WO2020045118A1 - Hat-type steel sheet pile - Google Patents

Hat-type steel sheet pile Download PDF

Info

Publication number
WO2020045118A1
WO2020045118A1 PCT/JP2019/032114 JP2019032114W WO2020045118A1 WO 2020045118 A1 WO2020045118 A1 WO 2020045118A1 JP 2019032114 W JP2019032114 W JP 2019032114W WO 2020045118 A1 WO2020045118 A1 WO 2020045118A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet pile
steel sheet
hat
cross
pair
Prior art date
Application number
PCT/JP2019/032114
Other languages
French (fr)
Japanese (ja)
Inventor
妙中 真治
俊介 森安
阿形 淳
典佳 原田
正和 武野
裕章 中山
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2020045118A1 publication Critical patent/WO2020045118A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a hat-shaped steel sheet pile.
  • ⁇ Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing. Since a hat-shaped steel sheet pile is made to penetrate into the ground at the time of driving, a technique for improving workability by reducing penetration resistance has been proposed.
  • Patent Literature 1 in order to reduce the resistance generated in the concave portion in the steel sheet pile cross section, which is a main factor of the penetration resistance, in the cross section of the hat-shaped steel sheet pile, the intersection of the perpendicular passing through the center of each flange is indicated by the steel sheet pile.
  • Patent Literature 2 also discloses a technique for minimizing the penetration resistance by optimizing the flange angle.
  • Patent Literature 3 describes a technique for setting a flange angle based on an economic index and a workability index indicating a penetration resistance at the lower end of a steel sheet pile.
  • the resistance that occurs in the recess in the cross section of the steel sheet pile which is the main factor of the penetration resistance, is treated as a function proportional to the flange angle. Therefore, in the prior art, making the penetration resistance (resistance generated in the concave portion) close to 0 means that the flange angle approaches 0, and the basic cross-sectional shape of the hat-shaped steel sheet pile is not satisfied. That is, the evaluation method of the related art is based on the premise that the penetration resistance becomes a certain magnitude, and does not indicate a condition for greatly reducing the penetration resistance.
  • the present invention provides a novel technique that can greatly reduce the penetration resistance by keeping the resistance generated in the recess in the steel sheet pile cross section close to 0 while maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile. It is another object of the present invention to provide an improved hat-shaped steel sheet pile.
  • the hat-shaped steel sheet pile has, in a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the cross-section height direction, and from both ends in the width direction of the web.
  • a pair of flanges extending toward both sides in the width direction and the second side in the cross-section height direction and forming a flange angle ⁇ with the width direction, and a pair of flanges on the second side in the cross-section height direction;
  • a pair of arms extending from the respective ends of the flanges along the width direction and toward both sides in the width direction are formed at ends opposite to the pair of flanges of each of the pair of arms.
  • a pair of fitting joints are formed at ends opposite to the pair of flanges of each of the pair of arms.
  • Average length W of the upper and lower sides of a trapezoid having the web as the upper side and a pair of flanges as both legs, the height h of the trapezoid, the flange angle ⁇ , and the friction angle ratio of the ground on which the hat-shaped steel sheet pile is driven R * satisfies the conditions of the following formulas (i) and (ii), and the total width B, web length Bw, cross-sectional height H, and flange angle ⁇ of the hat-shaped steel sheet pile in the cross section are B-Bw-2H / The relationship of tan ⁇ > 0 is satisfied.
  • the friction angle ratio R * may be, for example, 0.8 or 0.84.
  • the resistance generated in the concave portion in the cross section of the steel sheet pile can be made close to zero while maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile, whereby the penetration resistance can be significantly reduced.
  • FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention.
  • a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a first side (rear side in the y direction in the figure) in a section height direction.
  • a web 2 extending along the width direction (x direction in the figure), and both sides in the width direction from both ends in the width direction of the web 2 and second sides in the cross-section height direction (front side in the y direction in the figure) ),
  • the flanges 3A, 3B forming a flange angle ⁇ (the acute angle side) with the width direction, and from the respective ends of the flanges 3A, 3B on the second side in the section height direction in the width direction.
  • Arms 4A, 4B extending along the width direction and both sides in the width direction, and fitting joints 5A, 5B formed at ends of arms 4A, 4B opposite to flanges 3A, 3B.
  • Drawing 2 is a figure for explaining examination about penetration resistance of a hat-shaped steel sheet pile.
  • the balance of the force acting on the earth mass L having a trapezoidal cross section surrounded by the web 2 and the flanges 3A and 3B was considered.
  • the cross section of the earth mass L is an equilateral trapezoid, and the length of the upper side W 1 , the length of the lower side W 2 , the height h, the base angle (the flange angle of the hat-shaped steel sheet pile 1) ⁇ , Sectional area A.
  • the length S of the portion in contact with the hat-shaped steel sheet pile 1 in the cross section of the earth mass L is the sum of the lengths of the upper side and both legs.
  • the length of the earth mass L in the vertical direction (the longitudinal direction of the hat-shaped steel sheet pile 1) is dz.
  • the forces acting on the earth mass L as described above are the vertical stress ⁇ acting on the upper surface, the vertical stress ⁇ + d ⁇ acting on the lower surface, the unit volume weight ⁇ ′ of the ground to which the earth mass L belongs, the shear stress ⁇ f acting between the soil, balance as shown in the following expression represented with the shear stress tau S acting between the ground and a steel material (1).
  • Equation (1) the downward direction in the vertical direction is positive.
  • Equation (1) By rearranging equation (1) using equations (2) and (3), equation (4) is obtained.
  • W is the average length of the upper side and the lower side of the trapezoid.
  • Equation (4) is rearranged using equations (5) and (6) to obtain equation (7), and equation (7) is further rearranged as in equations (8) and (9).
  • R * is a friction angle ratio of the ground on which the hat-shaped steel sheet pile 1 is driven.
  • the above equation (11) is an equation representing the rate of change d ⁇ / dz in the vertical direction z of the vertical stress ⁇ acting on the earth mass L in the ground. If the hat-shaped steel sheet pile 1 does not exist, the rate of change d ⁇ / dz becomes equal to the unit volume weight ⁇ ′ of the ground. Therefore, a portion added to this, that is, the second term on the right side of the equation (11) is the hat-shaped steel sheet pile. 1 represents a force acting on the earth mass L by penetrating.
  • the second term on the right side of the equation (11) is a positive value
  • the vertical stress ⁇ is greater than when the hat-shaped steel sheet pile 1 is not present, and the increased reaction force is equal to the hat-shaped steel sheet pile 1.
  • the equation (12) is arranged for the aspect ratio Ar, the equation (13) is obtained.
  • the length W 1 and the height h of the upper side each approach 0 when the base angle ⁇ of the trapezoid, that is, the flange angle of the hat-shaped steel sheet pile 1 decreases, but the height h is Even if it is not 0, when the base angle ⁇ is small and the width of the hat-shaped steel sheet pile 1 is narrow, the length W 1 of the upper side may be 0. Therefore, of the condition represented by the above formula (14), it is to be considered a condition for the upper side length W 1.
  • the range of the aspect ratio Ar is defined by the flange angle ⁇ and the friction angle ratio R * .
  • the friction angle ratio R * can be specified as shown in Table 1 below from the results of a one-sided shear test between various types of ground and a steel material.
  • the internal friction angle corresponds to the magnitude of the shear stress ⁇ f acting between the grounds
  • the wall friction angle corresponds to the magnitude of the shear stress ⁇ S acting between the ground and the steel material.
  • three representative types were selected for the ground, and several samples, such as unused rolled materials and machined steel plates, were used for the steel material (this is why there is a range in the wall friction angle).
  • the friction angle ratio R * increases as the friction force between the ground and the steel material increases. Therefore, when the surface roughness of the steel material is high due to, for example, rust, it is appropriate to use the above equation (17), but in many cases, the surface of the steel material is smoother, and thus the friction angle is increased. A smaller value may be used as the ratio R * . For example, if the friction angle ratio R * is 0.77, the condition of Expression (13) is as shown in Expression (19) below.
  • Table 2 shows cross-sectional specifications of the conventional hat-shaped steel sheet pile (Comparative Examples 1 to 3) and the hat-shaped steel sheet pile (Examples 1 to 8) according to the embodiment of the present invention.
  • Table 2 shows the overall width B (mm), the sectional height H (mm), the flange angle ⁇ (deg), and the web width Bw (mm) of the hat-shaped steel sheet pile 1 shown in FIG.
  • the web width Bw is the distance between the intersection of the thickness center line of the web 2 and the thickness center line of each of the flanges 3A, 3B
  • the flange width Bf is the thickness center line of each of the flanges 3A, 3B and the web. 2, and the distance in the width direction between the intersections of the arms 4A and 4B with the respective thickness center lines.
  • the cross-sectional height H is the height of the cross-section of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the overhang of the fitting joints 5A and 5B. In the case where the shape of the hat-shaped steel sheet pile 1 shown in FIG. Meet the relationship.
  • Table 2 shows the length W 1 (mm) of the upper side, the length W 2 (mm) of the lower side, and the length W 2 (mm) of the trapezoidal cross section of the earthen block L surrounded by the web 2 of the hat-shaped steel sheet pile 1 and the flanges 3A and 3B.
  • the average length W (mm) between the lower side and the lower side, and the aspect ratio Ar are shown.
  • FIG. 3 shows the results of Comparative Examples 1 to 3 (points P1 to P3) and Examples 1 to 8 (points E1 to E8) with the flange angle ⁇ on the vertical axis and the aspect ratio Ar on the horizontal axis.
  • FIG. The graph in FIG. 3 shows a curve C1 corresponding to the equation (16) indicating a condition for maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile, and a curve C1 corresponding to the resistance generated in the concave portion in the steel sheet pile cross section.
  • a point indicating an example satisfying the condition of the expression (16) is above the curve C1 (positive direction of the vertical axis), and a point indicating an example satisfying the expression (18) or the expression (17) is the curve C3 or the curve C4.
  • the points indicating Examples 1 to 8 are all included in the area between the curves C1 and C3, and therefore satisfy the conditions of the equations (16) and (18).
  • Comparative Examples 1 to 3 which are conventional hat-shaped steel sheet piles, are located above the curve C2 (in the positive direction of the vertical axis), and it can be seen that there is a clear difference.
  • Example 1, Example 3, Example 4, Example 6, and Example 7 are in the region between the curves C1 and C4, and therefore, the equations (16) and ( In addition to 18), the condition of Expression (17) is also satisfied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

This HAT-type steel sheet pile is provided with: a web which, in a cross-section perpendicular to the longitudinal direction of the sheet pile, extends along the width direction from a first side in the height direction of the cross-section; a pair of flanges which extend in both directions in the width direction from both end sections of the web in the width direction, and extend toward a second side in the height direction of the cross-section, and which form a flange angle θ with the width direction; a pair of arms which, on the second side in the height direction of the cross-section, extend along the width direction from respective end sections of the pair of flanges toward both sides in the width direction; and a pair of fitting couplers formed on end sections on the opposite side of the pair of arms from the respective pair of flanges. The average length W of the upper side and the lower side of a trapezoid having the web as the upper side and the pair of flanges as the respective legs, the height h of the trapezoid, the flange angle θ, and the friction angle ratio R* of the ground into which the HAT-type steel sheet pile is driven satisfy the following equations (i) and (ii), and the total width B of the cross-section of the HAT-type steel sheet pile, the web length Bw, the height H of the cross-section, and the flange angle θ satisfy the relationship B-Bw-2H/tanθ>0.

Description

ハット形鋼矢板Hat-shaped steel sheet pile
 本発明は、ハット形鋼矢板に関する。 The present invention relates to a hat-shaped steel sheet pile.
 ハット形鋼矢板は、土木建築工事において、土留めや止水のための壁体を構築するために広く利用されている。ハット形鋼矢板は打設時に地盤に貫入させられるため、貫入抵抗をより小さくすることによって施工性を向上させる技術が提案されている。例えば、特許文献1では、貫入抵抗の主な要因である鋼矢板断面における凹部で発生する抵抗を小さくするために、ハット形鋼矢板の断面においてそれぞれのフランジの中央を通る垂線の交点が鋼矢板の溝断面外に位置するようにフランジ角度、すなわちフランジがウェブおよびアームとの間になす角度を設定するによって、打設時の排土圧を抑制して施工性を向上させる技術が記載されている。特許文献2にも、フランジ角度を最適化することによって貫入抵抗を最小化する技術が記載されている。また、特許文献3には、経済性指標と、鋼矢板下端での貫入抵抗を示す施工性指標とに基づいてフランジ角度を設定する技術が記載されている。 形 Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing. Since a hat-shaped steel sheet pile is made to penetrate into the ground at the time of driving, a technique for improving workability by reducing penetration resistance has been proposed. For example, in Patent Literature 1, in order to reduce the resistance generated in the concave portion in the steel sheet pile cross section, which is a main factor of the penetration resistance, in the cross section of the hat-shaped steel sheet pile, the intersection of the perpendicular passing through the center of each flange is indicated by the steel sheet pile. A technique is described in which the flange angle is set so as to be located outside the groove cross section, that is, the angle formed by the flange and the web and the arm, thereby suppressing the earth discharging pressure during casting and improving the workability. I have. Patent Literature 2 also discloses a technique for minimizing the penetration resistance by optimizing the flange angle. Patent Literature 3 describes a technique for setting a flange angle based on an economic index and a workability index indicating a penetration resistance at the lower end of a steel sheet pile.
特許第3488230号公報Japanese Patent No. 3488230 特許第3488233号公報Japanese Patent No. 3488233 特許第5764945号公報Japanese Patent No. 5764945
 上記の従来技術では、貫入抵抗の主な要因である鋼矢板断面における凹部で発生する抵抗が、フランジ角度に比例する関数として扱われている。従って、従来技術において貫入抵抗(凹部で発生する抵抗)を0に近づけることは、フランジ角度が0に近づき、ハット形鋼矢板の基本的な断面形状が成り立たなくなることを意味する。つまり、従来技術の評価方法は貫入抵抗がある程度の大きさになることを前提として成り立っており、貫入抵抗を大幅に小さくする条件を示すようなものではない。 で は In the above prior art, the resistance that occurs in the recess in the cross section of the steel sheet pile, which is the main factor of the penetration resistance, is treated as a function proportional to the flange angle. Therefore, in the prior art, making the penetration resistance (resistance generated in the concave portion) close to 0 means that the flange angle approaches 0, and the basic cross-sectional shape of the hat-shaped steel sheet pile is not satisfied. That is, the evaluation method of the related art is based on the premise that the penetration resistance becomes a certain magnitude, and does not indicate a condition for greatly reducing the penetration resistance.
 そこで、本発明は、ハット形鋼矢板の基本的な断面形状を維持しつつ、鋼矢板断面における凹部で発生する抵抗を0に近づけることで、貫入抵抗を大幅に小さくすることが可能な、新規かつ改良されたハット形鋼矢板を提供することを目的とする。 Accordingly, the present invention provides a novel technique that can greatly reduce the penetration resistance by keeping the resistance generated in the recess in the steel sheet pile cross section close to 0 while maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile. It is another object of the present invention to provide an improved hat-shaped steel sheet pile.
 本発明のある観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側に向かって延び、幅方向との間にフランジ角度θをなす1対のフランジと、断面高さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備える。ウェブを上辺とし、1対のフランジを両脚とする台形の上辺と下辺との平均長さW、台形の高さh、フランジ角度θ、およびハット形鋼矢板が打設される地盤の摩擦角比Rが、以下の式(i)および式(ii)の条件を満たし、断面におけるハット形鋼矢板の全幅B、ウェブ長さBw、断面高さHおよびフランジ角度θがB-Bw-2H/tanθ>0の関係を満たす。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-I000004
According to one aspect of the present invention, the hat-shaped steel sheet pile has, in a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the cross-section height direction, and from both ends in the width direction of the web. A pair of flanges extending toward both sides in the width direction and the second side in the cross-section height direction and forming a flange angle θ with the width direction, and a pair of flanges on the second side in the cross-section height direction; A pair of arms extending from the respective ends of the flanges along the width direction and toward both sides in the width direction are formed at ends opposite to the pair of flanges of each of the pair of arms. A pair of fitting joints. Average length W of the upper and lower sides of a trapezoid having the web as the upper side and a pair of flanges as both legs, the height h of the trapezoid, the flange angle θ, and the friction angle ratio of the ground on which the hat-shaped steel sheet pile is driven R * satisfies the conditions of the following formulas (i) and (ii), and the total width B, web length Bw, cross-sectional height H, and flange angle θ of the hat-shaped steel sheet pile in the cross section are B-Bw-2H / The relationship of tan θ> 0 is satisfied.
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-I000004
 上記のハット形鋼矢板において、摩擦角比Rは、例えば0.8としてもよいし、あるいは0.84としてもよい。 In the above hat-shaped steel sheet pile, the friction angle ratio R * may be, for example, 0.8 or 0.84.
 上記の構成によれば、ハット形鋼矢板の基本的な断面形状を維持しつつ、鋼矢板断面における凹部で発生する抵抗を0に近づけることで、貫入抵抗を大幅に小さくすることができる。 According to the above configuration, the resistance generated in the concave portion in the cross section of the steel sheet pile can be made close to zero while maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile, whereby the penetration resistance can be significantly reduced.
本発明の一実施形態に係るハット形鋼矢板の断面図である。It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. ハット形鋼矢板の貫入抵抗に関する検討について説明するための図である。It is a figure for explaining examination about penetration resistance of a hat-shaped steel sheet pile. 本発明の実施例および比較例について、フランジ角度を縦軸に、アスペクト比を横軸にして示すグラフである。It is a graph which shows an example of this invention and a comparative example by making a flange angle a vertical axis | shaft and an aspect ratio on a horizontal axis.
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の一実施形態に係るハット形鋼矢板の断面図である。図1に示されるように、ハット形鋼矢板1は、長手方向(図中のz方向)に直交する断面において、断面高さ方向の第1の側(図中のy方向の奥側)で幅方向(図中のx方向)に沿って延びるウェブ2と、ウェブ2の幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側(図中のy方向の手前側)に向かって延び、幅方向との間にフランジ角度θ(鋭角側)をなすフランジ3A,3Bと、断面高さ方向の第2の側でフランジ3A,3Bのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びるアーム4A,4Bと、アーム4A,4Bのそれぞれのフランジ3A,3Bとは反対側の端部に形成される嵌合継手5A,5Bとを含む。 FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention. As shown in FIG. 1, a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a first side (rear side in the y direction in the figure) in a section height direction. A web 2 extending along the width direction (x direction in the figure), and both sides in the width direction from both ends in the width direction of the web 2 and second sides in the cross-section height direction (front side in the y direction in the figure) ), The flanges 3A, 3B forming a flange angle θ (the acute angle side) with the width direction, and from the respective ends of the flanges 3A, 3B on the second side in the section height direction in the width direction. Arms 4A, 4B extending along the width direction and both sides in the width direction, and fitting joints 5A, 5B formed at ends of arms 4A, 4B opposite to flanges 3A, 3B.
 図2は、ハット形鋼矢板の貫入抵抗に関する検討について説明するための図である。以下の検討では、図1に示したようなハット形鋼矢板1において、ウェブ2とフランジ3A,3Bとで囲まれる台形断面の土塊Lに作用する力のつり合いを考慮した。図示されているように、土塊Lの断面は等脚台形であり、上辺の長さW、下辺の長さW、高さh、底角(ハット形鋼矢板1のフランジ角度)θ、断面積Aである。土塊Lの断面においてハット形鋼矢板1に接する部分の長さSは、上辺および両脚の長さの合計である。また、土塊Lの鉛直方向(ハット形鋼矢板1の長手方向)の長さをdzとする。 Drawing 2 is a figure for explaining examination about penetration resistance of a hat-shaped steel sheet pile. In the following examination, in the hat-shaped steel sheet pile 1 as shown in FIG. 1, the balance of the force acting on the earth mass L having a trapezoidal cross section surrounded by the web 2 and the flanges 3A and 3B was considered. As shown in the drawing, the cross section of the earth mass L is an equilateral trapezoid, and the length of the upper side W 1 , the length of the lower side W 2 , the height h, the base angle (the flange angle of the hat-shaped steel sheet pile 1) θ, Sectional area A. The length S of the portion in contact with the hat-shaped steel sheet pile 1 in the cross section of the earth mass L is the sum of the lengths of the upper side and both legs. The length of the earth mass L in the vertical direction (the longitudinal direction of the hat-shaped steel sheet pile 1) is dz.
 上記のような土塊Lに作用する力は、上面に作用する鉛直応力σ、下面に作用する鉛直応力σ+dσ、土塊Lが属する地盤の単位体積重量γ’、地盤間で作用するせん断応力τ、地盤と鋼材との間に作用するせん断応力τを用いて表される以下の式(1)のようにつり合う。なお、式(1)では鉛直方向下向きを正としている。 The forces acting on the earth mass L as described above are the vertical stress σ acting on the upper surface, the vertical stress σ + dσ acting on the lower surface, the unit volume weight γ ′ of the ground to which the earth mass L belongs, the shear stress τ f acting between the soil, balance as shown in the following expression represented with the shear stress tau S acting between the ground and a steel material (1). In Equation (1), the downward direction in the vertical direction is positive.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記の式(1)を式(2)および式(3)を用いて整理すると、式(4)が得られる。なお、Wは台形の上辺および下辺の平均長さである。 整理 By rearranging equation (1) using equations (2) and (3), equation (4) is obtained. W is the average length of the upper side and the lower side of the trapezoid.
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
 上記の式(4)を式(5)および式(6)を用いて整理すると式(7)が得られ、式(7)は式(8)および式(9)のようにさらに整理することができる。なお、Rはハット形鋼矢板1が打設される地盤の摩擦角比である。 Equation (4) is rearranged using equations (5) and (6) to obtain equation (7), and equation (7) is further rearranged as in equations (8) and (9). Can be. R * is a friction angle ratio of the ground on which the hat-shaped steel sheet pile 1 is driven.
Figure JPOXMLDOC01-appb-M000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-M000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013
 ここで、式(10)で表される台形のアスペクト比Arを代入すると、式(9)は式(11)のように表される。 Here, when the trapezoidal aspect ratio Ar expressed by the equation (10) is substituted, the equation (9) is expressed as the equation (11).
Figure JPOXMLDOC01-appb-M000014

Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-M000014

Figure JPOXMLDOC01-appb-I000015
 上記の式(11)は、地盤内で土塊Lに作用する鉛直応力σの鉛直方向zでの変化率dσ/dzを表す式になっている。ハット形鋼矢板1が存在しない場合、変化率dσ/dzは地盤の単位体積重量γ’に等しくなるので、これに加えられる部分、すなわち式(11)の右辺第2項が、ハット形鋼矢板1が貫入することによって土塊Lに作用する力を表す。式(11)の右辺第2項が正の値である場合、鉛直応力σはハット形鋼矢板1が存在しない場合よりも増大しており、この増大した分の反力がハット形鋼矢板1に貫入抵抗として作用することになる。それゆえ、土塊Lに作用する力を原因としてハット形鋼矢板1の貫入抵抗を増大させないための条件は、式(11)の右辺第2項を0または負の値にすること、すなわち式(12)である。つまり、式(12)を満たすことにより、鋼矢板断面における凹部で発生する抵抗を0に近づけることができる。式(12)をアスペクト比Arについて整理すると、式(13)が得られる。 式 The above equation (11) is an equation representing the rate of change dσ / dz in the vertical direction z of the vertical stress σ acting on the earth mass L in the ground. If the hat-shaped steel sheet pile 1 does not exist, the rate of change dσ / dz becomes equal to the unit volume weight γ ′ of the ground. Therefore, a portion added to this, that is, the second term on the right side of the equation (11) is the hat-shaped steel sheet pile. 1 represents a force acting on the earth mass L by penetrating. When the second term on the right side of the equation (11) is a positive value, the vertical stress σ is greater than when the hat-shaped steel sheet pile 1 is not present, and the increased reaction force is equal to the hat-shaped steel sheet pile 1. Will act as a penetration resistance. Therefore, the condition for preventing the penetration resistance of the hat-shaped steel sheet pile 1 from increasing due to the force acting on the earth mass L is that the second term on the right side of the equation (11) is set to 0 or a negative value, that is, the equation ( 12). That is, by satisfying the expression (12), the resistance generated in the concave portion in the steel sheet pile cross section can be made close to zero. When the equation (12) is arranged for the aspect ratio Ar, the equation (13) is obtained.
Figure JPOXMLDOC01-appb-M000016

Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-M000016

Figure JPOXMLDOC01-appb-I000017
 一方、図1に示したようなハット形鋼矢板1の断面形状が成り立つ場合、土塊Lの断面の寸法は以下の式(14)の条件を満たす。 On the other hand, when the cross-sectional shape of the hat-shaped steel sheet pile 1 as shown in FIG. 1 is satisfied, the cross-sectional dimension of the earth mass L satisfies the condition of the following expression (14).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、上記の寸法のうち、上辺の長さWおよび高さhは、いずれも台形の底角θ、すなわちハット形鋼矢板1のフランジ角度が小さくなると0に近づくが、高さhが0でなくても、底角θが小さくハット形鋼矢板1の幅が狭い場合には上辺の長さWが0になる場合がありうる。従って、上記の式(14)で表される条件のうち、考慮すべきは上辺の長さWについての条件である。この条件を式(15)のように整理すると、アスペクト比Ar(=W/h)についての式(16)が得られる。 Here, of the above dimensions, the length W 1 and the height h of the upper side each approach 0 when the base angle θ of the trapezoid, that is, the flange angle of the hat-shaped steel sheet pile 1 decreases, but the height h is Even if it is not 0, when the base angle θ is small and the width of the hat-shaped steel sheet pile 1 is narrow, the length W 1 of the upper side may be 0. Therefore, of the condition represented by the above formula (14), it is to be considered a condition for the upper side length W 1. When these conditions are arranged as in Expression (15), Expression (16) for the aspect ratio Ar (= W / h) is obtained.
Figure JPOXMLDOC01-appb-M000019

Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-M000019

Figure JPOXMLDOC01-appb-I000020
 以上のような検討から、ハット形鋼矢板の基本的な断面形状を維持しつつ鋼矢板断面における凹部で発生する抵抗を0に近づけるための条件として、以下の式(13)および式(16)を得ることができた。 From the above study, the following formulas (13) and (16) are used as conditions for keeping the resistance generated in the concave portion in the cross section of the steel sheet pile close to 0 while maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile. Could be obtained.
Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-I000022
 上記の式(13)は、アスペクト比Arの範囲をフランジ角度θおよび摩擦角比Rによって規定する。摩擦角比Rについては、各種地盤と鋼材との間の一面せん断試験の結果から、以下の表1のように特定することができる。上記の式(6)に対応付けると、内部摩擦角が地盤間で作用するせん断応力τの大きさに対応し、壁面摩擦角が地盤と鋼材との間に作用するせん断応力τの大きさに対応する。なお、地盤については代表的な3種類を選定し、鋼材については未使用の圧延材や機械加工した鋼板など数サンプルを使用した(壁面摩擦角に範囲があるのはそのためである)。 In the above equation (13), the range of the aspect ratio Ar is defined by the flange angle θ and the friction angle ratio R * . The friction angle ratio R * can be specified as shown in Table 1 below from the results of a one-sided shear test between various types of ground and a steel material. When corresponding to the above equation (6), the internal friction angle corresponds to the magnitude of the shear stress τ f acting between the grounds, and the wall friction angle corresponds to the magnitude of the shear stress τ S acting between the ground and the steel material. Corresponding to In addition, three representative types were selected for the ground, and several samples, such as unused rolled materials and machined steel plates, were used for the steel material (this is why there is a range in the wall friction angle).
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 上記の試験結果から、摩擦角比Rは地盤および鋼材によって異なるものの、最大では0.83~0.85の範囲にあることがわかる。そこで、これらの平均値として摩擦角比Rを0.84とすると、式(13)の条件は以下の式(17)のようになる。 From the above test results, it can be seen that the friction angle ratio R * varies depending on the ground and the steel material, but is at the maximum in the range of 0.83 to 0.85. Therefore, assuming that the friction angle ratio R * is 0.84 as an average value of these, the condition of Expression (13) is as shown in Expression (17) below.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 一方、摩擦角比Rの範囲については、既往の研究も存在する。例えば、Randolph et al, "One-dimensional analysis of soil plugs in pipe piles", 1991, Geotechnique 41, No. 4, pp. 587-598によれば、一般的に摩擦角比R0.7~0.9の範囲にある。そこで、この範囲の平均値として摩擦角比Rを0.8とすると、式(13)の条件は以下の式(18)のようになる。 On the other hand, there are past studies on the range of the friction angle ratio R * . For example, according to Randolph et al, "One-dimensional analysis of soil plugs in pipe piles", 1991, Geotechnique 41, No. 4, pp. 587-598, the friction angle ratio R * is generally 0.7 to 0. .9. Therefore, assuming that the friction angle ratio R * is 0.8 as an average value in this range, the condition of Expression (13) is as shown in Expression (18) below.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 上記の式(6)から明らかなように、摩擦角比Rは、地盤と鋼材との間の摩擦力が大きければ大きくなる。従って、例えば錆などのために鋼材の表面の粗度が高い場合には上記の式(17)を用いることが適切であるものの、多くの場合において鋼材の表面はもっと平滑であり、従って摩擦角比Rとしてより小さい値を用いてもよい。例えば、摩擦角比Rを0.77とすると、式(13)の条件は以下の式(19)のようになる。 As is clear from the above equation (6), the friction angle ratio R * increases as the friction force between the ground and the steel material increases. Therefore, when the surface roughness of the steel material is high due to, for example, rust, it is appropriate to use the above equation (17), but in many cases, the surface of the steel material is smoother, and thus the friction angle is increased. A smaller value may be used as the ratio R * . For example, if the friction angle ratio R * is 0.77, the condition of Expression (13) is as shown in Expression (19) below.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 表2に、従来のハット形鋼矢板(比較例1~比較例3)、および本発明の実施形態に係るハット形鋼矢板(実施例1~実施例8)の断面諸元を示す。表2には、図1に示されたハット形鋼矢板1の全幅B(mm)、断面高さH(mm)、フランジ角度θ(deg)、ウェブ幅Bw(mm)が示されている。ここで、全幅Bは、いずれもハット形鋼矢板1の幅方向(図1に示すx方向)に沿って定義されるウェブ幅Bw、フランジ幅Bf、およびアーム幅Baを用いて、B=Bw+2Bf+2Baと表される。ウェブ幅Bwはウェブ2の板厚中心線とフランジ3A,3Bのそれぞれの板厚中心線との交点の間の距離であり、フランジ幅Bfはフランジ3A,3Bのそれぞれの板厚中心線とウェブ2、およびアーム4A,4Bのそれぞれの板厚中心線との交点の間の幅方向での距離である。また、フランジ幅Bfは、断面高さHとフランジ角度θとを用いて、Bf=H/tanθと表される。断面高さHは、ウェブ2およびアーム4A,4Bの板厚を含み嵌合継手5A,5Bの張り出しを含まないハット形鋼矢板1の断面の高さである。なお、図1に示されたハット形鋼矢板1の形状が幾何学的に成り立つ場合、全幅B、ウェブ長さBw、断面高さHおよびフランジ角度θは、B-Bw-2H/tanθ>0の関係を満たしている。 Table 2 shows cross-sectional specifications of the conventional hat-shaped steel sheet pile (Comparative Examples 1 to 3) and the hat-shaped steel sheet pile (Examples 1 to 8) according to the embodiment of the present invention. Table 2 shows the overall width B (mm), the sectional height H (mm), the flange angle θ (deg), and the web width Bw (mm) of the hat-shaped steel sheet pile 1 shown in FIG. Here, the total width B is defined as B = Bw + 2Bf + 2Ba using a web width Bw, a flange width Bf, and an arm width Ba defined along the width direction (x direction shown in FIG. 1) of the hat-shaped steel sheet pile 1. It is expressed as The web width Bw is the distance between the intersection of the thickness center line of the web 2 and the thickness center line of each of the flanges 3A, 3B, and the flange width Bf is the thickness center line of each of the flanges 3A, 3B and the web. 2, and the distance in the width direction between the intersections of the arms 4A and 4B with the respective thickness center lines. The flange width Bf is expressed as Bf = H / tan θ using the cross-sectional height H and the flange angle θ. The cross-sectional height H is the height of the cross-section of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the overhang of the fitting joints 5A and 5B. In the case where the shape of the hat-shaped steel sheet pile 1 shown in FIG. Meet the relationship.
 また、表2には、ハット形鋼矢板1のウェブ2とフランジ3A,3Bで囲まれる土塊Lの台形断面の上辺の長さW(mm)、下辺の長さW(mm)、上辺と下辺との平均長さW(mm)、およびアスペクト比Arが示されている。以下に示す例では、台形断面の上辺の長さWがウェブ幅Bwに一致し(W=Bw)、高さhがハット形鋼矢板1の断面高さHに一致する(h=H)ものとする。 Table 2 shows the length W 1 (mm) of the upper side, the length W 2 (mm) of the lower side, and the length W 2 (mm) of the trapezoidal cross section of the earthen block L surrounded by the web 2 of the hat-shaped steel sheet pile 1 and the flanges 3A and 3B. The average length W (mm) between the lower side and the lower side, and the aspect ratio Ar are shown. In the following example, the upper side of the length W 1 of the trapezoidal cross-section matches the web width Bw (W 1 = Bw), the height h is equal to the section height H of the hat-shaped steel sheet pile 1 (h = H ) Shall be.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 図3は、上記の比較例1~比較例3(点P1~P3)および実施例1~実施例8(点E1~E8)について、フランジ角度θを縦軸に、アスペクト比Arを横軸にして示すグラフである。図3のグラフには、ハット形鋼矢板の基本的な断面形状を維持するための条件を示す式(16)に対応する曲線C1と、鋼矢板断面における凹部で発生する抵抗を0に近づけるための条件を示す式(19)、式(18)、および式(17)にそれぞれ対応する曲線C2(R=0.77)、曲線C3(R=0.8)、および曲線C4(R=0.84)とが示されている。式(16)の条件を満たす例を示す点は曲線C1よりも上方(縦軸の正方向)にあり、式(18)、または式(17)を満たす例を示す点は曲線C3または曲線C4よりも下方(縦軸の負方向)にある。図3に示されるように、実施例1~実施例8を示す点はいずれも曲線C1と曲線C3とに挟まれた領域に含まれ、従って式(16)および式(18)の条件を満たす。一方、従来のハット形鋼矢板である比較例1~比較例3は、曲線C2の上方(縦軸の正方向)に位置しており、明確な違いがあることが判る。さらに、実施例1、実施例3、実施例4、実施例6、および実施例7を示す点は、曲線C1と曲線C4とに挟まれた領域にあり、従って式(16)、および式(18)に加えて式(17)の条件をも満たす。以上の結果から、地盤と鋼材との間の摩擦力を比較的小さく見積もることが可能である場合(R=0.8)には実施例1~実施例8のいずれにおいても貫入抵抗を大幅に低減する効果が得られることがわかる。さらに、地盤と鋼材との間の摩擦力をより大きく見積もった場合(R=0.84)でも、実施例1、実施例3、実施例4、実施例6、および実施例7では貫入抵抗を大幅に低減する効果が得られることがわかる。 FIG. 3 shows the results of Comparative Examples 1 to 3 (points P1 to P3) and Examples 1 to 8 (points E1 to E8) with the flange angle θ on the vertical axis and the aspect ratio Ar on the horizontal axis. FIG. The graph in FIG. 3 shows a curve C1 corresponding to the equation (16) indicating a condition for maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile, and a curve C1 corresponding to the resistance generated in the concave portion in the steel sheet pile cross section. The curves C2 (R * = 0.77), C3 (R * = 0.8), and C4 (R) respectively corresponding to the equations (19), (18), and (17) indicating the conditions of * = 0.84). A point indicating an example satisfying the condition of the expression (16) is above the curve C1 (positive direction of the vertical axis), and a point indicating an example satisfying the expression (18) or the expression (17) is the curve C3 or the curve C4. Below (in the negative direction of the vertical axis). As shown in FIG. 3, the points indicating Examples 1 to 8 are all included in the area between the curves C1 and C3, and therefore satisfy the conditions of the equations (16) and (18). . On the other hand, Comparative Examples 1 to 3, which are conventional hat-shaped steel sheet piles, are located above the curve C2 (in the positive direction of the vertical axis), and it can be seen that there is a clear difference. Further, the points indicating Example 1, Example 3, Example 4, Example 6, and Example 7 are in the region between the curves C1 and C4, and therefore, the equations (16) and ( In addition to 18), the condition of Expression (17) is also satisfied. From the above results, when it is possible to estimate the frictional force between the ground and the steel material relatively small (R * = 0.8), the penetration resistance is significantly increased in any of Examples 1 to 8. It can be seen that the effect of reducing the pressure can be obtained. Further, even when the frictional force between the ground and the steel material is larger (R * = 0.84), the penetration resistance in Example 1, Example 3, Example 4, Example 6, and Example 7 was increased. It can be seen that the effect of greatly reducing the can be obtained.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 1…ハット形鋼矢板、2…ウェブ、3A,3B…フランジ、4A,4B…アーム、5A,5B…嵌合継手、E,E…嵌合中心。 1 ... hat-shaped steel sheet pile, 2 ... web, 3A, 3B ... flange, 4A, 4B ... arm, 5A, 5B ... fitting joint, E A, E B ... fitting center.

Claims (3)

  1.  ハット形鋼矢板であって、
     長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記断面高さ方向の第2の側に向かって延び、前記幅方向との間にフランジ角度θをなす1対のフランジと、前記断面高さ方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、
     前記ウェブを上辺とし、前記1対のフランジを両脚とする台形の上辺と下辺との平均長さW、前記台形の高さh、およびフランジ角度θ、および前記ハット形鋼矢板が打設される地盤の摩擦角比Rが、以下の式(i)および式(ii)の条件を満たし、前記断面における前記ハット形鋼矢板の全幅B、ウェブ長さBw、断面高さHおよび前記フランジ角度θがB-Bw-2H/tanθ>0の関係を満たすハット形鋼矢板。
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-I000002
    A hat-shaped steel sheet pile,
    In a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the cross-section height direction, and both ends in the width direction from both ends in the width direction of the web, and in the cross-section height direction A pair of flanges extending toward a second side and forming a flange angle θ with the width direction; and a pair of flanges at respective ends of the pair of flanges on the second side in the cross-sectional height direction. A pair of arms extending along the width direction and toward both sides in the width direction, and a pair of fittings formed at ends of the pair of arms opposite to the pair of flanges. With joints,
    An average length W of an upper side and a lower side of the trapezoid having the web as an upper side and the pair of flanges as both legs, a height h of the trapezoid, a flange angle θ, and the hat-shaped steel sheet pile are cast. The friction angle ratio R * of the ground satisfies the conditions of the following formulas (i) and (ii), and the overall width B, the web length Bw, the cross-sectional height H, and the flange angle of the hat-shaped steel sheet pile in the cross section. Hat-shaped steel sheet pile satisfying the relationship of θ is B−Bw−2H / tan θ> 0.
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-I000002
  2.  前記摩擦角比Rが0.8である、請求項1に記載のハット形鋼矢板。 The hat-shaped steel sheet pile according to claim 1, wherein the friction angle ratio R * is 0.8.
  3.  前記摩擦角比Rが0.84である、請求項1に記載のハット形鋼矢板。 The hat-shaped steel sheet pile according to claim 1, wherein the friction angle ratio R * is 0.84.
PCT/JP2019/032114 2018-08-31 2019-08-16 Hat-type steel sheet pile WO2020045118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162675A JP2021183758A (en) 2018-08-31 2018-08-31 Steel sheet pile
JP2018-162675 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045118A1 true WO2020045118A1 (en) 2020-03-05

Family

ID=69645256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032114 WO2020045118A1 (en) 2018-08-31 2019-08-16 Hat-type steel sheet pile

Country Status (2)

Country Link
JP (1) JP2021183758A (en)
WO (1) WO2020045118A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488230B1 (en) * 2002-07-10 2004-01-19 新日本製鐵株式会社 Rolled steel sheet pile
JP3488233B1 (en) * 2002-11-15 2004-01-19 新日本製鐵株式会社 Hat-type steel sheet pile
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159445A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488230B1 (en) * 2002-07-10 2004-01-19 新日本製鐵株式会社 Rolled steel sheet pile
JP3488233B1 (en) * 2002-11-15 2004-01-19 新日本製鐵株式会社 Hat-type steel sheet pile
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP5764945B2 (en) * 2011-02-01 2015-08-19 Jfeスチール株式会社 Hat-shaped steel sheet pile
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159445A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile
WO2015159434A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RANDOLPH, M. F. ET AL.: "Design of driven piles in sand", GEOTECHNIQUE, vol. 44, no. 3, 9 October 2019 (2019-10-09), XP055695609 *

Also Published As

Publication number Publication date
JP2021183758A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US7360969B2 (en) Z-shaped sheet piling
JP6108031B2 (en) Steel sheet pile
JP4528326B2 (en) How to set the shape of a hat-type steel sheet pile
KR20120101494A (en) Z-shaped steel sheet pile
JP2014148798A (en) Steel sheet pile
JP4069030B2 (en) How to set the shape of a hat-type steel sheet pile
JPH0135969B2 (en)
WO2020045118A1 (en) Hat-type steel sheet pile
KR100752618B1 (en) H shaped steel beam and wall using the same
JP2004162460A (en) Hat-shaped steel sheet pile
JPWO2013002095A1 (en) Corrugated steel sheet design method and corrugated steel sheet flume
WO2018117269A1 (en) Hat-shaped steel sheet piling
JP7143891B2 (en) Manufacturing method of hat-shaped steel sheet pile
JP2017119946A (en) Steel concrete sandwich structure and design method for steel concrete sandwich structure
WO2020045113A1 (en) Hat-shaped steel sheet piling, steel sheet piling wall, and method for manufacturing steel sheet piling walls
WO2020045115A1 (en) Hat-shaped steel sheet pile and production method for steel sheet pile wall
WO2020045114A1 (en) Hat-shaped steel sheet pile and production method for steel sheet pile wall
JP2007283330A (en) Shape steel
WO2020045116A1 (en) Hat-shaped steel sheet pile and method for producing steel sheet pile wall
JP2004300913A (en) H-shape steel with projection and wall body using it
RU2056489C1 (en) Thin-walled metal beam of unclosed profile
TWI510695B (en) Hat-shaped steel sheet pile
KR101390883B1 (en) Hat-type steel sheet pile
JP2004162459A (en) Rolled steel sheet pile
JPH0610342A (en) Cast-in-place reinforced concrete expansion bottom pile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP