WO2020045117A1 - Hat-shaped steel sheet pile and method for producing steel sheet pile wall - Google Patents
Hat-shaped steel sheet pile and method for producing steel sheet pile wall Download PDFInfo
- Publication number
- WO2020045117A1 WO2020045117A1 PCT/JP2019/032113 JP2019032113W WO2020045117A1 WO 2020045117 A1 WO2020045117 A1 WO 2020045117A1 JP 2019032113 W JP2019032113 W JP 2019032113W WO 2020045117 A1 WO2020045117 A1 WO 2020045117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- sheet pile
- hat
- shaped steel
- pair
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/02—Sheet piles or sheet pile bulkheads
- E02D5/03—Prefabricated parts, e.g. composite sheet piles
- E02D5/04—Prefabricated parts, e.g. composite sheet piles made of steel
Definitions
- the present invention relates to a hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall.
- Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing.
- Various techniques for improving the workability and cross-sectional performance of hat-shaped steel sheet piles have been proposed so far.
- the section performance is defined by defining the relation between the unit weight per 1 m of the wall width of the steel sheet pile wall and the second moment of area, and the relation between the effective width and the flange width of the hat-shaped steel sheet pile.
- vibro-hammer method is a method for pouring while applying longitudinal vibration V V of Da ⁇ traveling direction (z direction in the drawing) to the hat-shaped steel sheet pile 1 with the vibro-hammer 6.
- an object of the present invention is to provide a new and improved hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall, which can effectively reduce flapping generated when the hat-shaped steel sheet pile is driven.
- a hat-shaped steel sheet pile includes, in a cross section orthogonal to a longitudinal direction, a web extending along a width direction on a first side in a thickness direction, and a width extending from both ends in a width direction of the web.
- a pair of flanges extending on both sides in the thickness direction and toward the second side in the thickness direction, and along the width direction from the respective ends of the pair of flanges on the second side in the thickness direction and in the width direction.
- a pair of mating joints formed at the ends of the pair of arms opposite the pair of flanges, respectively, and having an effective width W of 105 cm.
- the effective width W may be 120 cm or more, and the total length B TTL and the weight wt may satisfy the relationship of the following formula (ii).
- the method of manufacturing a steel sheet pile wall may include a step of driving the hat-shaped steel sheet pile into the ground while applying longitudinal vibration in the driving direction of the hat-shaped steel sheet pile using a vibratory hammer.
- FIG. 5 It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. It is a figure for demonstrating the fitting center of the hat-shaped steel sheet pile shown in FIG. 5 is a graph showing the effective width on the vertical axis and the index on the frequency of the membrane vibration on the horizontal axis for Comparative Examples and Examples. It is a graph which shows the frequency weighting characteristic of noise. It is a figure for explaining fluttering which occurs at the time of driving of a hat-shaped steel sheet pile. It is a figure for explaining fluttering which occurs at the time of driving of a hat-shaped steel sheet pile.
- FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention.
- a hat-shaped steel sheet pile 1 has a width on a first side in a thickness direction (a depth side in a y direction in the figure) in a cross section orthogonal to a longitudinal direction (z direction in the figure).
- Web 2 extending in the direction (x direction in the figure), and from both ends in the width direction of the web 2 to both sides in the width direction and to the second side in the thickness direction (front side in the y direction in the figure)
- Flanges 3A, 3B extending toward the width direction and forming a flange angle ⁇ (the acute angle side) with the width direction, and from the respective ends of the flanges 3A, 3B on the second side in the thickness direction, along the width direction.
- Arms 4A and 4B extending toward both sides in the width direction, and fitting joints 5A and 5B formed at ends of arms 4A and 4B opposite to flanges 3A and 3B, respectively.
- FIG. 1 shows the dimensions of each part of the hat-shaped steel sheet pile 1, specifically, the length Bw and the thickness tw of the web 2, the length Bf of the flanges 3A and 3B, and the arms 4A and 4B. Is shown as the length Ba.
- the length Bw is a distance between two intersections formed between the thickness center line of the web 2 and the respective thickness center lines of the flanges 3A and 3B.
- the length Bf is the distance between two intersections formed between the thickness center line of the flange 3A and the respective thickness center lines of the web 2 and the arm 4A.
- the length Ba is the distance between the intersections formed between the thickness center line of the thickness center line and the flange 3A of the arms 4A, a fitting center E A fitting joint 5A. Since the cross-sectional shape of the hat-shaped steel sheet pile 1 is symmetrical about the neutral axis in the width direction (the y-axis in the figure), the flange 3B has the same length Bf as the flange 3A, and the arm 4B has the arm 4A.
- the length is Ba as in the case of
- FIG. 1 shows an effective width W and a total length B TTL of the hat-shaped steel sheet pile 1.
- the effective width W is the distance between the mating fitting 5A, each of the mating centers E A of 5B, E B.
- the total length B TTL, the web 2, the flange 3A of the illustrated cross-section, 3B, and the arms 4A, a total length of 4B, length Bw, B using a length Bf, and length Ba TTL Bw + 2Bf + 2Ba.
- the effective width W is 105 cm or more, and the hat-shaped steel sheet pile per unit area on a side surface parallel to the total length B TTL and the longitudinal direction. 1 satisfies a predetermined relationship.
- the effective width W, the web length Bw, the sectional height H, and the flange angle ⁇ are W ⁇ Bw ⁇ 2H / tan ⁇ > 0 is satisfied.
- the sectional height H is the sectional height of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the protrusions of the fitting joints 5A and 5B.
- FIG. 2 is a view for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. 1.
- the fitting joint 5B of another hat-shaped steel sheet pile 1 that is driven adjacent to the fitting joint 5B of the hat-shaped steel sheet pile 1 is fitted.
- Fitting center E A fitting joint 5A when placing the arms 4B and the fitting joint 5B another hat-shaped steel sheet pile 1 virtually, end position of the arm 4A of the fitting joint 5A is formed And a point on the designed thickness center line of the arm 4A and the arm 4B, which is located between the end position of the arm 4B where the virtual fitting joint 5B is formed.
- Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly.
- Displacement in the thickness direction of the hat-shaped steel sheet pile 1 is restrained by a joint between the top end of the hat-shaped steel sheet pile 1 gripped by the vibratory hammer 6, the ground, and another hat-shaped steel sheet pile 1P previously driven.
- the portion near the ground surface is a fixed point of vibration in the thickness direction of the hat-shaped steel sheet pile 1. Accordingly, the distance between the fixed point is the longest of the pouring initially low natural frequency of the hat-shaped steel sheet pile 1, the hat-shaped steel sheet pile 1 at this stage resonance membrane vibrating V M, less number of vibration and therefore a large vibration is generated in the amplitude, membrane vibration V M will be amplified.
- the frequency f mn of the membrane vibration in the rectangular plate having the side lengths a and b is calculated using the number of modes m and n, the gravitational acceleration g, the weight wt of the plate per unit area, and the in-plane tension S as follows. It can be expressed as in equation (1). From equation (1), it can be seen that the larger the weight wt and the longer the side lengths a and b, the smaller the frequency fmn , that is, the lower the frequency of the film vibration.
- the low frequency of than the membrane vibration example conventional hat-shaped steel sheet pile i.e. the frequency of the membrane vibration of the conventional hat-shaped steel sheet pile the frequency of the membrane vibration of the hat-shaped steel sheet pile 1 f mn 'f mn
- the ratio f ′ / f of the frequency of the membrane vibration to the conventional hat-shaped steel sheet pile is: It can be expressed as the following equation (2).
- the higher mode (m> 1 or n> 1) does not need to be considered as a cause of the fluttering of the hat-shaped steel sheet pile 1 because the amplitude becomes smaller.
- the side length b in the longitudinal direction of the hat-shaped steel sheet pile is sufficiently longer than the side length a in the cross-sectional direction (for casting).
- the side length b is 10 times or more the side length a.
- the terms (a ′ / b) 2 and (a / b) 2 in the equation (2) can be ignored because they are sufficiently small.
- the frequency ratio f ′ / f can be expressed as the following equation (3).
- the side in the cross-sectional direction of the hat-shaped steel sheet pile is required.
- the length a that is, the total length B TTL shown in FIG. 1 is increased, or the weight wt of the hat-shaped steel sheet pile 1 per unit area on the side surface parallel to the longitudinal direction (the web 2, the flanges 3A, 3B, And the average value of the arms 4A and 4B).
- the total length B TTL can be increased by increasing the effective width W of the hat-shaped steel sheet pile 1.
- the expansion of the effective width W is economical because the number of the hat-shaped steel sheet piles 1 constituting the steel sheet pile wall having the same wall width is reduced, so that the effective width W is set to 105 cm or more below.
- the appropriate total length B TTL and weight wt were considered.
- Table 1 shows cross-sectional specifications of a conventional hat-shaped steel sheet pile (Comparative Examples 1 to 3) and a hat-shaped steel sheet pile (Examples 1 to 9) according to the embodiment of the present invention.
- W is the effective width (cm)
- I is the second moment of area per cm of the steel sheet pile wall (cm 4 / m)
- B TTL is the total length (cm)
- wt N / cm 2).
- FIG. 3 shows the effective width W (cm) on the vertical axis and the K (N -1/2 ) shown in Table 1 on the horizontal axis for Comparative Examples 1 to 3 and Examples 1 to 9 described above.
- FIG. Referring to the graph of FIG. 3, in Examples 1 to 9, the effective width W is equal to or greater than 105 cm and the index K calculated by the equation (4) is included in the area of 0.030N- 1 / 2 or less. Have been.
- the hat-shaped steel sheet pile of Examples 1 to 9, both well below the 1 frequency ratio r f, the membrane vibration than Comparative Examples 1 to 3 are low-frequency reduction.
- the frequency ratio r f is less than 0.9
- Comparative Examples 1 to 3 Example 2 membrane vibration is significantly lower frequency of than, Example 3, Example 5, Example 6
- the effective width W is 120 cm or more
- the index K is 0.027 N- 1 / 2 or less.
- FIG. 4 is a graph showing frequency weighting characteristics of noise.
- Excitation frequency of the longitudinal vibration V V by vibro-hammer 6 shown in FIGS. 5A and 5B is generally about 20 Hz ⁇ 60 Hz.
- the frequency of the membrane vibration V M when flutter hat-shaped steel sheet pile 1 has occurred is to match the excitation frequency, the frequency of the membrane vibration V M also becomes 20 Hz ⁇ 60 Hz.
- the human auditory characteristic shown as the A characteristic in FIG. 4 the perceived sound pressure level (dB) decreases as the frequency decreases in this frequency range.
- low frequency of vibration V M is not only the improvement of workability, it is effective in reducing noise.
- the construction tests which we have carried out, by lowering the frequency of the membrane vibration V M, noise reduction comparable to reduction in relative response shown in FIG. 4 have been identified.
- a hat-shaped steel sheet pile having a cross-sectional shape in which flapping occurring during driving is effectively reduced is provided.
- a hat-shaped steel sheet pile is, for example, a steel sheet pile wall including a step of driving the hat-shaped steel sheet pile into the ground while applying longitudinal vibration in the driving direction of the hat-shaped steel sheet pile using a vibro hammer as described above.
- What has been described above with reference to FIGS. 5A and 5B is a so-called double-chuck type vibratory hammer that applies longitudinal vibration to both flange portions of a hat-shaped steel sheet pile (for example, see Japanese Patent No. 3916621). If the fluttering generated at the time of driving is reduced by the embodiment of the present invention, a so-called single-chuck type vibratory hammer that applies longitudinal vibration to the web portion of the hat-shaped steel sheet pile is also possible.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
Abstract
This hat-shaped steel sheet pile is provided with: a web extending along the width direction on a first side in the thickness direction in a cross section orthogonal to the lengthwise direction; a pair of flanges extending on both sides in the width direction from both ends of the web in the width direction and toward a second side in the thickness direction; a pair of arms extending along the width direction from the ends of each of the pair of flanges on the second side in the thickness direction and toward both sides in the width direction; and a pair of fitting joints formed on the end sections of each of the pair of arms on the opposite side from each of the pair of flanges. The hat-shaped steel sheet pile has an effective width W of 105 cm or more, and the total length BTTL (cm) of the web, the pair of flanges, and the pair of arms in the cross section and the weight wt (N/cm2) of the hat-shaped steel sheet pile per unit area in a side surface parallel to the lengthwise direction satisfy formula (i) indicated below.
Description
本発明は、ハット形鋼矢板および鋼矢板壁の製造方法に関する。
The present invention relates to a hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall.
ハット形鋼矢板は、土木建築工事において、土留めや止水のための壁体を構築するために広く利用されている。ハット形鋼矢板の施工性や断面性能を向上させるための技術は、これまでにも種々提案されている。例えば、特許文献1には、鋼矢板壁の壁幅1mあたりの単位重量と断面二次モーメントとの関係、およびハット形鋼矢板の有効幅とフランジ幅の関係を規定することによって、断面性能を確保しつつ単位重量が小さい経済性に優れたハット形鋼矢板を提供する技術が記載されている。
形 Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing. Various techniques for improving the workability and cross-sectional performance of hat-shaped steel sheet piles have been proposed so far. For example, in Patent Document 1, the section performance is defined by defining the relation between the unit weight per 1 m of the wall width of the steel sheet pile wall and the second moment of area, and the relation between the effective width and the flange width of the hat-shaped steel sheet pile. There is described a technique for providing a hat-shaped steel sheet pile having a small unit weight and excellent economic efficiency while securing the same.
一方、図5Aおよび図5Bに示すようにバイブロハンマ工法でハット形鋼矢板を打設する際には、ハット形鋼矢板にばたつきが生じることがある。図5Aに示されるように、バイブロハンマ工法は、バイブロハンマ6を用いてハット形鋼矢板1に打設進行方向(図中のz方向)の縦振動VVを与えながら打設する工法である。このようなバイブロハンマ工法では、先行して打設されたハット形鋼矢板1Pとの継手の嵌合による拘束、地盤抵抗、およびバイブロハンマ6から与えられる縦振動VVの方向が打設進行方向からわずかにずれることの影響などによって、ハット形鋼矢板1の厚さ方向に膜振動VMが発生する。図5Bに模式的に示すように、膜振動VMが視認可能な程度にまで増幅されたものが、ハット形鋼矢板1のばたつきと呼ばれる。
On the other hand, as shown in FIG. 5A and FIG. 5B, when the hat-shaped steel sheet pile is driven by the vibro-hammer method, the hat-shaped steel sheet pile may flap. As shown in FIG. 5A, vibro-hammer method is a method for pouring while applying longitudinal vibration V V of Da設traveling direction (z direction in the drawing) to the hat-shaped steel sheet pile 1 with the vibro-hammer 6. In such a vibro-hammer method, prior to restriction by the fitting of the joint between the pouring has been hat-type steel sheet pile 1P, soil resistance, and the direction of the longitudinal vibration V V applied from vibro-hammer 6 slightly from pouring the traveling direction the influence of the shift, the membrane vibration V M is generated in the thickness direction of the hat-shaped steel sheet pile 1. As shown schematically in Figure 5B, which membrane vibration V M is amplified to the extent visible is called the flutter of the hat-shaped steel sheet pile 1.
上記のようなハット形鋼矢板1のばたつきが生じると、先行して打設したハット形鋼矢板1Pとの継手の嵌合部において、膜振動VMによって厚さ方向(図中のy方向)に振動するハット形鋼矢板1の継手が振動しないハット形鋼矢板1Pの継手に打ち付けられることになり、騒音が増大したり継手が損傷したりする可能性がある。また、ハット形鋼矢板1の膜振動VMはハット形鋼矢板1の打設進行方向(図中のz方向)への直進性を損ね、施工品質の悪化につながる場合もある。従って、ハット形鋼矢板1の施工上はばたつきを低減することが望ましいが、そのための方法は特許文献1のような従来技術には示されていない。
If fluttering of the hat-shaped steel sheet pile 1 described above occurs, prior to the fitting portion of the joint of the pouring the hat-shaped steel sheet pile 1P, the thickness direction by the membrane vibration V M (y direction in the drawing) The joint of the hat-shaped steel sheet pile 1 that vibrates rapidly is hit against the joint of the hat-shaped steel sheet pile 1P that does not vibrate, which may increase the noise or damage the joint. Moreover, film vibration V M of the hat-shaped steel sheet pile 1 impair the linearity of the pouring traveling direction of the hat-shaped steel sheet pile 1 (z direction in the drawing), in some cases it leads to deterioration of the construction quality. Therefore, it is desirable to reduce flapping in the construction of the hat-shaped steel sheet pile 1, but a method for that purpose is not shown in the prior art as in Patent Document 1.
そこで、本発明は、ハット形鋼矢板の打設時に発生するばたつきを効果的に低減することが可能な、新規かつ改良されたハット形鋼矢板および鋼矢板壁の製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a new and improved hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall, which can effectively reduce flapping generated when the hat-shaped steel sheet pile is driven. And
本発明のある観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、厚さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ厚さ方向の第2の側に向かって延びる1対のフランジと、厚さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、有効幅Wが105cm以上であり、かつ断面におけるウェブ、1対のフランジ、および1対のアームの合計長さBTTL(cm)と、長手方向に対して平行な側面における単位面積あたりのハット形鋼矢板の重量wt(N/cm2)とが以下の式(i)の関係を満たす。
According to an aspect of the present invention, a hat-shaped steel sheet pile includes, in a cross section orthogonal to a longitudinal direction, a web extending along a width direction on a first side in a thickness direction, and a width extending from both ends in a width direction of the web. A pair of flanges extending on both sides in the thickness direction and toward the second side in the thickness direction, and along the width direction from the respective ends of the pair of flanges on the second side in the thickness direction and in the width direction. And a pair of mating joints formed at the ends of the pair of arms opposite the pair of flanges, respectively, and having an effective width W of 105 cm. And the total length B TTL (cm) of the web, the pair of flanges, and the pair of arms in cross section, and the weight wt of the hat-shaped steel sheet pile per unit area on the side surface parallel to the longitudinal direction (N / cm 2 ) and the relationship of the following equation (i) Fulfill.
上記のハット形鋼矢板において、有効幅Wが120cm以上であり、かつ合計長さBTTLと重量wtとが以下の式(ii)の関係を満たしてもよい。
In the above-mentioned hat-shaped steel sheet pile, the effective width W may be 120 cm or more, and the total length B TTL and the weight wt may satisfy the relationship of the following formula (ii).
本発明の別の観点によれば、上記のハット形鋼矢板を用いた鋼矢板壁の製造方法が提供される。鋼矢板壁の製造方法は、バイブロハンマを用いてハット形鋼矢板に打設進行方向の縦振動を与えながらハット形鋼矢板を地中に打設する工程を含んでもよい。
According to another aspect of the present invention, there is provided a method for manufacturing a steel sheet pile wall using the above hat-shaped steel sheet pile. The method of manufacturing a steel sheet pile wall may include a step of driving the hat-shaped steel sheet pile into the ground while applying longitudinal vibration in the driving direction of the hat-shaped steel sheet pile using a vibratory hammer.
上記の構成によれば、ハット形鋼矢板の打設時に発生するばたつきを効果的に低減することができる。
According to the above configuration, it is possible to effectively reduce the fluttering that occurs when the hat-shaped steel sheet pile is driven.
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
図1は、本発明の一実施形態に係るハット形鋼矢板の断面図である。図1に示されるように、ハット形鋼矢板1は、長手方向(図中のz方向)に直交する断面において、厚さ方向の第1の側(図中のy方向の奥側)で幅方向(図中のx方向)に沿って延びるウェブ2と、ウェブ2の幅方向の両端部から幅方向の両側、かつ厚さ方向の第2の側(図中のy方向の手前側)に向かって延び、幅方向との間にフランジ角度θ(鋭角側)をなすフランジ3A,3Bと、厚さ方向の第2の側でフランジ3A,3Bのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びるアーム4A,4Bと、アーム4A,4Bのそれぞれのフランジ3A,3Bとは反対側の端部に形成される嵌合継手5A,5Bとを含む。
FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention. As shown in FIG. 1, a hat-shaped steel sheet pile 1 has a width on a first side in a thickness direction (a depth side in a y direction in the figure) in a cross section orthogonal to a longitudinal direction (z direction in the figure). Web 2 extending in the direction (x direction in the figure), and from both ends in the width direction of the web 2 to both sides in the width direction and to the second side in the thickness direction (front side in the y direction in the figure) Flanges 3A, 3B extending toward the width direction and forming a flange angle θ (the acute angle side) with the width direction, and from the respective ends of the flanges 3A, 3B on the second side in the thickness direction, along the width direction. Arms 4A and 4B extending toward both sides in the width direction, and fitting joints 5A and 5B formed at ends of arms 4A and 4B opposite to flanges 3A and 3B, respectively.
ここで、図1には、ハット形鋼矢板1の各部分の寸法、具体的には、ウェブ2の長さBwおよび板厚twと、フランジ3A,3Bの長さBfと、アーム4A,4Bの長さBaとが示されている。ここで、長さBwは、ウェブ2の板厚中心線と、フランジ3A,3Bのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。同様に、長さBfは、フランジ3Aの板厚中心線と、ウェブ2およびアーム4Aのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。また、長さBaは、アーム4Aの板厚中心線とフランジ3Aの板厚中心線との間に形成される交点と、嵌合継手5Aの嵌合中心EAとの間の距離である。なお、ハット形鋼矢板1の断面形状は幅方向の中立軸(図中のy軸)について対称であるため、フランジ3Bについてもフランジ3Aと同様に長さBfであり、アーム4Bについてもアーム4Aと同様に長さBaである。
FIG. 1 shows the dimensions of each part of the hat-shaped steel sheet pile 1, specifically, the length Bw and the thickness tw of the web 2, the length Bf of the flanges 3A and 3B, and the arms 4A and 4B. Is shown as the length Ba. Here, the length Bw is a distance between two intersections formed between the thickness center line of the web 2 and the respective thickness center lines of the flanges 3A and 3B. Similarly, the length Bf is the distance between two intersections formed between the thickness center line of the flange 3A and the respective thickness center lines of the web 2 and the arm 4A. The length Ba is the distance between the intersections formed between the thickness center line of the thickness center line and the flange 3A of the arms 4A, a fitting center E A fitting joint 5A. Since the cross-sectional shape of the hat-shaped steel sheet pile 1 is symmetrical about the neutral axis in the width direction (the y-axis in the figure), the flange 3B has the same length Bf as the flange 3A, and the arm 4B has the arm 4A. The length is Ba as in the case of
さらに、図1には、ハット形鋼矢板1の有効幅Wおよび合計長さBTTLが示されている。ここで、有効幅Wは、嵌合継手5A,5Bのそれぞれの嵌合中心EA,EBの間の距離である。合計長さBTTLは、図示された断面におけるウェブ2、フランジ3A,3B、およびアーム4A,4Bの長さの合計であり、長さBw、長さBf、および長さBaを用いてBTTL=Bw+2Bf+2Baと表すことができる。後述するように、本実施形態に係るハット形鋼矢板1では、有効幅Wが105cm以上であり、かつ合計長さBTTLと長手方向に対して平行な側面における単位面積あたりのハット形鋼矢板1の重量wtとが所定の関係を満たす。
Further, FIG. 1 shows an effective width W and a total length B TTL of the hat-shaped steel sheet pile 1. Here, the effective width W is the distance between the mating fitting 5A, each of the mating centers E A of 5B, E B. The total length B TTL, the web 2, the flange 3A of the illustrated cross-section, 3B, and the arms 4A, a total length of 4B, length Bw, B using a length Bf, and length Ba TTL = Bw + 2Bf + 2Ba. As described below, in the hat-shaped steel sheet pile 1 according to the present embodiment, the effective width W is 105 cm or more, and the hat-shaped steel sheet pile per unit area on a side surface parallel to the total length B TTL and the longitudinal direction. 1 satisfies a predetermined relationship.
なお、図1に示されたハット形鋼矢板1の形状が幾何学的に成り立つ場合、有効幅W、ウェブ長さBw、断面高さHおよびフランジ角度θは、W-Bw-2H/tanθ>0の関係を満たしている。ここで、断面高さHは、ウェブ2およびアーム4A,4Bの板厚を含み嵌合継手5A,5Bの張り出しを含まないハット形鋼矢板1の断面の高さである。
When the shape of the hat-shaped steel sheet pile 1 shown in FIG. 1 is geometrically established, the effective width W, the web length Bw, the sectional height H, and the flange angle θ are W−Bw−2H / tan θ> 0 is satisfied. Here, the sectional height H is the sectional height of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the protrusions of the fitting joints 5A and 5B.
図2は、図1に示されたハット形鋼矢板の嵌合中心について説明するための図である。図示されているように、ハット形鋼矢板1の嵌合継手5Aには、隣接して打設される別のハット形鋼矢板1の嵌合継手5Bが嵌合する。嵌合継手5Aの嵌合中心EAは、別のハット形鋼矢板1のアーム4Bおよび嵌合継手5Bを仮想的に配置した場合に、嵌合継手5Aが形成されるアーム4Aの端部位置と、仮想的な嵌合継手5Bが形成されるアーム4Bの端部位置との中間に位置する、アーム4Aおよびアーム4Bの設計上の板厚中心線上の点として定義することができる。ハット形鋼矢板1の反対側に位置する嵌合継手5Bの嵌合中心EBも、同様に定義することができる。
FIG. 2 is a view for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. 1. As shown in the figure, the fitting joint 5B of another hat-shaped steel sheet pile 1 that is driven adjacent to the fitting joint 5B of the hat-shaped steel sheet pile 1 is fitted. Fitting center E A fitting joint 5A, when placing the arms 4B and the fitting joint 5B another hat-shaped steel sheet pile 1 virtually, end position of the arm 4A of the fitting joint 5A is formed And a point on the designed thickness center line of the arm 4A and the arm 4B, which is located between the end position of the arm 4B where the virtual fitting joint 5B is formed. Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly.
本発明の実施形態に係るハット形鋼矢板において打設時に発生するばたつきを効果的に低減するために本発明者らが検討した結果を以下で説明する。まず、ばたつきを低減するためには、ハット形鋼矢板1の厚さ方向に生じる膜振動VM(図5Aおよび図5B参照)を低周波化することが望ましい。ばたつきは、打設の初期において生じ、打設が進行すると徐々に収まることが経験上知られているが、これはハット形鋼矢板1の天端部から地表面までの距離が、打設の初期において最も長く、打設が進行すると徐々に短くなるためと考えられる。バイブロハンマ6で把持されるハット形鋼矢板1の天端部と、地盤および先行して打設された別のハット形鋼矢板1Pの継手でハット形鋼矢板1の厚さ方向の変位が拘束される地表面近くの部分とは、いずれもハット形鋼矢板1の厚さ方向の振動の固定点になる。従って、固定点の間の距離が最も長い打設の初期にはハット形鋼矢板1の固有振動数が低く、この段階でハット形鋼矢板1が膜振動VMに共振すると、振動数の低い、従って振幅の大きい振動が発生し、膜振動VMは増幅されることになる。換言すれば、打設の初期において膜振動VMの振動数がハット形鋼矢板1の固有振動数よりも低ければ膜振動VMは増幅されない。ハット形鋼矢板1の打設が進行して固定点の間の距離が短くなれば固有振動数はより高くなるため、打設の初期において膜振動VMの振動数がハット形鋼矢板1の固有振動数よりも低ければ、打設が進行しても膜振動VMの増幅、すなわちハット形鋼矢板1のばたつきは発生しない。
The results examined by the present inventors in order to effectively reduce the flapping occurring at the time of driving in the hat-shaped steel sheet pile according to the embodiment of the present invention will be described below. First, in order to reduce the flapping, it is desirable to lower frequency the membrane vibration occurs in the thickness direction of the hat-shaped steel sheet pile 1 V M (see FIGS. 5A and 5B). It is empirically known that fluttering occurs in the early stage of casting and gradually stops as the casting proceeds, but this is because the distance from the top end of the hat-shaped steel sheet pile 1 to the ground surface is reduced. It is considered that this is the longest in the initial stage, and gradually becomes shorter as the casting proceeds. Displacement in the thickness direction of the hat-shaped steel sheet pile 1 is restrained by a joint between the top end of the hat-shaped steel sheet pile 1 gripped by the vibratory hammer 6, the ground, and another hat-shaped steel sheet pile 1P previously driven. The portion near the ground surface is a fixed point of vibration in the thickness direction of the hat-shaped steel sheet pile 1. Accordingly, the distance between the fixed point is the longest of the pouring initially low natural frequency of the hat-shaped steel sheet pile 1, the hat-shaped steel sheet pile 1 at this stage resonance membrane vibrating V M, less number of vibration and therefore a large vibration is generated in the amplitude, membrane vibration V M will be amplified. In other words, lower if membrane vibration V M than the natural frequency of the vibration frequency hat-shaped steel sheet pile 1 of the membrane vibration V M at the beginning of pouring is not amplified. Since the pouring of the hat-shaped steel sheet pile 1 is the natural frequency the shorter distance between the fixed point is higher by progress in early pouring membrane vibration V M frequency of hat-type steel sheet pile 1 of is lower than the natural frequency, the amplification of the membrane vibration V M even pouring progresses, i.e. flapping hat-shaped steel sheet pile 1 does not occur.
辺長a,bの矩形の板における膜振動の振動数fmnは、モード数m,n、重力加速度g、単位面積あたりの板の重量wt、および面内の張力Sを用いて、以下の式(1)のように表すことができる。式(1)から、重量wtが大きく、また辺長a,bが長いほど、振動数fmnが小さくなる、すなわち膜振動が低周波化されることがわかる。
The frequency f mn of the membrane vibration in the rectangular plate having the side lengths a and b is calculated using the number of modes m and n, the gravitational acceleration g, the weight wt of the plate per unit area, and the in-plane tension S as follows. It can be expressed as in equation (1). From equation (1), it can be seen that the larger the weight wt and the longer the side lengths a and b, the smaller the frequency fmn , that is, the lower the frequency of the film vibration.
ここで、膜振動を例えば従来のハット形鋼矢板よりも低周波化する、すなわちハット形鋼矢板1の膜振動の振動数fmn’を従来のハット形鋼矢板の膜振動の振動数fmnよりも小さくするための条件を考える。基本モード(m=n=1)で、重量wおよび辺長aが異なり、それ以外の条件を共通とした場合、膜振動の振動数の従来のハット形鋼矢板に対する比f’/fは、以下の式(2)のように表すことができる。なお、高次モード(m>1またはn>1)については、振幅が小さくなるためハット形鋼矢板1のばたつきの原因としては考慮しなくてよい。
Here, the low frequency of than the membrane vibration example conventional hat-shaped steel sheet pile, i.e. the frequency of the membrane vibration of the conventional hat-shaped steel sheet pile the frequency of the membrane vibration of the hat-shaped steel sheet pile 1 f mn 'f mn Consider the condition for making it smaller. In the basic mode (m = n = 1), when the weight w and the side length a are different and other conditions are common, the ratio f ′ / f of the frequency of the membrane vibration to the conventional hat-shaped steel sheet pile is: It can be expressed as the following equation (2). The higher mode (m> 1 or n> 1) does not need to be considered as a cause of the fluttering of the hat-shaped steel sheet pile 1 because the amplitude becomes smaller.
さらに、辺長a,bの矩形の板をハット形鋼矢板の形状にあてはめた場合、ハット形鋼矢板の長手方向の辺長bは断面方向の辺長aよりも十分に長い(打設の初期において、辺長bは辺長aの10倍以上)ため、式(2)における(a’/b)2および(a/b)2の項は十分に小さいものとして無視できる。その結果、振動数の比f’/fは、以下の式(3)のように表すことができる。
Further, when a rectangular plate having the side lengths a and b is applied to the shape of the hat-shaped steel sheet pile, the side length b in the longitudinal direction of the hat-shaped steel sheet pile is sufficiently longer than the side length a in the cross-sectional direction (for casting). (In the initial stage, the side length b is 10 times or more the side length a.) Therefore, the terms (a ′ / b) 2 and (a / b) 2 in the equation (2) can be ignored because they are sufficiently small. As a result, the frequency ratio f ′ / f can be expressed as the following equation (3).
上記の式(3)によれば、ハット形鋼矢板1の膜振動の振動数の従来のハット形鋼矢板に対する比f’/fを小さくするためには、ハット形鋼矢板の断面方向の辺長a、すなわち図1に示した合計長さBTTLを大きくするか、または長手方向に対して平行な側面における単位面積あたりのハット形鋼矢板1の重量wt(ウェブ2、フランジ3A,3B、およびアーム4A,4Bでの平均値)を大きくすればよい。つまり、以下の式(4)のように定義されるK(ハット形鋼矢板1の膜振動に関する指標)について、従来のハット形鋼矢板におけるKよりもハット形鋼矢板1におけるKが小さければ、膜振動が低減される。まず、合計長さBTTLについては、ハット形鋼矢板1の有効幅Wを拡大することで大きくすることができる。有効幅Wの拡大は、同じ壁幅の鋼矢板壁を構成するハット形鋼矢板1の数が少なくなることで施工が経済的になるため、以下では有効幅Wを105cm以上とした上で、適切な合計長さBTTLおよび重量wtを検討した。
According to the above equation (3), in order to reduce the ratio f ′ / f of the frequency of the membrane vibration of the hat-shaped steel sheet pile 1 to the conventional hat-shaped steel sheet pile, the side in the cross-sectional direction of the hat-shaped steel sheet pile is required. The length a, that is, the total length B TTL shown in FIG. 1 is increased, or the weight wt of the hat-shaped steel sheet pile 1 per unit area on the side surface parallel to the longitudinal direction (the web 2, the flanges 3A, 3B, And the average value of the arms 4A and 4B). That is, for K (an index relating to the membrane vibration of the hat-shaped steel sheet pile 1) defined as the following equation (4), if K in the hat-shaped steel sheet pile 1 is smaller than K in the conventional hat-shaped steel sheet pile, Membrane vibration is reduced. First, the total length B TTL can be increased by increasing the effective width W of the hat-shaped steel sheet pile 1. The expansion of the effective width W is economical because the number of the hat-shaped steel sheet piles 1 constituting the steel sheet pile wall having the same wall width is reduced, so that the effective width W is set to 105 cm or more below. The appropriate total length B TTL and weight wt were considered.
表1に、従来のハット形鋼矢板(比較例1~比較例3)、および本発明の実施形態に係るハット形鋼矢板(実施例1~実施例9)の断面諸元を示す。表1において、Wは有効幅(cm)、Iは鋼矢板壁の壁幅1mあたりの断面二次モーメント(cm4/m)、BTTLは合計長さ(cm)、wt(N/cm2)は長手方向に対して平行な側面における単位面積あたりの重量、K(N-1/2)は上記の式(4)で算出される指標である。また、表1における振動数比rfは、各実施例と同等の断面二次モーメントIを有する従来のハット形鋼矢板との間での膜振動の振動数の比として、上記の式(3)で辺長aに合計長さBTTLを代入して算出される。
Table 1 shows cross-sectional specifications of a conventional hat-shaped steel sheet pile (Comparative Examples 1 to 3) and a hat-shaped steel sheet pile (Examples 1 to 9) according to the embodiment of the present invention. In Table 1, W is the effective width (cm), I is the second moment of area per cm of the steel sheet pile wall (cm 4 / m), B TTL is the total length (cm), and wt (N / cm 2). ) Is the weight per unit area on the side surface parallel to the longitudinal direction, and K (N -1/2 ) is an index calculated by the above equation (4). Moreover, the frequency ratio r f in Table 1, as film frequency ratio of vibration between the conventional hat-shaped steel sheet pile having respective embodiments and equivalent moment of inertia of I, the above equation (3 ) Is calculated by substituting the total length B TTL into the side length a.
図3は、上記の比較例1~比較例3および実施例1~実施例9について、有効幅W(cm)を縦軸に、表1に示したK(N-1/2)を横軸にして示すグラフである。図3のグラフを参照すると、実施例1~実施例9は、有効幅Wが105cm以上であり、かつ式(4)によって算出される指標Kが0.030N-1/2以下の領域に含まれている。実施例1~実施例9のハット形鋼矢板では、いずれも振動数比rfが1を下回っており、比較例1~比較例3よりも膜振動が低周波化されている。また、振動数比rfが0.9未満であり、比較例1~比較例3よりも膜振動が大幅に低周波化されている実施例2、実施例3、実施例5、実施例6、実施例8、および実施例9では、有効幅Wが120cm以上であり、かつ指標Kが0.027N-1/2以下である。
FIG. 3 shows the effective width W (cm) on the vertical axis and the K (N -1/2 ) shown in Table 1 on the horizontal axis for Comparative Examples 1 to 3 and Examples 1 to 9 described above. FIG. Referring to the graph of FIG. 3, in Examples 1 to 9, the effective width W is equal to or greater than 105 cm and the index K calculated by the equation (4) is included in the area of 0.030N- 1 / 2 or less. Have been. The hat-shaped steel sheet pile of Examples 1 to 9, both well below the 1 frequency ratio r f, the membrane vibration than Comparative Examples 1 to 3 are low-frequency reduction. Moreover, the frequency ratio r f is less than 0.9, Comparative Examples 1 to 3 Example 2 membrane vibration is significantly lower frequency of than, Example 3, Example 5, Example 6 In Examples 8, 9 and 9, the effective width W is 120 cm or more, and the index K is 0.027 N- 1 / 2 or less.
図4は、騒音の周波数重み付け特性を示すグラフである。図5Aおよび図5Bに示したバイブロハンマ6による縦振動VVの起振周波数は一般に20Hz~60Hz程度である。ハット形鋼矢板1にばたつきが発生したときに膜振動VMの振動数が起振周波数に一致するとすると、膜振動VMの振動数も20Hz~60Hzになる。図4にA特性として示される人間の聴覚特性によれば、この周波数範囲では周波数が小さくなるほど感じられる音圧レベル(dB)が小さくなるため、上記で説明したような本発明の実施形態による膜振動VMの低周波化は、施工性の向上だけではなく、騒音の低減にも有効である。本発明者らが実施した施工試験では、膜振動VMの周波数を下げることによって、図4に示した相対レスポンスの低下と同程度の騒音の低減が確認されている。
FIG. 4 is a graph showing frequency weighting characteristics of noise. Excitation frequency of the longitudinal vibration V V by vibro-hammer 6 shown in FIGS. 5A and 5B is generally about 20 Hz ~ 60 Hz. When the frequency of the membrane vibration V M when flutter hat-shaped steel sheet pile 1 has occurred is to match the excitation frequency, the frequency of the membrane vibration V M also becomes 20 Hz ~ 60 Hz. According to the human auditory characteristic shown as the A characteristic in FIG. 4, the perceived sound pressure level (dB) decreases as the frequency decreases in this frequency range. low frequency of vibration V M is not only the improvement of workability, it is effective in reducing noise. The construction tests which we have carried out, by lowering the frequency of the membrane vibration V M, noise reduction comparable to reduction in relative response shown in FIG. 4 have been identified.
以上で説明したような本発明の実施形態によれば、打設時に発生するばたつきが効果的に低減される断面形状のハット形鋼矢板が提供される。このようなハット形鋼矢板は、例えば上述のようにバイブロハンマを用いてハット形鋼矢板に打設進行方向の縦振動を与えながらハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法において、特に有利である。上記で図5Aおよび図5Bを参照して説明したのは、ハット形鋼矢板の両方のフランジ部分に縦振動を加える所謂ダブルチャック型のバイブロハンマ(例えば、特許第3916621号公報参照)であるが、本発明の実施形態によって打設時に発生するばたつきが低減されれば、ハット形鋼矢板のウェブ部分に縦振動を加える所謂シングルチャック型のバイブロハンマによる施工も可能である。
According to the embodiment of the present invention described above, a hat-shaped steel sheet pile having a cross-sectional shape in which flapping occurring during driving is effectively reduced is provided. Such a hat-shaped steel sheet pile is, for example, a steel sheet pile wall including a step of driving the hat-shaped steel sheet pile into the ground while applying longitudinal vibration in the driving direction of the hat-shaped steel sheet pile using a vibro hammer as described above. Is particularly advantageous. What has been described above with reference to FIGS. 5A and 5B is a so-called double-chuck type vibratory hammer that applies longitudinal vibration to both flange portions of a hat-shaped steel sheet pile (for example, see Japanese Patent No. 3916621). If the fluttering generated at the time of driving is reduced by the embodiment of the present invention, a so-called single-chuck type vibratory hammer that applies longitudinal vibration to the web portion of the hat-shaped steel sheet pile is also possible.
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
Although the preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
1…ハット形鋼矢板、1P…ハット形鋼矢板、2…ウェブ、3A,3B…フランジ、4A,4B…アーム、5A,5B…嵌合継手、EA,EB…嵌合中心。
1 ... hat-shaped steel sheet pile, 1P ... hat-shaped steel sheet pile, 2 ... web, 3A, 3B ... flange, 4A, 4B ... arm, 5A, 5B ... fitting joint, E A, E B ... fitting center.
Claims (3)
- ハット形鋼矢板であって、
長手方向に直交する断面において、厚さ方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記厚さ方向の第2の側に向かって延びる1対のフランジと、前記厚さ方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、
有効幅Wが105cm以上であり、かつ前記断面における前記ウェブ、前記1対のフランジ、および前記1対のアームの合計長さBTTL(cm)と、前記長手方向に対して平行な側面における単位面積あたりの前記ハット形鋼矢板の重量wt(N/cm2)とが以下の式(i)の関係を満たすハット形鋼矢板。
In a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the thickness direction, and both ends in the width direction from both ends in the width direction of the web, and second portions in the thickness direction. And a pair of flanges extending toward the second side in the thickness direction, and extending from the respective ends of the pair of flanges on the second side in the thickness direction along the width direction and toward both sides in the width direction. A pair of arms, and a pair of mating joints formed at opposite ends of each of the pair of arms from the pair of flanges;
A total length B TTL (cm) of the web, the pair of flanges, and the pair of arms in the cross section having an effective width W of 105 cm or more, and a unit on a side surface parallel to the longitudinal direction. A hat-shaped steel sheet pile whose weight per unit area (wt / N / cm 2 ) satisfies the following expression (i).
- 有効幅Wが120cm以上であり、かつ前記合計長さBTTLと前記重量wtとが以下の式(ii)の関係を満たす、請求項1に記載のハット形鋼矢板。
- 請求項1または請求項2に記載のハット形鋼矢板を用いた鋼矢板壁の製造方法であって、
バイブロハンマを用いて前記ハット形鋼矢板に打設進行方向の縦振動を与えながら前記ハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法。 A method of manufacturing a steel sheet pile wall using the hat-shaped steel sheet pile according to claim 1 or 2,
A method for manufacturing a steel sheet pile wall, comprising a step of driving the hat-shaped steel sheet pile into the ground while giving longitudinal vibration in the driving direction of the hat-shaped steel sheet pile using a vibratory hammer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020539350A JP7143890B2 (en) | 2018-08-31 | 2019-08-16 | Manufacturing method of hat-shaped steel sheet pile |
JP2022093179A JP2022120069A (en) | 2018-08-31 | 2022-06-08 | Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018162906 | 2018-08-31 | ||
JP2018-162906 | 2018-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045117A1 true WO2020045117A1 (en) | 2020-03-05 |
Family
ID=69644358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032113 WO2020045117A1 (en) | 2018-08-31 | 2019-08-16 | Hat-shaped steel sheet pile and method for producing steel sheet pile wall |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP7143890B2 (en) |
WO (1) | WO2020045117A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005048394A (en) * | 2003-07-31 | 2005-02-24 | Nippon Steel Corp | Hat type steel sheet pile |
US7018140B1 (en) * | 2004-11-23 | 2006-03-28 | Chaparral Steel Company | Z-shaped sheet piling |
JP2008069631A (en) * | 2007-11-30 | 2008-03-27 | Nippon Steel Corp | Hat type steel sheet pile and method for setting its shape |
JP2008127771A (en) * | 2006-11-17 | 2008-06-05 | Jfe Steel Kk | Hat type steel sheet pile |
WO2010023929A1 (en) * | 2008-08-29 | 2010-03-04 | 新日本製鐵株式会社 | Steel sheet pile |
JP2011140867A (en) * | 2009-12-11 | 2011-07-21 | Jfe Steel Corp | Z-shaped steel sheet pile |
JP2012158910A (en) * | 2011-02-01 | 2012-08-23 | Jfe Steel Corp | Hat steel sheet pile |
JP2014125772A (en) * | 2012-12-26 | 2014-07-07 | Nippon Steel & Sumitomo Metal | Steel sheet pile having channel section member, and wall body |
JP2014148798A (en) * | 2013-01-31 | 2014-08-21 | Nippon Steel & Sumitomo Metal | Steel sheet pile |
WO2015159434A1 (en) * | 2014-04-18 | 2015-10-22 | 新日鐵住金株式会社 | Steel sheet pile |
-
2019
- 2019-08-16 JP JP2020539350A patent/JP7143890B2/en active Active
- 2019-08-16 WO PCT/JP2019/032113 patent/WO2020045117A1/en active Application Filing
-
2022
- 2022-06-08 JP JP2022093179A patent/JP2022120069A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005048394A (en) * | 2003-07-31 | 2005-02-24 | Nippon Steel Corp | Hat type steel sheet pile |
US7018140B1 (en) * | 2004-11-23 | 2006-03-28 | Chaparral Steel Company | Z-shaped sheet piling |
JP2008127771A (en) * | 2006-11-17 | 2008-06-05 | Jfe Steel Kk | Hat type steel sheet pile |
JP2008069631A (en) * | 2007-11-30 | 2008-03-27 | Nippon Steel Corp | Hat type steel sheet pile and method for setting its shape |
WO2010023929A1 (en) * | 2008-08-29 | 2010-03-04 | 新日本製鐵株式会社 | Steel sheet pile |
JP2011140867A (en) * | 2009-12-11 | 2011-07-21 | Jfe Steel Corp | Z-shaped steel sheet pile |
JP2012158910A (en) * | 2011-02-01 | 2012-08-23 | Jfe Steel Corp | Hat steel sheet pile |
JP2014125772A (en) * | 2012-12-26 | 2014-07-07 | Nippon Steel & Sumitomo Metal | Steel sheet pile having channel section member, and wall body |
JP2014148798A (en) * | 2013-01-31 | 2014-08-21 | Nippon Steel & Sumitomo Metal | Steel sheet pile |
WO2015159434A1 (en) * | 2014-04-18 | 2015-10-22 | 新日鐵住金株式会社 | Steel sheet pile |
WO2015159445A1 (en) * | 2014-04-18 | 2015-10-22 | 新日鐵住金株式会社 | Steel sheet pile |
Also Published As
Publication number | Publication date |
---|---|
JP7143890B2 (en) | 2022-09-29 |
JP2022120069A (en) | 2022-08-17 |
JPWO2020045117A1 (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6108031B2 (en) | Steel sheet pile | |
JP2960402B1 (en) | Lightweight high rigidity panel | |
JP2010144868A (en) | Elastic wedge damper | |
WO2020045117A1 (en) | Hat-shaped steel sheet pile and method for producing steel sheet pile wall | |
JP2008069631A (en) | Hat type steel sheet pile and method for setting its shape | |
JP2014148798A (en) | Steel sheet pile | |
JP3488233B1 (en) | Hat-type steel sheet pile | |
JPH01190847A (en) | Vibration-proof rubber | |
JPWO2011086769A1 (en) | Panel floor structure and building structure | |
WO2020045114A1 (en) | Hat-shaped steel sheet pile and production method for steel sheet pile wall | |
WO2020045115A1 (en) | Hat-shaped steel sheet pile and production method for steel sheet pile wall | |
TWM581609U (en) | Improved structure of shock absorbing glue lump | |
JP2007177516A (en) | Base isolation bearing device | |
JP2007270569A (en) | Rubber laminated type mount of vibration-proof device for housing | |
WO2020045118A1 (en) | Hat-type steel sheet pile | |
WO2020045116A1 (en) | Hat-shaped steel sheet pile and method for producing steel sheet pile wall | |
WO2020045113A1 (en) | Hat-shaped steel sheet piling, steel sheet piling wall, and method for manufacturing steel sheet piling walls | |
WO2018117269A1 (en) | Hat-shaped steel sheet piling | |
JP3911261B2 (en) | Rolled steel sheet pile | |
JP7143891B2 (en) | Manufacturing method of hat-shaped steel sheet pile | |
KR102492529B1 (en) | Floor structure for reducing heavy impact sound | |
JP7478047B2 (en) | Foundations for buildings on slopes | |
JP2023102466A (en) | Vibration control structure and automobile component having the vibration control structure | |
KR20210113699A (en) | Rolingdamper | |
JP6345286B1 (en) | Shaped steel piles that support buildings and methods for driving shaped steel piles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19854010 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020539350 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19854010 Country of ref document: EP Kind code of ref document: A1 |