WO2020045114A1 - Hat-shaped steel sheet pile and production method for steel sheet pile wall - Google Patents

Hat-shaped steel sheet pile and production method for steel sheet pile wall Download PDF

Info

Publication number
WO2020045114A1
WO2020045114A1 PCT/JP2019/032110 JP2019032110W WO2020045114A1 WO 2020045114 A1 WO2020045114 A1 WO 2020045114A1 JP 2019032110 W JP2019032110 W JP 2019032110W WO 2020045114 A1 WO2020045114 A1 WO 2020045114A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
sheet pile
hat
shaped steel
cross
Prior art date
Application number
PCT/JP2019/032110
Other languages
French (fr)
Japanese (ja)
Inventor
裕章 中山
典佳 原田
正和 武野
妙中 真治
俊介 森安
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020539347A priority Critical patent/JP7143887B2/en
Publication of WO2020045114A1 publication Critical patent/WO2020045114A1/en
Priority to JP2022094262A priority patent/JP2022120104A/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall.
  • ⁇ Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing. Since a hat-shaped steel sheet pile is made to penetrate into the ground at the time of driving, a technique for improving workability by reducing penetration resistance has been proposed.
  • the flange angle that is, the flange is positioned between the web and the arm such that the intersection of a perpendicular passing through the center of each flange is located outside the groove cross section of the hat-shaped steel sheet pile.
  • Patent Literature 2 also discloses a technique for minimizing the penetration resistance by optimizing the flange angle.
  • Patent Literature 3 describes a technique for setting a flange angle based on an economic index and a workability index indicating a penetration resistance at the lower end of a steel sheet pile.
  • Patent Literature 4 discloses at least one of economy and workability based on a relationship between an economy evaluation index and a workability evaluation index indicating a ratio of a cross-sectional area of a closing resistance acting on a lower end of a steel sheet pile at the time of driving.
  • a technique for setting the cross-sectional shape of a steel sheet pile having excellent performance is described.
  • the vibration energy of the construction machine used in the construction may be lost as energy of horizontal vibration and rotation behavior of the hat-shaped steel sheet pile, and as a result, the penetration speed of the hat-shaped steel sheet pile into the ground may be reduced.
  • a horizontal load is applied to the steel sheet pile head, which increases the deflection and torsion behavior of the steel sheet pile, and further increases the loss of vibration energy. May fall into Therefore, in order to ensure good workability of the steel sheet pile, it is important to suppress not only the behavior in the ground but also the bending and torsional deformation of the steel sheet pile on the ground.
  • the present invention provides a new and improved hat-shaped steel sheet pile and steel capable of improving workability by reducing torsional deformation in a cross section generated on a ground portion when the hat-shaped steel sheet pile is driven.
  • An object of the present invention is to provide a method for manufacturing a sheet pile wall.
  • a hat-shaped steel sheet pile includes, in a cross section orthogonal to a longitudinal direction, a web extending along a width direction on a first side in a depth direction, and a width direction from both ends in a width direction of the web. And a pair of flanges extending toward the second side in the depth direction, and both ends in the width direction along the width direction from respective ends of the pair of flanges on the second side in the depth direction. And a mating joint formed at the end of each of the pair of arms opposite the pair of flanges.
  • the sectional area Ae (cm 2 ) of the hat-shaped steel sheet pile in the cross section, the effective width W (cm) of the hat-shaped steel sheet pile, and the height H (cm) of the hat-shaped steel sheet pile are represented by the following equation (i). Fill the relationship, The effective width W is 110 cm or more. Ae / (W ⁇ H) ⁇ 0.04 (i)
  • the effective width W may be 135 cm or more, and the height H may be 45 cm or less. Further, the cross-sectional area Ae (cm 2 ), the effective width W (cm), and the height H (cm) in the cross section may satisfy the relationship of the following equation (ii). Ae / (W ⁇ H) ⁇ 0.048 (ii)
  • a method for manufacturing a steel sheet pile wall using the above hat-shaped steel sheet pile is to cast a hat-shaped steel sheet pile into the ground while fitting only one of the fitting joints of the hat-shaped steel sheet pile to the fitting joint of the steel sheet pile previously placed. May be included.
  • the workability can be improved by reducing the torsional deformation in the cross section generated on the ground portion when the hat-shaped steel sheet pile is driven.
  • FIG. 1 It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. It is a figure for demonstrating the fitting center in the fitting joint of the hat-shaped steel sheet pile shown in FIG. It is a figure which shows the boundary condition of a hat-shaped steel sheet pile at the time of driving, and is a figure for conceptually explaining the fitting state with a preceding sheet pile, and the holding state of a hat-shaped steel sheet pile with a vibro hammer. It is a figure for conceptually explaining horizontal torsional deformation which occurs in a hat-shaped steel sheet pile at the time of driving.
  • Comparative Examples, Examples, and Reference Examples of the present invention are plotted with the effective width W as the horizontal axis and the ratio Ae / (W ⁇ H) of the cross-sectional area Ae to the product of the effective width W and the height H as the vertical axis. It is a graph. 6 is a graph in which only examples in which the effective width W is 135 cm or more are extracted from the examples shown in the graph of FIG. 5.
  • FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention.
  • a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a width direction on a first side in a depth direction (a depth side in a y direction in the figure).
  • the web 2 extends along the x direction (in the figure) and from both ends in the width direction of the web 2 toward both sides in the width direction and toward the second side in the depth direction (front side in the y direction in the figure).
  • the flanges 3A and 3B extend and form a flange angle ⁇ (a sharp angle side) with the width direction, and the widthwise direction from the respective ends of the flanges 3A and 3B on the second side in the depth direction.
  • 4A and 4B extending toward both sides of the arm 4A, and fitting joints 5A and 5B formed at ends of the arms 4A and 4B opposite to the flanges 3A and 3B, respectively.
  • the cross-sectional area of the hat-shaped steel sheet pile 1 in this section (the area of the hatched area in the figure) Ae, the effective width W of the hat-shaped steel sheet pile 1, and the height H of the hat-shaped steel sheet pile 1 Satisfies the relationship of the following expression (1), and the effective width W is 110 cm or more.
  • the effective width W, fitting joint 5A in cross-section, each of the mating centers E A of 5B equal to the distance between the E B.
  • the height H is the width of the hat-shaped steel sheet pile 1 on the first side (rear side in the y direction in the drawing) in the depth direction of the web 2 which coincides with the width direction of the hat-shaped steel sheet pile 1.
  • the distance is equal to the distance between the arms 4A and 4B in the depth direction on the second side (front side in the y direction in the drawing) that matches the direction.
  • the “surface on the second side in the depth direction of the arms 4A and 4B” when defining the height H may not always exactly match the actual surfaces of the arms 4A and 4B due to manufacturing errors and the like. is there.
  • the surfaces of the arms 4A and 4B are on the same straight line, and this surface is referred to as “the depth direction of the arms 4A and 4B”.
  • the extending direction of the arms 4A and 4B shown in the design drawing coincides with the width direction of the hat-shaped steel sheet pile 1.
  • the surface on the second side in the depth direction of 4B may not always exactly coincide with the actual surfaces of the arms 4A and 4B.
  • the surfaces of the arms 4A and 4B shown on the same straight line in the design drawing showing the situation before the driving are specified as "the surface on the second side in the depth direction of the arms 4A and 4B". be able to.
  • the arm 4A fitting center E A located at each end of 4B, the arm 4A of the straight line connecting the E B , 4B as a designed thickness center line, and this straight line is moved in parallel to the second side in the depth direction by half of the thickness of the arms 4A, 4B to obtain the “second depth direction of the arms 4A, 4B”.
  • Side surface can be specified.
  • the arm length Ba, the effective width W, the web length Bw, the height H, and the flange angle ⁇ are W ⁇ Bw ⁇ 2H / tan ⁇ > 0.
  • FIG. 2 is a view for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. 1 in the fitting joint.
  • the fitting joint 5B of another hat-shaped steel sheet pile 1 that is driven adjacent to the fitting joint 5B of the hat-shaped steel sheet pile 1 is fitted.
  • Fitting center E A fitting joint 5A, when placing the arms 4B and the fitting joint 5B fitted to virtually, and the end position of the arm 4A of the fitting joint 5A is formed, the virtual Can be defined as a point on the designed thickness center line of the arm 4A and the arm 4B, which is located in the middle of the end position of the arm 4B where the typical fitting joint 5B is formed.
  • Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly. As mentioned above, fitting the center E A, the distance between the E B is equal to the effective width W of the hat-shaped steel sheet pile 1.
  • FIGS. 3 and 4 are diagrams for conceptually explaining the horizontal torsional deformation occurring in the hat-shaped steel sheet pile during driving.
  • the hat-shaped steel sheet pile 1 is driven by a vertical load applied from a vibro hammer 6 sandwiching the flanges 3A and 3B at the upper end.
  • the vibratory hammer 6 is arranged so that the position in the depth direction (the y direction in the drawing) substantially matches the center C of the cross section.
  • the hat-shaped steel sheet pile 1P there is a hat-shaped steel sheet pile 1P previously driven near the ground surface, and the hat-shaped steel sheet pile 1 is driven while the fitting joint 5A is fitted to the fitting joint 5B of the hat-shaped steel sheet pile 1P. Is established. Therefore, near the ground surface, the fitting joint 5A of the hat-shaped steel sheet pile 1 is restrained from horizontal displacement by the fitting joint 5B of the hat-shaped steel sheet pile 1P. Mating fitting 5A is constrained to horizontal displacement by contact at a plurality of points near the fitting joint 5B and the fitting center E A. Therefore, the hat-shaped steel sheet pile 1 is restrained by the fitting joint portion and the ground at the lower portion in the longitudinal direction projecting to the ground portion.
  • centroid C which is the point of application of the load by the vibro-hammer 6, is located away from the constraint point of the horizontal displacement as described above, the hat-shaped steel sheet pile 1 is bent in the direction of twisting the cross section. A moment is generated.
  • the distance between the fitting center E A and centroid C is different between and the depth direction (x direction in the drawing) the width direction of the hat-shaped steel sheet pile 1 (y direction in the drawing),
  • the magnitude of the bending moment generated in each direction is different.
  • the secondary moment of area of the hat-shaped steel sheet pile 1 in each direction is also different, a difference occurs in the bending generated in each direction, and torsional deformation occurs in the cross section. Since the upper end and the lower end of the hat-shaped steel sheet pile 1 are respectively restrained by the vibratory hammer 6 and the ground, pure torsion is predominantly generated in the hat-shaped steel sheet pile 1 as compared with the warped torsion due to the bending moment. As shown in FIG.
  • the torsion angle ⁇ of pure torsion about an arbitrary point in the cross section of the hat-shaped steel sheet pile 1 is represented by the following equation (2).
  • Mt is the bending moment around the center of pure torsion
  • G is the shear modulus of elasticity of the hat-shaped steel sheet pile 1
  • J is the torsional moment of the cross section of the hat-shaped steel sheet pile 1.
  • Mt / (G ⁇ J) (2)
  • the fittings 5A and 5B are designed to allow a certain degree of twist angle ⁇ .
  • increases, the friction generated between the fitting joint 5A of the hat-shaped steel sheet pile 1 to be driven and the fitting joint 5B of the hat-shaped steel sheet pile 1P previously driven is increased.
  • the fitting joints 5A and 5B may be damaged, or the resistance at the time of driving may be increased, thereby deteriorating the workability.
  • the sectional area that resists the bending moment decreases, the sectional torsional moment that resists the bending moment decreases, the torsional rigidity decreases, and the torsional angle ⁇ increases accordingly. Therefore, it is effective to secure a cross-sectional area of a certain value or more.
  • the effective width W is increased, the torsional moment in section is determined by the thickness of the web 2, the flanges 3A and 3B, and the arms 4A and 4B within the effective width and height occupied by the single hat-shaped steel sheet pile 1.
  • J it is desirable that there is a simple index indicating how much the thickness is required, because the economics of the cross section decreases when the thickness is increased.
  • the present inventors have developed a hat-shaped steel sheet pile 1 capable of reducing the torsion angle ⁇ from that of the conventional hat-shaped steel sheet pile while increasing the effective width W of the hat-shaped steel sheet pile.
  • the study was conducted by applying a state occurring on the ground portion in the longitudinal direction of the shaped sheet pile 1.
  • the following considerations are based on the cross-sectional area Ae as a parameter reflecting the thickness of the web 2, the flanges 3A and 3B, and the arms 4A and 4B, and the effective width of the hat-shaped steel sheet pile 1 as a parameter reflecting the magnitude of the bending moment Mt.
  • W and the height H it is intended to easily specify the condition of the cross-sectional shape of the hat-shaped steel sheet pile 1 capable of reducing the torsion angle ⁇ .
  • Tables 1 to 4 show the results of the study.
  • Study, geometrical moment of inertia I W is 10000 cm 4 / m level per wall width 1m of wall linked a hat-shaped steel sheet pile 1 in the width direction, 25000 cm 4 / m level, 45000cm 4 / m level, and 50000 cm 4 / M level, and Examples 1 to 21 in which the torsion angle ⁇ is smaller than those of the conventional hat-shaped steel sheet piles shown as Comparative Examples 1 to 4 are referred to as conventional hat-shaped steel sheet piles. Examples in which the torsion angle ⁇ is larger than that of the sheet pile are shown as Reference Examples 1 to 14, respectively.
  • the effective width W is intended to be larger than that of the conventional hat-shaped steel sheet pile, the effective widths of the hat-shaped steel sheet piles 1 are all described in Examples 1 to 21.
  • W is 110 cm or more.
  • the dimensions represented by the web thickness tw (cm), the web width Bw (cm), and the arm width Ba (cm) shown in Tables 1 to 4 are shown in FIG.
  • FIG. 5 shows the above Comparative Examples 1 to 4, Examples 1 to 21, and Reference Examples 1 to 14 by plotting the effective width W (cm) on the horizontal axis, the cross-sectional area Ae and the effective width W. It is the graph which plotted the ratio Ae / (W.H) with the product of the height H as a vertical axis.
  • Ae / (W ⁇ H) is one index indicating the economics of the steel sheet pile cross section. That is, Ae / (W ⁇ H) can be an index for determining the magnitude of the torsion angle ⁇ as described above, and can also be an index for evaluating economic efficiency.
  • the vertical axis is Ae / (W ⁇ H), which is a simple index that can evaluate two indexes only with the three items of the cross-sectional area Ae, the effective width W, and the height H.
  • Ae / (W ⁇ H) it is advantageous to increase the value of Ae / (W ⁇ H) in order to reduce the torsion angle ⁇ , and in order to obtain an economical cross section, Ae / (W ⁇ H) It is advantageous to reduce the value of. In other words, if the value of Ae / (W ⁇ H) is too large, the torsion angle ⁇ becomes small, but the economic efficiency deteriorates. Conversely, if the value of Ae / (W ⁇ H) is too small, the economic efficiency becomes low. Although good, the torsion angle ⁇ increases. By using the index of Ae / (W ⁇ H), it is possible to balance the reduction of the torsion angle ⁇ and the economy, that is, to easily determine both the workability and the economy at the same time.
  • the effective width W is plotted on the horizontal axis in view of evaluating the economic efficiency with respect to bending rigidity.
  • Comparative Examples 1 to 4 are shown as points P1 to P4, Examples 1 to 21 are shown as points E1 to E21, and Reference Examples 1 to Reference Example 14 is shown divided into groups of points R1, R11 to R14 and points R2 to R10. Points E1 to E21 indicating the examples are included in the range of Ae / (W ⁇ H) ⁇ 0.04. On the other hand, points R2 to R10 indicating the reference example are in the range of Ae / (W ⁇ H) ⁇ 0.04. On the other hand, points P1 to P4 indicating the comparative example and points R1 and R11 to R14 indicating the reference example are in the range of W ⁇ 110 cm.
  • Equation (1) can be specified as a condition of the cross-sectional shape of the hat-shaped steel sheet pile 1 that can reduce the torsion angle ⁇ when the effective width W is 110 cm or more.
  • the hat-shaped steel sheet pile having a so-called thin-walled large-section having an increased width is formed to have a more compact section in consideration of manufacturability.
  • those second moment I W per wall width 1m of wall linked a hat-shaped steel sheet pile 1 in the width direction below 25000 cm 4 / m level performed Examples 1 to 8 are more preferred.
  • the following expression (2) is satisfied in addition to the above expression (1).
  • FIG. 6 is a graph in which only the wider examples having an effective width W of 135 cm or more are extracted from Examples 1 to 21 shown in the graph of FIG. Specifically, Examples 2 to 7, Example 13 to Example 18, Example 20, and Example 21 are extracted. Like the graph of FIG. 5, also in the graph of FIG. 6, the points E2 to E7, E13 to E18, E20, and E21 are included in the range of Ae / (W ⁇ H) ⁇ 0.04.
  • the effective width W of Examples 2 to 7, Example 13 to Example 18, Example 20, and Example 21 was 135 cm.
  • the torsion angle ⁇ (ratio to the conventional one) is reduced to less than 0.95, that is, to less than 95% of the conventional hat-shaped sheet pile, and the torsion angle ⁇ is reduced more than other examples. Is also a large example.
  • the torsional deformation that occurs in the hat-shaped steel sheet pile during casting impairs the fitting property of the hat-shaped steel sheet pile previously driven into the ground with the joint.
  • the tolerance of the fitting angle of the hat-shaped steel sheet pile joint is usually manufactured in a very narrow range of ⁇ 4 degrees or less, and even if the torsion angle difference between cross sections at different depths in a certain longitudinal direction.
  • the amount of torsion is accumulated in the longitudinal direction of the hat-shaped steel sheet pile, which tends to increase the fitting resistance. Therefore, it is useful to reduce the amount of torsion even if the amount is very small. However, if the amount of torsion can be reduced even by 5%, for example, the torsional deformation during the driving of a hat-shaped steel sheet pile to be driven later is performed. Therefore, the contact resistance between the preceding steel sheet pile and the joint can be further reduced, and the effect on the workability can be reduced more effectively.
  • the above equation (1) indicates that the torsion angle ⁇ (compared to the prior art) is less than 0.95, and the cross section of the hat-shaped steel sheet pile 1 having an effective width W of 135 cm or more can significantly reduce the torsion angle ⁇ . It can be applied more advantageously as a shape condition.
  • a hat-shaped steel sheet pile having a cross-sectional shape in which torsional deformation in a cross-section generated at the time of driving is effectively reduced is provided.
  • Such a hat-shaped steel sheet pile is formed, for example, by fitting only one of a pair of fitting joints of the hat-shaped steel sheet pile to a fitting joint of a steel sheet pile previously driven.
  • the method is particularly advantageous in a method for manufacturing a steel sheet pile wall including a step of placing the sheet pile in the ground.
  • the construction machine supports the steel sheet pile at a position where one joint of the hat-shaped steel sheet pile is fitted to the joint of the steel sheet pile previously driven. Since the position where the vertical vibration load is applied is eccentric, a moment that causes torsional deformation occurs in the hat-shaped steel sheet pile, but torsional deformation can be effectively suppressed by applying the embodiment of the present invention.
  • the fitting resistance of the steel sheet pile previously driven into the joint can be reduced. Can be reduced, and scraping and welding at the contact surface of the joint can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

A hat-shaped steel sheet pile comprising, in a cross-section orthogonal to the longitudinal direction: a web extending along the width direction on a first side in the depth direction; a pair of flanges extending to both sides in the width direction from both ends of the web in the width direction and towards a second side in the depth direction; a pair of arms extending from each end section of the pair of flanges, along the width direction on the second side in the depth direction and towards both sides in the width direction; and a mating fitting formed in an end section of each of the pair of arms, on the opposite side to the pair of flanges. The cross-sectional area Ae (cm2) of the hat-shaped steel sheet pile in the cross-section, the effective width W (cm) of the hat-shaped steel sheet pile, and the height H (cm) of the hat-shaped steel sheet pile fulfill the relationship in formula (i). The effective width W is at least 110 cm. Ae/(W·H) ≥ 0.04 … (i).

Description

ハット形鋼矢板および鋼矢板壁の製造方法Hat-shaped steel sheet pile and method of manufacturing steel sheet pile wall
 本発明は、ハット形鋼矢板および鋼矢板壁の製造方法に関する。 The present invention relates to a hat-shaped steel sheet pile and a method for manufacturing a steel sheet pile wall.
 ハット形鋼矢板は、土木建築工事において、土留めや止水のための壁体を構築するために広く利用されている。ハット形鋼矢板は打設時に地盤に貫入させられるため、貫入抵抗をより小さくすることによって施工性を向上させる技術が提案されている。例えば、特許文献1では、ハット形鋼矢板の断面においてそれぞれのフランジの中央を通る垂線の交点がハット形鋼矢板の溝断面外に位置するようにフランジ角度、すなわちフランジがウェブおよびアームとの間になす角度を設定することによって、打設時の排土圧を抑制して施工性を向上させる技術が記載されている。特許文献2にも、フランジ角度を最適化することによって貫入抵抗を最小化する技術が記載されている。また、特許文献3には、経済性指標と、鋼矢板下端での貫入抵抗を示す施工性指標とに基づいてフランジ角度を設定する技術が記載されている。特許文献4には、経済性評価指数と、打設時に鋼矢板下端に作用する閉塞抵抗の断面積に対する比を示す施工性評価指数との関係に基づいて、経済性および施工性のうち少なくとも一方の性能に優れた鋼矢板の断面形状を設定する技術が記載されている。 形 Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for earth retaining and waterproofing. Since a hat-shaped steel sheet pile is made to penetrate into the ground at the time of driving, a technique for improving workability by reducing penetration resistance has been proposed. For example, in Patent Literature 1, in the cross section of the hat-shaped steel sheet pile, the flange angle, that is, the flange is positioned between the web and the arm such that the intersection of a perpendicular passing through the center of each flange is located outside the groove cross section of the hat-shaped steel sheet pile. There is described a technique for improving the workability by suppressing the earth pressure at the time of placing by setting an angle to be formed. Patent Literature 2 also discloses a technique for minimizing the penetration resistance by optimizing the flange angle. Patent Literature 3 describes a technique for setting a flange angle based on an economic index and a workability index indicating a penetration resistance at the lower end of a steel sheet pile. Patent Literature 4 discloses at least one of economy and workability based on a relationship between an economy evaluation index and a workability evaluation index indicating a ratio of a cross-sectional area of a closing resistance acting on a lower end of a steel sheet pile at the time of driving. A technique for setting the cross-sectional shape of a steel sheet pile having excellent performance is described.
特許第3488230号公報Japanese Patent No. 3488230 特許第3488233号公報Japanese Patent No. 3488233 特許第5764945号公報Japanese Patent No. 5764945 特開2014-148798号公報JP 2014-148798 A
 上記の特許文献1から特許文献4に記載された技術は、いずれも、鋼矢板の地中での挙動に着目し、地盤に貫入させられた後に作用する貫入抵抗や閉塞抵抗をより小さくすることによって施工性を向上させることを目的としている。即ち、鋼矢板の施工性を評価する手法として、これまでは地盤内での鋼矢板挿入時のメカニズムのみに着目して、鋼矢板周辺の地盤抵抗や土粒子挙動との関係から、最適な鋼矢板形状を模索してきた。しかしながら、本発明者らが得た知見によれば、そのような鋼矢板の地中での挙動に加えて、打設中の地上部での挙動も施工性に影響する。つまり、実際の鋼矢板の打設は、鋼矢板が地盤内に打設されている状況と、地上部に突出している状況とが、併進するかたちで進行し、鋼矢板の施工性は、地盤内と地上部での鋼矢板の連成挙動の影響を受ける。具体的には、鋼矢板を継手で幅方向に連結しながら打設するときに、先行して打設された鋼矢板に継手を拘束された状態で打設されるハット形鋼矢板に断面内のねじり変形が発生することによって施工性が低下することがわかった。 All of the techniques described in Patent Documents 1 to 4 above focus on the behavior of steel sheet piles in the ground, and reduce the penetration resistance and blockage resistance acting after being made to penetrate the ground. The purpose is to improve workability. In other words, as a method of evaluating the workability of steel sheet piles, the focus has been on the mechanism of steel sheet pile insertion in the ground so far, and the optimum steel sheet pile is considered from the relationship with the ground resistance and soil particle behavior around the steel sheet pile. I've been looking for a sheet pile shape. However, according to the knowledge obtained by the present inventors, in addition to the behavior of the steel sheet pile in the ground, the behavior of the steel sheet pile on the ground portion during driving also affects the workability. In other words, in actual steel sheet pile driving, the situation where the steel sheet pile is being driven into the ground and the state where it is protruding above the ground proceed in a parallel fashion, and the workability of the steel sheet pile is It is affected by the coupled behavior of steel sheet piles inside and above the ground. Specifically, when a steel sheet pile is driven while being connected in the width direction by a joint, a cross section is applied to a hat-shaped steel sheet pile that is driven with the joint restrained by the steel sheet pile previously driven. It was found that the workability deteriorated due to the occurrence of torsional deformation.
 具体的には、ハット形鋼矢板にねじりやたわみなどの変形が生じると、打設時に鋼矢板下端以深や鋼矢板側面からの地盤から受ける貫入抵抗や、先行して打設された鋼矢板の継手との嵌合抵抗が増大する可能性がある。また、地上部においてハット形鋼矢板にたわみやねじれなどの変形が発生すると、バイブロハンマーなどの施工機が傾いたり揺動したりすることによって、本来はハット形鋼矢板を鉛直方向に振動させるために使われる施工機の振動エネルギーがハット形鋼矢板の水平方向の振動や回転挙動のエネルギーとして損失になり、結果としてハット形鋼矢板の地盤内への貫入速度が低下する可能性がある。施工機が傾いたり揺動してしまったりすると、鋼矢板頭部には水平方向の荷重が加わることになるため、鋼矢板のたわみやねじれ挙動が増長され、更に振動エネルギーの損失が増大する悪循環に陥る可能性がある。よって、鋼矢板の良好な施工性を確保するためには、地盤内挙動のみならず、地上部において、鋼矢板のたわみやねじれ変形を抑制することが重要となる。 Specifically, when deformation such as torsion or bending occurs in the hat-shaped steel sheet pile, the penetration resistance received from the ground from the bottom of the steel sheet pile at the lower end or from the side of the steel sheet pile at the time of driving, or the steel sheet pile previously driven There is a possibility that the fitting resistance with the joint increases. In addition, when deformation such as bending or torsion occurs in the hat-shaped steel sheet pile on the ground part, the construction machine such as a vibratory hammer tilts and swings, which originally causes the hat-shaped steel sheet pile to vibrate vertically. The vibration energy of the construction machine used in the construction may be lost as energy of horizontal vibration and rotation behavior of the hat-shaped steel sheet pile, and as a result, the penetration speed of the hat-shaped steel sheet pile into the ground may be reduced. When the construction machine is tilted or rocked, a horizontal load is applied to the steel sheet pile head, which increases the deflection and torsion behavior of the steel sheet pile, and further increases the loss of vibration energy. May fall into Therefore, in order to ensure good workability of the steel sheet pile, it is important to suppress not only the behavior in the ground but also the bending and torsional deformation of the steel sheet pile on the ground.
 ところが、このような施工性の低下の原因になりうるハット形鋼矢板の地上部での挙動については、上記の特許文献1から特許文献4には記載されていない。鋼矢板の打設性を評価する上において、地盤内での挙動のみならず、地上部も含めて、鋼矢板全体挙動を見渡して、最適な鋼矢板断面形状を模索することは従来行われてこなかった。これは、1つには、鋼矢板の断面が小さい場合、施工機が鋼矢板を支持する位置が鋼矢板の断面重心から大きく偏心することがなく、従って地上部において施工性に影響するほどの鋼矢板のたわみやねじれなどの変形が生じにくかったためである。そのため、鋼矢板の施工性は、地盤からの抵抗が支配的であると考えられてきた。実際、鋼矢板が小型であれば、地上部において、打設時の鋼矢板の断面変形は顕著に露出することがなく、地上部での変形挙動と施工性との関連性には着目されず、両者の関連性に関する知見はなかった。しかしながら、近年、ハット形鋼矢板の大断面化によって、地上部におけるハット形鋼矢板のねじれやたわみなどの変形挙動が拡大し、施工性に影響する可能性が生じてきている。 However, the behavior of the hat-shaped steel sheet pile on the ground portion, which may cause such deterioration in workability, is not described in Patent Documents 1 to 4 described above. In evaluating the driving performance of steel sheet piles, it has been conventional practice to look for not only the behavior in the ground but also the overall behavior of the steel sheet piles, including the ground part, and to search for the optimum steel sheet pile cross-sectional shape. Did not. One of the reasons is that, when the cross section of the steel sheet pile is small, the position at which the construction machine supports the steel sheet pile is not largely eccentric from the center of gravity of the cross section of the steel sheet pile, and therefore, the workability is affected at the ground part. This is because deformation such as bending and twisting of the steel sheet pile was difficult to occur. Therefore, the workability of steel sheet piles has been considered to be dominated by the resistance from the ground. In fact, if the steel sheet piles are small, the section deformation of the steel sheet piles at the time of driving is not significantly exposed on the ground, and no attention is paid to the relationship between the deformation behavior on the ground and the workability. However, there was no finding regarding the relationship between the two. However, in recent years, with the enlargement of the cross section of the hat-shaped steel sheet pile, the deformation behavior of the hat-shaped steel sheet pile in the ground portion, such as torsion and deflection, has been expanded, which may affect the workability.
 そこで、本発明は、ハット形鋼矢板の打設時に地上部で発生する断面内のねじり変形を低減することによって施工性を向上させることが可能な、新規かつ改良されたハット形鋼矢板および鋼矢板壁の製造方法を提供することを目的とする。 Accordingly, the present invention provides a new and improved hat-shaped steel sheet pile and steel capable of improving workability by reducing torsional deformation in a cross section generated on a ground portion when the hat-shaped steel sheet pile is driven. An object of the present invention is to provide a method for manufacturing a sheet pile wall.
 本発明のある観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、奥行き方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ奥行き方向の第2の側に向かって延びる1対のフランジと、奥行き方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される嵌合継手とを備える。断面におけるハット形鋼矢板の断面積Ae(cm)と、ハット形鋼矢板の有効幅W(cm)と、ハット形鋼矢板の高さH(cm)とは、以下の式(i)の関係を満たし、
有効幅Wは110cm以上である。
 Ae/(W・H)≧0.04 ・・・(i)
According to an aspect of the present invention, a hat-shaped steel sheet pile includes, in a cross section orthogonal to a longitudinal direction, a web extending along a width direction on a first side in a depth direction, and a width direction from both ends in a width direction of the web. And a pair of flanges extending toward the second side in the depth direction, and both ends in the width direction along the width direction from respective ends of the pair of flanges on the second side in the depth direction. And a mating joint formed at the end of each of the pair of arms opposite the pair of flanges. The sectional area Ae (cm 2 ) of the hat-shaped steel sheet pile in the cross section, the effective width W (cm) of the hat-shaped steel sheet pile, and the height H (cm) of the hat-shaped steel sheet pile are represented by the following equation (i). Fill the relationship,
The effective width W is 110 cm or more.
Ae / (W · H) ≧ 0.04 (i)
 上記のハット形鋼矢板では、有効幅Wが135cm以上であってもよく、高さHが45cm以下であってもよい。また、断面における断面積Ae(cm)と、有効幅W(cm)と、高さH(cm)とが、以下の式(ii)の関係を満たしてもよい。
 Ae/(W・H)≦0.048 ・・・(ii)
In the above hat-shaped steel sheet pile, the effective width W may be 135 cm or more, and the height H may be 45 cm or less. Further, the cross-sectional area Ae (cm 2 ), the effective width W (cm), and the height H (cm) in the cross section may satisfy the relationship of the following equation (ii).
Ae / (W · H) ≦ 0.048 (ii)
 本発明の別の観点によれば、上記のハット形鋼矢板を用いた鋼矢板壁の製造方法が提供される。鋼矢板壁の製造方法は、ハット形鋼矢板の嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながらハット形鋼矢板を地中に打設する工程を含んでもよい。 According to another aspect of the present invention, there is provided a method for manufacturing a steel sheet pile wall using the above hat-shaped steel sheet pile. The method of manufacturing the steel sheet pile wall is to cast a hat-shaped steel sheet pile into the ground while fitting only one of the fitting joints of the hat-shaped steel sheet pile to the fitting joint of the steel sheet pile previously placed. May be included.
 上記の構成によれば、ハット形鋼矢板の打設時に地上部で発生する断面内のねじり変形を低減することによって施工性を向上させることができる。 According to the above configuration, the workability can be improved by reducing the torsional deformation in the cross section generated on the ground portion when the hat-shaped steel sheet pile is driven.
本発明の一実施形態に係るハット形鋼矢板の断面図である。It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. 図1に示されたハット形鋼矢板の嵌合継手における嵌合中心について説明するための図である。It is a figure for demonstrating the fitting center in the fitting joint of the hat-shaped steel sheet pile shown in FIG. 打設時のハット形鋼矢板の境界条件を示す、先行矢板との嵌合状況、バイブロハンマーによるハット形鋼矢板の把持状況について概念的に説明するための図である。It is a figure which shows the boundary condition of a hat-shaped steel sheet pile at the time of driving, and is a figure for conceptually explaining the fitting state with a preceding sheet pile, and the holding state of a hat-shaped steel sheet pile with a vibro hammer. 打設時のハット形鋼矢板に発生する水平方向のねじり変形について概念的に説明するための図である。It is a figure for conceptually explaining horizontal torsional deformation which occurs in a hat-shaped steel sheet pile at the time of driving. 本発明の比較例、実施例、および参考例を、有効幅Wを横軸、断面積Aeと有効幅Wおよび高さHの積との比Ae/(W・H)を縦軸としてプロットしたグラフである。Comparative Examples, Examples, and Reference Examples of the present invention are plotted with the effective width W as the horizontal axis and the ratio Ae / (W · H) of the cross-sectional area Ae to the product of the effective width W and the height H as the vertical axis. It is a graph. 図5のグラフに示された実施例のうち、有効幅Wが135cm以上の例のみを抽出したグラフである。6 is a graph in which only examples in which the effective width W is 135 cm or more are extracted from the examples shown in the graph of FIG. 5.
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の一実施形態に係るハット形鋼矢板の断面図である。図1に示されるように、ハット形鋼矢板1は、長手方向(図中のz方向)に直交する断面において、奥行き方向の第1の側(図中のy方向の奥側)で幅方向(図中のx方向)に沿って延びるウェブ2と、ウェブ2の幅方向の両端部から幅方向の両側、かつ奥行き方向の第2の側(図中のy方向の手前側)に向かって延び、幅方向との間にフランジ角度θ(鋭角側)をなすフランジ3A,3Bと、奥行き方向の第2の側でフランジ3A,3Bのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びるアーム4A,4Bと、アーム4A,4Bのそれぞれのフランジ3A,3Bとは反対側の端部に形成される嵌合継手5A,5Bとを含む。 FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention. As shown in FIG. 1, a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a width direction on a first side in a depth direction (a depth side in a y direction in the figure). The web 2 extends along the x direction (in the figure) and from both ends in the width direction of the web 2 toward both sides in the width direction and toward the second side in the depth direction (front side in the y direction in the figure). The flanges 3A and 3B extend and form a flange angle θ (a sharp angle side) with the width direction, and the widthwise direction from the respective ends of the flanges 3A and 3B on the second side in the depth direction. 4A and 4B extending toward both sides of the arm 4A, and fitting joints 5A and 5B formed at ends of the arms 4A and 4B opposite to the flanges 3A and 3B, respectively.
 後述するように、この断面におけるハット形鋼矢板1の断面積(図中でハッチングされた領域の面積)Aeと、ハット形鋼矢板1の有効幅Wと、ハット形鋼矢板1の高さHとは、以下の式(1)の関係を満たし、有効幅Wは110cm以上である。なお、有効幅Wは、断面における嵌合継手5A,5Bのそれぞれの嵌合中心E,E間の距離に等しい。また、高さHは、ハット形鋼矢板1の幅方向に一致するウェブ2の奥行き方向の第1の側(図中のy方向の奥側)の面と、同じくハット形鋼矢板1の幅方向に一致するアーム4A,4Bの奥行き方向の第2の側(図中のy方向の手前側)の面との間の距離に等しい。
 Ae/(W・H)≧0.04 ・・・(1)
As will be described later, the cross-sectional area of the hat-shaped steel sheet pile 1 in this section (the area of the hatched area in the figure) Ae, the effective width W of the hat-shaped steel sheet pile 1, and the height H of the hat-shaped steel sheet pile 1 Satisfies the relationship of the following expression (1), and the effective width W is 110 cm or more. Incidentally, the effective width W, fitting joint 5A in cross-section, each of the mating centers E A of 5B, equal to the distance between the E B. The height H is the width of the hat-shaped steel sheet pile 1 on the first side (rear side in the y direction in the drawing) in the depth direction of the web 2 which coincides with the width direction of the hat-shaped steel sheet pile 1. The distance is equal to the distance between the arms 4A and 4B in the depth direction on the second side (front side in the y direction in the drawing) that matches the direction.
Ae / (W · H) ≧ 0.04 (1)
 なお、高さHを規定する際の「アーム4A,4Bの奥行き方向の第2の側の面」は、製造誤差などにより、必ずしも実際のアーム4A,4Bの面に厳密には一致しない場合がある。しかしながら、このような場合であっても、例えば設計図面に示されたハット形鋼矢板1の断面ではアーム4A,4Bの面が同一直線上にあり、この面を「アーム4A,4Bの奥行き方向の第2の側の面」として特定することができる。この場合、設計図面に示されたアーム4A,4Bの延びる方向は、ハット形鋼矢板1の幅方向に一致する。また、施工後に地中に打ち込まれたハット形鋼矢板1では、施工時などのアーム4A,4Bの変形によって、例えば地上に露出しているハット形鋼矢板1の頭部端面において「アーム4A,4Bの奥行き方向の第2の側の面」が必ずしも実際のアーム4A,4Bの面に厳密には一致しない場合がある。しかしながら、この場合も、例えば打設前の状況を示す設計図面で同一直線上に示されたアーム4A,4Bの面を「アーム4A,4Bの奥行き方向の第2の側の面」として特定することができる。設計図面によらない場合、地上に露出しているハット形鋼矢板1の頭部端面において、アーム4A,4Bのそれぞれの端部に位置する嵌合中心E,Eを結ぶ直線をアーム4A,4Bの設計上の板厚中心線とし、この直線を奥行き方向の第2の側へアーム4A,4Bの板厚の半分だけ平行移動させることによって「アーム4A,4Bの奥行き方向の第2の側の面」を特定することができる。 The “surface on the second side in the depth direction of the arms 4A and 4B” when defining the height H may not always exactly match the actual surfaces of the arms 4A and 4B due to manufacturing errors and the like. is there. However, even in such a case, for example, in the cross section of the hat-shaped steel sheet pile 1 shown in the design drawing, the surfaces of the arms 4A and 4B are on the same straight line, and this surface is referred to as “the depth direction of the arms 4A and 4B”. Of the second side of the ". In this case, the extending direction of the arms 4A and 4B shown in the design drawing coincides with the width direction of the hat-shaped steel sheet pile 1. Further, in the hat-shaped steel sheet pile 1 driven into the ground after the construction, due to the deformation of the arms 4A and 4B during the construction and the like, for example, the " arm 4A, 4A, The surface on the second side in the depth direction of 4B "may not always exactly coincide with the actual surfaces of the arms 4A and 4B. However, also in this case, for example, the surfaces of the arms 4A and 4B shown on the same straight line in the design drawing showing the situation before the driving are specified as "the surface on the second side in the depth direction of the arms 4A and 4B". be able to. If that is not based on the design drawing, at the head end face of the hat-shaped steel sheet pile 1 exposed on the ground, the arm 4A, fitting center E A located at each end of 4B, the arm 4A of the straight line connecting the E B , 4B as a designed thickness center line, and this straight line is moved in parallel to the second side in the depth direction by half of the thickness of the arms 4A, 4B to obtain the “second depth direction of the arms 4A, 4B”. Side surface "can be specified.
 なお、図1に示されたハット形鋼矢板1の形状が幾何学的に成り立つ場合、アーム長さBa、有効幅W、ウェブ長さBw、高さHおよびフランジ角度θは、W-Bw-2H/tanθ>0の関係を満たしている。 When the shape of the hat-shaped steel sheet pile 1 shown in FIG. 1 is geometrically established, the arm length Ba, the effective width W, the web length Bw, the height H, and the flange angle θ are W−Bw− 2H / tan θ> 0.
 図2は、図1に示されたハット形鋼矢板の嵌合継手における嵌合中心について説明するための図である。図示されているように、ハット形鋼矢板1の嵌合継手5Aには、隣接して打設される別のハット形鋼矢板1の嵌合継手5Bが嵌合する。嵌合継手5Aの嵌合中心Eは、これに嵌合するアーム4Bおよび嵌合継手5Bを仮想的に配置した場合に、嵌合継手5Aが形成されるアーム4Aの端部位置と、仮想的な嵌合継手5Bが形成されるアーム4Bの端部位置との中間に位置する、アーム4Aおよびアーム4Bの設計上の板厚中心線上の点として定義することができる。ハット形鋼矢板1の反対側に位置する嵌合継手5Bの嵌合中心Eも、同様に定義することができる。上述のように、嵌合中心E,E間の距離は、ハット形鋼矢板1の有効幅Wに等しい。 FIG. 2 is a view for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. 1 in the fitting joint. As shown in the figure, the fitting joint 5B of another hat-shaped steel sheet pile 1 that is driven adjacent to the fitting joint 5B of the hat-shaped steel sheet pile 1 is fitted. Fitting center E A fitting joint 5A, when placing the arms 4B and the fitting joint 5B fitted to virtually, and the end position of the arm 4A of the fitting joint 5A is formed, the virtual Can be defined as a point on the designed thickness center line of the arm 4A and the arm 4B, which is located in the middle of the end position of the arm 4B where the typical fitting joint 5B is formed. Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly. As mentioned above, fitting the center E A, the distance between the E B is equal to the effective width W of the hat-shaped steel sheet pile 1.
 図3および図4は、打設時のハット形鋼矢板に発生する水平方向のねじり変形について概念的に説明するための図である。図3に示されるように、ハット形鋼矢板1は、上端でフランジ3A,3Bを挟み込むバイブロハンマー6から加えられる鉛直方向の荷重によって打設される。バイブロハンマー6は、ハット形鋼矢板1を安定支持するために、奥行き方向(図中のy方向)の位置が断面の図心Cにほぼ一致するように配置される。 お よ び FIGS. 3 and 4 are diagrams for conceptually explaining the horizontal torsional deformation occurring in the hat-shaped steel sheet pile during driving. As shown in FIG. 3, the hat-shaped steel sheet pile 1 is driven by a vertical load applied from a vibro hammer 6 sandwiching the flanges 3A and 3B at the upper end. In order to stably support the hat-shaped steel sheet pile 1, the vibratory hammer 6 is arranged so that the position in the depth direction (the y direction in the drawing) substantially matches the center C of the cross section.
 ここで、地表面近くには先行して打設されたハット形鋼矢板1Pがあり、ハット形鋼矢板1はハット形鋼矢板1Pの嵌合継手5Bに嵌合継手5Aを嵌合させながら打設される。従って、地表面近くでは、ハット形鋼矢板1の嵌合継手5Aは、ハット形鋼矢板1Pの嵌合継手5Bによって水平方向の変位を拘束される。嵌合継手5Aは、嵌合継手5Bと嵌合中心Eの近傍の複数の点で接触することによって水平方向の変位を拘束される。従って、ハット形鋼矢板1は、地上部に突出した長手方向下側の部分において、嵌合継手部と地盤からの拘束を受けることになる。これに対して、バイブロハンマー6による荷重の作用点である図心Cが上記のような水平方向の変位の拘束点から離れて位置するため、ハット形鋼矢板1には断面をねじる方向の曲げモーメントが発生する。 Here, there is a hat-shaped steel sheet pile 1P previously driven near the ground surface, and the hat-shaped steel sheet pile 1 is driven while the fitting joint 5A is fitted to the fitting joint 5B of the hat-shaped steel sheet pile 1P. Is established. Therefore, near the ground surface, the fitting joint 5A of the hat-shaped steel sheet pile 1 is restrained from horizontal displacement by the fitting joint 5B of the hat-shaped steel sheet pile 1P. Mating fitting 5A is constrained to horizontal displacement by contact at a plurality of points near the fitting joint 5B and the fitting center E A. Therefore, the hat-shaped steel sheet pile 1 is restrained by the fitting joint portion and the ground at the lower portion in the longitudinal direction projecting to the ground portion. On the other hand, since the centroid C, which is the point of application of the load by the vibro-hammer 6, is located away from the constraint point of the horizontal displacement as described above, the hat-shaped steel sheet pile 1 is bent in the direction of twisting the cross section. A moment is generated.
 ここで、嵌合中心Eと図心Cとの間の距離は、ハット形鋼矢板1の幅方向(図中のx方向)および奥行き方向(図中のy方向)の間で異なるため、それぞれの方向に発生する曲げモーメントの大きさは異なる。また、それぞれの方向でのハット形鋼矢板1の断面二次モーメントも異なるため、それぞれの方向に発生するたわみに差が生じ、断面内にねじり変形が発生する。ハット形鋼矢板1の上端および下端はバイブロハンマー6および地盤によってそれぞれ拘束されているため、上記の曲げモーメントによって、ハット形鋼矢板1には反りねじりに比べて純ねじりが卓越して発生する。図4に示されるように、ハット形鋼矢板1の断面内の任意の点を中心とする純ねじりのねじり角φは、以下の式(2)で表される。なお、Mtは純ねじりの中心回りの曲げモーメント、Gはハット形鋼矢板1のせん断弾性係数、Jはハット形鋼矢板1の断面ねじりモーメントである。
 φ=Mt/(G・J) ・・・(2)
Here, the distance between the fitting center E A and centroid C is different between and the depth direction (x direction in the drawing) the width direction of the hat-shaped steel sheet pile 1 (y direction in the drawing), The magnitude of the bending moment generated in each direction is different. In addition, since the secondary moment of area of the hat-shaped steel sheet pile 1 in each direction is also different, a difference occurs in the bending generated in each direction, and torsional deformation occurs in the cross section. Since the upper end and the lower end of the hat-shaped steel sheet pile 1 are respectively restrained by the vibratory hammer 6 and the ground, pure torsion is predominantly generated in the hat-shaped steel sheet pile 1 as compared with the warped torsion due to the bending moment. As shown in FIG. 4, the torsion angle φ of pure torsion about an arbitrary point in the cross section of the hat-shaped steel sheet pile 1 is represented by the following equation (2). Here, Mt is the bending moment around the center of pure torsion, G is the shear modulus of elasticity of the hat-shaped steel sheet pile 1, and J is the torsional moment of the cross section of the hat-shaped steel sheet pile 1.
φ = Mt / (G · J) (2)
 一般に、嵌合継手5A,5Bは、ある程度のねじり角φを許容するように設計されている。しかしながら、φが大きくなると、打設されるハット形鋼矢板1の嵌合継手5Aと先行して打設されているハット形鋼矢板1Pの嵌合継手5Bとの間に発生する摩擦が増大することによって嵌合継手5A,5Bに損傷が発生したり、打設時の抵抗が増大したりすることによって施工性が低下する可能性がある。 Generally, the fittings 5A and 5B are designed to allow a certain degree of twist angle φ. However, when φ increases, the friction generated between the fitting joint 5A of the hat-shaped steel sheet pile 1 to be driven and the fitting joint 5B of the hat-shaped steel sheet pile 1P previously driven is increased. As a result, the fitting joints 5A and 5B may be damaged, or the resistance at the time of driving may be increased, thereby deteriorating the workability.
 ここで、ハット形鋼矢板1の断面の経済性の観点からは、有効幅Wを拡大しつつ薄肉とすることが有利である。しかしながら、薄肉とすると曲げモーメントに抵抗する断面積が減り、曲げモーメントに抵抗する断面ねじりモーメントが小さくなりねじり剛性が縮小し、これに伴ってねじり角φも大きくなる。それゆえ、ある一定以上の断面積を確保することが有効である。有効幅Wを拡大する場合には、単一のハット形鋼矢板1が占める有効幅と高さの範囲内において、ウェブ2、フランジ3A,3B、およびアーム4A,4Bの板厚によって断面ねじりモーメントJを確保する必要があるが、板厚を大きくすると断面の経済性が低下するため、どの程度の板厚が必要であるかを示す簡便な指標があることが望ましい。 Here, from the economical viewpoint of the cross section of the hat-shaped steel sheet pile 1, it is advantageous to increase the effective width W and make it thinner. However, when the thickness is reduced, the sectional area that resists the bending moment decreases, the sectional torsional moment that resists the bending moment decreases, the torsional rigidity decreases, and the torsional angle φ increases accordingly. Therefore, it is effective to secure a cross-sectional area of a certain value or more. When the effective width W is increased, the torsional moment in section is determined by the thickness of the web 2, the flanges 3A and 3B, and the arms 4A and 4B within the effective width and height occupied by the single hat-shaped steel sheet pile 1. Although it is necessary to secure J, it is desirable that there is a simple index indicating how much the thickness is required, because the economics of the cross section decreases when the thickness is increased.
 本発明者らは、上記の点に鑑み、有効幅Wを従来のハット形鋼矢板よりも拡大しながら、ねじり角φを従来のハット形鋼矢板よりも低減することができるハット形鋼矢板1の断面形状の指標を、ハット形鋼矢板として、長手方向の上下端において長手方向への変位が固定され、長手軸方向まわりに断面を回転させるモーメントに対して、薄肉開断面に対する純ねじりがハット形鋼矢板1の長手方向の地上部に発生している状態を適用することで検討した。以下の検討は、ウェブ2、フランジ3A,3B、およびアーム4A,4Bの板厚を反映するパラメータとして断面積Ae、また曲げモーメントMtの大きさを反映するパラメータとしてハット形鋼矢板1の有効幅Wおよび高さHをそれぞれ用いることによって、ねじり角φを低減できるハット形鋼矢板1の断面形状の条件を簡便に特定することを意図している。 In view of the above points, the present inventors have developed a hat-shaped steel sheet pile 1 capable of reducing the torsion angle φ from that of the conventional hat-shaped steel sheet pile while increasing the effective width W of the hat-shaped steel sheet pile. The index of the cross-sectional shape of the hat, as a hat-shaped steel sheet pile, the displacement in the longitudinal direction is fixed at the upper and lower ends of the longitudinal direction, the pure torsion to the thin open cross section against the moment to rotate the cross section around the longitudinal axis direction The study was conducted by applying a state occurring on the ground portion in the longitudinal direction of the shaped sheet pile 1. The following considerations are based on the cross-sectional area Ae as a parameter reflecting the thickness of the web 2, the flanges 3A and 3B, and the arms 4A and 4B, and the effective width of the hat-shaped steel sheet pile 1 as a parameter reflecting the magnitude of the bending moment Mt. By using W and the height H, it is intended to easily specify the condition of the cross-sectional shape of the hat-shaped steel sheet pile 1 capable of reducing the torsion angle φ.
 表1~表4に検討の結果を示す。検討は、ハット形鋼矢板1を幅方向に連結した壁体の壁幅1mあたりの断面二次モーメントIが10000cm/mレベル、25000cm/mレベル、45000cm/mレベル、および50000cm/mレベルの場合のそれぞれについて行い、比較例1~比較例4として示す従来のハット形鋼矢板よりもねじり角φが低減された例を実施例1~実施例21として、従来のハット形鋼矢板よりもねじり角φが増大した例を参考例1~参考例14として、それぞれ示した。なお、上述の通り、本実施形態では有効幅Wを従来のハット形鋼矢板よりも拡大することが意図されているため、実施例1~実施例21ではいずれもハット形鋼矢板1の有効幅Wが110cm以上である。また、表1~表4に示されたウェブ厚さtw(cm)、ウェブ幅Bw(cm)、およびアーム幅Ba(cm)が表す寸法は、図1に示されている。上記のように、従来のハット形鋼矢板に比べて、ねじれの少ない鋼矢板としての性能を満たし、かつ経済的メリットも追及するためにハット形鋼矢板1の有効幅Wを拡大する場合、造形性等の観点から生産性を確保するために高さHは有効幅Wに対して小さい範囲に収めることが望ましく、高さを45cm以下に抑えた断面を追及している。それゆえ、実施例1~実施例21において高さHは45cm以下である(最も大きいのは実施例21でH=40.2cm)。有効幅が広く高さが低くても、有効幅と高さに対する断面積の比を所定内に設定することで、所定の耐ねじれ性能を満たす断面を形成することを目指している。 Tables 1 to 4 show the results of the study. Study, geometrical moment of inertia I W is 10000 cm 4 / m level per wall width 1m of wall linked a hat-shaped steel sheet pile 1 in the width direction, 25000 cm 4 / m level, 45000cm 4 / m level, and 50000 cm 4 / M level, and Examples 1 to 21 in which the torsion angle φ is smaller than those of the conventional hat-shaped steel sheet piles shown as Comparative Examples 1 to 4 are referred to as conventional hat-shaped steel sheet piles. Examples in which the torsion angle φ is larger than that of the sheet pile are shown as Reference Examples 1 to 14, respectively. As described above, in the present embodiment, since the effective width W is intended to be larger than that of the conventional hat-shaped steel sheet pile, the effective widths of the hat-shaped steel sheet piles 1 are all described in Examples 1 to 21. W is 110 cm or more. The dimensions represented by the web thickness tw (cm), the web width Bw (cm), and the arm width Ba (cm) shown in Tables 1 to 4 are shown in FIG. As described above, when the effective width W of the hat-shaped steel sheet pile 1 is increased in order to satisfy the performance as a steel sheet pile with less torsion and to pursue economical advantages as compared with the conventional hat-shaped steel sheet pile, From the viewpoint of performance and the like, in order to secure productivity, it is desirable that the height H be within a small range with respect to the effective width W, and a cross section in which the height is suppressed to 45 cm or less is pursued. Therefore, the height H in Examples 1 to 21 is 45 cm or less (the largest is H = 40.2 cm in Example 21). Even if the effective width is large and the height is low, the aim is to form a cross section that satisfies predetermined torsional performance by setting the ratio of the cross-sectional area to the effective width and height within a predetermined range.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図5は、上記の比較例1~比較例4、実施例1~実施例21、および参考例1~参考例14を、有効幅W(cm)を横軸、断面積Aeと有効幅Wおよび高さHの積との比Ae/(W・H)を縦軸としてプロットしたグラフである。 FIG. 5 shows the above Comparative Examples 1 to 4, Examples 1 to 21, and Reference Examples 1 to 14 by plotting the effective width W (cm) on the horizontal axis, the cross-sectional area Ae and the effective width W. It is the graph which plotted the ratio Ae / (W.H) with the product of the height H as a vertical axis.
 ここで、図5のグラフの軸として設定した、ハット形鋼矢板の断面緒元を用いた指標について説明する。ハット形鋼矢板にねじりを発生させる曲げモーメントは、嵌合中心Eと図心Cとの間の幅方向および奥行き方向それぞれの距離に比例して大きくなる。ねじり角φの大きさは、曲げモーメントに比例し、断面ねじりモーメントに反比例する。そこで、曲げモーメントの大きさに関して、嵌合中心Eと図心Cとの間の幅方向および奥行き方向それぞれの距離を表す指標として、鋼矢板断面の有効幅Wと高さHを用い、両指標の効果を同時に含めるために両指標の積を用いた。また、断面ねじりモーメントの大きさを表す指標として、断面積Aeを用いた。 Here, an index using the cross-sectional specification of the hat-shaped steel sheet pile set as the axis of the graph of FIG. 5 will be described. Bending moment generates a torsion hat-shaped steel sheet pile is increased in proportion to the width direction and the depth direction respective distances between the mating centers E A and centroid C. The magnitude of the torsion angle φ is proportional to the bending moment and inversely proportional to the sectional torsion moment. Therefore, reference to the size of the bending moment, as an index representing the width direction and the depth direction respective distances between the mating centers E A and centroid C, with an effective width W and height H of the steel sheet pile section, both The product of both indices was used to simultaneously include the effects of the indices. The cross-sectional area Ae was used as an index indicating the magnitude of the torsional moment of area.
 圧延可能な所定の面積の範囲内で、経済的な鋼矢板断面積Aeとするためには、当該面積に対する鋼矢板断面積Aeが小さいことが好ましい。圧延可能な所定の面積は、圧延後の鋼矢板の最終形状である、有効幅Wと高さHとの積に比例する。そのため、Ae/(W・H)は、鋼矢板断面の経済性を示す一つの指標になる。つまり、Ae/(W・H)は、上記のようにねじり角φの大きさを判断する指標にもなり、かつ経済性を評価する指標にもなり得る。図5のグラフは、断面積Ae、有効幅Wおよび高さHの3つの項目だけで2つの指標を評価できる簡便な指標であるAe/(W・H)を縦軸としている。 In order to make the cross section area Ae of the steel sheet pile economical within the range of the predetermined rollable area, it is preferable that the cross section area Ae of the steel sheet pile relative to the area is small. The predetermined area that can be rolled is proportional to the product of the effective width W and the height H, which is the final shape of the rolled steel sheet pile. Therefore, Ae / (W · H) is one index indicating the economics of the steel sheet pile cross section. That is, Ae / (W · H) can be an index for determining the magnitude of the torsion angle φ as described above, and can also be an index for evaluating economic efficiency. In the graph of FIG. 5, the vertical axis is Ae / (W · H), which is a simple index that can evaluate two indexes only with the three items of the cross-sectional area Ae, the effective width W, and the height H.
 具体的には、ねじり角φを小さくするためには、Ae/(W・H)の値を大きくすることが有利であり、経済的な断面とするためには、Ae/(W・H)の値を小さくすることが有利である。つまり、Ae/(W・H)の値を大きくし過ぎると、ねじり角φは小さくなるものの経済性が悪化し、逆にAe/(W・H)の値を小さくし過ぎると、経済性は良好となるもののねじり角φは大きくなる。Ae/(W・H)の指標を用いることで、ねじり角φの低減と経済性とのバランスを図ること、即ち施工性と経済性の両者を同時に簡便に判断することができる。 Specifically, it is advantageous to increase the value of Ae / (W · H) in order to reduce the torsion angle φ, and in order to obtain an economical cross section, Ae / (W · H) It is advantageous to reduce the value of. In other words, if the value of Ae / (W · H) is too large, the torsion angle φ becomes small, but the economic efficiency deteriorates. Conversely, if the value of Ae / (W · H) is too small, the economic efficiency becomes low. Although good, the torsion angle φ increases. By using the index of Ae / (W · H), it is possible to balance the reduction of the torsion angle φ and the economy, that is, to easily determine both the workability and the economy at the same time.
 一方、ハット形鋼矢板を経済的な断面とするためには、広幅化することが有効となる。ウェブ幅を大きくでき、所定幅に占めるフランジ部の面積割合を小さくできるので、より少ない断面積で、所定幅当たりの断面2次モーメント即ち曲げ剛性を確保できるためである。そこで、図5のグラフでは、曲げ剛性に対する経済性を評価することも視野に入れて、有効幅Wを横軸としている。 On the other hand, to make the hat-shaped steel sheet pile economical in cross section, it is effective to increase the width. This is because the web width can be increased and the area ratio of the flange portion to the predetermined width can be reduced, so that the secondary moment of area per predetermined width, that is, bending rigidity, can be secured with a smaller cross-sectional area. Therefore, in the graph of FIG. 5, the effective width W is plotted on the horizontal axis in view of evaluating the economic efficiency with respect to bending rigidity.
 上述したような図5のグラフにおいて、比較例1~比較例4は点P1~P4として示されており、実施例1~実施例21は点E1~E21として示されており、参考例1~参考例14は点R1,R11~R14および点R2~R10のグループに分けて示されている。実施例を示す点E1~E21は、Ae/(W・H)≧0.04の範囲に含まれる。これに対して、参考例を示す点R2~R10はAe/(W・H)<0.04の範囲にある。一方、比較例を示す点P1~P4および参考例を示す点R1,R11~R14は、W<110cmの範囲にある。従って、上記の結果から、有効幅Wが110cm以上である場合にねじり角φを低減できるハット形鋼矢板1の断面形状の条件として、以下の式(1)を特定することができる。
 Ae/(W・H)≧0.04 ・・・(1)
In the graph of FIG. 5 as described above, Comparative Examples 1 to 4 are shown as points P1 to P4, Examples 1 to 21 are shown as points E1 to E21, and Reference Examples 1 to Reference Example 14 is shown divided into groups of points R1, R11 to R14 and points R2 to R10. Points E1 to E21 indicating the examples are included in the range of Ae / (W · H) ≧ 0.04. On the other hand, points R2 to R10 indicating the reference example are in the range of Ae / (W · H) <0.04. On the other hand, points P1 to P4 indicating the comparative example and points R1 and R11 to R14 indicating the reference example are in the range of W <110 cm. Therefore, from the above results, the following equation (1) can be specified as a condition of the cross-sectional shape of the hat-shaped steel sheet pile 1 that can reduce the torsion angle φ when the effective width W is 110 cm or more.
Ae / (W · H) ≧ 0.04 (1)
 ここで、幅が拡大された、いわゆる薄肉大断面のハット形鋼矢板について、製造性を考慮した場合にはよりコンパクトな断面とすることが好ましい。この観点では、上記で検討した実施例のうち、ハット形鋼矢板1を幅方向に連結した壁体の壁幅1mあたりの断面二次モーメントIが25000cm/mレベル以下のもの、すなわち実施例1~実施例8がより好適である。実施例1~実施例8では、上記の式(1)に加えて、以下の式(2)が満たされる。
 Ae/(W・H)≦0.048 ・・・(2)
Here, it is preferable that the hat-shaped steel sheet pile having a so-called thin-walled large-section having an increased width is formed to have a more compact section in consideration of manufacturability. In this respect, among the embodiments discussed above, those second moment I W per wall width 1m of wall linked a hat-shaped steel sheet pile 1 in the width direction below 25000 cm 4 / m level, performed Examples 1 to 8 are more preferred. In Examples 1 to 8, the following expression (2) is satisfied in addition to the above expression (1).
Ae / (W · H) ≦ 0.048 (2)
 図6は、図5のグラフに示された実施例1~実施例21のうち、より広幅の、有効幅Wが135cm以上の例のみを抽出したグラフである。具体的には、実施例2~実施例7、実施例13~実施例18、実施例20、および実施例21が抽出されている。図5のグラフと同様に、図6のグラフでも、点E2~E7,E13~E18,E20,E21はAe/(W・H)≧0.04の範囲に含まれる。ここで、上記の表1、表3および表4に示されるように、実施例2~実施例7、実施例13~実施例18、実施例20、および実施例21は、有効幅Wが135cm以上であるのに加えて、ねじり角φ(従来との比)が0.95未満、すなわち従来のハット形鋼矢板の95%未満にまで低減され、他の例よりもねじり角φの低減幅が大きい例でもある。打設中のハット形鋼矢板に発生するねじり変形は、先行して地中に打設されたハット形鋼矢板の継手との嵌合性を悪化させる。ここで、ハット形鋼矢板継手の嵌合角度の裕度は、通常の場合、±4度以下と非常に狭い範囲で製造されており、たとえある長手方向の異なる深度の断面間のねじり角度差がわずか1度未満であるような状況においても、ハット形鋼矢板長手方向に亘りねじり量が蓄積され、嵌合抵抗増大につながりやすい。従って、たとえ非常に小さい量であってもねじれ量を低減することは有用であるが、例えばねじれ量を5%でも低減できれば、後から打設されるハット形鋼矢板の打設中のねじり変形に伴う先行する鋼矢板の継手との接触抵抗をより少なくすることができるようになり、施工性に与える影響をより効果的に縮小することができる。従って、上記の式(1)は、ねじり角φ(従来との比)が0.95未満になる、有効幅Wが135cm以上のハット形鋼矢板1について、ねじり角φを顕著に低減できる断面形状の条件としてより有利に適用できる。 FIG. 6 is a graph in which only the wider examples having an effective width W of 135 cm or more are extracted from Examples 1 to 21 shown in the graph of FIG. Specifically, Examples 2 to 7, Example 13 to Example 18, Example 20, and Example 21 are extracted. Like the graph of FIG. 5, also in the graph of FIG. 6, the points E2 to E7, E13 to E18, E20, and E21 are included in the range of Ae / (W · H) ≧ 0.04. Here, as shown in Tables 1, 3 and 4, the effective width W of Examples 2 to 7, Example 13 to Example 18, Example 20, and Example 21 was 135 cm. In addition to the above, the torsion angle φ (ratio to the conventional one) is reduced to less than 0.95, that is, to less than 95% of the conventional hat-shaped sheet pile, and the torsion angle φ is reduced more than other examples. Is also a large example. The torsional deformation that occurs in the hat-shaped steel sheet pile during casting impairs the fitting property of the hat-shaped steel sheet pile previously driven into the ground with the joint. Here, the tolerance of the fitting angle of the hat-shaped steel sheet pile joint is usually manufactured in a very narrow range of ± 4 degrees or less, and even if the torsion angle difference between cross sections at different depths in a certain longitudinal direction. Is less than 1 degree, the amount of torsion is accumulated in the longitudinal direction of the hat-shaped steel sheet pile, which tends to increase the fitting resistance. Therefore, it is useful to reduce the amount of torsion even if the amount is very small. However, if the amount of torsion can be reduced even by 5%, for example, the torsional deformation during the driving of a hat-shaped steel sheet pile to be driven later is performed. Therefore, the contact resistance between the preceding steel sheet pile and the joint can be further reduced, and the effect on the workability can be reduced more effectively. Therefore, the above equation (1) indicates that the torsion angle φ (compared to the prior art) is less than 0.95, and the cross section of the hat-shaped steel sheet pile 1 having an effective width W of 135 cm or more can significantly reduce the torsion angle φ. It can be applied more advantageously as a shape condition.
 以上で説明したような本発明の実施形態によれば、打設時に発生する断面内のねじり変形が効果的に低減される断面形状のハット形鋼矢板が提供される。このようなハット形鋼矢板は、例えばハット形鋼矢板の1対の嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながらハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法において、特に有利である。このような鋼矢板壁の製造方法では、ハット形の鋼矢板の一方の継手が先行して打設された鋼矢板の継手に嵌合している位置に対して施工機が鋼矢板を支持して鉛直振動荷重を加える位置が偏心しているためハット形鋼矢板にねじり変形を発生させるモーメントが生じやすいが、本発明の実施形態を適用することによってねじり変形を効果的に抑制することができる。 According to the embodiment of the present invention as described above, a hat-shaped steel sheet pile having a cross-sectional shape in which torsional deformation in a cross-section generated at the time of driving is effectively reduced is provided. Such a hat-shaped steel sheet pile is formed, for example, by fitting only one of a pair of fitting joints of the hat-shaped steel sheet pile to a fitting joint of a steel sheet pile previously driven. The method is particularly advantageous in a method for manufacturing a steel sheet pile wall including a step of placing the sheet pile in the ground. In such a method for manufacturing a steel sheet pile wall, the construction machine supports the steel sheet pile at a position where one joint of the hat-shaped steel sheet pile is fitted to the joint of the steel sheet pile previously driven. Since the position where the vertical vibration load is applied is eccentric, a moment that causes torsional deformation occurs in the hat-shaped steel sheet pile, but torsional deformation can be effectively suppressed by applying the embodiment of the present invention.
 ハット形鋼矢板のねじり変形を抑制することによって、施工機からの打設エネルギーが少ない損失で施工重機能力を効率よく活用した状態でハット形鋼矢板に伝達され、ハット形鋼矢板の地盤内への貫入速度を高く保つことができるとともに、施工重機の燃費効率のよい経済的な施工が可能になる。また、ハット形鋼矢板のねじり変形を抑制することによって打設中のハット形鋼矢板のばたつきが小さくなり、施工に伴う騒音や振動を低減させることができる。ハット形鋼矢板の大断面化によって施工機が大型化すると騒音や振動も大きくなる可能性があるが、ハット形鋼矢板のねじり変形を抑制することによって、騒音や振動を抑制した施工が可能になる。 By suppressing the torsional deformation of the hat-shaped steel sheet pile, it is transmitted to the hat-shaped steel sheet pile in a state in which the construction energy from the construction machine is efficiently used with little loss and the heavy construction power is used, and the hat-shaped steel sheet pile enters the ground. The penetration speed can be kept high, and the fuel-efficient and economical construction of the heavy construction machine becomes possible. In addition, by suppressing the torsional deformation of the hat-shaped steel sheet pile, the flapping of the hat-shaped steel sheet pile during casting is reduced, and noise and vibration accompanying construction can be reduced. Noise and vibration may increase when the construction machine is enlarged due to the large cross section of the hat-shaped steel sheet pile, but by suppressing torsional deformation of the hat-shaped steel sheet pile, it is possible to perform construction with reduced noise and vibration. Become.
 また、ハット形鋼矢板のねじり変形を抑制することによって、先行して打設された鋼矢板の継手との嵌合抵抗を小さくすることができるため、ハット形鋼矢板全体の打設時の抵抗を小さくすることができ、また継手の接触面での削れや溶着を防止することができる。 In addition, by suppressing the torsional deformation of the hat-shaped steel sheet pile, the fitting resistance of the steel sheet pile previously driven into the joint can be reduced. Can be reduced, and scraping and welding at the contact surface of the joint can be prevented.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 1…ハット形鋼矢板、2…ウェブ、3A,3B…フランジ、4A,4B…アーム、5A,5B…嵌合継手、6…バイブロハンマー、E,E…嵌合中心。 1 ... hat-shaped steel sheet pile, 2 ... web, 3A, 3B ... flange, 4A, 4B ... arm, 5A, 5B ... fitting joint, 6 ... vibro-hammer over, E A, E B ... fitting center.

Claims (5)

  1.  ハット形鋼矢板であって、
     長手方向に直交する断面において、奥行き方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記奥行き方向の第2の側に向かって延びる1対のフランジと、前記奥行き方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される嵌合継手とを備え、
     前記断面における前記ハット形鋼矢板の断面積Ae(cm)と、前記ハット形鋼矢板の有効幅W(cm)と、前記ハット形鋼矢板の高さH(cm)とが、以下の式(i)の関係を満たし、前記有効幅Wが110cm以上であるハット形鋼矢板。
     Ae/(W・H)≧0.04 ・・・(i)
    A hat-shaped steel sheet pile,
    In a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the depth direction, and both ends in the width direction from both ends in the width direction of the web, and the second side in the depth direction A pair of flanges extending from the respective ends of the pair of flanges on the second side in the depth direction along the width direction and toward both sides in the width direction. An arm, and a fitting joint formed at an end of each of the pair of arms opposite to the pair of flanges;
    The sectional area Ae (cm 2 ) of the hat-shaped steel sheet pile in the cross section, the effective width W (cm) of the hat-shaped steel sheet pile, and the height H (cm) of the hat-shaped steel sheet pile are represented by the following equations. A hat-shaped steel sheet pile that satisfies the relationship (i) and has an effective width W of 110 cm or more.
    Ae / (W · H) ≧ 0.04 (i)
  2.  前記有効幅Wが135cm以上である、請求項1に記載のハット形鋼矢板。 ハ The hat-shaped steel sheet pile according to claim 1, wherein the effective width W is 135 cm or more.
  3.  高さHが45cm以下である、請求項1または請求項2に記載のハット形鋼矢板。 The hat-shaped steel sheet pile according to claim 1 or 2, wherein the height H is 45 cm or less.
  4.  前記断面における前記断面積Ae(cm)と、前記有効幅W(cm)と、前記高さH(cm)とが、以下の式(ii)の関係を満たす、請求項1から請求項3のいずれか1項に記載のハット形鋼矢板。
     Ae/(W・H)≦0.048 ・・・(ii)
    The said sectional area Ae (cm < 2 >) in the said cross section, the said effective width W (cm), and the said height H (cm) satisfy | fill the relationship of following formula (ii). The hat-shaped steel sheet pile according to any one of the above.
    Ae / (W · H) ≦ 0.048 (ii)
  5.  請求項1から請求項4のいずれか1項に記載のハット形鋼矢板を用いた鋼矢板壁の製造方法であって、
     前記ハット形鋼矢板の前記嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながら前記ハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法。
    A method for manufacturing a steel sheet pile wall using the hat-shaped steel sheet pile according to any one of claims 1 to 4,
    A steel including a step of driving the hat-shaped steel sheet pile into the ground while fitting only one of the fitting joints of the hat-shaped steel sheet pile to the fitting joint of the steel sheet pile previously driven. Manufacturing method of sheet pile wall.
PCT/JP2019/032110 2018-08-31 2019-08-16 Hat-shaped steel sheet pile and production method for steel sheet pile wall WO2020045114A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020539347A JP7143887B2 (en) 2018-08-31 2019-08-16 Manufacturing method of hat-shaped steel sheet pile
JP2022094262A JP2022120104A (en) 2018-08-31 2022-06-10 Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162391 2018-08-31
JP2018-162391 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045114A1 true WO2020045114A1 (en) 2020-03-05

Family

ID=69644189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032110 WO2020045114A1 (en) 2018-08-31 2019-08-16 Hat-shaped steel sheet pile and production method for steel sheet pile wall

Country Status (2)

Country Link
JP (2) JP7143887B2 (en)
WO (1) WO2020045114A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159445A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159445A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile
WO2015159434A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Also Published As

Publication number Publication date
JP2022120104A (en) 2022-08-17
JPWO2020045114A1 (en) 2021-08-10
JP7143887B2 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
TWI431177B (en) Z-shaped steel sheet pile
JP4772925B2 (en) Steel sheet pile
JP5764945B2 (en) Hat-shaped steel sheet pile
JP5114741B2 (en) Hat-shaped steel sheet pile
WO2020045114A1 (en) Hat-shaped steel sheet pile and production method for steel sheet pile wall
JP2008127771A (en) Hat type steel sheet pile
JP5194782B2 (en) Hat-shaped steel sheet pile
WO2020045115A1 (en) Hat-shaped steel sheet pile and production method for steel sheet pile wall
WO2020045113A1 (en) Hat-shaped steel sheet piling, steel sheet piling wall, and method for manufacturing steel sheet piling walls
JP3488230B1 (en) Rolled steel sheet pile
WO2018117269A1 (en) Hat-shaped steel sheet piling
WO2020045116A1 (en) Hat-shaped steel sheet pile and method for producing steel sheet pile wall
JP7143890B2 (en) Manufacturing method of hat-shaped steel sheet pile
JP7143891B2 (en) Manufacturing method of hat-shaped steel sheet pile
JP3458109B1 (en) Hat-type steel sheet pile
JP4241297B2 (en) Steel sheet pile with a constant stacking interval
WO2020045118A1 (en) Hat-type steel sheet pile
JP2002294691A (en) Z-type section&#39;s sheet pile
JP6741136B2 (en) Manufacturing method and designing method for hat-shaped steel sheet pile
JP6835162B2 (en) Sheet pile
JP6835161B2 (en) Sheet pile
JP4924362B2 (en) Steel sheet pile
JP2004076580A (en) Rolled steel sheet-pile
TW201404979A (en) Hat-shaped steel sheet pile
JP4821760B2 (en) Steel sheet pile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855607

Country of ref document: EP

Kind code of ref document: A1