JPWO2020045117A1 - Manufacturing method of hat-shaped steel sheet pile and steel sheet pile wall - Google Patents

Manufacturing method of hat-shaped steel sheet pile and steel sheet pile wall Download PDF

Info

Publication number
JPWO2020045117A1
JPWO2020045117A1 JP2020539350A JP2020539350A JPWO2020045117A1 JP WO2020045117 A1 JPWO2020045117 A1 JP WO2020045117A1 JP 2020539350 A JP2020539350 A JP 2020539350A JP 2020539350 A JP2020539350 A JP 2020539350A JP WO2020045117 A1 JPWO2020045117 A1 JP WO2020045117A1
Authority
JP
Japan
Prior art keywords
steel sheet
sheet pile
hat
shaped steel
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020539350A
Other languages
Japanese (ja)
Other versions
JP7143890B2 (en
Inventor
俊介 森安
俊介 森安
典佳 原田
典佳 原田
裕章 中山
裕章 中山
正和 武野
正和 武野
妙中 真治
真治 妙中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2020045117A1 publication Critical patent/JPWO2020045117A1/en
Priority to JP2022093179A priority Critical patent/JP2022120069A/en
Application granted granted Critical
Publication of JP7143890B2 publication Critical patent/JP7143890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

ハット形鋼矢板は、長手方向に直交する断面において、厚さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ厚さ方向の第2の側に向かって延びる1対のフランジと、厚さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、有効幅Wが105cm以上であり、かつ断面におけるウェブ、1対のフランジ、および1対のアームの合計長さBTTL(cm)と、長手方向に対して平行な側面における単位面積あたりのハット形鋼矢板の重量wt(N/cm2)とが以下の式(i)の関係を満たす。The hat-shaped steel sheet pile has a web extending along the width direction on the first side in the thickness direction and a web extending from both ends in the width direction to both sides in the width direction and in the thickness direction in a cross section orthogonal to the longitudinal direction. A pair of flanges extending toward the second side and a pair extending from each end of the pair of flanges on the second side in the thickness direction along the width direction and toward both sides in the width direction. Arms and a pair of fitting joints formed at the ends of the pair of arms opposite to each pair of flanges, with an effective width W of 105 cm or more and a web in cross section. The total length BTTL (cm) of a pair of flanges and a pair of arms and the weight wt (N / cm2) of the hat-shaped steel sheet pile per unit area on the side surface parallel to the longitudinal direction are as follows. Satisfy the relationship in (i).

Description

本発明は、ハット形鋼矢板および鋼矢板壁の製造方法に関する。 The present invention relates to a method for manufacturing a hat-shaped steel sheet pile and a steel sheet pile wall.

ハット形鋼矢板は、土木建築工事において、土留めや止水のための壁体を構築するために広く利用されている。ハット形鋼矢板の施工性や断面性能を向上させるための技術は、これまでにも種々提案されている。例えば、特許文献1には、鋼矢板壁の壁幅1mあたりの単位重量と断面二次モーメントとの関係、およびハット形鋼矢板の有効幅とフランジ幅の関係を規定することによって、断面性能を確保しつつ単位重量が小さい経済性に優れたハット形鋼矢板を提供する技術が記載されている。 Hat-shaped steel sheet piles are widely used in civil engineering and construction work to construct walls for retaining and stopping water. Various techniques for improving the workability and cross-sectional performance of the hat-shaped steel sheet pile have been proposed so far. For example, Patent Document 1 defines the cross-sectional performance by defining the relationship between the unit weight per 1 m of the wall width of the steel sheet pile wall and the moment of inertia of area, and the relationship between the effective width of the hat-shaped steel sheet pile and the flange width. The technology for providing a hat-shaped steel sheet pile that is economical and has a small unit weight while being secured is described.

特許第3458109号公報Japanese Patent No. 3458109

一方、図5Aおよび図5Bに示すようにバイブロハンマ工法でハット形鋼矢板を打設する際には、ハット形鋼矢板にばたつきが生じることがある。図5Aに示されるように、バイブロハンマ工法は、バイブロハンマ6を用いてハット形鋼矢板1に打設進行方向(図中のz方向)の縦振動Vを与えながら打設する工法である。このようなバイブロハンマ工法では、先行して打設されたハット形鋼矢板1Pとの継手の嵌合による拘束、地盤抵抗、およびバイブロハンマ6から与えられる縦振動Vの方向が打設進行方向からわずかにずれることの影響などによって、ハット形鋼矢板1の厚さ方向に膜振動Vが発生する。図5Bに模式的に示すように、膜振動Vが視認可能な程度にまで増幅されたものが、ハット形鋼矢板1のばたつきと呼ばれる。On the other hand, as shown in FIGS. 5A and 5B, when the hat-shaped steel sheet pile is driven by the vibro hammer method, the hat-shaped steel sheet pile may flutter. As shown in FIG. 5A, vibro-hammer method is a method for pouring while applying longitudinal vibration V V of Da設traveling direction (z direction in the drawing) to the hat-shaped steel sheet pile 1 with the vibro-hammer 6. In such a vibro-hammer method, prior to restriction by the fitting of the joint between the pouring has been hat-type steel sheet pile 1P, soil resistance, and the direction of the longitudinal vibration V V applied from vibro-hammer 6 slightly from pouring the traveling direction the influence of the shift, the membrane vibration V M is generated in the thickness direction of the hat-shaped steel sheet pile 1. As shown schematically in Figure 5B, which membrane vibration V M is amplified to the extent visible is called the flutter of the hat-shaped steel sheet pile 1.

上記のようなハット形鋼矢板1のばたつきが生じると、先行して打設したハット形鋼矢板1Pとの継手の嵌合部において、膜振動Vによって厚さ方向(図中のy方向)に振動するハット形鋼矢板1の継手が振動しないハット形鋼矢板1Pの継手に打ち付けられることになり、騒音が増大したり継手が損傷したりする可能性がある。また、ハット形鋼矢板1の膜振動Vはハット形鋼矢板1の打設進行方向(図中のz方向)への直進性を損ね、施工品質の悪化につながる場合もある。従って、ハット形鋼矢板1の施工上はばたつきを低減することが望ましいが、そのための方法は特許文献1のような従来技術には示されていない。If fluttering of the hat-shaped steel sheet pile 1 described above occurs, prior to the fitting portion of the joint of the pouring the hat-shaped steel sheet pile 1P, the thickness direction by the membrane vibration V M (y direction in the drawing) The joint of the hat-shaped steel sheet pile 1 that vibrates is hit against the joint of the hat-shaped steel sheet pile 1P that does not vibrate, which may increase noise or damage the joint. Moreover, film vibration V M of the hat-shaped steel sheet pile 1 impair the linearity of the pouring traveling direction of the hat-shaped steel sheet pile 1 (z direction in the drawing), in some cases it leads to deterioration of the construction quality. Therefore, it is desirable to reduce fluttering in the construction of the hat-shaped steel sheet pile 1, but a method for that purpose is not shown in the prior art such as Patent Document 1.

そこで、本発明は、ハット形鋼矢板の打設時に発生するばたつきを効果的に低減することが可能な、新規かつ改良されたハット形鋼矢板および鋼矢板壁の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a new and improved method for manufacturing a hat-shaped steel sheet pile and a steel sheet pile wall, which can effectively reduce the fluttering generated when the hat-shaped steel sheet pile is placed. And.

本発明のある観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、厚さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ厚さ方向の第2の側に向かって延びる1対のフランジと、厚さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、有効幅Wが105cm以上であり、かつ断面におけるウェブ、1対のフランジ、および1対のアームの合計長さBTTL(cm)と、長手方向に対して平行な側面における単位面積あたりのハット形鋼矢板の重量wt(N/cm)とが以下の式(i)の関係を満たす。

Figure 2020045117
According to one aspect of the present invention, the hat-shaped steel sheet pile has a web extending along the width direction on the first side in the thickness direction and a width from both ends in the width direction of the web in a cross section orthogonal to the longitudinal direction. A pair of flanges extending on both sides of the direction and toward the second side in the thickness direction, and a pair of flanges on the second side in the thickness direction along the width direction and width from each end. It includes a pair of arms extending toward both sides in the direction and a pair of fitting joints formed at the ends of the pair of arms opposite to each pair of flanges, and has an effective width W of 105 cm. The total length of the web, the pair of flanges, and the pair of arms in the cross section is BTTL (cm), and the weight of the hat-shaped steel sheet pile per unit area on the side surface parallel to the longitudinal direction wt. (N / cm 2 ) satisfies the relationship of the following equation (i).
Figure 2020045117

上記のハット形鋼矢板において、有効幅Wが120cm以上であり、かつ合計長さBTTLと重量wtとが以下の式(ii)の関係を満たしてもよい。

Figure 2020045117
In the above-mentioned hat-shaped steel sheet pile, the effective width W may be 120 cm or more, and the total length B TTL and the weight wt may satisfy the relationship of the following formula (ii).
Figure 2020045117

本発明の別の観点によれば、上記のハット形鋼矢板を用いた鋼矢板壁の製造方法が提供される。鋼矢板壁の製造方法は、バイブロハンマを用いてハット形鋼矢板に打設進行方向の縦振動を与えながらハット形鋼矢板を地中に打設する工程を含んでもよい。 According to another aspect of the present invention, there is provided a method for manufacturing a steel sheet pile wall using the above-mentioned hat-shaped steel sheet pile. The method for manufacturing the steel sheet pile wall may include a step of placing the hat-shaped steel sheet pile in the ground while applying longitudinal vibration in the driving traveling direction to the hat-shaped steel sheet pile using a vibro hammer.

上記の構成によれば、ハット形鋼矢板の打設時に発生するばたつきを効果的に低減することができる。 According to the above configuration, it is possible to effectively reduce the fluttering that occurs when the hat-shaped steel sheet pile is placed.

本発明の一実施形態に係るハット形鋼矢板の断面図である。It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. 図1に示されたハット形鋼矢板の嵌合中心について説明するための図である。It is a figure for demonstrating the fitting center of the hat-shaped steel sheet pile shown in FIG. 比較例および実施例について、有効幅を縦軸に、膜振動の振動数に関する指標を横軸にして示すグラフである。It is a graph which shows the effective width on the vertical axis, and the index about the frequency of membrane vibration on the horizontal axis about a comparative example and an Example. 騒音の周波数重み付け特性を示すグラフである。It is a graph which shows the frequency weighting characteristic of noise. ハット形鋼矢板の打設時に発生するばたつきについて説明するための図である。It is a figure for demonstrating the fluttering which occurs at the time of placing a hat-shaped steel sheet pile. ハット形鋼矢板の打設時に発生するばたつきについて説明するための図である。It is a figure for demonstrating the fluttering which occurs at the time of placing a hat-shaped steel sheet pile.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

図1は、本発明の一実施形態に係るハット形鋼矢板の断面図である。図1に示されるように、ハット形鋼矢板1は、長手方向(図中のz方向)に直交する断面において、厚さ方向の第1の側(図中のy方向の奥側)で幅方向(図中のx方向)に沿って延びるウェブ2と、ウェブ2の幅方向の両端部から幅方向の両側、かつ厚さ方向の第2の側(図中のy方向の手前側)に向かって延び、幅方向との間にフランジ角度θ(鋭角側)をなすフランジ3A,3Bと、厚さ方向の第2の側でフランジ3A,3Bのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びるアーム4A,4Bと、アーム4A,4Bのそれぞれのフランジ3A,3Bとは反対側の端部に形成される嵌合継手5A,5Bとを含む。 FIG. 1 is a cross-sectional view of a hat-shaped steel sheet pile according to an embodiment of the present invention. As shown in FIG. 1, the hat-shaped steel sheet pile 1 has a width on the first side in the thickness direction (the back side in the y direction in the drawing) in a cross section orthogonal to the longitudinal direction (z direction in the drawing). The web 2 extending along the direction (x direction in the figure) and both ends in the width direction of the web 2 on both sides in the width direction and the second side in the thickness direction (front side in the y direction in the figure). Flange 3A, 3B extending toward the width direction and forming a flange angle θ (sharp angle side) with the width direction, and flanges 3A, 3B on the second side in the thickness direction along the width direction from the respective ends. It also includes arms 4A and 4B extending toward both sides in the width direction, and fitting joints 5A and 5B formed at the ends of the arms 4A and 4B opposite to the flanges 3A and 3B, respectively.

ここで、図1には、ハット形鋼矢板1の各部分の寸法、具体的には、ウェブ2の長さBwおよび板厚twと、フランジ3A,3Bの長さBfと、アーム4A,4Bの長さBaとが示されている。ここで、長さBwは、ウェブ2の板厚中心線と、フランジ3A,3Bのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。同様に、長さBfは、フランジ3Aの板厚中心線と、ウェブ2およびアーム4Aのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。また、長さBaは、アーム4Aの板厚中心線とフランジ3Aの板厚中心線との間に形成される交点と、嵌合継手5Aの嵌合中心Eとの間の距離である。なお、ハット形鋼矢板1の断面形状は幅方向の中立軸(図中のy軸)について対称であるため、フランジ3Bについてもフランジ3Aと同様に長さBfであり、アーム4Bについてもアーム4Aと同様に長さBaである。Here, FIG. 1 shows the dimensions of each part of the hat-shaped steel sheet pile 1, specifically, the length Bw and the plate thickness tw of the web 2, the lengths Bf of the flanges 3A and 3B, and the arms 4A and 4B. The length Ba and is shown. Here, the length Bw is the distance between the plate thickness center line of the web 2 and the two intersections formed between the plate thickness center lines of the flanges 3A and 3B, respectively. Similarly, the length Bf is the distance between the thickness centerline of the flange 3A and the two intersections formed between the respective thickness centerlines of the web 2 and the arm 4A. The length Ba is the distance between the intersections formed between the thickness center line of the thickness center line and the flange 3A of the arms 4A, a fitting center E A fitting joint 5A. Since the cross-sectional shape of the hat-shaped steel sheet pile 1 is symmetrical with respect to the neutral axis in the width direction (y-axis in the drawing), the flange 3B has the same length Bf as the flange 3A, and the arm 4B also has the arm 4A. The length is Ba as in the case of.

さらに、図1には、ハット形鋼矢板1の有効幅Wおよび合計長さBTTLが示されている。ここで、有効幅Wは、嵌合継手5A,5Bのそれぞれの嵌合中心E,Eの間の距離である。合計長さBTTLは、図示された断面におけるウェブ2、フランジ3A,3B、およびアーム4A,4Bの長さの合計であり、長さBw、長さBf、および長さBaを用いてBTTL=Bw+2Bf+2Baと表すことができる。後述するように、本実施形態に係るハット形鋼矢板1では、有効幅Wが105cm以上であり、かつ合計長さBTTLと長手方向に対して平行な側面における単位面積あたりのハット形鋼矢板1の重量wtとが所定の関係を満たす。Further, FIG. 1 shows the effective width W and the total length B TTL of the hat-shaped steel sheet pile 1. Here, the effective width W is the distance between the mating fitting 5A, each of the mating centers E A of 5B, E B. The total length B TTL, the web 2, the flange 3A of the illustrated cross-section, 3B, and the arms 4A, a total length of 4B, length Bw, B using a length Bf, and length Ba TTL It can be expressed as = Bw + 2Bf + 2Ba. As will be described later, in the hat-shaped steel sheet pile 1 according to the present embodiment, the hat-shaped steel sheet pile per unit area on the side surface parallel to the total length B TTL in the longitudinal direction and having an effective width W of 105 cm or more. The weight wt of 1 satisfies a predetermined relationship.

なお、図1に示されたハット形鋼矢板1の形状が幾何学的に成り立つ場合、有効幅W、ウェブ長さBw、断面高さHおよびフランジ角度θは、W−Bw−2H/tanθ>0の関係を満たしている。ここで、断面高さHは、ウェブ2およびアーム4A,4Bの板厚を含み嵌合継手5A,5Bの張り出しを含まないハット形鋼矢板1の断面の高さである。 When the shape of the hat-shaped steel sheet pile 1 shown in FIG. 1 is geometrically established, the effective width W, the web length Bw, the cross-sectional height H, and the flange angle θ are W-Bw-2H / tanθ>. It satisfies the relationship of 0. Here, the cross-sectional height H is the cross-sectional height of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the overhang of the fitting joints 5A and 5B.

図2は、図1に示されたハット形鋼矢板の嵌合中心について説明するための図である。図示されているように、ハット形鋼矢板1の嵌合継手5Aには、隣接して打設される別のハット形鋼矢板1の嵌合継手5Bが嵌合する。嵌合継手5Aの嵌合中心Eは、別のハット形鋼矢板1のアーム4Bおよび嵌合継手5Bを仮想的に配置した場合に、嵌合継手5Aが形成されるアーム4Aの端部位置と、仮想的な嵌合継手5Bが形成されるアーム4Bの端部位置との中間に位置する、アーム4Aおよびアーム4Bの設計上の板厚中心線上の点として定義することができる。ハット形鋼矢板1の反対側に位置する嵌合継手5Bの嵌合中心Eも、同様に定義することができる。FIG. 2 is a diagram for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. As shown in the drawing, the fitting joint 5A of the hat-shaped steel sheet pile 1 is fitted with the fitting joint 5B of another hat-shaped steel sheet pile 1 to be driven adjacent to the fitting joint 5A. Fitting center E A fitting joint 5A, when placing the arms 4B and the fitting joint 5B another hat-shaped steel sheet pile 1 virtually, end position of the arm 4A of the fitting joint 5A is formed Can be defined as a point on the design plate thickness centerline of the arm 4A and the arm 4B, which is located in the middle of the end position of the arm 4B on which the virtual fitting joint 5B is formed. Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly.

本発明の実施形態に係るハット形鋼矢板において打設時に発生するばたつきを効果的に低減するために本発明者らが検討した結果を以下で説明する。まず、ばたつきを低減するためには、ハット形鋼矢板1の厚さ方向に生じる膜振動V(図5Aおよび図5B参照)を低周波化することが望ましい。ばたつきは、打設の初期において生じ、打設が進行すると徐々に収まることが経験上知られているが、これはハット形鋼矢板1の天端部から地表面までの距離が、打設の初期において最も長く、打設が進行すると徐々に短くなるためと考えられる。バイブロハンマ6で把持されるハット形鋼矢板1の天端部と、地盤および先行して打設された別のハット形鋼矢板1Pの継手でハット形鋼矢板1の厚さ方向の変位が拘束される地表面近くの部分とは、いずれもハット形鋼矢板1の厚さ方向の振動の固定点になる。従って、固定点の間の距離が最も長い打設の初期にはハット形鋼矢板1の固有振動数が低く、この段階でハット形鋼矢板1が膜振動Vに共振すると、振動数の低い、従って振幅の大きい振動が発生し、膜振動Vは増幅されることになる。換言すれば、打設の初期において膜振動Vの振動数がハット形鋼矢板1の固有振動数よりも低ければ膜振動Vは増幅されない。ハット形鋼矢板1の打設が進行して固定点の間の距離が短くなれば固有振動数はより高くなるため、打設の初期において膜振動Vの振動数がハット形鋼矢板1の固有振動数よりも低ければ、打設が進行しても膜振動Vの増幅、すなわちハット形鋼矢板1のばたつきは発生しない。The results examined by the present inventors in order to effectively reduce the fluttering that occurs during placing in the hat-shaped steel sheet pile according to the embodiment of the present invention will be described below. First, in order to reduce the flapping, it is desirable to lower frequency the membrane vibration occurs in the thickness direction of the hat-shaped steel sheet pile 1 V M (see FIGS. 5A and 5B). It is empirically known that fluttering occurs in the early stage of casting and gradually subsides as the casting progresses. This is thought to be because it is the longest in the initial stage and gradually shortens as the casting progresses. The displacement of the hat-shaped steel sheet pile 1 in the thickness direction is restrained by the joint between the top end of the hat-shaped steel sheet pile 1 gripped by the vibro hammer 6 and the ground and another hat-shaped steel sheet pile 1P placed in advance. The portion near the ground surface is a fixed point for vibration in the thickness direction of the hat-shaped steel sheet pile 1. Accordingly, the distance between the fixed point is the longest of the pouring initially low natural frequency of the hat-shaped steel sheet pile 1, the hat-shaped steel sheet pile 1 at this stage resonance membrane vibrating V M, less number of vibration and therefore a large vibration is generated in the amplitude, membrane vibration V M will be amplified. In other words, lower if membrane vibration V M than the natural frequency of the vibration frequency hat-shaped steel sheet pile 1 of the membrane vibration V M at the beginning of pouring is not amplified. Since the pouring of the hat-shaped steel sheet pile 1 is the natural frequency the shorter distance between the fixed point is higher by progress in early pouring membrane vibration V M frequency of hat-type steel sheet pile 1 of is lower than the natural frequency, the amplification of the membrane vibration V M even pouring progresses, i.e. flapping hat-shaped steel sheet pile 1 does not occur.

辺長a,bの矩形の板における膜振動の振動数fmnは、モード数m,n、重力加速度g、単位面積あたりの板の重量wt、および面内の張力Sを用いて、以下の式(1)のように表すことができる。式(1)から、重量wtが大きく、また辺長a,bが長いほど、振動数fmnが小さくなる、すなわち膜振動が低周波化されることがわかる。 The frequency f mn of the membrane vibration in a rectangular plate having side lengths a and b is as follows, using the number of modes m and n, the gravitational acceleration g, the weight wt of the plate per unit area, and the in-plane tension S. It can be expressed as in equation (1). From the equation (1), it can be seen that the heavier the weight wt and the longer the side lengths a and b, the smaller the frequency fmn , that is, the lower the frequency of the film vibration.

Figure 2020045117
Figure 2020045117

ここで、膜振動を例えば従来のハット形鋼矢板よりも低周波化する、すなわちハット形鋼矢板1の膜振動の振動数fmn’を従来のハット形鋼矢板の膜振動の振動数fmnよりも小さくするための条件を考える。基本モード(m=n=1)で、重量wおよび辺長aが異なり、それ以外の条件を共通とした場合、膜振動の振動数の従来のハット形鋼矢板に対する比f’/fは、以下の式(2)のように表すことができる。なお、高次モード(m>1またはn>1)については、振幅が小さくなるためハット形鋼矢板1のばたつきの原因としては考慮しなくてよい。Here, the low frequency of than the membrane vibration example conventional hat-shaped steel sheet pile, i.e. the frequency of the membrane vibration of the conventional hat-shaped steel sheet pile the frequency of the membrane vibration of the hat-shaped steel sheet pile 1 f mn 'f mn Consider the conditions for making it smaller than. In the basic mode (m = n = 1), when the weight w and the side length a are different and the other conditions are common, the ratio f'/ f of the frequency of the film vibration to the conventional hat-shaped steel sheet pile is It can be expressed as the following equation (2). It should be noted that the higher-order mode (m> 1 or n> 1) does not need to be considered as the cause of the fluttering of the hat-shaped steel sheet pile 1 because the amplitude becomes small.

Figure 2020045117
Figure 2020045117

さらに、辺長a,bの矩形の板をハット形鋼矢板の形状にあてはめた場合、ハット形鋼矢板の長手方向の辺長bは断面方向の辺長aよりも十分に長い(打設の初期において、辺長bは辺長aの10倍以上)ため、式(2)における(a’/b)および(a/b)の項は十分に小さいものとして無視できる。その結果、振動数の比f’/fは、以下の式(3)のように表すことができる。Further, when a rectangular plate having side lengths a and b is applied to the shape of the hat-shaped steel sheet pile, the side length b in the longitudinal direction of the hat-shaped steel sheet pile is sufficiently longer than the side length a in the cross-sectional direction (casting). Since the side length b is 10 times or more the side length a at the initial stage), the terms (a'/ b) 2 and (a / b) 2 in the equation (2) can be ignored as being sufficiently small. As a result, the frequency ratio f'/ f can be expressed by the following equation (3).

Figure 2020045117
Figure 2020045117

上記の式(3)によれば、ハット形鋼矢板1の膜振動の振動数の従来のハット形鋼矢板に対する比f’/fを小さくするためには、ハット形鋼矢板の断面方向の辺長a、すなわち図1に示した合計長さBTTLを大きくするか、または長手方向に対して平行な側面における単位面積あたりのハット形鋼矢板1の重量wt(ウェブ2、フランジ3A,3B、およびアーム4A,4Bでの平均値)を大きくすればよい。つまり、以下の式(4)のように定義されるK(ハット形鋼矢板1の膜振動に関する指標)について、従来のハット形鋼矢板におけるKよりもハット形鋼矢板1におけるKが小さければ、膜振動が低減される。まず、合計長さBTTLについては、ハット形鋼矢板1の有効幅Wを拡大することで大きくすることができる。有効幅Wの拡大は、同じ壁幅の鋼矢板壁を構成するハット形鋼矢板1の数が少なくなることで施工が経済的になるため、以下では有効幅Wを105cm以上とした上で、適切な合計長さBTTLおよび重量wtを検討した。According to the above equation (3), in order to reduce the ratio f'/ f of the frequency of the film vibration of the hat-shaped steel sheet pile 1 to the conventional hat-shaped steel sheet pile, the side in the cross-sectional direction of the hat-shaped steel sheet pile. Length a, i.e. the total length B TTL shown in FIG. 1, is increased or the weight wt of the hat-shaped steel sheet pile 1 per unit area on the side surface parallel to the longitudinal direction (web 2, flanges 3A, 3B, And the average value of the arms 4A and 4B) may be increased. That is, with respect to K (an index related to the film vibration of the hat-shaped steel sheet pile 1) defined by the following equation (4), if the K in the hat-shaped steel sheet pile 1 is smaller than the K in the conventional hat-shaped steel sheet pile 1, Membrane vibration is reduced. First, the total length B TTL can be increased by increasing the effective width W of the hat-shaped steel sheet pile 1. The expansion of the effective width W is economical because the number of hat-shaped steel sheet piles 1 constituting the steel sheet pile wall of the same wall width is reduced. Therefore, in the following, the effective width W is set to 105 cm or more. Appropriate total length B TL and weight wt were examined.

Figure 2020045117
Figure 2020045117

表1に、従来のハット形鋼矢板(比較例1〜比較例3)、および本発明の実施形態に係るハット形鋼矢板(実施例1〜実施例9)の断面諸元を示す。表1において、Wは有効幅(cm)、Iは鋼矢板壁の壁幅1mあたりの断面二次モーメント(cm/m)、BTTLは合計長さ(cm)、wt(N/cm)は長手方向に対して平行な側面における単位面積あたりの重量、K(N−1/2)は上記の式(4)で算出される指標である。また、表1における振動数比rは、各実施例と同等の断面二次モーメントIを有する従来のハット形鋼矢板との間での膜振動の振動数の比として、上記の式(3)で辺長aに合計長さBTTLを代入して算出される。Table 1 shows the cross-sectional specifications of the conventional hat-shaped steel sheet pile (Comparative Examples 1 to 3) and the hat-shaped steel sheet pile according to the embodiment of the present invention (Examples 1 to 9). In Table 1, W is the effective width (cm), I is the moment of inertia of area (cm 4 / m) per 1 m of the wall width of the steel sheet pile wall, BTL is the total length (cm), and wt (N / cm 2). ) Is the weight per unit area on the side surface parallel to the longitudinal direction, and K (N- 1 / 2 ) is an index calculated by the above equation (4). Further, the frequency ratio r f in Table 1 is the ratio of the frequency of the film vibration to the conventional hat-shaped steel sheet pile having the moment of inertia of area I equivalent to that of each embodiment, as described in the above equation (3). ) Substitutes the total length B TTL for the side length a.

Figure 2020045117
Figure 2020045117

図3は、上記の比較例1〜比較例3および実施例1〜実施例9について、有効幅W(cm)を縦軸に、表1に示したK(N−1/2)を横軸にして示すグラフである。図3のグラフを参照すると、実施例1〜実施例9は、有効幅Wが105cm以上であり、かつ式(4)によって算出される指標Kが0.030N−1/2以下の領域に含まれている。実施例1〜実施例9のハット形鋼矢板では、いずれも振動数比rが1を下回っており、比較例1〜比較例3よりも膜振動が低周波化されている。また、振動数比rが0.9未満であり、比較例1〜比較例3よりも膜振動が大幅に低周波化されている実施例2、実施例3、実施例5、実施例6、実施例8、および実施例9では、有効幅Wが120cm以上であり、かつ指標Kが0.027N−1/2以下である。 FIG. 3 shows the effective width W (cm) on the vertical axis and K (N-1 / 2 ) shown in Table 1 on the horizontal axis for Comparative Examples 1 to 3 and Examples 1 to 9 described above. It is a graph shown in. With reference to the graph of FIG. 3, Examples 1 to 9 are included in the region where the effective width W is 105 cm or more and the index K calculated by the equation (4) is 0.030 N- 1 / 2 or less. It has been. In the hat-shaped steel sheet piles of Examples 1 to 9, the frequency ratio r f is less than 1, and the film vibration has a lower frequency than that of Comparative Examples 1 to 3. Further, the frequency ratio r f is less than 0.9, and the membrane vibration is significantly lower in frequency than in Comparative Examples 1 to 3, Example 2, Example 3, Example 5, and Example 6. In Examples 8 and 9, the effective width W is 120 cm or more and the index K is 0.027 N- 1 / 2 or less.

図4は、騒音の周波数重み付け特性を示すグラフである。図5Aおよび図5Bに示したバイブロハンマ6による縦振動Vの起振周波数は一般に20Hz〜60Hz程度である。ハット形鋼矢板1にばたつきが発生したときに膜振動Vの振動数が起振周波数に一致するとすると、膜振動Vの振動数も20Hz〜60Hzになる。図4にA特性として示される人間の聴覚特性によれば、この周波数範囲では周波数が小さくなるほど感じられる音圧レベル(dB)が小さくなるため、上記で説明したような本発明の実施形態による膜振動Vの低周波化は、施工性の向上だけではなく、騒音の低減にも有効である。本発明者らが実施した施工試験では、膜振動Vの周波数を下げることによって、図4に示した相対レスポンスの低下と同程度の騒音の低減が確認されている。FIG. 4 is a graph showing the frequency weighting characteristics of noise. Excitation frequency of the longitudinal vibration V V by vibro-hammer 6 shown in FIGS. 5A and 5B is generally about 20Hz~60Hz. When the frequency of the membrane vibration V M when flutter hat-shaped steel sheet pile 1 has occurred is to match the excitation frequency, the frequency of the membrane vibration V M also becomes 20Hz~60Hz. According to the human auditory characteristic shown as the A characteristic in FIG. 4, the perceived sound pressure level (dB) decreases as the frequency decreases in this frequency range. Therefore, the film according to the embodiment of the present invention as described above. low frequency of vibration V M is not only the improvement of workability, it is effective in reducing noise. The construction tests which we have carried out, by lowering the frequency of the membrane vibration V M, noise reduction comparable to reduction in relative response shown in FIG. 4 have been identified.

以上で説明したような本発明の実施形態によれば、打設時に発生するばたつきが効果的に低減される断面形状のハット形鋼矢板が提供される。このようなハット形鋼矢板は、例えば上述のようにバイブロハンマを用いてハット形鋼矢板に打設進行方向の縦振動を与えながらハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法において、特に有利である。上記で図5Aおよび図5Bを参照して説明したのは、ハット形鋼矢板の両方のフランジ部分に縦振動を加える所謂ダブルチャック型のバイブロハンマ(例えば、特許第3916621号公報参照)であるが、本発明の実施形態によって打設時に発生するばたつきが低減されれば、ハット形鋼矢板のウェブ部分に縦振動を加える所謂シングルチャック型のバイブロハンマによる施工も可能である。 According to the embodiment of the present invention as described above, there is provided a hat-shaped steel sheet pile having a cross-sectional shape in which the fluttering generated at the time of placing is effectively reduced. Such a hat-shaped steel sheet pile includes, for example, a step of driving the hat-shaped steel sheet pile into the ground while applying longitudinal vibration in the driving traveling direction to the hat-shaped steel sheet pile using a vibro hammer as described above. It is particularly advantageous in the manufacturing method of. The so-called double-chuck type vibro hammer (for example, see Japanese Patent No. 3916621) that applies longitudinal vibration to both flange portions of the hat-shaped steel sheet pile has been described above with reference to FIGS. 5A and 5B. If the fluttering generated at the time of placing is reduced by the embodiment of the present invention, it is possible to carry out the construction by a so-called single chuck type vibro hammer that applies longitudinal vibration to the web portion of the hat-shaped steel sheet pile.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. It is naturally understood that these also belong to the technical scope of the present invention.

1…ハット形鋼矢板、1P…ハット形鋼矢板、2…ウェブ、3A,3B…フランジ、4A,4B…アーム、5A,5B…嵌合継手、E,E…嵌合中心。1 ... hat-shaped steel sheet pile, 1P ... hat-shaped steel sheet pile, 2 ... web, 3A, 3B ... flange, 4A, 4B ... arm, 5A, 5B ... fitting joint, E A, E B ... fitting center.

Claims (3)

ハット形鋼矢板であって、
長手方向に直交する断面において、厚さ方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記厚さ方向の第2の側に向かって延びる1対のフランジと、前記厚さ方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、
有効幅Wが105cm以上であり、かつ前記断面における前記ウェブ、前記1対のフランジ、および前記1対のアームの合計長さBTTL(cm)と、前記長手方向に対して平行な側面における単位面積あたりの前記ハット形鋼矢板の重量wt(N/cm)とが以下の式(i)の関係を満たすハット形鋼矢板。
Figure 2020045117
It is a hat-shaped steel sheet pile
In a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the thickness direction, and both ends of the web in the width direction on both sides in the width direction and a second in the thickness direction. A pair of flanges extending toward the side and extending from each end of the pair of flanges on the second side in the thickness direction along the width direction and toward both sides in the width direction. It comprises a pair of arms and a pair of fitting joints formed at the ends of each of the pair of arms on the opposite side of the pair of flanges.
A unit having an effective width W of 105 cm or more and a total length BTTL (cm) of the web, the pair of flanges, and the pair of arms in the cross section and a side surface parallel to the longitudinal direction. A hat-shaped steel sheet pile in which the weight wt (N / cm 2 ) of the hat-shaped steel sheet pile per area satisfies the relationship of the following formula (i).
Figure 2020045117
有効幅Wが120cm以上であり、かつ前記合計長さBTTLと前記重量wtとが以下の式(ii)の関係を満たす、請求項1に記載のハット形鋼矢板。
Figure 2020045117
The hat-shaped steel sheet pile according to claim 1, wherein the effective width W is 120 cm or more, and the total length B TTL and the weight wt satisfy the relationship of the following formula (ii).
Figure 2020045117
請求項1または請求項2に記載のハット形鋼矢板を用いた鋼矢板壁の製造方法であって、
バイブロハンマを用いて前記ハット形鋼矢板に打設進行方向の縦振動を与えながら前記ハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法。
The method for manufacturing a steel sheet pile wall using the hat-shaped steel sheet pile according to claim 1 or 2.
A method for manufacturing a steel sheet pile wall, which comprises a step of placing the hat-shaped steel sheet pile in the ground while applying longitudinal vibration in the driving traveling direction to the hat-shaped steel sheet pile using a vibro hammer.
JP2020539350A 2018-08-31 2019-08-16 Manufacturing method of hat-shaped steel sheet pile Active JP7143890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022093179A JP2022120069A (en) 2018-08-31 2022-06-08 Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018162906 2018-08-31
JP2018162906 2018-08-31
PCT/JP2019/032113 WO2020045117A1 (en) 2018-08-31 2019-08-16 Hat-shaped steel sheet pile and method for producing steel sheet pile wall

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022093179A Division JP2022120069A (en) 2018-08-31 2022-06-08 Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall

Publications (2)

Publication Number Publication Date
JPWO2020045117A1 true JPWO2020045117A1 (en) 2021-08-10
JP7143890B2 JP7143890B2 (en) 2022-09-29

Family

ID=69644358

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020539350A Active JP7143890B2 (en) 2018-08-31 2019-08-16 Manufacturing method of hat-shaped steel sheet pile
JP2022093179A Pending JP2022120069A (en) 2018-08-31 2022-06-08 Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022093179A Pending JP2022120069A (en) 2018-08-31 2022-06-08 Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall

Country Status (2)

Country Link
JP (2) JP7143890B2 (en)
WO (1) WO2020045117A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP2014125772A (en) * 2012-12-26 2014-07-07 Nippon Steel & Sumitomo Metal Steel sheet pile having channel section member, and wall body
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159434A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (en) * 2003-07-31 2005-02-24 Nippon Steel Corp Hat type steel sheet pile
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008127771A (en) * 2006-11-17 2008-06-05 Jfe Steel Kk Hat type steel sheet pile
JP2008069631A (en) * 2007-11-30 2008-03-27 Nippon Steel Corp Hat type steel sheet pile and method for setting its shape
WO2010023929A1 (en) * 2008-08-29 2010-03-04 新日本製鐵株式会社 Steel sheet pile
JP2011140867A (en) * 2009-12-11 2011-07-21 Jfe Steel Corp Z-shaped steel sheet pile
JP2012158910A (en) * 2011-02-01 2012-08-23 Jfe Steel Corp Hat steel sheet pile
JP2014125772A (en) * 2012-12-26 2014-07-07 Nippon Steel & Sumitomo Metal Steel sheet pile having channel section member, and wall body
JP2014148798A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Steel sheet pile
WO2015159434A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile
WO2015159445A1 (en) * 2014-04-18 2015-10-22 新日鐵住金株式会社 Steel sheet pile

Also Published As

Publication number Publication date
JP7143890B2 (en) 2022-09-29
JP2022120069A (en) 2022-08-17
WO2020045117A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US20110176695A1 (en) Piezoelectric panel speaker and optimal method of designing the same
JP6108031B2 (en) Steel sheet pile
JP2010144868A (en) Elastic wedge damper
JP2008069631A (en) Hat type steel sheet pile and method for setting its shape
JPWO2020045117A1 (en) Manufacturing method of hat-shaped steel sheet pile and steel sheet pile wall
JP2020041341A (en) Pier structure construction method and pier structure
JP4880087B2 (en) Panel floor structure and building structure
JP5919620B2 (en) Steel pipe sheet pile mooring berth and its design method
JP2007177516A (en) Base isolation bearing device
WO2020045115A1 (en) Hat-shaped steel sheet pile and production method for steel sheet pile wall
JPWO2020045116A1 (en) Manufacturing method of hat-shaped steel sheet pile and steel sheet pile wall
JP2007270569A (en) Rubber laminated type mount of vibration-proof device for housing
JP2022120104A (en) Hat-shaped steel sheet pile and manufacturing method of steel sheet pile wall
WO2020045118A1 (en) Hat-type steel sheet pile
JP6310090B2 (en) Vibration isolator
JP3911261B2 (en) Rolled steel sheet pile
JP7478047B2 (en) Foundations for buildings on slopes
JP2004162458A (en) Hat-shaped steel sheet pile
WO2020045113A1 (en) Hat-shaped steel sheet piling, steel sheet piling wall, and method for manufacturing steel sheet piling walls
JP2014237964A (en) Wall panel
KR20210113699A (en) Rolingdamper
Auersch Prediction of building noise and vibration–3D finite element and 1D wave propagation models
JP2023102466A (en) Vibration control structure and automobile component having the vibration control structure
JP4803432B2 (en) Viscoelastic damper
TW202240086A (en) Vibration-damping rubber block capable of providing a better vibration damping effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220608

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220615

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R151 Written notification of patent or utility model registration

Ref document number: 7143890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151