WO2020045669A1 - 光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体 - Google Patents

光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体 Download PDF

Info

Publication number
WO2020045669A1
WO2020045669A1 PCT/JP2019/034287 JP2019034287W WO2020045669A1 WO 2020045669 A1 WO2020045669 A1 WO 2020045669A1 JP 2019034287 W JP2019034287 W JP 2019034287W WO 2020045669 A1 WO2020045669 A1 WO 2020045669A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
ferrule
hole
optical connector
optical fiber
Prior art date
Application number
PCT/JP2019/034287
Other languages
English (en)
French (fr)
Inventor
大輔 駒田
広樹 橘
広 松井
媛元 郭
Original Assignee
京セラ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 国立大学法人東北大学 filed Critical 京セラ株式会社
Priority to JP2020539654A priority Critical patent/JPWO2020045669A1/ja
Priority to US17/270,888 priority patent/US11675141B2/en
Publication of WO2020045669A1 publication Critical patent/WO2020045669A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3882Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3817Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres containing optical and electrical conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 

Definitions

  • the present disclosure relates to a ferrule for an optical connector, an optical connector, and a composite fiber connection structure.
  • a wire electrode or the like is inserted into a small animal's living brain in order to record information on neural activity as an electrical signal from the brain of a rodent such as a mouse or rat and a small animal such as a marmoset as an electric signal for a certain period of time. May be fixed.
  • a rodent such as a mouse or rat
  • a small animal such as a marmoset
  • a wire electrode but also a multifunctional fiber that integrates an optical path for irradiating or receiving light and a flow path for injecting a drug or the like has been developed (for example, non-patented). Reference 1).
  • the optical connector ferrule of the present disclosure includes a first ferrule, a composite fiber, and a second ferrule.
  • the first ferrule is cylindrical and has a first end face, a second end face opposite to the first end face, and a first through hole penetrating from the first end face to the second end face.
  • the composite fiber has a first optical fiber and a penetrating portion located along the first optical fiber, and one end extends to the second end face and is disposed in the first through hole. .
  • a second ferrule having a third end face, a fourth end face opposite to the third end face, and a second through-hole penetrating from the third end face to the fourth end face;
  • a linear portion is located from the third end surface along the second through hole. The second end face and the third end face are located so as to face each other, and the penetrating part and the linear part are connected.
  • the optical connector of the present disclosure includes the above-described ferrule for an optical connector, and a sleeve that surrounds a region where the second end face and the third end face face each other.
  • the composite fiber connection structure of the present disclosure is disposed in the optical connector and the second through hole, and is located on the first end portion of the first optical fiber and the third end surface side of the ferrule body.
  • a second optical fiber optically coupled to the third end.
  • a connection ferrule includes a column-shaped ferrule main body including a third end face, a fourth end face opposite to the third end face, and a second through hole penetrating from the third end face to the fourth end face. And a linear portion which is located along the second through hole and partially exposed at the third end face.
  • FIG. 1 is a cross-sectional view illustrating a composite fiber connection structure according to a first embodiment of the present disclosure. It is a perspective view of a connection ferrule and an external optical fiber of a 1st embodiment. It is a perspective view of a fixed ferrule and a compound fiber of a 1st embodiment. It is an end elevation of a connection ferrule of a 1st embodiment. It is an end elevation of a fixed ferrule of a 1st embodiment. It is a partial expanded sectional view of a compound fiber connection structure of a 1st embodiment. It is a perspective view of a connection ferrule and an external optical fiber of a 2nd embodiment.
  • FIG. 1 is a cross-sectional view illustrating a composite fiber connection structure according to the first embodiment of the present disclosure.
  • the composite fiber connection structure 100 of the present embodiment obtains information on neural activity from the brain of a small experimental animal such as a rodent or a marmoset, and observes brain cells according to an electric signal or a drug solution, for example. It is used for things.
  • FIG. 1 shows an example in which a composite fiber including an optical fiber and a signal wiring is placed inside the brain.
  • the composite fiber connection structure 100 may transmit and receive an optical signal, an electric signal, a chemical solution, and the like to and from other components fixed to the brain.
  • the composite fiber connection structure 100 may be used without being fixed to the brain or the like.
  • a fixed ferrule (described later) is held by using a manipulator, and the depth of the composite fiber connection structure 100 into the brain is increased by using the manipulator for each measurement. , Or shallower and can be measured.
  • the optical fiber which is the optical path, is connected to a light receiving / emitting device, the electrode wire is connected to an electric signal transmitting / receiving device, and the flow path is connected to a chemical tank or a tube via a tube or the like.
  • the composite fiber connection structure 100 includes two components: a side fixed to the brain of a small experimental animal and a side connected to the brain from the outside.
  • the side to be fixed includes the fixed ferrule 10 and the composite fiber 20, and the side to be connected includes the connection ferrule 50 and the second optical fiber 60.
  • Each configuration will be described below.
  • FIG. 2A is a perspective view of the connection ferrule and the external optical fiber of the first embodiment
  • FIG. 2B is a perspective view of the fixed ferrule and the composite fiber of the first embodiment
  • FIG. 3A is an end view of the connection ferrule of the first embodiment
  • FIG. 3B is an end view of the fixed ferrule of the first embodiment.
  • the fixed ferrule 10 has a first end face 11, a second end face 12 opposite to the first end face 11, and a first through hole 13 penetrating from the first end face 11 to the second end face 12.
  • the fixed ferrule 10 of the present embodiment is cylindrical, but is not particularly limited as long as it is cylindrical.
  • the first through-hole 13 of the present embodiment has an inner diameter corresponding to the outer dimensions of the composite fiber 20 arranged in the hole.
  • the composite fiber 20 has a first optical fiber 21 and a signal wiring 22 (penetrating portion) located along the first optical fiber 21, and the first optical fiber 21 is arranged such that one end 24 is located on the second end face 12. It is arranged in the through hole 13.
  • the composite fiber 20 protrudes further axially outward from the first end face 11 of the fixed ferrule 10.
  • the fixed ferrule 10 is fixed so that it penetrates the scalp 30 and skull 31 of the living body, for example, the head of a small experimental animal, with the first end face 11 facing the brain 34 and the second end face 12 facing the outside. You.
  • the fixed ferrule 10 For the operation of fixing the fixed ferrule 10 to the head, an operator holds the fixed ferrule 10 using a manipulator and attaches the fixed ferrule 10 to a measurement target site of the brain 34.
  • the fixed ferrule 10 is firmly fixed to the skull 31 by a bonding material 37 made of dental cement.
  • the fixing ferrule 10 may be fixed by stacking a plurality of types of bonding materials 37 in layers.
  • the composite fiber 20 is inserted into the first through hole 13 of the fixed ferrule 10 attached to a predetermined measurement site on the head.
  • the composite fiber 20 includes the first optical fiber 21 that emits light to the brain cells or receives light from the brain cells, and the first optical fiber 21 around the first optical fiber 21. And a signal wiring 22 extending along it.
  • the first optical fiber 21 may be composed of a single optical fiber, or may be a fiber bundle in which a plurality of optical fibers are bundled. In the case of a fiber bundle, by receiving the reflected light from the measurement site with each fiber, it is possible to acquire image data with the light received by each fiber as a pixel.
  • the light from the brain cells is, for example, light emission or fluorescence of the brain cells themselves. In the case of fluorescence, brain cells are irradiated with excitation light from the outside to emit fluorescence.
  • the signal wiring 22 has a conductive member embedded in a resin shape in a resin covering the periphery of the first optical fiber 21.
  • the conductive member for example, carbon (carbon nanofiber), Bi-Sn-based alloy, or the like can be used.
  • the signal wiring 22 can input an electric signal from the outside to apply electric stimulation to brain cells or output an electric signal generated in the brain cells.
  • One or more signal wirings 22 are provided. Depending on the contents of the experiment, some of the signal wirings 22 may be used, or all of the signal wirings 22 may be used.
  • the other end 25 of the composite fiber 20 is located in the brain 34, where light input / output and electric signal input / output are performed.
  • the connection ferrule 50 is a cylindrical ferrule having a third end face 51, a fourth end face 52 opposite to the third end face 51, and a second through hole 53 penetrating from the third end face 51 to the fourth end face 52.
  • the second ferrule includes a main body 54 and a conductive path 55 which is located along the second through hole 53 and partially exposed at the third end face 51.
  • the ferrule main body 54 is formed with the second through hole 53 and a groove 54a extending in the axial direction around the second through hole 53, and the conductive path 55 is provided in the groove 54a.
  • the conductive path 55 corresponds to the signal wiring 22 of the composite fiber 20 and is located at one or more positions in accordance with the number of signal wirings 22.
  • the conductive path 55 may be a linear portion, for example, the inside of the groove 54a may be filled with a conductive paste containing a conductive material or the like, and a conductive line such as a thin metal wire may be disposed in the groove 54a.
  • the conductive wire may be embedded and fixed by a conductive paste.
  • the conductive path 55 is located along the second through-hole 53 from the third end face 51. As described later, in order to electrically connect with the signal wiring 22 of the composite fiber 20, a part of the conductive path 55 is exposed on the third end face 51 and is not necessarily exposed on the fourth end face 52. There is no.
  • the conductive path 55 is configured to be partially exposed at any position other than the third end surface 51 and electrically connected to the external device via the portion in order to electrically connect to the external device.
  • the conductive path 55 includes a conductive line, a long conductive line can be used to directly connect the conductive line to an external device as a lead wire or the like. .
  • One end (third end) of the second optical fiber 60 is located on the third end face 51 side of the connection ferrule 50, and is configured to optically couple with the first optical fiber 21 of the composite fiber 20. It should just be.
  • the fiber diameter (core diameter) of the first optical fiber 21 and the fiber diameter (core diameter) of the second optical fiber 60 need not necessarily be the same but may be different.
  • the first optical fiber 21 is a fiber bundle composed of a plurality of optical fibers
  • the second optical fiber 60 is also a fiber bundle having the same configuration as the first optical fiber 21.
  • the second optical fiber 60 may be a single optical fiber.
  • the other end of the second optical fiber 60 is connected to an external device at a point further extending from the connection ferrule 50.
  • the number of fibers of the second optical fiber 60 may be larger than the number of fibers of the first optical fiber 21.
  • the core diameter of each fiber of the second optical fiber 60 may be smaller than the core diameter of each fiber of the first optical fiber 21.
  • the light emission side has higher definition, which is advantageous for improving image accuracy (resolution).
  • FIG. 4 is a partially enlarged cross-sectional view of the composite fiber connection structure of the first embodiment.
  • the fixed ferrule 10 and the connection ferrule 50 are positioned such that the second end face 12 of the fixed ferrule 10 and the third end face 51 of the connection ferrule 50 face each other.
  • the second end face 12 and the third end face 51 face each other, and the second end face 12 and the third end face 51 are in contact with each other.
  • the end (first end) of the first optical fiber 21 located on the second end face 12 side is connected to the end (second end) of the second through hole 53 located on the third end face 51 side.
  • the second optical fiber 60 is disposed in the second through hole 53, and one end of the second optical fiber 60 is located at the end on the third end face 51 side.
  • the end located on the second end face 12 side of the first optical fiber 21 and the end located on the third end face 51 side of the second optical fiber 60 are connected by optical coupling. Further, the signal wiring 22 which is a penetrating portion of the composite fiber 20 and the conductive path 55 are electrically connected.
  • the composite fiber 20 is placed in the first through hole 13 of the fixed ferrule 10 and fixed to the skull 31 in advance.
  • the second optical fiber 60 is arranged in the second through hole 53 of the connection ferrule 50.
  • the connection operation simply involves bringing the third end face 51 of the connection ferrule 50 into contact with the second end face 12 of the fixed ferrule 10 being fixed. Since the connection ferrule 50 can be connected to an external device, the composite fiber can be easily connected to the external device in a short time.
  • a sleeve 80 is used.
  • the sleeve 80 is a tubular member that is fitted to both the fixed ferrule 10 and the connection ferrule 50.
  • the axis of the sleeve 80, the axis of the fixed ferrule 10, and the axis of the connection ferrule 50 match.
  • the periphery of the second end face 12 of the fixed ferrule 10 is surrounded by a sleeve 80.
  • a part of the sleeve 80 is made to protrude outward from the second end face 12, and a space surrounded by the inner peripheral face of the sleeve 80 and the second end face 12 is provided.
  • the sleeve 80 may be a split sleeve having a slit along the length.
  • Both the fixed ferrule 10 and the ferrule body 54 of the connection ferrule 50 are made of a ceramic material.
  • zirconia is preferred because it is particularly excellent in biocompatibility.
  • additives may be included. Examples of the additive include a stabilizer such as yttria.
  • the fixed ferrule 10 and the ferrule main body 54 can be manufactured, for example, by the following steps. First, a powder of a ceramic raw material such as zirconia is kneaded with a binder to prepare a mixed material.
  • the binder can be appropriately set and used, and may be, for example, a thermoplastic polymer or a hydrophilic polymer.
  • the mixed material is press-formed using a fixed ferrule 10 and a mold having a predetermined shape (space portion) of the ferrule main body 54 to produce a formed body. Thereafter, the green compact is fired at a temperature of about 1300-1400 ° C.
  • the fixed ferrule 10 and the ferrule main body 54 made of ceramics containing zirconia can be manufactured.
  • the conductive path 55 of the connection ferrule 50 is made of a metal material such as copper, silver or gold.
  • the metal material may be a wire or a paste (solidified paste).
  • the conductive path 55 is a copper wire.
  • the conductive path 55 is a copper wire, it can be fixed to the ferrule main body 54 with a resin adhesive or the like. Further, a Bi—Sn based alloy or the like can be used as the conductive path 55.
  • FIG. 5A is a perspective view of a connection ferrule and an external optical fiber of the second embodiment
  • FIG. 5B is a perspective view of a fixed ferrule and a composite fiber of the second embodiment
  • FIG. 6A is an end view of the connection ferrule of the second embodiment
  • FIG. 6B is an end view of the fixed ferrule of the second embodiment
  • FIG. 7 is a partially enlarged cross-sectional view of the composite fiber connection structure of the second embodiment.
  • the second embodiment is different from the first embodiment in that the composite fiber 20A further has a tubular passage 23, and the connection ferrule 50A has a conductive passage 55A and a fluid flow passage 56, and other configurations are the same. Therefore, the same components are denoted by the same reference numerals, and description thereof will be omitted.
  • the composite fiber 20A has a tubular path 23 in addition to the first optical fiber 21 and the signal wiring 22.
  • the tubular path 23 is a through portion similar to the signal wiring 22.
  • the inside of the tubular passage 23 is a cavity through which a fluid can flow.
  • the connection ferrule 50A has a plurality of through holes located along the second through holes 53 instead of the grooves 54a of the first embodiment.
  • the through hole is provided from the third end face 51 to the fourth end face 52, similarly to the second through hole 53.
  • a part of the plurality of through-holes is the fluid flow path 56 as it is, and the remaining part is a conductive path 55A by filling a conductive material in the hole.
  • the conductive path 55A of the present embodiment may be one in which the inside of the through hole is filled with a conductive paste containing a conductive material or the like.
  • the wire may be arranged and fixed in the through hole, or the conductive wire may be embedded with a conductive paste.
  • the fixed ferrule 10 and the connection ferrule 50A are located such that the second end face 12 of the fixed ferrule 10 and the third end face 51 of the connection ferrule 50 face each other.
  • the second end face 12 and the third end face 51 face each other, and the second end face 12 and the third end face 51 are in contact with each other.
  • An end of the first optical fiber 21 located on the second end face 12 side and an end located on the third end face 51 side of the second optical fiber 60 are connected by optical coupling.
  • the signal wiring 22 of the composite fiber 20 is electrically connected to the conductive path 55A.
  • the tubular passage 23 of the composite fiber 20 communicates with the fluid passage 56.
  • FIG. 8A is an end view of a connection ferrule according to the third embodiment
  • FIG. 8B is an end view of a sealing material according to the third embodiment
  • FIG. 9 is a partially enlarged cross-sectional view of the composite fiber connection structure of the third embodiment.
  • the third embodiment is different from the second embodiment in that a seal member 70 is further provided between the fixed ferrule 10 and the connection ferrule 50A, and other configurations are the same. And the description is omitted.
  • connection ferrule 50A for example, the size and the position of the conductive path 55A and the fluid flow path 56 are limited due to connection with an external device or the like, and the connection ferrule 50A may not be directly connected to the signal wiring 22 and the tubular path 23 of the composite fiber. is there.
  • the seal member 70 is arranged between the second end face 12 of the fixed ferrule 10 and the third end face 51 of the connection ferrule 50, and these are connected.
  • the seal member 70 has a conductive portion 71 for electrically connecting the signal wiring 22 and the conductive path 55A, a third through hole 72 communicating with each of the tubular path 23 and the fluid flow path 56, A through hole 73 serving as a gap for optically coupling the fiber 21 and the second optical fiber 60 is located.
  • the seal member 70 may be made of a material having resistance to a fluid such as a chemical solution used in an experiment and having air-tightness and water-tightness. For example, a resin having a relatively low elasticity such as a silicone resin may be used. It is made of material.
  • the conductive portion 71 is made of, for example, a conductive resin material.
  • the conductive portion 71 may have the same elastic modulus as that of the seal member 70 to reduce stress due to the difference in elastic modulus.
  • the conductive portion 71 may have a higher elastic modulus than the seal member 70 to improve the reliability of energization.
  • the drug solution supplied to the brain cells using the tubular channel 23 and the fluid channel 56 is, for example, a solution containing a virus or a solution containing a toxin.
  • a virus is injected into the brain to perform gene expression, or to administer TTX (tetrodotoxin) blowfish to stop nerve function. That is, the activity or change of the brain cells with respect to the drug solution (drug) or the virus can be observed.
  • TTX tetrodotoxin
  • the fixed ferrule 10 and the connection ferrule 50A are located such that the second end face 12 of the fixed ferrule 10 and the third end face 51 of the connection ferrule 50 face each other.
  • the second end face 12 and the third end face 51 face each other, and the seal member 70 is located therebetween.
  • the second end face 12 of the fixed ferrule 10 and the third end face 51 of the connection ferrule 50 are in contact with the seal member 70.
  • the end of the first optical fiber 21 located on the second end face 12 side and the end of the second optical fiber 60 located on the third end face 51 side are optically coupled via the through hole 73 of the seal member 70.
  • the signal wiring 22 of the composite fiber 20 and the conductive path 55A are electrically connected via the conductive part 71 of the seal member 70.
  • the tubular passage 23 of the composite fiber 20 and the fluid passage 56 communicate with each other via the through hole 72 of the seal member 70.
  • an external device for example, there is an electroencephalogram (abbreviated as EEG) device, and activity information of brain tissue can be extracted as an electric signal by the composite fiber connection structure 100.
  • the external device may be a device that transmits and receives optical signals, such as an image recognition device, an imaging device, or a light emitting device.
  • changes in brain cells and the like can be visually confirmed with images.
  • illumination for facilitating imaging can be performed.
  • light stimulation can be applied to brain cells, and the result can be confirmed as an electric signal or an image.
  • An apparatus for measuring an electric signal includes an electroencephalograph.
  • An example of a device for passing electricity is an isolator.
  • a device for measuring light a photodetector or a photomultiplier tube, and in the case of viewing or recording as an image, the image can be viewed and photographed by a camera via an objective lens.
  • the light stimulus source include a laser diode and an LED.
  • Light used for stimulation is, for example, visible light.
  • a liquid such as a chemical solution can be sent by a syringe pump.
  • the tube 94 a tube made of a resin such as polyethylene can be used. Discharge and suction of fluid can be performed through this tube.
  • FIG. 10 is a schematic diagram showing a configuration of a composite interface device for a biological experiment.
  • the composite interface device for living body experiments includes a connection ferrule 50, a second optical fiber 60, a lead wire 90 electrically connected to the conductive path 55A, a connection terminal 91 for connecting the lead wire 90 to an external device, The third optical fiber 92 optically connected to the second optical fiber 60, the connection terminal 93 for connecting the third optical fiber to an external device, the tube 94 connected to the fluid flow path 56, and the tube 94 and the external device.
  • a connection terminal 95 is provided for connection.
  • the scalp 30, skull 31, dura 32, and brain 34 have been described as target portions.
  • a living body and a bonding material similar to the bonding material 37 described above are used. It may be used for a part that can be fixed by a member.
  • the composite fiber connection structure of the above embodiment need not necessarily be fixed so as not to move with respect to a living body, and may be used for observation of a blood vessel or a digestive organ, for example.
  • the ferrule main body of the fixed ferrule and the connection ferrule may have a polygonal shape such as a circle, a square, a triangle, or a pentagon in a cross section perpendicular to the central axis.
  • the cross section of the fixed ferrule and the main body of the ferrule is basically circular and is a part of the circumference or a straight line that is axially symmetric, that is, the cross section perpendicular to the axis is a D-shape or a substantially elliptical shape.
  • a plane portion may be provided on a part of the peripheral surface or an axially symmetric portion. If there is such a plane portion, it is easy to hold with tweezers or the like, so that handling becomes easier.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本開示は、光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体に関する。本開示の一実施形態に係る光コネクタ用フェルールは、第1貫通孔13を有する固定フェルール10と、複合ファイバ20と、第2貫通孔53を有する接続フェルール50と、を備える。複合ファイバ20は、第1光ファイバ21と、信号配線22と、を有し、固定フェルール10の第1貫通孔13内に配置されている。接続フェルール50は、導電路55を有する。固定フェルール10の第2端面12と接続フェルール50の第3端面51とが互いに対向するように位置し、第1光ファイバ21の端部と第2貫通孔53の端部とが接続し、信号配線22と導電路55とが接続している。

Description

光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体
 本開示は、光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体に関する。
 従来から、たとえばマウスやラットなどの齧(げっ)歯類およびマーモセットなどの小動物の脳から神経活動の情報を電気信号として一定期間にわたって記録するために、小動物の生体脳にワイヤ電極などを刺入して固定させる場合がある。さらなる情報取得のために、生体脳に光を照射して光刺激を与えたり、生体脳に薬剤を与えたりして、その反応を電気信号として記録することが考えられる。さらに、生体脳表面の状態を反射光による画像として記録することが考えられる。これらを考慮して、ワイヤ電極のみならず、光の照射または受光のための光路および薬剤などを注入するための流路を一本にまとめた多機能ファイバが開発されている(たとえば、非特許文献1参照)。
 本開示の光コネクタ用フェルールは、第1フェルールと、複合ファイバと、第2フェルールと、を備える。第1フェルールは、筒状であり、第1端面と、前記第1端面と反対側の第2端面と、前記第1端面から前記第2端面にかけて貫通する第1貫通孔と、を有している。複合ファイバは、第1光ファイバと、前記第1光ファイバに沿って位置する貫通部と、を有し、一端部が前記第2端面にまで延びて前記第1貫通孔内に配置されている。第2フェルールは、第3端面と、前記第3端面と反対側の第4端面と、前記第3端面から前記第4端面にかけて貫通する第2貫通孔と、を有する柱状のフェルール本体、および前記第3端面から前記第2貫通孔に沿って位置する線状部を含む。前記第2端面と前記第3端面とが互いに対向するように位置し、前記貫通部と前記線状部とが接続している。
 本開示の光コネクタは、上記の光コネクタ用フェルールと、前記第2端面と前記第3端面が対向する領域を外囲するスリーブと、を備える。
 本開示の複合ファイバ接続構造体は、上記の光コネクタと、前記第2貫通孔内に配置され、前記第1光ファイバの前記第1端部と前記フェルール本体の前記第3端面側に位置する第3端部との間で光結合する第2光ファイバと、を備える。
 本開示の接続フェルールは、第3端面と、前記第3端面と反対側の第4端面と、前記第3端面から前記第4端面にかけて貫通する第2貫通孔と、を有する柱状のフェルール本体、および前記第2貫通孔に沿って位置し、前記第3端面に一部が露出する線状部と、を含む。
本開示の第1実施形態の複合ファイバ接続構造体を示す断面図である。 第1実施形態の接続フェルールおよび外部光ファイバの斜視図である。 第1実施形態の固定フェルールおよび複合ファイバの斜視図である。 第1実施形態の接続フェルールの端面図である。 第1実施形態の固定フェルールの端面図である。 第1実施形態の複合ファイバ接続構造体の部分拡大断面図である。 第2実施形態の接続フェルールおよび外部光ファイバの斜視図である。 第2実施形態の固定フェルールおよび複合ファイバの斜視図である。 第2実施形態の接続フェルールの端面図である。 第2実施形態の固定フェルールの端面図である。 第2実施形態の複合ファイバ接続構造体の部分拡大断面図である。 第3実施形態の接続フェルールの端面図である。 第3実施形態のシール材の端面図である。 第3実施形態の複合ファイバ接続構造体の部分拡大断面図である。 生体実験用複合インターフェイス装置の構成を示す模式図である。
 以下、本開示に係る複合ファイバ接続構造体の実施の形態について、図面を参照しながら説明する。図1は本開示の第1実施形態の複合ファイバ接続構造体を示す断面図である。本実施形態の複合ファイバ接続構造体100は、例えば、齧(げっ)歯類やマーモセットなどの実験用小動物の脳から神経活動の情報を得ること、電気信号または薬液に応じた脳細胞を観察すること等に用いられる。図1では、光ファイバと信号配線とを含む複合ファイバが脳内部に留置された例を示している。複合ファイバ接続構造体100は、上記脳に固定された他の部品との間で光信号、電気信号および薬液等の送受が行なわれるものでもよい。また、複合ファイバ接続構造体100は、脳等に固定されずに用いられてもよい。複合ファイバ接続構造体100を固定しない場合には、マニピュレータを用いて、固定フェルール(後述)を保持し、測定毎にマニピュレータを使って、複合ファイバ接続構造体100が脳内に入る深さを深く、または浅くして、測定することもできる。
 複合ファイバを実際に使用するには、光路である光ファイバを受発光装置などに接続し、電極線を電気信号の送受信装置などに接続し、流路を、チューブなどを介して薬液タンクや送液装置などに接続する。従来の複合ファイバは、直径が200~500μm程度であるので、顕微鏡下で手作業によって前記の外部装置と接続する必要があり、多大な作業時間を要するとともに、熟練した作業者でなければ接続作業を実施することが困難である。そこで、本開示では、短時間で簡単に複合ファイバを外部装置に接続することが可能な光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体を提供することを目的としている。
 複合ファイバ接続構造体100は、実験用小動物の脳に固定される側と、これに外部から接続する側とのふたつの構成を含んでいる。固定される側は、固定フェルール10と複合ファイバ20とを含み、接続する側は、接続フェルール50と第2光ファイバ60とを含む。それぞれの構成について以下に説明する。
 図2Aは、第1実施形態の接続フェルールおよび外部光ファイバの斜視図であり、図2Bは、第1実施形態の固定フェルールおよび複合ファイバの斜視図である。図3Aは、第1実施形態の接続フェルールの端面図であり、図3Bは、第1実施形態の固定フェルールの端面図である。固定フェルール10は、第1端面11と、第1端面11と反対側の第2端面12と、第1端面11から第2端面12にかけて貫通する第1貫通孔13と、を有する筒状の第1フェルールである。本実施形態の固定フェルール10は、円筒状であるが、筒状であれば特に限定されない。本実施形態の第1貫通孔13は、孔内に配置される複合ファイバ20の外形寸法に応じた内径を有している。複合ファイバ20は、第1光ファイバ21と、第1光ファイバ21に沿って位置する信号配線22(貫通部)と、を有し、第2端面12に一端部24が位置するように第1貫通孔13内に配置されている。複合ファイバ20は、固定フェルール10の第1端面11からさらに軸線方向外方に突出している。固定フェルール10は、生体である、たとえば実験用小動物の頭部の頭皮30および頭骨31を貫通し、第1端面11が脳34側であり、第2端面12が外部側となるように固定される。このような固定フェルール10の頭部への固定作業は、術者がマニュピュレータを用いて固定フェルール10を把持し、脳34の測定対象部位に装着される。固定フェルール10は、歯科用セメントから成る接合材37によって、頭骨31にしっかりと固定される。複数種類の接合材37を層状に重ねて固定フェルール10を固定してもよい。
 頭部の所定の測定対象部位に装着された固定フェルール10の第1貫通孔13に、複合ファイバ20が挿入されている。前述のように、複合ファイバ20は、光を脳細胞に出射するまたは脳細胞からの光が入射する第1光ファイバ21と、第1光ファイバ21の周囲にあって、第1光ファイバ21に沿って延びる信号配線22とを含んでいる。第1光ファイバ21は、単一の光ファイバで構成されていてもよく、複数の光ファイバを束ねたファイバ束であってもよい。ファイバ束の場合、測定部位からの反射光を各ファイバで受光することにより、各ファイバで受光した光を画素とする画像データを取得することができる。なお、脳細胞からの光は、例えば、脳細胞自体の発光または蛍光である。蛍光の場合には、外部から脳細胞に励起光を照射して、蛍光を発光させる。
 信号配線22は、第1光ファイバ21の周囲を被覆する樹脂内に導電性部材が配線状に埋設されている。導電性部材は、たとえば、炭素(カーボンナノファイバ)やBi-Sn系合金などを用いることができる。信号配線22は、外部から電気信号を入力して脳細胞に電気刺激を付与したり、脳細胞で生じた電気信号を出力したりすることができる。信号配線22は、1または複数設けられる。実験内容によって、一部の信号配線22を使用するようにしてもよく、全ての信号配線22を使用するようにしてもよい。複合ファイバ20の他端部25が、脳34内に位置しており、この他端部25において、光の入出力および電気信号の入出力が行われる。
 接続フェルール50は、第3端面51と、第3端面51と反対側の第4端面52と、第3端面51から第4端面52にかけて貫通する第2貫通孔53と、を有する筒状のフェルール本体54および第2貫通孔53に沿って位置し、第3端面51に一部が露出する導電路55と、を含む第2フェルールである。本実施形態では、フェルール本体54には、第2貫通孔53と、その周囲に、軸線方向に延びる溝54aが形成されており、導電路55は、この溝54a内に設けられる。導電路55は、複合ファイバ20の信号配線22に対応しており、信号配線22の配線数に合わせて1または複数位置する。
 導電路55は、線状部であって、例えば、導電性材料を含む導電性ペーストなどによって溝54a内が埋められたものであってもよく、金属細線などの導電線が溝54a内に配置され固定されたものであってもよく、導電線が導電性ペーストで埋設されたものであってもよい。本実施形態では、導電路55は、第3端面51から第2貫通孔53に沿って位置している。後述のように、複合ファイバ20の信号配線22と電気的に接続するために、導電路55の一部は、第3端面51に露出しており、第4端面52には、必ずしも露出する必要は無い。導電路55は、外部装置と電気的に接続するために、第3端面51以外のいずれかの位置で一部が露出し、その部分を介して外部装置に接続するように構成されていればよい。たとえば、前述のように、導電路55が導電線を含んでいれば、長尺の導電線を使用することで、導電線をリード線などとして外部装置と直接接続するように構成することもできる。
 第2光ファイバ60は、その一端部(第3端部)が、接続フェルール50の第3端面51側に位置しており、複合ファイバ20の第1光ファイバ21と光結合するように構成されていればよい。第1光ファイバ21のファイバ径(コア径)と、第2光ファイバ60のファイバ径(コア径)とが、必ずしも同一である必要はなく、異なっていてもよい。本実施形態では、第1光ファイバ21は、複数の光ファイバで構成されたファイバ束であり、第2光ファイバ60も、第1光ファイバ21と同一構成のファイバ束である。ただし、第2光ファイバ60は、単一の光ファイバでもよい。また、第2光ファイバ60の他端部は、接続フェルール50からさらに延びた先で外部装置と接続する。第2光ファイバ60がファイバ束である場合に、第2光ファイバ60のファイバ数が、第1光ファイバ21のファイバ数よりも多くてもよい。第2光ファイバ60の各ファイバのコア径を、第1光ファイバ21の各ファイバのコア径より小さくしてもよい。この場合には、光の出射側がより高精細になり、画像精度(解像度)の向上に有利である。
 図4は、第1実施形態の複合ファイバ接続構造体の部分拡大断面図である。固定フェルール10と接続フェルール50とは、固定フェルール10の第2端面12と接続フェルール50の第3端面51とが互いに対向するように位置する。本実施形態では、第2端面12と第3端面51とが対向し、かつ第2端面12と第3端面51とが当接している。第1光ファイバ21の第2端面12側に位置する端部(第1端部)と第2貫通孔53の第3端面51側に位置する端部(第2端部)とが接続する。第2貫通孔53内には、第2光ファイバ60が配置されており、第3端面51側の端部には、第2光ファイバ60の一端部が位置している。すなわち、第1光ファイバ21の第2端面12側に位置する端部と、第2光ファイバ60の第3端面51側に位置する端部とが、光結合によって接続される。また、複合ファイバ20の貫通部である信号配線22と、導電路55とが電気的に接続される。
 予め固定フェルール10の第1貫通孔13内に複合ファイバ20を配置させ、頭骨31に固定させておく。一方で、接続フェルール50の第2貫通孔53内に第2光ファイバ60を配置させておく。接続作業は、接続フェルール50の第3端面51を、固定されている固定フェルール10の第2端面12に当接させるだけである。接続フェルール50は、外部装置と接続可能となっているので、短時間で簡単に複合ファイバを外部装置に接続することが可能となる。接続作業をさらに容易にするために、本実施形態では、スリーブ80を用いている。スリーブ80は、固定フェルール10および接続フェルール50の両方に外嵌する筒状部材である。スリーブ80の軸線と、固定フェルール10の軸線と、接続フェルール50の軸線とは一致する。固定フェルール10の第2端面12の周囲をスリーブ80によって外囲しておく。スリーブ80の一部を第2端面12から外方に突出するようにしておき、スリーブ80の内周面と第2端面12で囲まれる空間を設ける。接続フェルール50をスリーブ80に嵌入すると、軸合わせが成され、接続フェルール50を固定フェルール10まで突き当てれば、固定フェルール10の第2端面12と接続フェルール50の第3端面51とが当接する。スリーブ80は、長さ方向に沿ってスリットを有する割りスリーブでもよい。
 固定フェルール10および接続フェルール50のフェルール本体54は、いずれもセラミック材料で構成されている。セラミック材料としては、アルミナ(Al)、ジルコニア(ZrO)、チッ化アルミ(AlN)、炭化ケイ素(SiC)、チッ化ケイ素(Si)、フォルステライト(2MgO・SiO)、サイアロン(SiAlON)、チタン酸バリウム(BaTiO)、チタン酸ジルコン酸鉛(PZT)、フェライトおよびムライトなどであれば使用可能である。これらの中でも、特に生体適合性に優れている点で、ジルコニアが好ましい。セラミック材料がジルコニアであるときに、添加剤を含んでいてもよい。添加剤としては、たとえばイットリア等の安定化剤が挙げられる。
 固定フェルール10およびフェルール本体54は、たとえば以下の各工程により作製することができる。まず、ジルコニア等のセラミック原料の粉末をバインダとともに混練して混合材料を作製する。バインダは、適宜設定して用いることができ、例えば、熱可塑性ポリマーでもよく、親水性ポリマーでもよい。次に、この混合材料を、固定フェルール10およびフェルール本体54の所定形状(空間部分)を有する金型内を用いて加圧成形し、生成形体を作製する。その後、この生成形体を約1300~1400℃の温度で焼成する。以上の工程で、ジルコニアを含むセラミックスからなる固定フェルール10およびフェルール本体54を作製することができる。
 接続フェルール50の導電路55は、例えば銅、銀または金等の金属材料からなる。金属材料は、線材でもよくペースト(ペーストが固化されたもの)でもよい。一例として、導電路55は銅線である。導電路55が銅線である場合には、樹脂接着剤等でフェルール本体54に固定することができる。また、Bi-Sn系合金等を導電路55として使うこともできる。
 次に、第2実施形態について説明する。図5Aは、第2実施形態の接続フェルールおよび外部光ファイバの斜視図であり、図5Bは、第2実施形態の固定フェルールおよび複合ファイバの斜視図である。図6Aは、第2実施形態の接続フェルールの端面図であり、図6Bは、第2実施形態の固定フェルールの端面図である。図7は、第2実施形態の複合ファイバ接続構造体の部分拡大断面図である。第2実施形態は、複合ファイバ20Aが、さらに管状路23を有する点、接続フェルール50Aが、導電路55Aおよび流体流路56を有する点で第1実施形態と異なっており、その他の構成は同じであるので、同じ構成には同じ参照符号を付して説明は省略する。
 複合ファイバ20Aは、第1光ファイバ21および信号配線22に加え、さらに管状路23を有している。管状路23は、信号配線22と同様の貫通部である。管状路23内は、空洞であり、この中を流体が流れることができる。接続フェルール50Aは、第1実施形態の溝54aの代わりに、第2貫通孔53に沿って位置する複数の貫通孔を有している。貫通孔は、第2貫通孔53と同様に、第3端面51から第4端面52にわたって設けられている。複数の貫通孔のうち一部は、そのまま流体流路56であり、残りの一部は、孔内に導電材が埋められるなどして導電路55Aとなる。本実施形態の導電路55Aは、第1実施形態の導電路55と同様に、導電性材料を含む導電性ペーストなどによって貫通孔内が埋められたものであってもよく、金属細線などの導電線が貫通孔内に配置され固定されたものであってもよく、導電線が導電性ペーストで埋設されたものであってもよい。
 固定フェルール10と接続フェルール50Aとは、固定フェルール10の第2端面12と接続フェルール50の第3端面51とが互いに対向するように位置する。本実施形態では、第2端面12と第3端面51とが対向し、かつ第2端面12と第3端面51とが当接している。第1光ファイバ21の第2端面12側に位置する端部と、第2光ファイバ60の第3端面51側に位置する端部とが、光結合によって接続される。複合ファイバ20の信号配線22と導電路55Aとが電気的に接続される。複合ファイバ20の管状路23と流体流路56とが連通する。これにより、外部装置から実験に使用する薬液などの液体、各種のガスなどの流体を脳細胞に供給することができる。
 次に、第3実施形態について説明する。図8Aは、第3実施形態の接続フェルールの端面図であり、図8Bは、第3実施形態のシール材の端面図である。図9は、第3実施形態の複合ファイバ接続構造体の部分拡大断面図である。第3実施形態は、固定フェルール10と接続フェルール50Aとの間にさらにシール部材70を備える点で第2実施形態と異なっており、その他の構成は同じであるので、同じ構成には同じ参照符号を付して説明は省略する。接続フェルール50Aにおいて、たとえば、外部装置との接続などを理由に、導電路55Aおよび流体流路56のサイズや位置などが制限され、複合ファイバの信号配線22および管状路23と直接接続できない場合もある。そのような場合、固定フェルール10の第2端面12と接続フェルール50の第3端面51との間にシール部材70を配置して、これらを接続する。
 シール部材70には、信号配線22と導電路55Aとを電気的に接続するための導電部71と、管状路23と流体流路56のそれぞれに連通する第3貫通孔72と、第1光ファイバ21と第2光ファイバ60とが光結合するためのギャップとなる貫通孔73と、が位置している。シール部材70は、実験で使用される薬液などの流体に対する耐性を有し、気密性および水密性を有するような材料で構成されていればよく、たとえば、シリコン樹脂等の比較的低弾性の樹脂材料で構成されている。導電部71は、たとえば、導電性樹脂材料で構成される。導電部71は、シール部材70と同じ程度の弾性率のものとして、弾性率の差による応力を低減するようにしてもよい。また、導電部71は、シール部材70よりも弾性率が大きいものとして、通電の信頼性を向上させるようにしてもよい。
 管状路23と流体流路56を利用して脳細胞に供給する薬液は、たとえば、ウイルスを含む液または毒素を含む液等である。この場合、ウイルスを脳に投入し、遺伝子発現を行ったり、TTX(テトロドトキシン)のふぐ毒などを投与して、神経の機能を停止させたりする。つまり、薬液(薬物)またはウイルス等に対する脳細胞の活動または変化等を観察することができる。
 固定フェルール10と接続フェルール50Aとは、固定フェルール10の第2端面12と接続フェルール50の第3端面51とが互いに対向するように位置する。本実施形態では、第2端面12と第3端面51とが対向し、これらの間にシール部材70が位置している。固定フェルール10の第2端面12と接続フェルール50の第3端面51とは、シール部材70に当接している。第1光ファイバ21の第2端面12側に位置する端部と、第2光ファイバ60の第3端面51側に位置する端部とが、シール部材70の貫通孔73を介して光結合によって接続される。複合ファイバ20の信号配線22と導電路55Aとは、シール部材70の導電部71を介して電気的に接続される。複合ファイバ20の管状路23と流体流路56とは、シール部材70の貫通孔72を介して連通する。
 外部装置としては、たとえば脳波計測(Electroencephalogram;略称EEG)装置があり、脳組織の活動情報を複合ファイバ接続構造体100によって、電気信号として取り出すことができる。また、外部装置は、画像認識装置、撮像装置または発光装置等の、光信号の送受を行うものでもよい。この場合には、脳細胞の変化等を画像により目視確認することができる。また、撮像を容易にするための照明を行うこともできる。また脳細胞に光刺激を与えて、その結果を電気信号または画像として確認することもできる。
 より具体的には、次のとおりである。電気信号を測定する装置として、脳波計測器が挙げられる。電気を流す装置としては、アイソレータが挙げられる。これにより、神経細胞の働きでどのような電気信号が発せられているかを測定することができる。光を測定する装置としては、フォトディテクタや光電子倍増管、映像として見るまたは記録する場合は、対物レンズを介して、カメラで映像を見ることもでき、撮影することもできる。光刺激源としては、レーザーダイオードやLED等が挙げられる。刺激に用いる光は、例えば可視光である。流体に関しては、シリンジポンプによる薬液等の送液ができる。チューブ94としては、ポリエチレン等の樹脂製のチューブを用いることができる。このチューブ介して、流体の吐出や吸引が出来る。
 図10は、生体実験用複合インターフェイス装置の構成を示す模式図である。生体実験用複合インターフェイス装置は、接続フェルール50および第2光ファイバ60に、さらに導電路55Aに電気的に接続されたリード線90、リード線90と外部装置と接続するための接続端子91、第2光ファイバ60に光接続された第3光ファイバ92、第3光ファイバと外部装置とを接続するための接続端子93、流体流路56に接続されたチューブ94、チューブ94と外部装置とを接続するために接続端子95を備える。接続フェルール50および第2光ファイバ60を、実験用生体脳に予め固定された固定フェルール10および複合ファイバ20に接続することで、実験用生体脳と外部装置とを接続することができる。
 前述の実施形態では、対象部位として、頭皮30、頭骨31、硬膜32、脳34について述べたが、本開示の他の実施形態では、たとえば、生体であって上記接合材37と同様の接合部材で固定できる部位に用いられてもよい。また、必ずしも生体に対して動かないように固定される必要はなく、前述の実施形態の複合ファイバ接続構造体が例えば血管または消化器官内の観察に用いられてもよい。さらに、固定フェルールおよび接続フェルールのフェルール本体は、その中心軸線に垂直な断面が、円形、四角形、三角形、五角形などの多角形であってもよい。また、固定フェルールおよびフェルール本体の上記断面は、基本的に円形であって円周の一部または軸対称に直線状であるもの、すなわち軸直角断面がD字状または略長円状等であって、周面の一部または軸対称部位に平面部分が設けられてもよい。このような平面部分があれば、ピンセット等で持ちやすいので、取り扱いがより容易になる。
 本開示は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 10  固定フェルール
 11  第1端面
 12  第2端面
 13  第1貫通孔
 20  複合ファイバ
 20A 複合ファイバ
 21  第1光ファイバ
 22  信号配線
 23  管状路
 24  一端部
 25  他端部
 30  頭皮
 31  頭骨
 32  硬膜
 34  脳
 37  接合材
 50  接続フェルール
 50A 接続フェルール
 51  第3端面
 52  第4端面
 53  第2貫通孔
 54  フェルール本体
 54a 溝
 55  導電路
 55A 導電路
 56  流体流路
 60  第2光ファイバ
 70  シール部材
 71  導電部
 72  貫通孔
 73  貫通孔
 80  スリーブ
 90  リード線
 91  接続端子
 92  第3光ファイバ
 93  接続端子
 94  チューブ
 95  接続端子
 100 複合ファイバ接続構造体

Claims (8)

  1.  第1端面と、前記第1端面と反対側の第2端面と、前記第1端面から前記第2端面にかけて貫通する第1貫通孔と、を有する筒状の第1フェルールと、
     第1光ファイバと、前記第1光ファイバに沿って位置する貫通部と、を有し、一端部が前記第2端面にまで延びて前記第1貫通孔内に配置された複合ファイバと、
     第3端面と、前記第3端面と反対側の第4端面と、前記第3端面から前記第4端面にかけて貫通する第2貫通孔と、を有する筒状のフェルール本体、および前記第3端面から前記第2貫通孔に沿って位置する線状部、を含む第2フェルールと、を備え、
     前記第2端面と前記第3端面とが互いに対向するように位置しており、
     前記貫通部と前記線状部とが接続している、光コネクタ用フェルール。
  2.  前記貫通部は、導電部材で構成された信号配線であり、
     前記線状部は、前記信号配線と電気的に接続する導電路である、請求項1記載の光コネクタ用フェルール。
  3.  前記貫通部は、管状路であり、
     前記線状部は、前記管状路と連通する流路である、請求項1記載の光コネクタ用フェルール。
  4.  前記第2端面と前記第3端面との間に位置するシール部材を更に備えており、
     該シール部材は、前記管状路と前記流路のそれぞれに連通する第3貫通孔を有している、請求項3記載の光コネクタ用フェルール。
  5.  前記第1フェルールおよび前記フェルール本体の少なくとも一方がジルコニアからなる、請求項1~4のいずれか1つに記載の光コネクタ用フェルール。
  6.  請求項1~5のいずれか1つに記載の光コネクタ用フェルールと、
     前記第2端面と前記第3端面が対向する領域を外囲するスリーブと、を備える光コネクタ。
  7.  請求項6記載の光コネクタと、
     前記第2貫通孔内に配置され、前記第1光ファイバの前記第1端部と前記フェルール本体の前記第3端面側に位置する第3端部との間で光結合する第2光ファイバと、を備える複合ファイバ接続構造体。
  8.  第3端面と、前記第3端面と反対側の第4端面と、前記第3端面から前記第4端面にかけて貫通する第2貫通孔と、を有する筒状のフェルール本体、および前記第3端面から前記第2貫通孔に沿って位置する線状部を含む接続フェルール。
PCT/JP2019/034287 2018-08-31 2019-08-30 光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体 WO2020045669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020539654A JPWO2020045669A1 (ja) 2018-08-31 2019-08-30 光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体
US17/270,888 US11675141B2 (en) 2018-08-31 2019-08-30 Optical connector ferrule, optical connector, and composite fiber connecting assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163950 2018-08-31
JP2018163950 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045669A1 true WO2020045669A1 (ja) 2020-03-05

Family

ID=69643880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034287 WO2020045669A1 (ja) 2018-08-31 2019-08-30 光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体

Country Status (3)

Country Link
US (1) US11675141B2 (ja)
JP (1) JPWO2020045669A1 (ja)
WO (1) WO2020045669A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151158A4 (en) * 2020-05-15 2024-05-29 Kyocera Corporation BIOMEDICAL TUBE AND BIOMETRIC DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222236A (ja) * 1993-01-27 1994-08-12 Sumitomo Electric Ind Ltd 光ファイバ通信ライン
US20040218872A1 (en) * 2003-04-29 2004-11-04 Low Alvin H.S. Optical fiber receptacle, an optical fiber ferrule and an optical fiber receptacle and ferrule interconnection system
US20110224554A1 (en) * 2010-03-12 2011-09-15 Optomak Inc. Optogenetic Fiber Optic Cannula and Adapted Fiber Optic Connector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325783A (ja) * 2003-04-24 2004-11-18 Sony Corp 光電複合コネクタ、それを用いた光電複合ケーブルおよびネットワーク機器
US7572063B2 (en) * 2005-09-12 2009-08-11 Stratos International, Inc. Opto-electric connector
JP5330149B2 (ja) * 2009-08-07 2013-10-30 富士通コンポーネント株式会社 光電気複合型コネクタ及び電気複合型コネクタの製造方法
JP5582849B2 (ja) * 2010-04-02 2014-09-03 日本航空電子工業株式会社 光電気複合接続機構
JP5969840B2 (ja) * 2012-06-29 2016-08-17 オリンパス株式会社 光電気複合コネクタ
US10016136B2 (en) * 2014-06-20 2018-07-10 Optomak, Inc. Image relaying cannula with detachable self-aligning connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222236A (ja) * 1993-01-27 1994-08-12 Sumitomo Electric Ind Ltd 光ファイバ通信ライン
US20040218872A1 (en) * 2003-04-29 2004-11-04 Low Alvin H.S. Optical fiber receptacle, an optical fiber ferrule and an optical fiber receptacle and ferrule interconnection system
US20110224554A1 (en) * 2010-03-12 2011-09-15 Optomak Inc. Optogenetic Fiber Optic Cannula and Adapted Fiber Optic Connector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CANALES, ANDRES ET AL.: "Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo", NATURE BIOTECHNOLOGY, vol. 33, no. 3, 2015, pages 277 - 284, XP055637057, DOI: 10.1038/nbt.3093 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151158A4 (en) * 2020-05-15 2024-05-29 Kyocera Corporation BIOMEDICAL TUBE AND BIOMETRIC DEVICE

Also Published As

Publication number Publication date
JPWO2020045669A1 (ja) 2021-08-26
US20210181434A1 (en) 2021-06-17
US11675141B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US10285605B2 (en) Integrated optical neural probe
WO2014002556A1 (ja) 走査型内視鏡および走査型内視鏡の製造方法
CN103826523B (zh) 内窥镜和内窥镜装置
US20230095948A1 (en) A deep tissue ultrasonic implantable luminescence oxygen sensor
WO2020045669A1 (ja) 光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体
US9517052B2 (en) Ultrasound endoscope
US11762156B2 (en) Optical module for endoscope, endoscope, and manufacturing method of optical module for endoscope
JP2013192825A (ja) 光走査型内視鏡
Rudmann et al. Integrated optoelectronic microprobes
CN105828689A (zh) 摄像装置和内窥镜装置
CN104053394B (zh) 内窥镜装置和治疗装置
WO2014057774A1 (ja) 内視鏡装置
US11944456B2 (en) Ceramic guide, ceramic guide device, and cermic guide module
US20180132820A1 (en) Ultrasound transducer module and ultrasound endoscope
KR101935970B1 (ko) 삼차원 공초점 스캐닝 니들 프로브
US20170196538A1 (en) Ultrasound probe
JP4963074B2 (ja) 計測デバイス
US20160081535A1 (en) Scanning endoscope
JP7489072B2 (ja) 生体用チューブおよび生体測定装置
WO2020152628A2 (en) Tissue access device
Richter et al. Optical method to preserve residual hearing in patients receiving a cochlear implant
JP2015128548A (ja) 光走査型内視鏡
CN113892957A (zh) 在体膜片钳与光纤记录结合的神经信号记录方法及系统
Ohta et al. Implantable CMOS microphotonic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854543

Country of ref document: EP

Kind code of ref document: A1