WO2020045115A1 - Hat-shaped steel sheet pile and production method for steel sheet pile wall - Google Patents

Hat-shaped steel sheet pile and production method for steel sheet pile wall Download PDF

Info

Publication number
WO2020045115A1
WO2020045115A1 PCT/JP2019/032111 JP2019032111W WO2020045115A1 WO 2020045115 A1 WO2020045115 A1 WO 2020045115A1 JP 2019032111 W JP2019032111 W JP 2019032111W WO 2020045115 A1 WO2020045115 A1 WO 2020045115A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
sheet pile
hat
shaped steel
cross
Prior art date
Application number
PCT/JP2019/032111
Other languages
French (fr)
Japanese (ja)
Inventor
裕章 中山
典佳 原田
正和 武野
妙中 真治
俊介 森安
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020539348A priority Critical patent/JP7143888B2/en
Publication of WO2020045115A1 publication Critical patent/WO2020045115A1/en
Priority to JP2022094184A priority patent/JP2022120101A/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall.
  • ⁇ Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing. Since a hat-shaped steel sheet pile is made to penetrate into the ground at the time of driving, a technique for improving workability by reducing penetration resistance has been proposed.
  • the flange angle that is, the flange is positioned between the web and the arm such that the intersection of a perpendicular passing through the center of each flange is located outside the groove cross section of the hat-shaped steel sheet pile.
  • Patent Literature 2 also discloses a technique for minimizing the penetration resistance by optimizing the flange angle.
  • Patent Literature 3 describes a technique for setting a flange angle based on an economic index and a workability index indicating a penetration resistance at the lower end of a steel sheet pile.
  • Patent Literature 4 discloses at least one of economy and workability based on a relationship between an economy evaluation index and a workability evaluation index indicating a ratio of a cross-sectional area of a closing resistance acting on a lower end of a steel sheet pile at the time of driving.
  • a technique for setting the cross-sectional shape of a steel sheet pile having excellent performance is described.
  • the vibration energy of the construction machine used in the construction may be lost as energy of horizontal vibration and rotation behavior of the hat-shaped steel sheet pile, and as a result, the penetration speed of the hat-shaped steel sheet pile into the ground may be reduced.
  • a horizontal load is applied to the steel sheet pile head, which increases the deflection and torsion behavior of the steel sheet pile, and further increases the loss of vibration energy. May fall into Therefore, in order to ensure good workability of the steel sheet pile, it is important to suppress not only the behavior in the ground but also the bending and torsional deformation of the steel sheet pile on the ground.
  • the present invention provides a new and improved hat-shaped steel sheet pile and steel capable of improving workability by reducing a horizontal bending deformation generated on a ground portion when the hat-shaped steel sheet pile is driven.
  • An object of the present invention is to provide a method for manufacturing a sheet pile wall.
  • a hat-shaped steel sheet pile includes, in a cross section orthogonal to a longitudinal direction, a web extending along a width direction on a first side in a depth direction, and a width direction from both ends in a width direction of the web. And a pair of flanges extending toward the second side in the depth direction, and both ends in the width direction along the width direction from respective ends of the pair of flanges on the second side in the depth direction. And a mating joint formed at the end of each of the pair of arms opposite the pair of flanges.
  • the distance d (cm) and the effective width W (cm) of the hat-shaped steel sheet pile satisfy the relationship of the following expression (i), and the effective width W is 100 cm or more.
  • the second moment of area I, the distance d, and the effective width W may satisfy the following equations (ii) and (iii).
  • d / W ⁇ 1.90 ⁇ 10 ⁇ 5 ⁇ I / d + 0.111
  • it may also be effective width W is 115cm or more, greater moment of inertia I is more 9500Cm 4, and may be smaller than 80000cm 4.
  • a method for manufacturing a steel sheet pile wall using the above hat-shaped steel sheet pile is to cast a hat-shaped steel sheet pile into the ground while fitting only one of the fitting joints of the hat-shaped steel sheet pile to the fitting joint of the steel sheet pile previously placed. May be included.
  • the workability can be improved by reducing the horizontal bending deformation generated on the ground portion when the hat-shaped steel sheet pile is driven.
  • FIG. 1 It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. It is a figure for demonstrating the fitting center in the fitting joint of the hat-shaped steel sheet pile shown in FIG. It is a figure which shows the boundary condition of a hat-shaped steel sheet pile at the time of driving, and is a figure for conceptually explaining the fitting state with a preceding sheet pile, and the holding state of a hat-shaped steel sheet pile with a vibro hammer. It is a figure for conceptually explaining the horizontal deflection deformation which arises in a hat-shaped steel sheet pile at the time of driving.
  • the ratio I / d of the second moment of area I to the distance d was plotted on the horizontal axis, and the deflection f shown by the ratio of the deflection generated by the conventional hat-shaped steel sheet pile to the vertical axis. It is a graph plotted as an axis. It is the graph which plotted the comparative example and example of this invention on the axis of abscissa the ratio I / d of the area moment of inertia I and the distance d, and the axis of ordinate the ratio d / W of the distance d and the effective width W. 7 is a graph in which only an example in which the amount of deflection f is reduced to less than 80% of the conventional hat-shaped steel sheet pile among the examples shown in the graph of FIG. 6 is extracted.
  • FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention.
  • a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a width direction on a first side in a depth direction (a depth side in a y direction in the figure).
  • the web 2 extends along the x direction (in the figure) and from both ends in the width direction of the web 2 toward both sides in the width direction and toward the second side in the depth direction (front side in the y direction in the figure).
  • the flanges 3A and 3B extend and form a flange angle ⁇ (a sharp angle side) with the width direction, and the widthwise direction from the respective ends of the flanges 3A and 3B on the second side in the depth direction.
  • 4A and 4B extending toward both sides of the arm 4A, and fitting joints 5A and 5B formed at ends of the arms 4A and 4B opposite to the flanges 3A and 3B, respectively.
  • the effective width W, fitting center E A equal to the distance between the E B. d / W ⁇ 4.75 ⁇ 10 ⁇ 5 ⁇ I / d + 0.085 (1)
  • the straight line L A due to manufacturing errors, there necessarily to arm 4A, even if they do not match exactly to the plane of 4B.
  • the surfaces on the second side in the depth direction of the arms 4A and 4B are on the same straight line, and these surfaces are it is possible to specify the straight line L a corresponding to.
  • the extending direction of the arms 4A and 4B shown in the design drawing coincides with the width direction of the hat-shaped steel sheet pile 1.
  • the arms 4A, 4B are deformed at the time of construction or the like, so that the arms 4A, 4A,
  • the surface on the second side in the depth direction of 4B may not be exactly on the same straight line. Shinashi while, that this case also, to identify the linear L A corresponding to the surface of the second side of the design arm 4A shown on the same straight line in the drawing, 4B in the depth direction showing the status of, for example, punching ⁇ Can be.
  • the arm 4A fitting center E A located at each end of 4B, the arm 4A of the straight line connecting the E B , straight by the 4B thickness center line L C of the design (see FIG. 2), the thickness center line L C depth direction of the second arm 4A to the side, is only translated 4B plate half of the thickness L A can be specified.
  • the arm length Ba, the effective width W, the web length Bw, the height H, and the flange angle ⁇ are W ⁇ Bw ⁇ 2H / tan ⁇ > 0.
  • the height H is the height of the cross section of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the overhang of the fitting joints 5A and 5B.
  • FIG. 2 is a view for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. 1 in the fitting joint.
  • the fitting joint 5B of another hat-shaped steel sheet pile 1 that is driven adjacent to the fitting joint 5B of the hat-shaped steel sheet pile 1 is fitted.
  • Fitting center E A fitting joint 5A when placing the arms 4B and the fitting joint 5B fitted to virtually, and the end position of the arm 4A of the fitting joint 5A is formed, the virtual specific fitting joints 5B is positioned intermediate the end position of the arm 4B to be formed, it can be defined as a point on the thickness center line L C design of the arms 4A and the arm 4B.
  • Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly.
  • fitting the center E A, E B is related to the effective width W of the hat-shaped steel sheet pile 1.
  • FIGS. 3 and 4 are diagrams for conceptually explaining horizontal bending deformation occurring in the hat-shaped steel sheet pile during driving.
  • FIG. 3 is a plan view of the hat-shaped steel sheet pile 1 showing a boundary condition that causes the hat-shaped steel sheet pile to bend in the horizontal direction.
  • FIG. 4 is a side view of the hat-shaped steel sheet pile 1.
  • the hat-shaped steel sheet pile 1 is driven by a vertical vibration load B applied from a vibrohammer 6 sandwiching the flanges 3A and 3B at the upper end.
  • the vibratory hammer 6 is arranged so that the position in the depth direction (the y direction in the drawing) substantially matches the center C of the cross section.
  • the hat-shaped steel sheet pile 1P there is a hat-shaped steel sheet pile 1P previously driven near the ground surface, and the hat-shaped steel sheet pile 1 is driven while the fitting joint 5A is fitted to the fitting joint 5B of the hat-shaped steel sheet pile 1P. Is established. Therefore, near the ground surface, the fitting joint 5A of the hat-shaped steel sheet pile 1 is restrained from horizontal displacement by the fitting joint 5B of the hat-shaped steel sheet pile 1P. Mating fitting 5A is constrained to horizontal displacement by contact at a plurality of points near the fitting joint 5B and the fitting center E A. Therefore, the hat-shaped steel sheet pile 1 is restrained by the fitting joint portion and the ground at the lower portion in the longitudinal direction projecting to the ground portion.
  • the centroid C which is the point of application of the vibration load by the vibratory hammer 6, is located in the depth direction, that is, in the weak axis direction of the cross section of the hat-shaped steel sheet pile 1 from the fitting joint where horizontal displacement is restricted.
  • the bending moment due to the vibration load B is applied to the portion of the hat-shaped steel sheet pile 1 above the upper end of the hat-shaped steel sheet pile 1P according to the distance d. M acts.
  • a deflection f in the depth direction (the y direction in the drawing) occurs in the hat-shaped steel sheet pile 1.
  • the deflection amount f increases, a part of the vertical vibration load B by the vibratory hammer 6 is converted into horizontal vibration, and the vibration load in the driving direction is not effectively transmitted to the ground, and energy loss occurs. Workability decreases.
  • a conventional hat-shaped steel sheet pile having a length of 16 m was driven with a vibratory hammer suspended from a crawler crane at a vibration load of 33 kN and a maximum amplitude of vertical vibration of 6 mm.
  • the shaped steel sheet pile is fitted to the adjacent hat-shaped steel sheet pile at a total of 6 m, 5 m in the ground and 1 m on the ground, the depth of the remaining 10 m above the upper end of the adjacent hat-shaped steel sheet pile is measured.
  • the vibration increased and reached a maximum amplitude of 6 mm.
  • the vibratory hammer rocked, and the vibration load did not act effectively.
  • the driving speed of the hat-shaped steel sheet pile decreased.
  • the sheet pile was studied as a cantilever model in which the lower end was a fixed end restrained by the fitting joint with the preceding sheet pile and the ground, and the upper end was a free end subjected to bending moment due to vibration load.
  • the points that the present inventors focused on in the study are as follows. First, in order to reduce the bending amount f in the horizontal direction against the bending moment M as shown in FIG.
  • the bending moment M must be reduced, and a hat-shaped steel that serves as an index of resistance to the bending moment M It is advantageous to increase the second moment of area I of the sheet pile 1.
  • the centroid distance d shown in FIG. Can be used.
  • I / d which is a combination of the centroid distance d and the second moment of area I, which is an index of the bending moment M, is an index that reduces the amount of deflection f as the value increases.
  • the aim was not only to make the steel sheet pile that can reduce the amount of deflection, but also to make it an economical cross section.
  • the web width can be increased and the area ratio of the flange portion to the predetermined width can be reduced, so that the secondary moment of area per predetermined width, that is, bending rigidity, can be secured with a smaller cross-sectional area. That is, a large area second moment I can be obtained in an economical section.
  • the effective width W is large, even when the second moment of area per wall width is the same, the second moment of area I of the hat-shaped steel sheet pile 1 (per sheet) becomes larger, and the amount of deflection is increased.
  • the range of the bending moment M in which f can be suppressed to an allowable range can be increased.
  • the deflection amount f can be suppressed to an allowable range. That is, by suppressing d / W to a predetermined value or less, the deflection amount f can be suppressed to an allowable range.
  • the following examination is intended to specify the conditions of the cross-sectional shape of the hat-shaped steel sheet pile 1 capable of reducing the deflection f, focusing on the values of I / d and d / W.
  • Tables 1 to 4 show the results of the study.
  • Study, cross-sectional secondary moment I W is 10000 cm 4 / m level per wall width 1m of wall linked a hat-shaped steel sheet pile 1 in the width direction, 25000 cm 4 / m level, 45000cm 4 / m level, and 50000 cm 4 / M level
  • Examples 1 to 32 show examples in which the amount of deflection f was reduced as compared with the conventional hat-shaped steel sheet piles shown as Comparative Examples 1 to 4.
  • the dimensions represented by the web thickness tw (cm), the web width Bw (cm), and the arm width Ba (cm) shown in Tables 1 to 4 are shown in FIG.
  • FIG. 5 is a graph of Comparative Example 1 to Comparative Example 4 and Example 1 to Example 32 in which the ratio I / d between the second moment of area I (cm 4 ) and the distance d (cm) is plotted on the horizontal axis. It is the graph which plotted quantity f (ratio with the conventional) as a vertical axis
  • Comparative Examples 1 to 4 is shown as point P1 - P4, Embodiments 1 to 32 points for each level of the second moment I W E1-E7, points E8-E16, the points E17-E29 , And points E30 to E32.
  • the value of the I / d is different for each level of the second moment I W per wall width 1 m, in each level, the larger the value of the I / d, deflection There was a tendency for the amount f to be reduced.
  • FIG. 6 shows the ratios I / d between the second moment of area I (cm 4 ) and the distance d (cm) on the horizontal axis and the distance on the comparative example 1 to comparative example 4 and example 1 to example 32. It is the graph which plotted the ratio d / W of d (cm) and effective width W (cm) on the vertical axis. In the graph of FIG. 6, points E1 to E32 indicating the example are included in a range of d / W ⁇ 4.75 ⁇ 10 ⁇ 5 ⁇ I / d + 0.085.
  • points P1 to P4 indicating the comparative example are in the range of d / W> 4.75 ⁇ 10 ⁇ 5 ⁇ I / d + 0.085. Therefore, from the results of the above study, the following equation (1) can be specified as a condition for the cross-sectional shape of the hat-shaped steel sheet pile 1 that can reduce the deflection f. d / W ⁇ 4.75 ⁇ 10 ⁇ 5 ⁇ I / d + 0.085 (1)
  • I / d and d / W are indices that correlate with each other in the hat-shaped steel sheet pile. For example, in the comparative examples 1 to 4 (points P1 to P4) in FIG.
  • Examples 1 to 32 are cross-sectional secondary moment I W per wall width 1m of wall linked to the width direction 10000 cm 4 / m level, 25000 cm 4 / m level, 45000cm 4 / m level, and including 50000 cm 4 / m level of the hat-shaped steel sheet pile 1, cross-sectional secondary moment I of these hat-shaped steel sheet pile 1 of the single (per sheet) is larger than 9500Cm 4, and to a smaller extent than 80000Cm 4 (9500 cm 4 ⁇ I ⁇ 80000 cm 4 ).
  • a hat-shaped steel sheet pile having a so-called thin-walled large cross section with an increased width is preferably formed to have a more compact cross section in consideration of manufacturability.
  • large moment of inertia I is more 9500Cm 4 of a single hat-shaped steel sheet pile 1 (per sheet), and is in the range smaller than 40000cm 4 (9500cm 4 ⁇ I ⁇ 40000 cm 4 ) is more preferable.
  • FIG. 7 shows that the deflection amount f (ratio to the conventional example) is less than 0.8 among the examples 1 to 32 shown in the graph of FIG. 6, that is, the deflection amount f is 80% of the conventional hat-shaped steel sheet pile.
  • 7 is a graph in which only examples reduced to less than% are extracted. Specifically, Examples 1 to 7, Example 9 to Example 16, and Examples 22 to 32 are extracted.
  • points E1 to E7, E9 to E16, and E22 to E32 indicating the extracted examples are d / W ⁇ 1.90 ⁇ 10 ⁇ 5 ⁇ I / d + 0.111 and I / d ⁇ 828 Included in the range.
  • points P1 to P4 indicating the comparative example are in the range of d / W> 1.90 ⁇ 10 ⁇ 5 ⁇ I / d + 0.111. Therefore, as a condition of the cross-sectional shape of the hat-shaped steel sheet pile 1 that can reduce the deflection amount f to a degree that a practically remarkable effect is seen, specifically, to less than 80% of the conventional hat-shaped steel sheet pile, the following equation ( 2) and Equation (3) can be specified.
  • d / W ⁇ 1.90 ⁇ 10 ⁇ 5 ⁇ I / d + 0.111 (2) I / d ⁇ 828 (3)
  • the above-mentioned examination was carried out by setting the effective width W of the hat-shaped steel sheet pile 1 to 90 cm, which is the effective width of the conventional hat-shaped steel sheet pile.
  • the effective width W was 100 cm or more in Examples 1 to 32 because the effective width W was increased in consideration of the enlargement.
  • the cross section that reduces the amount of deflection as compared with the conventional hat-shaped steel sheet pile is a ratio d / W between the effective width W and the distance d, and the cross section of the distance d and the cross section.
  • a hat-shaped steel sheet pile having a cross-sectional shape in which horizontal bending deformation generated at the time of driving is effectively reduced is provided.
  • Such a hat-shaped steel sheet pile is formed, for example, by fitting only one of a pair of fitting joints of the hat-shaped steel sheet pile to a fitting joint of a steel sheet pile previously driven.
  • the method is particularly advantageous in a method for manufacturing a steel sheet pile wall including a step of placing the sheet pile in the ground.
  • the construction machine supports the steel sheet pile at a position where one joint of the hat-shaped steel sheet pile is fitted to the joint of the steel sheet pile previously driven. Since the position where the vertical vibration load is applied is eccentric, the hat-shaped steel sheet pile is likely to generate a moment to bend, but by applying the embodiment of the present invention, the bending can be effectively suppressed.
  • the horizontal vibration of the hat-shaped steel sheet piles on the ground is reduced, and the hat is used in a state in which the construction energy is efficiently used with little loss of the driving energy from the construction machine.
  • the speed of the hat-shaped steel sheet pile penetrating into the ground can be kept high while being transmitted to the shape steel sheet pile, and the fuel-efficient and economical construction of the heavy construction machine becomes possible.
  • the flapping of the hat-shaped steel sheet pile during driving is reduced, and noise and vibration accompanying construction can be reduced. Larger construction machines due to the larger cross section of hat-shaped steel sheet piles may increase noise and vibration.However, by suppressing bending deformation of hat-shaped steel sheet piles, it is possible to perform construction with reduced noise and vibration. Become.
  • the fitting resistance of the steel sheet pile previously driven into the joint can be reduced. Can be reduced, and scraping and welding at the contact surface of the joint can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

A hat-shaped steel sheet pile comprising, in a cross-section orthogonal to the longitudinal direction: a web extending along the width direction on a first side in the depth direction; a pair of flanges extending to both sides in the width direction from both ends of the web in the width direction and towards a second side in the depth direction; a pair of arms extending from each end section of the pair of flanges, in the width direction on the second side in the depth direction and towards both sides in the width direction; and a mating fitting formed in an end section of each of the pair of arms, on the opposite side to the pair of flanges. The cross-section second moment I of the hat-shaped steel sheet pile in cross-section, the distance d between the centroid of the hat-shaped steel sheet pile and a straight line corresponding to the surface on the second side of the pair of arms in the depth direction, in cross-section, and the effective width W of the hat-shaped steel sheet pile fulfil the relationship in formula (i) and the effective width W is at least 100 cm. d/W ≤ 4.75 × 10–5 × I/d + 0.085 … (i)

Description

ハット形鋼矢板および鋼矢板壁の製造方法Hat-shaped steel sheet pile and method of manufacturing steel sheet pile wall
 本発明は、ハット形鋼矢板および鋼矢板壁の製造方法に関する。 The present invention relates to a hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall.
 ハット形鋼矢板は、土木建築工事において、土留めや止水のための壁体を構築するために広く利用されている。ハット形鋼矢板は打設時に地盤に貫入させられるため、貫入抵抗をより小さくすることによって施工性を向上させる技術が提案されている。例えば、特許文献1では、ハット形鋼矢板の断面においてそれぞれのフランジの中央を通る垂線の交点がハット形鋼矢板の溝断面外に位置するようにフランジ角度、すなわちフランジがウェブおよびアームとの間になす角度を設定することによって、打設時の排土圧を抑制して施工性を向上させる技術が記載されている。特許文献2にも、フランジ角度を最適化することによって貫入抵抗を最小化する技術が記載されている。また、特許文献3には、経済性指標と、鋼矢板下端での貫入抵抗を示す施工性指標とに基づいてフランジ角度を設定する技術が記載されている。特許文献4には、経済性評価指数と、打設時に鋼矢板下端に作用する閉塞抵抗の断面積に対する比を示す施工性評価指数との関係に基づいて、経済性および施工性のうち少なくとも一方の性能に優れた鋼矢板の断面形状を設定する技術が記載されている。 形 Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing. Since a hat-shaped steel sheet pile is made to penetrate into the ground at the time of driving, a technique for improving workability by reducing penetration resistance has been proposed. For example, in Patent Literature 1, in the cross section of the hat-shaped steel sheet pile, the flange angle, that is, the flange is positioned between the web and the arm such that the intersection of a perpendicular passing through the center of each flange is located outside the groove cross section of the hat-shaped steel sheet pile. There is described a technique for improving the workability by suppressing the earth pressure at the time of placing by setting an angle to be formed. Patent Literature 2 also discloses a technique for minimizing the penetration resistance by optimizing the flange angle. Patent Literature 3 describes a technique for setting a flange angle based on an economic index and a workability index indicating a penetration resistance at the lower end of a steel sheet pile. Patent Literature 4 discloses at least one of economy and workability based on a relationship between an economy evaluation index and a workability evaluation index indicating a ratio of a cross-sectional area of a closing resistance acting on a lower end of a steel sheet pile at the time of driving. A technique for setting the cross-sectional shape of a steel sheet pile having excellent performance is described.
特許第3488230号公報Japanese Patent No. 3488230 特許第3488233号公報Japanese Patent No. 3488233 特許第5764945号公報Japanese Patent No. 5764945 特開2014-148798号公報JP 2014-148798 A
 上記の特許文献1から特許文献4に記載された技術は、いずれも、鋼矢板の地中での挙動に着目し、地盤に貫入させられた後に作用する貫入抵抗や閉塞抵抗をより小さくすることによって施工性を向上させることを目的としている。即ち、鋼矢板の施工性を評価する手法として、これまでは地盤内での鋼矢板挿入時のメカニズムのみに着目して、鋼矢板周辺の地盤抵抗や土粒子挙動との関係から、最適な鋼矢板形状を模索してきた。しかしながら、本発明者らが得た知見によれば、そのような鋼矢板の地中での挙動に加えて、打設中の地上部での挙動も施工性に影響する。つまり、実際の鋼矢板の打設は、鋼矢板が地盤内に打設されている状況と、地上部に突出している状況とが、併進するかたちで進行し、鋼矢板の施工性は、地盤内と地上部での鋼矢板の連成挙動の影響を受ける。具体的には、鋼矢板を継手で幅方向に連結しながら打設するときに、先行して打設された鋼矢板に継手を拘束された状態で打設されるハット形鋼矢板に水平方向のたわみ変形が発生することによって施工性が低下することがわかった。 All of the techniques described in Patent Documents 1 to 4 above focus on the behavior of steel sheet piles in the ground, and reduce the penetration resistance and blockage resistance acting after being made to penetrate the ground. The purpose is to improve workability. In other words, as a method of evaluating the workability of steel sheet piles, the focus has been on the mechanism of steel sheet pile insertion in the ground so far, and the optimum steel sheet pile is considered from the relationship with the ground resistance and soil particle behavior around the steel sheet pile. I've been looking for a sheet pile shape. However, according to the knowledge obtained by the present inventors, in addition to the behavior of the steel sheet pile in the ground, the behavior of the steel sheet pile on the ground portion during driving also affects the workability. In other words, in actual steel sheet pile driving, the situation where the steel sheet pile is being driven into the ground and the state where it is protruding above the ground proceed in a parallel fashion, and the workability of the steel sheet pile is It is affected by the coupled behavior of steel sheet piles inside and above the ground. Specifically, when the steel sheet pile is driven while being connected in the width direction with a joint, the hat-shaped steel sheet pile which is driven with the joint restrained by the steel sheet pile previously driven is horizontally It was found that the workability deteriorated due to the occurrence of flexural deformation.
 具体的には、ハット形鋼矢板にねじりやたわみなどの変形が生じると、打設時に鋼矢板下端以深や鋼矢板側面からの地盤から受ける貫入抵抗や、先行して打設された鋼矢板の継手との嵌合抵抗が増大する可能性がある。また、地上部においてハット形鋼矢板にたわみやねじれなどの変形が発生すると、バイブロハンマーなどの施工機が傾いたり揺動したりすることによって、本来はハット形鋼矢板を鉛直方向に振動させるために使われる施工機の振動エネルギーがハット形鋼矢板の水平方向の振動や回転挙動のエネルギーとして損失になり、結果としてハット形鋼矢板の地盤内への貫入速度が低下する可能性がある。施工機が傾いたり揺動してしまったりすると、鋼矢板頭部には水平方向の荷重が加わることになるため、鋼矢板のたわみやねじれ挙動が増長され、更に振動エネルギーの損失が増大する悪循環に陥る可能性がある。よって、鋼矢板の良好な施工性を確保するためには、地盤内挙動のみならず、地上部において、鋼矢板のたわみやねじれ変形を抑制することが重要となる。 Specifically, when deformation such as torsion or bending occurs in the hat-shaped steel sheet pile, the penetration resistance received from the ground from the bottom of the steel sheet pile at the lower end or from the side of the steel sheet pile at the time of driving, or the steel sheet pile previously driven There is a possibility that the fitting resistance with the joint increases. In addition, when deformation such as bending or torsion occurs in the hat-shaped steel sheet pile on the ground part, the construction machine such as a vibratory hammer tilts and swings, which originally causes the hat-shaped steel sheet pile to vibrate vertically. The vibration energy of the construction machine used in the construction may be lost as energy of horizontal vibration and rotation behavior of the hat-shaped steel sheet pile, and as a result, the penetration speed of the hat-shaped steel sheet pile into the ground may be reduced. When the construction machine is tilted or rocked, a horizontal load is applied to the steel sheet pile head, which increases the deflection and torsion behavior of the steel sheet pile, and further increases the loss of vibration energy. May fall into Therefore, in order to ensure good workability of the steel sheet pile, it is important to suppress not only the behavior in the ground but also the bending and torsional deformation of the steel sheet pile on the ground.
 ところが、このような施工性の低下の原因になりうるハット形鋼矢板の地上部での挙動については、上記の特許文献1から特許文献4には記載されていない。鋼矢板の打設性を評価する上において、地盤内での挙動のみならず、地上部も含めて、鋼矢板全体挙動を見渡して、最適な鋼矢板断面形状を模索することは従来行われてこなかった。これは、1つには、鋼矢板の断面が小さい場合、施工機が鋼矢板を支持する位置が鋼矢板の断面重心から大きく偏心することがなく、従って地上部において施工性に影響するほどの鋼矢板のたわみやねじれなどの変形が生じにくかったためである。そのため、鋼矢板の施工性は、地盤からの抵抗が支配的であると考えられてきた。実際、鋼矢板が小型であれば、地上部において、打設時の鋼矢板の断面変形は顕著に露出することがなく、地上部での変形挙動と施工性との関連性には着目されず、両者の関連性に関する知見はなかった。しかしながら、近年、ハット形鋼矢板の大断面化によって、地上部におけるハット形鋼矢板のねじれやたわみなどの変形挙動が拡大し、施工性に影響する可能性が生じてきている。 However, the behavior of the hat-shaped steel sheet pile on the ground portion, which may cause such deterioration in workability, is not described in Patent Documents 1 to 4 described above. In evaluating the driving performance of steel sheet piles, it has been conventional practice to look for not only the behavior in the ground but also the overall behavior of the steel sheet piles, including the ground part, and to search for the optimum steel sheet pile cross-sectional shape. Did not. One of the reasons is that, when the cross section of the steel sheet pile is small, the position at which the construction machine supports the steel sheet pile is not largely eccentric from the center of gravity of the cross section of the steel sheet pile, and therefore, the workability is affected at the ground part. This is because deformation such as bending and twisting of the steel sheet pile was difficult to occur. Therefore, the workability of steel sheet piles has been considered to be dominated by the resistance from the ground. In fact, if the steel sheet piles are small, the section deformation of the steel sheet piles at the time of driving is not significantly exposed on the ground, and no attention is paid to the relationship between the deformation behavior on the ground and the workability. However, there was no finding regarding the relationship between the two. However, in recent years, with the enlargement of the cross section of the hat-shaped steel sheet pile, the deformation behavior of the hat-shaped steel sheet pile in the ground portion, such as torsion and deflection, has been expanded, which may affect the workability.
 そこで、本発明は、ハット形鋼矢板の打設時に地上部で発生する水平方向のたわみ変形を低減することによって施工性を向上させることが可能な、新規かつ改良されたハット形鋼矢板および鋼矢板壁の製造方法を提供することを目的とする。 Accordingly, the present invention provides a new and improved hat-shaped steel sheet pile and steel capable of improving workability by reducing a horizontal bending deformation generated on a ground portion when the hat-shaped steel sheet pile is driven. An object of the present invention is to provide a method for manufacturing a sheet pile wall.
 本発明のある観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、奥行き方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ奥行き方向の第2の側に向かって延びる1対のフランジと、奥行き方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される嵌合継手とを備える。断面におけるハット形鋼矢板の断面2次モーメントI(cm)と、断面における1対のアームの奥行き方向の第2の側の面に対応する直線とハット形鋼矢板の図心との間の距離d(cm)と、ハット形鋼矢板の有効幅W(cm)とは、以下の式(i)の関係を満たし、有効幅Wが100cm以上である。
 d/W≦4.75×10-5×I/d+0.085 ・・・(i)
According to an aspect of the present invention, a hat-shaped steel sheet pile includes, in a cross section orthogonal to a longitudinal direction, a web extending along a width direction on a first side in a depth direction, and a width direction from both ends in a width direction of the web. And a pair of flanges extending toward the second side in the depth direction, and both ends in the width direction along the width direction from respective ends of the pair of flanges on the second side in the depth direction. And a mating joint formed at the end of each of the pair of arms opposite the pair of flanges. The moment of inertia I (cm 4 ) of the cross section of the hat-shaped steel sheet pile in the cross-section, and the centroid of the hat-shaped steel sheet pile between the straight line corresponding to the second surface in the depth direction of the pair of arms in the cross section. The distance d (cm) and the effective width W (cm) of the hat-shaped steel sheet pile satisfy the relationship of the following expression (i), and the effective width W is 100 cm or more.
d / W ≦ 4.75 × 10 −5 × I / d + 0.085 (i)
 上記のハット形鋼矢板では、断面2次モーメントIと、距離dと、有効幅Wとが、以下の式(ii)および式(iii)の関係を満たしてもよい。
 d/W≦1.90×10-5×I/d+0.111 ・・・(ii)
 I/d≧828 ・・・(iii)
 また、上記のハット形鋼矢板では、有効幅Wが115cm以上であってもよく、断面2次モーメントIが9500cmより大きく、かつ80000cmよりも小さくてもよい。
In the above-mentioned hat-shaped steel sheet pile, the second moment of area I, the distance d, and the effective width W may satisfy the following equations (ii) and (iii).
d / W ≦ 1.90 × 10 −5 × I / d + 0.111 (ii)
I / d ≧ 828 (iii)
In the above hat-shaped steel sheet pile, it may also be effective width W is 115cm or more, greater moment of inertia I is more 9500Cm 4, and may be smaller than 80000cm 4.
 本発明の別の観点によれば、上記のハット形鋼矢板を用いた鋼矢板壁の製造方法が提供される。鋼矢板壁の製造方法は、ハット形鋼矢板の嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながらハット形鋼矢板を地中に打設する工程を含んでもよい。 According to another aspect of the present invention, there is provided a method for manufacturing a steel sheet pile wall using the above hat-shaped steel sheet pile. The method of manufacturing the steel sheet pile wall is to cast a hat-shaped steel sheet pile into the ground while fitting only one of the fitting joints of the hat-shaped steel sheet pile to the fitting joint of the steel sheet pile previously placed. May be included.
 上記の構成によれば、ハット形鋼矢板の打設時に地上部で発生する水平方向のたわみ変形を低減することによって施工性を向上させることができる。 According to the above configuration, the workability can be improved by reducing the horizontal bending deformation generated on the ground portion when the hat-shaped steel sheet pile is driven.
本発明の一実施形態に係るハット形鋼矢板の断面図である。It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. 図1に示されたハット形鋼矢板の嵌合継手における嵌合中心について説明するための図である。It is a figure for demonstrating the fitting center in the fitting joint of the hat-shaped steel sheet pile shown in FIG. 打設時のハット形鋼矢板の境界条件を示す、先行矢板との嵌合状況、バイブロハンマーによるハット形鋼矢板の把持状況について概念的に説明するための図である。It is a figure which shows the boundary condition of a hat-shaped steel sheet pile at the time of driving, and is a figure for conceptually explaining the fitting state with a preceding sheet pile, and the holding state of a hat-shaped steel sheet pile with a vibro hammer. 打設時のハット形鋼矢板に発生する水平方向のたわみ変形について概念的に説明するための図である。It is a figure for conceptually explaining the horizontal deflection deformation which arises in a hat-shaped steel sheet pile at the time of driving. 本発明の比較例および実施例を、断面2次モーメントIと距離dとの比I/dを横軸、従来のハット形鋼矢板で発生するたわみ量との比で示したたわみ量fを縦軸としてプロットしたグラフである。In the comparative example and the example of the present invention, the ratio I / d of the second moment of area I to the distance d was plotted on the horizontal axis, and the deflection f shown by the ratio of the deflection generated by the conventional hat-shaped steel sheet pile to the vertical axis. It is a graph plotted as an axis. 本発明の比較例および実施例を、断面2次モーメントIと距離dとの比I/dを横軸、距離dと有効幅Wとの比d/Wを縦軸としてプロットしたグラフである。It is the graph which plotted the comparative example and example of this invention on the axis of abscissa the ratio I / d of the area moment of inertia I and the distance d, and the axis of ordinate the ratio d / W of the distance d and the effective width W. 図6のグラフに示された実施例のうち、たわみ量fが従来のハット形鋼矢板の80%未満にまで低減される例のみを抽出したグラフである。7 is a graph in which only an example in which the amount of deflection f is reduced to less than 80% of the conventional hat-shaped steel sheet pile among the examples shown in the graph of FIG. 6 is extracted.
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の一実施形態に係るハット形鋼矢板の断面図である。図1に示されるように、ハット形鋼矢板1は、長手方向(図中のz方向)に直交する断面において、奥行き方向の第1の側(図中のy方向の奥側)で幅方向(図中のx方向)に沿って延びるウェブ2と、ウェブ2の幅方向の両端部から幅方向の両側、かつ奥行き方向の第2の側(図中のy方向の手前側)に向かって延び、幅方向との間にフランジ角度θ(鋭角側)をなすフランジ3A,3Bと、奥行き方向の第2の側でフランジ3A,3Bのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びるアーム4A,4Bと、アーム4A,4Bのそれぞれのフランジ3A,3Bとは反対側の端部に形成される嵌合継手5A,5Bとを含む。 FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention. As shown in FIG. 1, a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a width direction on a first side in a depth direction (a depth side in a y direction in the figure). The web 2 extends along the x direction (in the figure) and from both ends in the width direction of the web 2 toward both sides in the width direction and toward the second side in the depth direction (front side in the y direction in the figure). The flanges 3A and 3B extend and form a flange angle θ (a sharp angle side) with the width direction, and the widthwise direction from the respective ends of the flanges 3A and 3B on the second side in the depth direction. 4A and 4B extending toward both sides of the arm 4A, and fitting joints 5A and 5B formed at ends of the arms 4A and 4B opposite to the flanges 3A and 3B, respectively.
 後述するように、この断面におけるハット形鋼矢板1の断面2次モーメントI(cm)と、断面におけるアーム4A,4Bの奥行き方向の第2の側(図中のy方向の手前側)の面に対応する直線Lとハット形鋼矢板1の図心Cとの間の距離d(cm)と、ハット形鋼矢板1の有効幅W(cm)とは、以下の式(1)の関係を満たす。なお、有効幅Wは、嵌合中心E,E間の距離に等しい。
 d/W≦4.75×10-5×I/d+0.085 ・・・(1)
As will be described later, the second moment of area I (cm 4 ) of the hat-shaped steel sheet pile 1 in this section and the second side in the depth direction of the arms 4A and 4B (the front side in the y direction in the drawing) in the section. and distance d (cm) between the centroid C of the straight line L a and hat-shaped steel sheet pile 1 which corresponds to the surface, the effective width W of the hat-shaped steel sheet pile 1 (cm), the following formula (1) Satisfy the relationship. Incidentally, the effective width W, fitting center E A, equal to the distance between the E B.
d / W ≦ 4.75 × 10 −5 × I / d + 0.085 (1)
 ここで、直線Lは、製造誤差などにより、必ずしも実際のアーム4A,4Bの面に厳密には一致しない場合もある。しかしながら、このような場合であっても、例えば設計図面に示されたハット形鋼矢板1の断面ではアーム4A,4Bの奥行き方向の第2の側の面が同一直線上にあり、これらの面に対応する直線Lを特定することが可能である。この場合、設計図面に示されたアーム4A,4Bの延びる方向は、ハット形鋼矢板1の幅方向に一致する。また、施工後に地中に打ち込まれたハット形鋼矢板1では、施工時などのアーム4A,4Bの変形によって、例えば地上に露出しているハット形鋼矢板1の頭部端面において、アーム4A,4Bの奥行き方向の第2の側の面が厳密には同一直線上にない場合がある。しなしながら、この場合も、例えば打設前の状況を示す設計図面で同一直線上に示されたアーム4A,4Bの奥行き方向の第2の側の面に対応する直線Lを特定することができる。設計図面によらない場合、地上に露出しているハット形鋼矢板1の頭部端面において、アーム4A,4Bのそれぞれの端部に位置する嵌合中心E,Eを結ぶ直線をアーム4A,4Bの設計上の板厚中心線L(図2参照)とし、板厚中心線L奥行き方向の第2の側へアーム4A,4Bの板厚の半分だけ平行移動させることによって直線Lを特定することができる。 Here, the straight line L A, due to manufacturing errors, there necessarily to arm 4A, even if they do not match exactly to the plane of 4B. However, even in such a case, for example, in the cross section of the hat-shaped steel sheet pile 1 shown in the design drawing, the surfaces on the second side in the depth direction of the arms 4A and 4B are on the same straight line, and these surfaces are it is possible to specify the straight line L a corresponding to. In this case, the extending direction of the arms 4A and 4B shown in the design drawing coincides with the width direction of the hat-shaped steel sheet pile 1. In addition, in the hat-shaped steel sheet pile 1 driven into the ground after the construction, the arms 4A, 4B are deformed at the time of construction or the like, so that the arms 4A, 4A, The surface on the second side in the depth direction of 4B may not be exactly on the same straight line. Shinashi while, that this case also, to identify the linear L A corresponding to the surface of the second side of the design arm 4A shown on the same straight line in the drawing, 4B in the depth direction showing the status of, for example, punching設前Can be. If that is not based on the design drawing, at the head end face of the hat-shaped steel sheet pile 1 exposed on the ground, the arm 4A, fitting center E A located at each end of 4B, the arm 4A of the straight line connecting the E B , straight by the 4B thickness center line L C of the design (see FIG. 2), the thickness center line L C depth direction of the second arm 4A to the side, is only translated 4B plate half of the thickness L A can be specified.
 なお、図1に示されたハット形鋼矢板1の形状が幾何学的に成り立つ場合、アーム長さBa、有効幅W、ウェブ長さBw、高さHおよびフランジ角度θは、W-Bw-2H/tanθ>0の関係を満たしている。ここで、高さHは、ウェブ2およびアーム4A,4Bの板厚を含み嵌合継手5A,5Bの張り出しを含まないハット形鋼矢板1の断面の高さである。 When the shape of the hat-shaped steel sheet pile 1 shown in FIG. 1 is geometrically established, the arm length Ba, the effective width W, the web length Bw, the height H, and the flange angle θ are W−Bw− 2H / tan θ> 0. Here, the height H is the height of the cross section of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the overhang of the fitting joints 5A and 5B.
 図2は、図1に示されたハット形鋼矢板の嵌合継手における嵌合中心について説明するための図である。図示されているように、ハット形鋼矢板1の嵌合継手5Aには、隣接して打設される別のハット形鋼矢板1の嵌合継手5Bが嵌合する。嵌合継手5Aの嵌合中心Eは、これに嵌合するアーム4Bおよび嵌合継手5Bを仮想的に配置した場合に、嵌合継手5Aが形成されるアーム4Aの端部位置と、仮想的な嵌合継手5Bが形成されるアーム4Bの端部位置との中間に位置する、アーム4Aおよびアーム4Bの設計上の板厚中心線L上の点として定義することができる。ハット形鋼矢板1の反対側に位置する嵌合継手5Bの嵌合中心Eも、同様に定義することができる。上述のように、嵌合中心E,Eはハット形鋼矢板1の有効幅Wに関連する。 FIG. 2 is a view for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. 1 in the fitting joint. As shown in the figure, the fitting joint 5B of another hat-shaped steel sheet pile 1 that is driven adjacent to the fitting joint 5B of the hat-shaped steel sheet pile 1 is fitted. Fitting center E A fitting joint 5A, when placing the arms 4B and the fitting joint 5B fitted to virtually, and the end position of the arm 4A of the fitting joint 5A is formed, the virtual specific fitting joints 5B is positioned intermediate the end position of the arm 4B to be formed, it can be defined as a point on the thickness center line L C design of the arms 4A and the arm 4B. Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly. As mentioned above, fitting the center E A, E B is related to the effective width W of the hat-shaped steel sheet pile 1.
 図3および図4は、打設時のハット形鋼矢板に発生する水平方向のたわみ変形について概念的に説明するための図である。図3はハット形鋼矢板に水平方向のたわみ変形を引き起こす、境界状況を示すハット形鋼矢板1を平面視した図であり、図4はハット形鋼矢板1を側面視した図である。図3および図4に示されるように、ハット形鋼矢板1は、上端でフランジ3A,3Bを挟み込むバイブロハンマー6から加えられる鉛直方向の振動荷重Bによって打設される。バイブロハンマー6は、ハット形鋼矢板1を安定支持するために、奥行き方向(図中のy方向)の位置が断面の図心Cにほぼ一致するように配置される。 お よ び FIGS. 3 and 4 are diagrams for conceptually explaining horizontal bending deformation occurring in the hat-shaped steel sheet pile during driving. FIG. 3 is a plan view of the hat-shaped steel sheet pile 1 showing a boundary condition that causes the hat-shaped steel sheet pile to bend in the horizontal direction. FIG. 4 is a side view of the hat-shaped steel sheet pile 1. As shown in FIGS. 3 and 4, the hat-shaped steel sheet pile 1 is driven by a vertical vibration load B applied from a vibrohammer 6 sandwiching the flanges 3A and 3B at the upper end. In order to stably support the hat-shaped steel sheet pile 1, the vibratory hammer 6 is arranged so that the position in the depth direction (the y direction in the drawing) substantially matches the center C of the cross section.
 ここで、地表面近くには先行して打設されたハット形鋼矢板1Pがあり、ハット形鋼矢板1はハット形鋼矢板1Pの嵌合継手5Bに嵌合継手5Aを嵌合させながら打設される。従って、地表面近くでは、ハット形鋼矢板1の嵌合継手5Aは、ハット形鋼矢板1Pの嵌合継手5Bによって水平方向の変位を拘束される。嵌合継手5Aは、嵌合継手5Bと嵌合中心Eの近傍の複数の点で接触することによって水平方向の変位を拘束される。従って、ハット形鋼矢板1は、地上部に突出した長手方向下側の部分において、嵌合継手部と地盤からの拘束を受けることになる。これに対して、バイブロハンマー6による振動荷重の作用点である図心Cは、水平方向の変位が拘束される嵌合継手部から奥行き方向、すなわちハット形鋼矢板1の断面の弱軸方向の距離dだけ離れて位置するため、この距離dに応じて、図4に示されるようにハット形鋼矢板1Pの上端よりも上にあるハット形鋼矢板1の部分には振動荷重Bによる曲げモーメントMが作用する。これによって、ハット形鋼矢板1に奥行き方向(図中のy方向)のたわみ量fが発生する。たわみ量fが大きくなると、バイブロハンマー6による鉛直方向の振動荷重Bの一部が水平方向の振動に変換されてしまい、打設方向の振動荷重が効果的に地盤内に伝達されずエネルギーロスによって施工性が低下する。 Here, there is a hat-shaped steel sheet pile 1P previously driven near the ground surface, and the hat-shaped steel sheet pile 1 is driven while the fitting joint 5A is fitted to the fitting joint 5B of the hat-shaped steel sheet pile 1P. Is established. Therefore, near the ground surface, the fitting joint 5A of the hat-shaped steel sheet pile 1 is restrained from horizontal displacement by the fitting joint 5B of the hat-shaped steel sheet pile 1P. Mating fitting 5A is constrained to horizontal displacement by contact at a plurality of points near the fitting joint 5B and the fitting center E A. Therefore, the hat-shaped steel sheet pile 1 is restrained by the fitting joint portion and the ground at the lower portion in the longitudinal direction projecting to the ground portion. On the other hand, the centroid C, which is the point of application of the vibration load by the vibratory hammer 6, is located in the depth direction, that is, in the weak axis direction of the cross section of the hat-shaped steel sheet pile 1 from the fitting joint where horizontal displacement is restricted. As shown in FIG. 4, the bending moment due to the vibration load B is applied to the portion of the hat-shaped steel sheet pile 1 above the upper end of the hat-shaped steel sheet pile 1P according to the distance d. M acts. As a result, a deflection f in the depth direction (the y direction in the drawing) occurs in the hat-shaped steel sheet pile 1. When the deflection amount f increases, a part of the vertical vibration load B by the vibratory hammer 6 is converted into horizontal vibration, and the vibration load in the driving direction is not effectively transmitted to the ground, and energy loss occurs. Workability decreases.
 本発明者らの経験によれば、長さ16mの従来のハット形鋼矢板をクローラークレーンから吊り下げたバイブロハンマーで振動荷重33kN、鉛直方向振動の最大振幅6mmで打設していたところ、ハット形鋼矢板が地中で5m、地上で1mの合計6mで隣接するハット形鋼矢板に嵌合したところで、隣接するハット形鋼矢板の上端よりも上にある残りの10mの部分の奥行き方向の振動が増大し、最大振幅6mmに達した。この結果、バイブロハンマーが揺動し、振動荷重が効果的に作用しなくなった結果、ハット形鋼矢板の打設速度が低下した。 According to the experience of the present inventors, a conventional hat-shaped steel sheet pile having a length of 16 m was driven with a vibratory hammer suspended from a crawler crane at a vibration load of 33 kN and a maximum amplitude of vertical vibration of 6 mm. When the shaped steel sheet pile is fitted to the adjacent hat-shaped steel sheet pile at a total of 6 m, 5 m in the ground and 1 m on the ground, the depth of the remaining 10 m above the upper end of the adjacent hat-shaped steel sheet pile is measured. The vibration increased and reached a maximum amplitude of 6 mm. As a result, the vibratory hammer rocked, and the vibration load did not act effectively. As a result, the driving speed of the hat-shaped steel sheet pile decreased.
 本実施形態では、施工性の低下を防止するために、たわみ量fを従来のハット形鋼矢板よりも低減することができるハット形鋼矢板1の断面形状を、地上部に突出したハット形鋼矢板を、下端が先行矢板との嵌合継手部及び地盤により拘束された固定端、上端が振動荷重による曲げモーメントを受ける自由端とした片持ち梁モデルとして検討した。検討にあたって本発明者らが着目した点は以下のとおりである。まず、図4に示されたような曲げモーメントMに対抗して水平方向のたわみ量fを小さくするためには、曲げモーメントMを小さくすること、および曲げモーメントMに対する抵抗指標となるハット形鋼矢板1の断面2次モーメントIを大きくすることが有利である。ここで、曲げモーメントMは、継手嵌合位置と、施工機の鋼矢板把持位置となる断面図心との距離に比例するため、曲げモーメントMを表す指標として図3に示した図心距離dを用いることができる。曲げモーメントMを小さくするためには、図心距離dを小さくすることが有利である。曲げモーメントMの指標である図心距離dと断面2次モーメントIを組み合わせたI/dは、値が大きくなるほどたわみ量fが低減される指標である。 In the present embodiment, in order to prevent the workability from deteriorating, the cross-sectional shape of the hat-shaped steel sheet pile 1 whose deflection f can be reduced compared to the conventional hat-shaped steel sheet pile is changed to a hat-shaped steel sheet projecting above the ground. The sheet pile was studied as a cantilever model in which the lower end was a fixed end restrained by the fitting joint with the preceding sheet pile and the ground, and the upper end was a free end subjected to bending moment due to vibration load. The points that the present inventors focused on in the study are as follows. First, in order to reduce the bending amount f in the horizontal direction against the bending moment M as shown in FIG. 4, the bending moment M must be reduced, and a hat-shaped steel that serves as an index of resistance to the bending moment M It is advantageous to increase the second moment of area I of the sheet pile 1. Here, since the bending moment M is proportional to the distance between the joint fitting position and the sectional centroid at which the construction machine holds the steel sheet pile, the centroid distance d shown in FIG. Can be used. In order to reduce the bending moment M, it is advantageous to reduce the centroid distance d. I / d, which is a combination of the centroid distance d and the second moment of area I, which is an index of the bending moment M, is an index that reduces the amount of deflection f as the value increases.
 その一方で、単に、たわみ量を低減できる鋼矢板とするだけでなく、経済的な断面とすることも目指して、大断面化を指向し、有効幅Wを指標に取り入れた。広幅化することで、ウェブ幅を大きくでき、所定幅に占めるフランジ部の面積割合を小さくできるので、より少ない断面積で、所定幅当たりの断面2次モーメント即ち曲げ剛性を確保できる。つまり、経済的な断面で大きな断面2次モーメントIが得られる。換言すれば、有効幅Wが大きい場合には、壁幅あたりの断面2次モーメントが同じ場合でもハット形鋼矢板1の単体(1枚あたり)の断面2次モーメントIがより大きくなり、たわみ量fを許容可能な範囲に抑えることができる曲げモーメントMの範囲を大きくすることができる。 On the other hand, the aim was not only to make the steel sheet pile that can reduce the amount of deflection, but also to make it an economical cross section. By increasing the width, the web width can be increased and the area ratio of the flange portion to the predetermined width can be reduced, so that the secondary moment of area per predetermined width, that is, bending rigidity, can be secured with a smaller cross-sectional area. That is, a large area second moment I can be obtained in an economical section. In other words, when the effective width W is large, even when the second moment of area per wall width is the same, the second moment of area I of the hat-shaped steel sheet pile 1 (per sheet) becomes larger, and the amount of deflection is increased. The range of the bending moment M in which f can be suppressed to an allowable range can be increased.
 ここで、曲げモーメントMと図心距離dとは比例関係にあるため、図心距離dを大きくすると曲げモーメントMが増大するが、このとき有効幅Wも大きくすれば、断面2次モーメントIを増大させることによってたわみ量fを許容可能な範囲に抑えることができる。即ちd/Wを所定の値以下に抑えることによって、たわみ量fを許容可能な範囲に抑えることができる。 Here, since the bending moment M and the centroid distance d are in a proportional relationship, the bending moment M increases as the centroid distance d increases, but if the effective width W also increases at this time, the secondary moment of area I decreases. By increasing the amount, the deflection amount f can be suppressed to an allowable range. That is, by suppressing d / W to a predetermined value or less, the deflection amount f can be suppressed to an allowable range.
 従って、以下の検討は、I/dおよびd/Wの値に着目して、たわみ量fを低減できるハット形鋼矢板1の断面形状の条件を特定することを意図している。 Therefore, the following examination is intended to specify the conditions of the cross-sectional shape of the hat-shaped steel sheet pile 1 capable of reducing the deflection f, focusing on the values of I / d and d / W.
 表1~表4に検討の結果を示す。検討は、ハット形鋼矢板1を幅方向に連結した壁体の壁幅1mあたりの断面2次モーメントIが10000cm/mレベル、25000cm/mレベル、45000cm/mレベル、および50000cm/mレベルの場合のそれぞれについて行い、比較例1~比較例4として示す従来のハット形鋼矢板よりもたわみ量fが低減された例を実施例1~実施例32として示した。また、表1~表4に示されたウェブ厚さtw(cm)、ウェブ幅Bw(cm)、およびアーム幅Ba(cm)が表す寸法は、図1に示されている。 Tables 1 to 4 show the results of the study. Study, cross-sectional secondary moment I W is 10000 cm 4 / m level per wall width 1m of wall linked a hat-shaped steel sheet pile 1 in the width direction, 25000 cm 4 / m level, 45000cm 4 / m level, and 50000 cm 4 / M level, and Examples 1 to 32 show examples in which the amount of deflection f was reduced as compared with the conventional hat-shaped steel sheet piles shown as Comparative Examples 1 to 4. The dimensions represented by the web thickness tw (cm), the web width Bw (cm), and the arm width Ba (cm) shown in Tables 1 to 4 are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図5は、上記の比較例1~比較例4、および実施例1~実施例32を、断面2次モーメントI(cm)と距離d(cm)との比I/dを横軸、たわみ量f(従来との比)を縦軸としてプロットしたグラフである。比較例1~比較例4は点P1~P4として示されており、実施例1~実施例32は断面2次モーメントIのレベルごとに点E1~E7、点E8~E16、点E17~E29、および点E30~E32のグループに分けて示されている。図5のグラフに示されるように、I/dの値は壁幅1mあたりの断面2次モーメントIのレベルごとに異なるものの、各レベルの中では、I/dの値が大きくなるほど、たわみ量fが低減される傾向が見られた。 FIG. 5 is a graph of Comparative Example 1 to Comparative Example 4 and Example 1 to Example 32 in which the ratio I / d between the second moment of area I (cm 4 ) and the distance d (cm) is plotted on the horizontal axis. It is the graph which plotted quantity f (ratio with the conventional) as a vertical axis | shaft. Comparative Examples 1 to 4 is shown as point P1 - P4, Embodiments 1 to 32 points for each level of the second moment I W E1-E7, points E8-E16, the points E17-E29 , And points E30 to E32. As shown in the graph of FIG. 5, although the value of the I / d is different for each level of the second moment I W per wall width 1 m, in each level, the larger the value of the I / d, deflection There was a tendency for the amount f to be reduced.
 図6は、上記の比較例1~比較例4、および実施例1~実施例32を、断面2次モーメントI(cm)と距離d(cm)との比I/dを横軸、距離d(cm)と有効幅W(cm)との比d/Wを縦軸としてプロットしたグラフである。図6のグラフにおいて、実施例を示す点E1~E32は、d/W≦4.75×10-5×I/d+0.085の範囲に含まれる。これに対して、比較例を示す点P1~P4はd/W>4.75×10-5×I/d+0.085の範囲にある。従って、上記の検討の結果から、たわみ量fを低減できるハット形鋼矢板1の断面形状の条件として、以下の式(1)を特定することができる。
 d/W≦4.75×10-5×I/d+0.085 ・・・(1)
FIG. 6 shows the ratios I / d between the second moment of area I (cm 4 ) and the distance d (cm) on the horizontal axis and the distance on the comparative example 1 to comparative example 4 and example 1 to example 32. It is the graph which plotted the ratio d / W of d (cm) and effective width W (cm) on the vertical axis. In the graph of FIG. 6, points E1 to E32 indicating the example are included in a range of d / W ≦ 4.75 × 10 −5 × I / d + 0.085. On the other hand, points P1 to P4 indicating the comparative example are in the range of d / W> 4.75 × 10 −5 × I / d + 0.085. Therefore, from the results of the above study, the following equation (1) can be specified as a condition for the cross-sectional shape of the hat-shaped steel sheet pile 1 that can reduce the deflection f.
d / W ≦ 4.75 × 10 −5 × I / d + 0.085 (1)
 ここで、断面2次モーメントIは距離dの2乗に比例して大きくなるため、断面2次モーメントIが大きいほどd/Wは大きくなる。また、断面2次モーメントIの増加率が距離dの増加率よりも大きいため、断面2次モーメントIが大きいほどI/dも大きくなる。つまり、d/Wの増加に伴い、I/dは増加する傾向にある。従って、ハット形鋼矢板においてI/dとd/Wとは相関する指標であり、例えば図6の比較例1~比較例4(点P1~P4)ではほぼ比例関係にある。ハット形鋼矢板において、経済的な断面にするために広幅化しつつ、かつ大きな断面2次モーメントを確保するためにdの値を大きくした場合、たわみ量を許容可能な範囲に抑えるために、有効幅Wおよび距離dをそれぞれどのように決定するのが適切か、という基準はなかった。上記の検討では、たわみ量fを低減するという観点から、d/WをI/dに応じて定まる所定の値以下に設定することが有効であることを見出し、従来鋼矢板で生じるたわみ量以下にするための条件として式(1)のI/dとd/Wとの関係を規定し、断面2次モーメントIに応じて有効幅Wおよび距離dを決定するための基準を提供している。 Here, since the area moment of inertia I increases in proportion to the square of the distance d, d / W increases as the area moment of inertia I increases. Also, since the rate of increase of the area moment of inertia I is greater than the rate of increase of the distance d, the larger the area moment of inertia I, the greater the I / d. That is, I / d tends to increase as d / W increases. Therefore, I / d and d / W are indices that correlate with each other in the hat-shaped steel sheet pile. For example, in the comparative examples 1 to 4 (points P1 to P4) in FIG. In the case of hat-shaped steel sheet piles, if the value of d is increased to secure a large second moment of area while widening to make an economical cross section, it is effective to suppress the amount of deflection to an allowable range. There was no criterion on how to determine the width W and the distance d, respectively. In the above study, it was found that it is effective to set d / W to be equal to or less than a predetermined value determined according to I / d from the viewpoint of reducing the amount of deflection f. The relationship between I / d and d / W in the equation (1) is defined as a condition for satisfying the formula (1), and provides a reference for determining the effective width W and the distance d according to the second moment of area I. .
 なお、上述した実施例1~実施例32は幅方向に連結した壁体の壁幅1mあたりの断面2次モーメントIが10000cm/mレベル、25000cm/mレベル、45000cm/mレベル、および50000cm/mレベルのハット形鋼矢板1を含むが、これらのハット形鋼矢板1の単体(1枚あたり)の断面2次モーメントIは9500cmより大きく、かつ80000cmよりも小さい範囲にある(9500cm<I<80000cm)。 Incidentally, the above-mentioned Examples 1 to 32 are cross-sectional secondary moment I W per wall width 1m of wall linked to the width direction 10000 cm 4 / m level, 25000 cm 4 / m level, 45000cm 4 / m level, and including 50000 cm 4 / m level of the hat-shaped steel sheet pile 1, cross-sectional secondary moment I of these hat-shaped steel sheet pile 1 of the single (per sheet) is larger than 9500Cm 4, and to a smaller extent than 80000Cm 4 (9500 cm 4 <I <80000 cm 4 ).
 さらに、幅が拡大された、いわゆる薄肉大断面のハット形鋼矢板について、製造性を考慮した場合にはよりコンパクトな断面とすることが好ましい。この観点では、上記で検討した実施例のうち、ハット形鋼矢板1の単体(1枚あたり)の断面2次モーメントIが9500cmより大きく、かつ40000cmよりも小さい範囲にある(9500cm<I<40000cm)ものがより好適である。 Furthermore, a hat-shaped steel sheet pile having a so-called thin-walled large cross section with an increased width is preferably formed to have a more compact cross section in consideration of manufacturability. In this respect, among the embodiments discussed above, large moment of inertia I is more 9500Cm 4 of a single hat-shaped steel sheet pile 1 (per sheet), and is in the range smaller than 40000cm 4 (9500cm 4 < I <40000 cm 4 ) is more preferable.
 図7は、図6のグラフに示された実施例1~実施例32のうち、たわみ量f(従来との比)が0.8未満、すなわちたわみ量fが従来のハット形鋼矢板の80%未満にまで低減される例のみを抽出したグラフである。具体的には、実施例1~実施例7、実施例9~実施例16および実施例22~実施例32が抽出されている。図7のグラフにおいて、抽出された例を示す点E1~E7,E9~E16,E22~E32は、d/W≦1.90×10-5×I/d+0.111、かつI/d≧828の範囲に含まれる。これに対して、比較例を示す点P1~P4はd/W>1.90×10-5×I/d+0.111の範囲にある。従って、たわみ量fを実用上顕著な効果がみられる程度、具体的には従来のハット形鋼矢板の80%未満にまで低減できるハット形鋼矢板1の断面形状の条件として、以下の式(2)および式(3)を特定することができる。
 d/W≦1.90×10-5×I/d+0.111 ・・・(2)
 I/d≧828 ・・・(3)
FIG. 7 shows that the deflection amount f (ratio to the conventional example) is less than 0.8 among the examples 1 to 32 shown in the graph of FIG. 6, that is, the deflection amount f is 80% of the conventional hat-shaped steel sheet pile. 7 is a graph in which only examples reduced to less than% are extracted. Specifically, Examples 1 to 7, Example 9 to Example 16, and Examples 22 to 32 are extracted. In the graph of FIG. 7, points E1 to E7, E9 to E16, and E22 to E32 indicating the extracted examples are d / W ≦ 1.90 × 10 −5 × I / d + 0.111 and I / d ≧ 828 Included in the range. On the other hand, points P1 to P4 indicating the comparative example are in the range of d / W> 1.90 × 10 −5 × I / d + 0.111. Therefore, as a condition of the cross-sectional shape of the hat-shaped steel sheet pile 1 that can reduce the deflection amount f to a degree that a practically remarkable effect is seen, specifically, to less than 80% of the conventional hat-shaped steel sheet pile, the following equation ( 2) and Equation (3) can be specified.
d / W ≦ 1.90 × 10 −5 × I / d + 0.111 (2)
I / d ≧ 828 (3)
 なお、上記の検討は、従来のハット形鋼矢板より効率的に経済的な断面を構築するために、ハット形鋼矢板1の有効幅Wを従来のハット形鋼矢板の有効幅である90cmを超えて拡大する検討の中で実施されたため、実施例1~実施例32において有効幅Wは100cm以上になっている。しかしながら、上記の式(1)~(3)の条件において、従来のハット形鋼矢板よりもたわみ量を低減する断面は、有効幅Wと距離dとの比d/Wと、距離dと断面2次モーメントIとの比I/dとの関係としてのみ規定されるため、従来のハット形鋼矢板よりも経済的な断面を確保できる断面形状として、例えば有効幅Wが100cm未満である場合にも適用可能であると考えられる。 In addition, in order to construct an economical cross section more efficiently than the conventional hat-shaped steel sheet piles, the above-mentioned examination was carried out by setting the effective width W of the hat-shaped steel sheet pile 1 to 90 cm, which is the effective width of the conventional hat-shaped steel sheet pile. The effective width W was 100 cm or more in Examples 1 to 32 because the effective width W was increased in consideration of the enlargement. However, under the conditions of the above equations (1) to (3), the cross section that reduces the amount of deflection as compared with the conventional hat-shaped steel sheet pile is a ratio d / W between the effective width W and the distance d, and the cross section of the distance d and the cross section. Since it is defined only as a relationship with the ratio I / d to the secondary moment I, a cross-sectional shape that can secure a more economical cross-section than a conventional hat-shaped sheet pile, for example, when the effective width W is less than 100 cm Is also considered applicable.
 その一方で、経済的な施工という観点からは、ハット形鋼矢板の有効幅を拡大しても既存の施工機を流用できることが望ましい。施工機の一種である圧入機としては、有効幅90cm(比較例1~比較例4)対応が普及している他、有効幅が90cmを超えるサイズに適応できる圧入機としては、有効幅115cm~146.1cm対応のものが存在する。つまり、上記の観点では、ハット形鋼矢板の有効幅Wが115cm以上であることが好ましい。 On the other hand, from the viewpoint of economical construction, it is desirable that existing construction machines can be used even if the effective width of hat-shaped steel sheet piles is increased. As for a press-fitting machine which is a kind of construction machine, an effective width of 90 cm (Comparative Example 1 to Comparative Example 4) is widely used, and as a press-fitting machine capable of adapting to a size whose effective width exceeds 90 cm, an effective width of 115 cm or more is used. There is one corresponding to 146.1 cm. That is, from the above viewpoint, it is preferable that the effective width W of the hat-shaped steel sheet pile is 115 cm or more.
 以上で説明したような本発明の実施形態によれば、打設時に発生する水平方向のたわみ変形が効果的に低減される断面形状のハット形鋼矢板が提供される。このようなハット形鋼矢板は、例えばハット形鋼矢板の1対の嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながらハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法において、特に有利である。このような鋼矢板壁の製造方法では、ハット形の鋼矢板の一方の継手が先行して打設された鋼矢板の継手に嵌合している位置に対して施工機が鋼矢板を支持して鉛直振動荷重を加える位置が偏心しているためハット形鋼矢板にたわみ変形を発生させるモーメントが生じやすいが、本発明の実施形態を適用することによってたわみ変形を効果的に抑制することができる。 According to the embodiment of the present invention as described above, a hat-shaped steel sheet pile having a cross-sectional shape in which horizontal bending deformation generated at the time of driving is effectively reduced is provided. Such a hat-shaped steel sheet pile is formed, for example, by fitting only one of a pair of fitting joints of the hat-shaped steel sheet pile to a fitting joint of a steel sheet pile previously driven. The method is particularly advantageous in a method for manufacturing a steel sheet pile wall including a step of placing the sheet pile in the ground. In such a method for manufacturing a steel sheet pile wall, the construction machine supports the steel sheet pile at a position where one joint of the hat-shaped steel sheet pile is fitted to the joint of the steel sheet pile previously driven. Since the position where the vertical vibration load is applied is eccentric, the hat-shaped steel sheet pile is likely to generate a moment to bend, but by applying the embodiment of the present invention, the bending can be effectively suppressed.
 ハット形鋼矢板のたわみ変形を抑制することによって、地上部におけるハット形鋼矢板の横ぶれ振動が低減され、施工機からの打設エネルギーが少ない損失で施工重機能力を効率よく活用した状態でハット形鋼矢板に伝達され、ハット形鋼矢板の地盤内への貫入速度を高く保つことができるとともに、施工重機の燃費効率のよい経済的な施工が可能になる。また、ハット形鋼矢板のたわみ変形を抑制することによって打設中のハット形鋼矢板のばたつきが小さくなり、施工に伴う騒音や振動を低減させることができる。ハット形鋼矢板の大断面化によって施工機が大型化すると騒音や振動も大きくなる可能性があるが、ハット形鋼矢板のたわみ変形を抑制することによって、騒音や振動を抑制した施工が可能になる。 By suppressing the bending deformation of the hat-shaped steel sheet piles, the horizontal vibration of the hat-shaped steel sheet piles on the ground is reduced, and the hat is used in a state in which the construction energy is efficiently used with little loss of the driving energy from the construction machine. The speed of the hat-shaped steel sheet pile penetrating into the ground can be kept high while being transmitted to the shape steel sheet pile, and the fuel-efficient and economical construction of the heavy construction machine becomes possible. In addition, by suppressing the bending deformation of the hat-shaped steel sheet pile, the flapping of the hat-shaped steel sheet pile during driving is reduced, and noise and vibration accompanying construction can be reduced. Larger construction machines due to the larger cross section of hat-shaped steel sheet piles may increase noise and vibration.However, by suppressing bending deformation of hat-shaped steel sheet piles, it is possible to perform construction with reduced noise and vibration. Become.
 また、ハット形鋼矢板のたわみ変形を抑制することによって、先行して打設された鋼矢板の継手との嵌合抵抗を小さくすることができるため、ハット形鋼矢板全体の打設時の抵抗を小さくすることができ、また継手の接触面での削れや溶着を防止することができる。 Further, by suppressing the bending deformation of the hat-shaped steel sheet pile, the fitting resistance of the steel sheet pile previously driven into the joint can be reduced. Can be reduced, and scraping and welding at the contact surface of the joint can be prevented.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 1…ハット形鋼矢板、2…ウェブ、3A,3B…フランジ、4A,4B…アーム、5A,5B…嵌合継手、6…バイブロハンマー、C…図心、E,E…嵌合中心。 1 ... hat-shaped steel sheet pile, 2 ... web, 3A, 3B ... flange, 4A, 4B ... arm, 5A, 5B ... fitting joint, 6 ... vibro-hammer over, C ... centroid, E A, E B ... fitting center .

Claims (5)

  1.  ハット形鋼矢板であって、
     長手方向に直交する断面において、奥行き方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記奥行き方向の第2の側に向かって延びる1対のフランジと、前記奥行き方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される嵌合継手とを備え、
     前記断面における前記ハット形鋼矢板の断面2次モーメントI(cm)と、前記断面における前記1対のアームの前記奥行き方向の第2の側の面に対応する直線と前記ハット形鋼矢板の図心との間の距離d(cm)と、前記ハット形鋼矢板の有効幅W(cm)とが、以下の式(i)の関係を満たし、前記有効幅Wが100cm以上であるハット形鋼矢板。
     d/W≦4.75×10-5×I/d+0.085 ・・・(i)
    A hat-shaped steel sheet pile,
    In a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the depth direction, and both ends in the width direction from both ends in the width direction of the web, and the second side in the depth direction A pair of flanges extending from the respective ends of the pair of flanges on the second side in the depth direction along the width direction and toward both sides in the width direction. An arm, and a fitting joint formed at an end of each of the pair of arms opposite to the pair of flanges;
    A second moment of area I (cm 4 ) of the hat-shaped steel sheet pile in the cross section, a straight line corresponding to the second side surface in the depth direction of the pair of arms in the cross section, and the hat-shaped steel sheet pile A hat shape in which the distance d (cm) between the center of gravity and the effective width W (cm) of the hat-shaped steel sheet pile satisfies the following expression (i), and the effective width W is 100 cm or more: Steel sheet pile.
    d / W ≦ 4.75 × 10 −5 × I / d + 0.085 (i)
  2.  前記断面2次モーメントIと、前記距離dと、前記有効幅Wとが、以下の式(ii)および式(iii)の関係を満たす、請求項1に記載のハット形鋼矢板。
     d/W≦1.90×10-5×I/d+0.111 ・・・(ii)
     I/d≧828 ・・・(iii)
    The hat-shaped steel sheet pile according to claim 1, wherein the second moment of area I, the distance d, and the effective width W satisfy a relationship represented by the following Expressions (ii) and (iii).
    d / W ≦ 1.90 × 10 −5 × I / d + 0.111 (ii)
    I / d ≧ 828 (iii)
  3.  前記有効幅Wが115cm以上である、請求項1または請求項2に記載のハット形鋼矢板。 The hat-shaped steel sheet pile according to claim 1 or 2, wherein the effective width W is 115 cm or more.
  4.  前記断面2次モーメントIが9500cmより大きく、かつ80000cmよりも小さい、請求項1から請求項3のいずれか1項に記載のハット形鋼矢板。 4. The hat-shaped steel sheet pile according to claim 1, wherein the second moment of area I is larger than 9500 cm 4 and smaller than 80000 cm 4. 5 .
  5.  請求項1から請求項4のいずれか1項に記載のハット形鋼矢板を用いた鋼矢板壁の製造方法であって、
     前記ハット形鋼矢板の前記嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながら前記ハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法。
    A method for manufacturing a steel sheet pile wall using the hat-shaped steel sheet pile according to any one of claims 1 to 4,
    A steel including a step of driving the hat-shaped steel sheet pile into the ground while fitting only one of the fitting joints of the hat-shaped steel sheet pile to the fitting joint of the steel sheet pile previously driven. Manufacturing method of sheet pile wall.
PCT/JP2019/032111 2018-08-31 2019-08-16 Hat-shaped steel sheet pile and production method for steel sheet pile wall WO2020045115A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020539348A JP7143888B2 (en) 2018-08-31 2019-08-16 Manufacturing method of hat-shaped steel sheet pile
JP2022094184A JP2022120101A (en) 2018-08-31 2022-06-10 Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162392 2018-08-31
JP2018-162392 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045115A1 true WO2020045115A1 (en) 2020-03-05

Family

ID=69643036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032111 WO2020045115A1 (en) 2018-08-31 2019-08-16 Hat-shaped steel sheet pile and production method for steel sheet pile wall

Country Status (2)

Country Link
JP (2) JP7143888B2 (en)
WO (1) WO2020045115A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
JP2005213895A (en) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd Hat-shaped steel sheet pile with high penetrating property
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159434A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458109B1 (en) * 2002-11-15 2003-10-20 新日本製鐵株式会社 Hat-type steel sheet pile
JP5194782B2 (en) * 2007-12-26 2013-05-08 新日鐵住金株式会社 Hat-shaped steel sheet pile

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
JP2005213895A (en) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd Hat-shaped steel sheet pile with high penetrating property
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159434A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile
WO2015159445A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Also Published As

Publication number Publication date
JPWO2020045115A1 (en) 2021-08-10
JP7143888B2 (en) 2022-09-29
JP2022120101A (en) 2022-08-17

Similar Documents

Publication Publication Date Title
TWI431177B (en) Z-shaped steel sheet pile
JP5764945B2 (en) Hat-shaped steel sheet pile
WO2020045115A1 (en) Hat-shaped steel sheet pile and production method for steel sheet pile wall
JP4498172B2 (en) Underground continuous wall
JP3488233B1 (en) Hat-type steel sheet pile
US6190093B1 (en) U-shaped sheet pile with low cut-through resistance
JP5114741B2 (en) Hat-shaped steel sheet pile
WO2020045114A1 (en) Hat-shaped steel sheet pile and production method for steel sheet pile wall
US9279228B1 (en) Pull-out resistant piles
JP2014051820A (en) Combined steel wall
RU2692385C1 (en) Sheet pile
JP5194782B2 (en) Hat-shaped steel sheet pile
WO2020045113A1 (en) Hat-shaped steel sheet piling, steel sheet piling wall, and method for manufacturing steel sheet piling walls
JP2005213895A (en) Hat-shaped steel sheet pile with high penetrating property
JP7143890B2 (en) Manufacturing method of hat-shaped steel sheet pile
JP6477586B2 (en) Steel sheet pile wall
WO2020045116A1 (en) Hat-shaped steel sheet pile and method for producing steel sheet pile wall
WO2018117269A1 (en) Hat-shaped steel sheet piling
JP3458109B1 (en) Hat-type steel sheet pile
JP7143891B2 (en) Manufacturing method of hat-shaped steel sheet pile
WO2020045118A1 (en) Hat-type steel sheet pile
JP6269184B2 (en) Combination steel sheet pile, steel sheet pile wall, and method of construction of combined steel sheet pile
JP6741136B2 (en) Manufacturing method and designing method for hat-shaped steel sheet pile
JP5664402B2 (en) Combination steel sheet pile and steel sheet pile wall formed by the combination steel sheet pile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855400

Country of ref document: EP

Kind code of ref document: A1