WO2020047732A1 - 轴箱和包括轴箱的车辆 - Google Patents

轴箱和包括轴箱的车辆 Download PDF

Info

Publication number
WO2020047732A1
WO2020047732A1 PCT/CN2018/103923 CN2018103923W WO2020047732A1 WO 2020047732 A1 WO2020047732 A1 WO 2020047732A1 CN 2018103923 W CN2018103923 W CN 2018103923W WO 2020047732 A1 WO2020047732 A1 WO 2020047732A1
Authority
WO
WIPO (PCT)
Prior art keywords
axle box
temperature
coating
vehicle
axle
Prior art date
Application number
PCT/CN2018/103923
Other languages
English (en)
French (fr)
Inventor
洪明星
马求山
Original Assignee
舍弗勒技术股份两合公司
洪明星
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 洪明星 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2018/103923 priority Critical patent/WO2020047732A1/zh
Publication of WO2020047732A1 publication Critical patent/WO2020047732A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F15/00Axle-boxes

Definitions

  • the invention relates to the field of vehicles, in particular to railway vehicles, and more particularly to axle boxes for railway bearings.
  • High-speed trains with long driving distances are becoming more and more widely used.
  • high-speed trains that travel across different driving environments such as trains across China's Belt and Road Initiative that span multiple different countries or regions
  • the ambient temperature of the different locations that the train travels through may vary widely. Large temperature differences are a great challenge to the reliability of railway bearings.
  • first applying specific grease to railway bearings to increase the temperature range that railway bearings can adapt to; and second, setting several temperatures on the axle box A sensor detects the temperature at several locations on the axlebox.
  • first countermeasure the effective working temperature of the grease is limited, and often one type of grease cannot cope with both high and low temperatures.
  • second countermeasure using conventional temperature sensors and temperature measurement methods, even if the temperature sensors are set at multiple detection points, the continuous temperature field on the entire axle box of the railway bearing cannot be measured.
  • the purpose of the present invention is to overcome or at least alleviate the shortcomings of the prior art described above, and to provide an axle box which can effectively adjust the temperature of a bearing.
  • a shaft case including a shaft case body and a coating, the shaft case body being used to at least partially cover a bearing, the coating being applied to an outer portion of the shaft case The surface, wherein the emissivity of the coating increases with increasing temperature.
  • a constituent material of the coating layer includes a thermochromic material, and the color of the coating layer changes as the temperature changes.
  • the constituent materials of the coating include a lanthanum manganate complex and / or vanadium dioxide.
  • the constituent materials of the coating include La 1-x Ca x MnO 3 and / or La 1-x Sr x MnO 3 .
  • a vehicle including the axle box according to the present invention.
  • the vehicle further includes a sensor for directly or indirectly detecting a temperature of the axle box.
  • the vehicle further includes a carriage provided above the axle box, and the sensor is mounted on the carriage.
  • the senor is a spectrometer, or the sensor recognizes a color of at least a portion of a surface of the axle box.
  • the spectrometer is an FTIR spectrometer.
  • the vehicle is a rail vehicle.
  • FIG. 1 is a sectional view of a partial structure of a vehicle according to an embodiment of the present invention.
  • Figure 2 is a scatter plot of the changes in the emissivity ⁇ of La 0.7 Ca 0.3 MnO 3 and La 0.825 Sr 0.175 MnO 3 with temperature in the experimental environment.
  • FIG. 3 is a graph showing the variation of the radiation coefficient ⁇ of VO 2 with temperature in the experimental environment.
  • axle box capable of adapting to a large temperature difference according to an embodiment of the present invention with reference to FIGS. 1-3.
  • a coating 3 is applied to the outer surface of the axle box 100.
  • the constituent materials of the coating 3 include a lanthanum manganate complex and / or vanadium dioxide (VO 2 ).
  • the lanthanum manganate complex may be a lanthanum manganate complex doped with, for example, strontium or calcium, such as La 1 -x Ca x MnO 3 or La 1-x Sr x MnO 3 , where x represents different proportions of infiltrates, 0 ⁇ x ⁇ 1.
  • La 1-x Ca x MnO 3 , La 1-x Sr x MnO 3 and VO 2 have the following two characteristics.
  • FIG. 2 shows the changes in the radiation coefficient ⁇ of two lanthanum manganate complexes with La 0.7 Ca 0.3 MnO 3 with Ca content of 0.3 and La 0.825 Sr 0.175 MnO 3 with Sr content of 0.175 under experimental conditions.
  • FIG. 3 shows the change of the radiation coefficient ⁇ of VO 2 with temperature in the experimental environment.
  • is the radiant heat flux of the object
  • is the radiation coefficient
  • A is the radiation surface area
  • is the Stefan-Boltzmann constant (black body radiation constant)
  • T is the temperature of the radiating object.
  • the radiant heat flux of the axle box 100 coated with the coating 3 is small, and the heat dissipation of the railway bearing 101 inside the axle box 100 is small; at high temperatures, the radiation of the axle box 100 coated with the coating 3 is low.
  • the heat flow is large, and the heat dissipation of the railway bearing 101 inside the axle box 100 is large. Due to the adjustment of the radiant heat flow of the axle box 100 by the coating 3, the grease film of the railway bearing 101 can still be at a better working temperature even in a relatively extreme high or low temperature environment.
  • thermochromic properties The material has thermochromic properties.
  • the coating 3 made of the above materials exhibits different colors at different temperatures. Therefore, for example, an FTIR spectrometer (also known as a Fourier transform infrared spectrum analyzer) can be used to help detect the temperature of the axle box 100.
  • FTIR spectrometer also known as a Fourier transform infrared spectrum analyzer
  • a carriage 200 is fixed above the axle box 100 by a support member, and an FTIR spectrometer 4 is provided at the bottom of the carriage 200.
  • the FTIR spectrometer 4 corresponds to the surface spectrum signal of the bearing area of the axle box 100, and can further calculate the bearing of the axle box 100. Corresponding temperatures throughout the zone. Since the coating 3 is spread over the entire outer surface of the axle box 100, and the detection area of the FTIR spectrometer 4 is a continuous surface, the temperature of the bearing area of the axle box 100 is detected using the FTIR spectrometer 4 compared with the prior art in the axle box 100 A number of temperature sensors are used for temperature measurement. The present invention measures the continuous temperature field on the surface of the axle box 100, and the temperature measurement is more accurate.
  • the FTIR spectrometer 4 may be set at different positions or more positions near the surface of the axle box 100 according to the need for monitoring the temperature in different areas of the surface of the axle box 100.
  • the FTIR spectrometer 4 may not be set, but A maintenance worker visually recognizes the color change of the coating 3 to monitor the temperature of the axle box 100.
  • this visual monitoring method may be different from the real-time monitoring using the FTIR spectrometer 4.
  • the visual monitoring can usually be performed, for example, in the parking gap after the train enters the station. Since the temperature change of the axle box 100 is not a step, and It changes continuously, and the temperature of the axle box 100 during the parking gap can to some extent reflect its temperature state when traveling before a short period of time.
  • the radiation coefficient ⁇ of coating 3 has a positive correlation with the change in temperature T, so that when the temperature decreases, the radiant heat flow of the axle box 100 coated with coating 3 decreases, and the heat dissipation of railway bearings 101 decreases; the temperature increases At this time, the radiant heat flow of the axle box 100 coated with the coating layer 3 increases, and the heat radiation of the railway bearing 101 increases. Therefore, even if the ambient temperature changes greatly, the temperature change of the axle box 100 is small, so that the railway bearing 101 can adapt to a larger range of ambient temperature, and the service life of the railway bearing 101 is increased.
  • the coating 3 has thermochromic characteristics, and the temperature of the axle box 100 can be measured by identifying the spectral signal of the coating 3.
  • Coating 3 is the target for temperature identification of the axle box 100. It can cover any area where the temperature of the axle box 100 needs to be measured. With the FTIR spectrometer 4 as the color recognition processor, it can measure the surface of the axle box 100. Continuous temperature field.
  • the present invention is not limited to the above embodiments, and those skilled in the art can make various modifications to the above embodiments of the present invention without departing from the scope of the present invention under the teachings of the present invention.
  • the material of the coating 3 is not limited to La 1-x Ca x MnO 3 , La 1-x Sr x MnO 3, and VO 2. Any material whose radiation coefficient ⁇ increases with an increase in the temperature T is required. Can be used to make coating 3.
  • lanthanum manganate composite When the lanthanum manganate composite is used as the constituent material of the coating 3, other elements may be doped in addition to strontium or calcium; when VO 2 is used as the constituent material of the coating 3, other elements may also be doped, such as Tungsten, chromium or titanium.
  • the FTIR spectrometer 4 may be replaced by another measuring device capable of recognizing the color of the object, and the temperature information of the object may be obtained based on the color.
  • the coating 3 may not be provided on the entire outer surface of the axle box 100, but may be provided only in a few areas on the outer surface of the axle box 100, or on the inner surface of the axle box 100.

Abstract

一种轴箱(100)和包括轴箱(100)的车辆。轴箱(100)包括轴箱本体和涂层(3),所述轴箱本体用于至少部分地包覆轴承(101),所述涂层(3)涂覆于所述轴箱(100)的外表面,其中,随温度的升高,所述涂层(3)的辐射系数增大。所述轴箱能有效地调节轴承温度,温度升高时轴箱散热能力加大,温度降低时轴箱散热能力减小。

Description

轴箱和包括轴箱的车辆 技术领域
本发明涉及车辆领域,尤其涉及铁路车辆,更具体地涉及铁路轴承的轴箱。
背景技术
长行驶距离的高速列车的应用越来越广泛。对于跨越不同行驶环境的长距离行驶的高速列车,例如中国倡导的一带一路中跨越多个不同国家或地区的列车,列车行驶经过的不同地点的环境温度差别可能很大。大的温差对于铁路轴承的可靠性是一个很大的挑战。
为了应对不同的环境温度,现有技术中通常采用以下两种做法:第一,为铁路轴承涂抹特定的润滑脂以增大铁路轴承能适应的温度范围;第二,在轴箱上设置若干温度传感器来检测轴箱上若干位置的温度。然而,对于第一种应对措施,润滑脂的有效工作温度是有限的,往往一种类型的润滑脂不能同时应对高温和低温。对于第二种应对措施,使用常规的温度传感器和温度测量方法,即使在多个检测点设置温度传感器也不能测量铁路轴承的整个轴箱上的连续温度场。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种有效地调节轴承温度的轴箱,温度升高时轴箱散热能力加大,温度降低时轴箱散热能力减小。
根据本发明的第一方面,提供一种轴箱,其包括轴箱本体和涂层,所述轴箱本体用于至少部分地包覆轴承,所述涂层涂覆于所述轴箱的外表面,其中,随温度的升高,所述涂层的辐射系数增大。
在至少一个实施方式中,所述涂层的组成材料包括热致变色材料,随着温度的变化,所述涂层的颜色发生变化。
在至少一个实施方式中,所述涂层的组成材料包括锰酸镧复合物和/或二氧化钒。
在至少一个实施方式中,所述涂层的组成材料包括La 1-xCa xMnO 3和/或La 1-xSr xMnO 3
根据本发明的第二方面,提供一种车辆,其包括根据本发明所述的轴箱。
在至少一个实施方式中,所述车辆还包括传感器,所述传感器用于直接或间接地探测所述轴箱的温度。
在至少一个实施方式中,所述车辆还包括设置于所述轴箱的上方的车厢,所述传感器安装于所述车厢。
在至少一个实施方式中,所述传感器为光谱仪,或者所述传感器识别所述轴箱的至少部分表面的颜色。
在至少一个实施方式中,所述光谱仪为FTIR光谱仪。
在至少一个实施方式中,所述车辆为轨道车辆。
附图说明
图1是根据本发明的一个实施方式的车辆的部分结构的剖视图。
图2是实验环境下La 0.7Ca 0.3MnO 3和La 0.825Sr 0.175MnO 3的辐射系数ε随温度变化的散点图。
图3是实验环境下VO 2的辐射系数ε随温度变化的曲线图。
附图标记说明
100轴箱;101铁路轴承;200车厢;3涂层;4FTIR光谱仪。
具体实施方式
下面参照附图描述本发明的示例性实施方式。应当理解,这些具体的说 明仅用于示教本领域技术人员如何实施本发明,而不用于穷举本发明的所有可行的方式,也不用于限制本发明的范围。
下面参照图1-3,介绍根据本发明的一个实施方式的能适应大温差的轴箱。
在轴箱100的外表面涂覆涂层3。涂层3的组成材料包括锰酸镧复合物和/或二氧化钒(VO 2),通常情况下,锰酸镧复合物可以是掺杂例如锶或钙的锰酸镧复合物,例如La 1-xCa xMnO 3或La 1-xSr xMnO 3,x表示渗入物的不同比例,0≤x<1。
上述材料La 1-xCa xMnO 3、La 1-xSr xMnO 3和VO 2具有如下两方面的特性。
(i)辐射系数ε随温度T的升高而变大。
图2示出了实验环境下Ca含量为0.3的La 0.7Ca 0.3MnO 3和Sr含量为0.175的La 0.825Sr 0.175MnO 3的两种锰酸镧复合物的辐射系数ε随温度变化的情况。图3示出了实验环境下VO 2的辐射系数ε随温度变化的情况。
从图2和图3中可以发现,上述三种材料的辐射系数ε均随温度T的升高而升高,换言之,其辐射系数ε与温度T呈正相关。结合辐射热流量的计算公式:
Φ=εAσT 4
式中,Φ为物体的辐射热流量,ε为辐射系数,A为辐射表面面积,σ为斯忒藩-玻尔兹曼常数(黑体辐射常数),T为辐射物体的温度。
根据辐射热流量的计算公式,当物体的辐射系数ε与温度T呈正相关时,带来这样的优点:温度越低,物体的辐射热流量Φ越小;温度越高,物体的辐射热流量Φ越大。
因此,在低温下,涂覆了涂层3的轴箱100的辐射热流量小,轴箱100内部的铁路轴承101的散热少;在高温下,涂覆了涂层3的轴箱100的辐射热流量大,轴箱100内部的铁路轴承101的散热大。由于涂层3对轴箱100的辐射热 流量的调节,即使在较极端的高温或低温的环境下,铁路轴承101的润滑脂膜仍能处于较佳的工作温度。
(ii)材料具有热致变色的特性。
使用上述材料制作的涂层3在不同温度下呈现不同的颜色,因此,可以通过例如FTIR光谱仪(又称傅氏转换红外线光谱分析仪)来帮助检测轴箱100的温度。
参照图1,轴箱100上方通过支撑件固定有车厢200,在车厢200的底部设置FTIR光谱仪4,FTIR光谱仪4对应探测轴箱100的承载区的表面光谱信号,进而能够计算轴箱100的承载区的各处对应的温度。由于涂层3遍布轴箱100的整个外表面,且FTIR光谱仪4的探测区域是连续的表面,因此使用FTIR光谱仪4来探测轴箱100的承载区的温度相比现有技术中在轴箱100上设置若干个温度传感器的温度测量方式,本发明测量了轴箱100表面的连续温度场,温度测量更精确。
应当理解,根据对轴箱100的表面不同区域的温度的监控需要,可以在轴箱100表面附近的不同位置或更多位置设置FTIR光谱仪4。
应当理解,由于涂层3随温度变化的颜色改变也能在一定程度上被人眼识别,因此在对温度绝对值的监控要求不十分高的情况下,也可以不设置FTIR光谱仪4,而是由维护作业人员通过目视的方式识别涂层3的颜色变化从而监控轴箱100的温度。当然,这种目视的监控方式可能不同于使用FTIR光谱仪4的实时监控,目视监控通常可以在例如列车进站后的停车间隙进行,由于轴箱100的温度变化不是一个阶跃的、而是连续变化的,停车间隙时轴箱100的温度在某种程度上能体现其在较短的时间段之前的行进时的温度状态。
本发明至少具有以下优点中的一个优点:
(i)涂层3的辐射系数ε与温度T的改变呈正相关关系,使得温度降低时,涂覆了涂层3的轴箱100的辐射热流量减小,铁路轴承101散热减少;温度升 高时,涂覆了涂层3的轴箱100的辐射热流量增大,铁路轴承101的散热增大。从而即使环境温度改变很大,轴箱100的温度改变也较小,使铁路轴承101能适应较大范围的环境温度,增加了铁路轴承101的使用寿命。
(ii)涂层3具有热致变色的特性,通过识别涂层3的光谱信号能测量轴箱100的温度。
(iii)通过人眼识别涂层3随温度变化的颜色变化,维护作业人员能够简单快速地知晓轴箱100的温度变化从而了解铁路轴承101的大致工作温度;且这种目视监控的方式,在一定程度上能够弥补例如光谱仪等自动化仪器在特殊情况下的不可靠性,即使自动化监控仪器失灵,仍能通过目视监控来大致掌握轴箱100的温度。
(iv)涂层3作为轴箱100温度识别的目标物,其能够覆盖于轴箱100的任何需要测量温度的区域,配以FTIR光谱仪4作为颜色识别的处理器,能够测量轴箱100表面的连续温度场。
当然,本发明不限于上述实施方式,本领域技术人员在本发明的教导下可以对本发明的上述实施方式做出各种变型,而不脱离本发明的范围。例如:(i)涂层3的材料不限于La 1-xCa xMnO 3、La 1-xSr xMnO 3和VO 2,辐射系数ε随温度T的升高而增大的任何材料,都可以用来制作涂层3。
使用锰酸镧复合物作为涂层3的组成材料时,除了掺杂锶或钙外,还可以掺杂其他元素;使用VO 2作为涂层3的组成材料时,也可以掺杂其他元素,例如钨、铬或钛。
(ii)FTIR光谱仪4也可以由其他能识别物体颜色的测量装置代替,可以根据该颜色得到物体温度信息。
(iii)涂层3也可以不遍布轴箱100的整个外表面,而只在轴箱100外表面的若干区域设置,或是设置在轴箱100的内表面。

Claims (10)

  1. 一种轴箱,其包括轴箱本体和涂层,所述轴箱本体用于至少部分地包覆轴承,所述涂层涂覆于所述轴箱的外表面,其中,随温度的升高,所述涂层的辐射系数增大。
  2. 根据权利要求1所述的轴箱,其特征在于,所述涂层的组成材料包括热致变色材料,随着温度的变化,所述涂层的颜色发生变化。
  3. 根据权利要求1所述的轴箱,其特征在于,所述涂层的组成材料包括锰酸镧复合物和/或二氧化钒。
  4. 根据权利要求1所述的轴箱,其特征在于,所述涂层的组成材料包括La 1-xCa xMnO 3和/或La 1-xSr xMnO 3,其中x表示渗入物的不同比例,0≤x<1。
  5. 一种车辆,其包括权利要求1至4中任一项所述的轴箱。
  6. 根据权利要求5所述的车辆,其特征在于,所述车辆还包括传感器,所述传感器用于直接或间接地探测所述轴箱的温度。
  7. 根据权利要求6所述的车辆,其特征在于,所述车辆还包括设置于所述轴箱的上方的车厢,所述传感器安装于所述车厢。
  8. 根据权利要求7所述的车辆,其特征在于,所述传感器为光谱仪,或者所述传感器识别所述轴箱的至少部分表面的颜色。
  9. 根据权利要求8所述的车辆,其特征在于,所述光谱仪为FTIR光谱仪。
  10. 根据权利要求5至9中任一项所述的车辆,其特征在于,所述车辆为轨道车辆。
PCT/CN2018/103923 2018-09-04 2018-09-04 轴箱和包括轴箱的车辆 WO2020047732A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103923 WO2020047732A1 (zh) 2018-09-04 2018-09-04 轴箱和包括轴箱的车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103923 WO2020047732A1 (zh) 2018-09-04 2018-09-04 轴箱和包括轴箱的车辆

Publications (1)

Publication Number Publication Date
WO2020047732A1 true WO2020047732A1 (zh) 2020-03-12

Family

ID=69721964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103923 WO2020047732A1 (zh) 2018-09-04 2018-09-04 轴箱和包括轴箱的车辆

Country Status (1)

Country Link
WO (1) WO2020047732A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347057A (ja) * 2003-05-23 2004-12-09 Nsk Ltd 軸受装置
US20080085069A1 (en) * 2006-10-06 2008-04-10 The Timken Company Railroad bearing with corrosion inhibitor
CN101265374A (zh) * 2008-01-24 2008-09-17 复旦大学 一种智能隔热保温膜及其制备方法
CN101326087A (zh) * 2005-12-07 2008-12-17 谢夫勒两合公司 用于轨道车辆的配备传感器的轮对轴承装置
CN101362631A (zh) * 2007-08-10 2009-02-11 北京尚潮新能源科技有限公司 一种防强光强热辐射的复合涂层及其制备方法
CN101734915A (zh) * 2008-11-25 2010-06-16 北京有色金属研究总院 锰酸锶镧基智能热辐射材料及其制备方法
CN103174756A (zh) * 2011-12-22 2013-06-26 Skf公司 用于铁道车辆轴箱中的轴承单元和包括该轴承单元的轴箱
CN203101070U (zh) * 2012-12-01 2013-07-31 南车青岛四方机车车辆股份有限公司 基于物联网的高速列车走行部故障诊断与远程监测系统
CN107188426A (zh) * 2017-05-02 2017-09-22 武汉理工大学 一种钨掺杂二氧化钒热致变色薄膜及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347057A (ja) * 2003-05-23 2004-12-09 Nsk Ltd 軸受装置
CN101326087A (zh) * 2005-12-07 2008-12-17 谢夫勒两合公司 用于轨道车辆的配备传感器的轮对轴承装置
US20080085069A1 (en) * 2006-10-06 2008-04-10 The Timken Company Railroad bearing with corrosion inhibitor
CN101362631A (zh) * 2007-08-10 2009-02-11 北京尚潮新能源科技有限公司 一种防强光强热辐射的复合涂层及其制备方法
CN101265374A (zh) * 2008-01-24 2008-09-17 复旦大学 一种智能隔热保温膜及其制备方法
CN101734915A (zh) * 2008-11-25 2010-06-16 北京有色金属研究总院 锰酸锶镧基智能热辐射材料及其制备方法
CN103174756A (zh) * 2011-12-22 2013-06-26 Skf公司 用于铁道车辆轴箱中的轴承单元和包括该轴承单元的轴箱
CN203101070U (zh) * 2012-12-01 2013-07-31 南车青岛四方机车车辆股份有限公司 基于物联网的高速列车走行部故障诊断与远程监测系统
CN107188426A (zh) * 2017-05-02 2017-09-22 武汉理工大学 一种钨掺杂二氧化钒热致变色薄膜及其制备方法

Similar Documents

Publication Publication Date Title
US11226634B2 (en) Route examination system and method
US10654499B2 (en) System and method for utilizing an infra-red sensor by a moving train
US7095359B2 (en) Method of observing sea ice
US4659043A (en) Railroad hot box detector
US6539293B2 (en) Method and device for monitoring bogies of multi-axle vehicles
US20160202199A1 (en) Route Examination System And Method
US20100208241A1 (en) Measuring device and method for analyzing the lubricant of a bearing
US20190023295A1 (en) System and method for detection of defects in an electric conductor system of a train
US20180202954A1 (en) Method for coating a surface of a metal strip and a metal strip-coating device
WO2020047732A1 (zh) 轴箱和包括轴箱的车辆
US20080262751A1 (en) Curvature-based edge bump quantification
KR20180056713A (ko) 형상 측정 장치 및 형상 측정 방법
KR20070121045A (ko) 표면의 응축을 방지하기 위한 센서유닛, 장치 및 방법
US10788372B2 (en) Infrared imaging detector
WO2013081151A1 (ja) ワックスの塗布膜厚並びに塗布範囲評価方法、及び塗布検査システム
US20100236310A1 (en) Edge flatness monitoring
US8681138B2 (en) Method and device for measuring light conditions in an automobile for determining a control signal
CN111373244A (zh) 确定透明膜上的涂层性质的方法和装置以及制造电容器膜的方法
JP2020128981A (ja) 温度測定方法
RU2393441C2 (ru) Определение температуры подшипников колес поездов
Kim et al. Ambient illumination effect on a spectral image sensor for detecting crop nitrogen stress
JP2022512428A (ja) 金属基板上のポリマーコーティングの結晶化度の測定法
US10458852B2 (en) System and method for detecting temperature of railroad train wheel and bearing
RU92640U1 (ru) Устройство для теплового контроля буксовых узлов подвижного состава
US11846501B2 (en) Method for detecting the surface properties of components, use of the method for monitoring the surface quality of components and device for adjusting the surface properties of components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932647

Country of ref document: EP

Kind code of ref document: A1