区域。第二凸起部21的侧面可与碳纳米管薄膜30的第一贴合部分31(球面或球带状)相切接触。本实施例中,以半球状的第一凸起部11和第二凸起部21为例,半球状的第一凸起部11和第二凸起部21,其易于成型且表面积大。当对传感器施加一定压力时,半球形微结构阵列发生变形,改变内部薄膜(碳纳米管薄膜30)的接触面积,传感器的电阻发生变化,传感器的电阻与施加的压力有着一定的线性关系,通过测量电阻的变化就可以判断施加的压力,且第一凸起部11和第二凸起部21交错设置且均与碳纳米管薄膜30相接,何意方向且较小的变形量均可以使碳纳米管薄膜30的接触面积变化,从而实现了压力的测量功能,具有测量范围广、灵敏度高和响应时间短等优点,测量效果佳。
具体应用中,第一凸起部11、第二凸起部21的形状和大小可以相同。第一凸起部11、第二凸起部21的形状和大小也可以不同,且碳纳米管薄膜30覆盖式贴合于第一凸起部11后与第二凸起部21的形状和大小相同。
本实施例中,所述第一凸起部11呈半球状(即切面为直径面的球缺),且/或,所述第二凸起部21呈半球状(即切面为直径面的球缺)。当然,第一凸起部11、第二凸起部21的形状也可以呈其它结构,例如下端为圆柱形,上端为半球形(球冠状)等。使第一凸起部11、第二凸起部21具有更高的高度。
本实施例中,所述第一柔性基底10和第二柔性基底20采用聚二甲基硅氧烷(PDMS)制成。
具体地,贴覆于所述第一凸起部11顶部处的所述碳纳米管薄膜30与所述第二柔性基底20的表面(非第二凸起部21区域)具有间隙,使其具有一定的形变空间,利于进一步提高测量精度。
具体地,所述第二凸起部21的顶部与所述碳纳米管薄膜30(第二凸起部21中轴线方向的碳纳米管薄膜30,即碳纳米管薄膜30贴于非第一凸起部11区域的第二贴合部分32)具有间隙,利于进一步提高测量精度。
本实施例中,所述第一凸起部11的顶部朝向于两个相邻所述第二凸起部21之间的平面;所述第二凸起部21的顶部朝向于两个相邻所述第一凸起部11之间的平面,即除了边缘区域的第一凸起部11、第二凸起部21,相邻的第一凸起部11相对于相应的第二凸起部21的中轴线对称,相邻的第二凸起部21相对于相应的第一凸起部11的中轴线对称。
具体应用中,柔性压力传感器两侧的电极可连接有电压测量模块,电压测量模块可连接有电源模块。
本发明实施例所提供的一种具有交错式微结构的柔性压力传感器,采用交错式的半球形内部结构,结合碳纳米管的高导电性,大大提高了传感器的线性测量范围以及灵敏度,简易的制作方法使得柔性传感器的制作更为稳定可靠,并且降低了制作成本,提高了制作的效率,高透明度和高灵敏度等特性使其应用范围更加广泛,且改善了柔性压力传感器的各项性能参数,如:测量范围,灵敏度和响应时间等,能够完全贴合三维复杂静/动态表面的同时完成接触压力的测量,且稳定性、精度、准确度和可靠性高,还具有响应时间短、适用范围广、使用寿命长等优点。
本发明还提供了一种柔性压力传感器的制造方法,用于制造上述的一种具有交错式微结构的柔性压力传感器,参考图1至图4,包括以下步骤:
制备一面具有第一微结构的第一柔性基底10;
制备一面具有第二微结构且呈半固化状的第二柔性基底20;
制备碳纳米管薄膜30并将所述碳纳米管薄膜30贴于所述第一柔性基底10具有第一微结构的一面;
将所述第二柔性基底20具有第二微结构的一面朝向所述第一柔性基底10贴有所述碳纳米管薄膜30的一面,且使第一微结构中的第一凸起部11与第二微结构中的第二凸起部21错位,并将所述第一柔性基底10和第二柔性基底20贴合,使所述第二凸起部21与所述碳纳米管薄膜30相接触;
于所述碳纳米管薄膜30的两侧引出电极。
第一凸起部11和第二凸起部21可呈半球状。
具体地,制备所述第一柔性基底10的步骤包括:
采用光蚀刻技术制作出具有多个半球形凹槽结构41的硅晶片模具40;
以10:1的重量比将聚二甲基硅氧烷与交联剂混合且搅拌得到混合溶液,然后将所述混合溶液旋涂于所述硅晶片模具40上并加热;
混合溶液冷却固化形成所述第一柔性基底10;
将所述第一柔性基底10自所述硅晶片模具40上脱离。
具体地,制备所述碳纳米管薄膜30包括以下步骤:
以3:1的比例混合氯化氢与过氧化氢溶液,在氯化氢与过氧化氢混合溶液中加入碳纳米管粉末,之后置于60℃下加热4小时,再加入到二甲基甲酰胺溶液中进行抽真空渗漏,得到一层附着在渗漏膜上的碳纳米管膜;
将渗漏膜以斜插入去离子水中,在所述碳纳米管膜上分离下一层50nm厚的碳纳米管薄膜30;
风干在去离子水上取出的所述碳纳米管薄膜30。
具体地,制备所述第二柔性基底20的步骤包括:
采用光蚀刻技术制作出具有多个半球形凹槽结构的硅晶片模具;
以10:1的重量比将聚二甲基硅氧烷与交联剂混合且搅拌得到混合溶液,然后将所述混合溶液旋涂于所述硅晶片模具上并加热并冷却,将所述硅晶片模具上半固化状的PDMS薄膜分离得到第二柔性基底20。
具体应用中,详细的制备过程可以参考如下,流程图可如图4所示:
第一步:采用光蚀刻技术制作出具有半球形凹槽结构的硅晶片模具。
第二步:以10:1的重量比将聚二甲基硅氧烷(PDMS)与交联剂混合且搅拌15分钟得到混合溶液,然后将混合溶液旋涂在具有半球形凹槽结构的硅晶片模具上并在90℃下加热50分钟。
第三步:将上述得到的混合溶液在室温下冷却,固化之后,从硅片上将具有半球形微结构的PDMS薄膜分离出来,得到第一柔性基底10。
第四步:以3:1的比例(体积比)混合氯化氢与过氧化氢溶液,在混合溶液中加入3至8克(例如5克)碳纳米管粉末,之后置于50℃至 75℃(例如60℃)下加热1至6(例如4小时)小时。
第五部:将处理后的碳纳米管加入到二甲基甲酰胺溶液中抽真空渗漏,最后得到一层附着在渗漏膜上的碳纳米管薄膜30。
第六步:将渗漏膜以45度倾角斜插入去离子水中,在200-300微米厚的碳纳米管薄膜上分离下一层10 nm至70 nm(例如50纳米)厚的碳纳米管薄膜。
第七步:用氮气流风干在去离子水上取出的碳纳米管薄膜。
第八步:将碳纳米管薄膜与具有半球形微结构的PDMS薄膜(第一柔性基底10)贴合,并在200-210℃下加热20至60分钟(例如35分钟)。
第九步:采用第二步制作好的混合溶液(PDMS溶液)涂覆在具有半球形凹槽结构的模具(硅晶片模具)上,在90℃下加热半个小时,之后将溶液温度置于室温下冷却,将硅片上的半固化的PDMS薄膜分离出来,即得到半固化状的第二柔性基底20。
第十步:将带有碳纳米管薄膜的第一柔性基底10与半固化的第二柔性基底20粘合,90℃下加热30分钟,进行紧密的粘合(如图1)。
第十一步:在中间层的碳纳米薄膜(碳纳米管薄膜)两侧引出电极,完成柔性压力传感器的制作。
本发明实施例所提供的一种柔性压力传感器的制造方法,先制备具有半球形凹槽结构的硅晶片模具,将PDMS溶液倒入硅晶片模具中,制作出具有半球形微结构的PDMS基底,然后制备碳纳米管薄膜,并将带有碳纳米管的薄膜与带半球形结构的PDMS薄膜贴合上,同样的方法制作一层半固化的半球形微结构PDMS薄膜,将半固化的PDMS薄膜和带有碳纳米管薄膜的PDMS薄膜紧紧贴合上,在碳纳米管薄膜两侧引出电极,完成柔性传感器的制备过程。制得的柔性传感器,解决了现有技术中的柔性传感器在灵敏度不高、测量范围小、滞后现象较大以及容易受到外部环境噪声的干扰等问题,且为了解决传感器的穿戴舒适性问题,本发明实施例中,采用具有高透明度、柔性和拉伸性好以及生物相容性好等优点的聚二甲基硅氧烷(PDMS)作为柔性基底材料,为了改善柔性传感器的灵敏度和测量范围,采用导电系数高、透明度好以及比表面积大的碳纳米管作为传感单元并结合半球形的微结构,改善了柔性传感器内部的结构设计以及简化了制备工艺,可以应用于机器人、可穿戴电子设备、人机交互、智能蒙皮等领域,能够完全贴合三维复杂静/动态表面的同时完成接触压力的测量,且响应时间短,稳定性、精度、准确度和可靠性高,应用效果佳。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种具有交错式微结构的柔性压力传感器,其特征在于,包括第一柔性基底、碳纳米管薄膜和第二柔性基底,所述碳纳米管薄膜设置于所述第一柔性基底和所述第二柔性基底之间,所述碳纳米管薄膜连接有引出电极;
    所述第一柔性基底的一面设置有第一微结构,所述第一微结构包括多个呈球冠凸起状或呈球带凸起状的第一凸起部,所述碳纳米管薄膜贴覆于所述第一柔性基底具有所述第一微结构的一面,所述第二柔性基底的一面设置有第二微结构,所述第二微结构包括多个呈球冠凸起状或呈球带凸起状的第二凸起部,所述第一凸起部与所述第二凸起部错位设置,且所述第二凸起部与所述碳纳米管薄膜相接触。
  2. 如权利要求1所述的一种具有交错式微结构的柔性压力传感器,其特征在于,所述第一凸起部呈半球状,且/或,所述第二凸起部呈半球状。 
  3. 如权利要求1所述的一种具有交错式微结构的柔性压力传感器,其特征在于,所述第一柔性基底和第二柔性基底采用聚二甲基硅氧烷制成。
  4. 如权利要求1至3中任一项所述的一种具有交错式微结构的柔性压力传感器,其特征在于,贴覆于所述第一凸起部顶部处的所述碳纳米管薄膜与所述第二柔性基底的表面具有间隙。
  5.  如权利要求1所述的一种具有交错式微结构的柔性压力传感器,其特征在于,所述第二凸起部的顶部与所述碳纳米管薄膜具有间隙。
      6. 如权利要求1所述的一种具有交错式微结构的柔性压力传感器,其特征在于,所述第一凸起部的顶部朝向于两个相邻所述第二凸起部之间的平面;所述第二凸起部的顶部朝向于两个相邻所述第一凸起部之间的平面。
  6. 一种柔性压力传感器的制造方法,其特征在于,用于制造如权利要求1至6中任一项所述的一种具有交错式微结构的柔性压力传感器,包括以下步骤:
    制备一面具有第一微结构的第一柔性基底;
    制备一面具有第二微结构且呈半固化状的第二柔性基底;
    制备碳纳米管薄膜并将所述碳纳米管薄膜贴于所述第一柔性基底具有第一微结构的一面;
    将所述第二柔性基底具有第二微结构的一面朝向所述第一柔性基底贴有所述碳纳米管薄膜的一面,且使第一微结构中的第一凸起部与第二微结构中的第二凸起部错位,并将所述第一柔性基底和第二柔性基底贴合,使所述第二凸起部与所述碳纳米管薄膜相接触;
    于所述碳纳米管薄膜的两侧引出电极。
  7. 如权利要求7所述的一种柔性压力传感器的制造方法,其特征在于,制备所述第一柔性基底的步骤包括:
    采用光蚀刻技术制作出具有多个半球形凹槽结构的硅晶片模具;
    以10:1的重量比将聚二甲基硅氧烷与交联剂混合且搅拌得到混合溶液,然后将所述混合溶液旋涂于所述硅晶片模具上并加热;
    混合溶液冷却固化形成所述第一柔性基底;
    将所述第一柔性基底自所述硅晶片模具上脱离。
  8. 如权利要求7所述的一种柔性压力传感器的制造方法,其特征在于,制备所述碳纳米管薄膜包括以下步骤:
    以3:1的比例混合氯化氢与过氧化氢溶液,在氯化氢与过氧化氢混合溶液中加入碳纳米管粉末,之后置于60℃下加热4小时,再加入到二甲基甲酰胺溶液中进行抽真空渗漏,得到一层附着在渗漏膜上的碳纳米管膜;
    将渗漏膜以斜插入去离子水中,在所述碳纳米管膜上分离下一层50nm厚的碳纳米管薄膜;
    风干在去离子水上取出的所述碳纳米管薄膜。
  9. 如权利要求7所述的一种柔性压力传感器的制造方法,其特征在于,制备所述第二柔性基底的步骤包括:
    采用光蚀刻技术制作出具有多个半球形凹槽结构的硅晶片模具;
    以10:1的重量比将聚二甲基硅氧烷与交联剂混合且搅拌得到混合溶液,然后将所述混合溶液旋涂于所述硅晶片模具上并加热并冷却,将所述硅晶片模具上半固化状的PDMS薄膜分离得到第二柔性基底。
PCT/CN2018/104236 2018-09-05 2018-09-05 一种具有交错式微结构的柔性压力传感器及其制造方法 WO2020047786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104236 WO2020047786A1 (zh) 2018-09-05 2018-09-05 一种具有交错式微结构的柔性压力传感器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104236 WO2020047786A1 (zh) 2018-09-05 2018-09-05 一种具有交错式微结构的柔性压力传感器及其制造方法

Publications (1)

Publication Number Publication Date
WO2020047786A1 true WO2020047786A1 (zh) 2020-03-12

Family

ID=69722916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104236 WO2020047786A1 (zh) 2018-09-05 2018-09-05 一种具有交错式微结构的柔性压力传感器及其制造方法

Country Status (1)

Country Link
WO (1) WO2020047786A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106197774A (zh) * 2016-07-20 2016-12-07 上海交通大学 柔性压阻式触觉传感器阵列及其制备方法
CN106370327A (zh) * 2016-10-08 2017-02-01 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法
CN108225625A (zh) * 2017-12-11 2018-06-29 中国科学院深圳先进技术研究院 柔性压力传感器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106197774A (zh) * 2016-07-20 2016-12-07 上海交通大学 柔性压阻式触觉传感器阵列及其制备方法
CN106370327A (zh) * 2016-10-08 2017-02-01 中国科学院深圳先进技术研究院 一种柔性压力传感器及其制作方法
CN108225625A (zh) * 2017-12-11 2018-06-29 中国科学院深圳先进技术研究院 柔性压力传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JONGHWA PARK ET AL.: "Tactile-direction-sensitive and Stretchable Electronic Skins Based on Human-skin-inspired Interlocked Microstructures", ACS NANO, vol. 8, no. 12, 12 November 2014 (2014-11-12), pages 12021, XP055689852, ISSN: 1936-0851 *

Similar Documents

Publication Publication Date Title
WO2019222969A1 (zh) 一种基于半球形微结构的柔性压力传感器及其制造方法
CN108225625B (zh) 柔性压力传感器及其制备方法
AU2018102177A4 (en) Flexible pressure sensor based on hemispheric microstructure and fabrication method therefor
Zhu et al. Softening gold for elastronics
Wang et al. Research progress of flexible wearable pressure sensors
Wen et al. Emerging flexible sensors based on nanomaterials: recent status and applications
Jayathilaka et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors
CN109489875A (zh) 一种具有交错式微结构的柔性压力传感器及其制造方法
Du et al. High‐performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics
WO2018113520A1 (zh) 一种柔性压力传感器及其制备方法
CN108775979A (zh) 一种高灵敏度柔性压力传感器及其制备方法
Qin et al. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range
CN110082010A (zh) 柔性触觉传感器阵列及应用于其的阵列扫描系统
CN110579297A (zh) 基于MXene仿生皮肤结构的高灵敏度柔性压阻传感器
CN112361953A (zh) 激光诱导石墨烯柔性应变-温度双参数传感器的制备方法
CN106908176A (zh) 具有微结构化的多相介电层电容式压力传感器及其制法
CN208350249U (zh) 一种高灵敏度柔性压力传感器
Wang et al. Hierarchically buckled Ti3C2Tx MXene/carbon nanotubes strain sensor with improved linearity, sensitivity, and strain range for soft robotics and epidermal monitoring
CN109115107A (zh) 一种高灵敏度柔性应变传感器的制备方法
CN110231110A (zh) 一种高灵敏度电子皮肤及其制备方法
CN112086553A (zh) 一种柔性压阻传感器及其应用
CN111024272A (zh) 一种电容式柔性传感器的制备方法
WO2021068273A1 (zh) 以砂纸表面微结构为模板的电容式应变传感器制作方法
WO2021253278A1 (zh) 一种触觉传感器、制备方法及包括触觉传感器的智能设备
Guo et al. Ultra-sensitive flexible piezoresistive pressure sensor prepared by laser-assisted copper template for health monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932392

Country of ref document: EP

Kind code of ref document: A1