WO2020044462A1 - 工具及び通信装置 - Google Patents

工具及び通信装置 Download PDF

Info

Publication number
WO2020044462A1
WO2020044462A1 PCT/JP2018/031956 JP2018031956W WO2020044462A1 WO 2020044462 A1 WO2020044462 A1 WO 2020044462A1 JP 2018031956 W JP2018031956 W JP 2018031956W WO 2020044462 A1 WO2020044462 A1 WO 2020044462A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
tool
mode
control unit
communication
Prior art date
Application number
PCT/JP2018/031956
Other languages
English (en)
French (fr)
Inventor
田中 奈緒
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to PCT/JP2018/031956 priority Critical patent/WO2020044462A1/ja
Publication of WO2020044462A1 publication Critical patent/WO2020044462A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C21/00Systems for transmitting the position of an object with respect to a predetermined reference system, e.g. tele-autographic system

Definitions

  • the present invention relates to a tool and a communication device.
  • Patent Literature 1 transmits information such as the tightening torque of the tool, the number of tightened screws, the working time, and the remaining battery level to the management device, and the management device manages the status of the tool.
  • the tool according to the first aspect is a communication unit, a first mode in which positioning data representing the position of the tool is transmitted from the communication unit, and data representing the position of the tool, wherein the data is more data than the positioning data.
  • a control unit configured to switch a mode between a mode in which the reduced-size data is transmitted from the communication unit and a second mode. The control unit switches from the first mode to the second mode when the tool moves within a predetermined area where the work using the tool is performed.
  • a communication device includes a communication unit, a connection unit for electrically connecting the tool, a first mode for transmitting positioning data indicating the position of the tool from the communication unit, A control unit configured to perform mode switching between a second mode in which data representing a position and having a data size smaller than the positioning data is transmitted from the communication unit. The control unit switches from the first mode to the second mode when the tool moves within a predetermined area where the work using the tool is performed.
  • FIG. 4 is a diagram illustrating an example of reference data and relative data according to an embodiment. It is a figure showing other examples of standard data and relative data concerning one embodiment.
  • FIG. 4 is a sequence diagram illustrating an example of a communication sequence according to an embodiment.
  • FIG. 9 is a sequence diagram illustrating another example of a communication sequence according to an embodiment. It is a flow figure showing an example of operation of a power tool concerning one embodiment. It is a flow figure showing an example of operation of a power tool in the 2nd mode concerning one embodiment.
  • FIG. 9 is a block diagram illustrating a configuration example of a power tool according to a first modification.
  • FIG. 13 is a diagram illustrating a configuration example of a divided area according to a first modification. It is a flowchart which shows the operation example of the electric tool in the 2nd mode concerning the example 1 of a change.
  • FIG. 11 is a block diagram illustrating a configuration example of a power tool and a communication device according to a second modification.
  • an upper limit condition is set for transmission of data permitted to the power tool during a certain period, and the transmission is limited to small-capacity communication.
  • an upper limit condition is set by a contract of a network used by a tool for transmitting data
  • a case where a user or a maker sets the upper limit condition for the purpose of power saving or the like are assumed.
  • the data size of the positioning data may be larger than the communication capacity, and the transmission of the positioning data may be restricted by the upper limit condition. May not be managed properly.
  • the tool and the communication device enable appropriate tool position management in a case where an upper limit condition is set for data transmission.
  • the tool includes a communication unit, a first mode in which positioning data representing the position of the tool is transmitted from the communication unit, and data representing the position of the tool, wherein the data size is larger than the positioning data. And a control unit for switching the mode between the communication mode and the second mode in which the reduced data is transmitted from the communication unit. The control unit switches from the first mode to the second mode when the tool moves within a predetermined area where the work using the tool is performed.
  • a communication device includes a communication unit, a connection unit for electrically connecting the tool, a first mode for transmitting positioning data representing the position of the tool from the communication unit, and a position of the tool. And a control unit that performs mode switching between a second mode in which data having a data size smaller than that of the positioning data is transmitted from the communication unit. The control unit switches from the first mode to the second mode when the tool moves within a predetermined area where the work using the tool is performed.
  • the data size of the positioning data can be reduced.
  • the position of the tool can be notified within a limited communication capacity. Therefore, even if an upper limit condition is set for data transmission, appropriate tool position management can be performed.
  • FIG. 1 is a diagram illustrating a configuration example of a power tool management system 1 according to one embodiment.
  • the power tool management system 1 includes a power tool 100 and a management server 300.
  • the power tool 100 is an example of a tool.
  • the power tool 100 is a binding machine (for example, a reinforcing bar binding machine)
  • the power tool 100 may be a power tool other than the binding machine, for example, a power drill, a power driver, a power saw, a grinder, a grinder, or the like.
  • the power tool 100 is a cordless power tool, and is a device driven by power supplied from a driving battery 110 (battery pack).
  • the driving battery 110 is configured to be detachable from the power tool 100.
  • the driving battery 110 may be a secondary battery, for example, a lithium ion battery.
  • the driving battery 110 is charged by a charger (not shown) in a state where the driving battery 110 is detached from the power tool 100.
  • the power tool 100 includes a binding portion 11, a main body portion 12, and a grip portion 13.
  • the binding unit 11 has an arm that sandwiches the rebar, and binds the rebar by winding a wire supplied from the main body unit 12 around the rebar sandwiched between the arms.
  • the main unit 12 accommodates the reel around which the wire is wound. Further, the main body 12 incorporates a motor 150 (see FIG. 2). The motor 150 supplies the wire to the binding unit 11 and generates a driving force for winding the wire around the reinforcing bar. The main body 12 is provided with a power switch 15 for turning on / off the power of the power tool 100.
  • the grip section 13 is a member that extends downward from the main body section 12 and is gripped by a user.
  • a trigger 14 is provided at an upper end portion of the grip portion 13. When the trigger 14 is pressed down, the binding unit 11 and the main body 12 perform a binding operation.
  • a trigger lock 16 for locking (fixing) the trigger 14 may be provided. When the trigger lock 16 is set to the locked state, the trigger 14 is locked so as not to be pushed down.
  • a latch mechanism for attaching and detaching the driving battery 110 is provided at a lower end portion of the grip portion 13.
  • the power tool 100 has a communication function.
  • the power tool 100 has a wireless communication function using LPWA (Low Power Wide Area) technology.
  • the power tool 100 performs wireless communication with a base station 210 included in the communication network 200.
  • the power tool 100 may be configured to perform one-way communication only in the upward direction.
  • LPWA is a technology mainly targeted at IoT (Internet of Things) services.
  • IoT Internet of Things
  • the upper limit condition is the number of data transmissions per unit time (for example, one day or one hour) and / or the amount of data transmission per unit time.
  • the power tool 100 transmits data to the management server 300 via the communication network 200. Specifically, the power tool 100 transmits the tool data and the positioning data to the management server 300.
  • the tool data is data related to the work using the power tool 100 and includes, for example, at least one of the number of times of operation data, tool state data, remaining battery power data for driving, and temperature data.
  • the operation number data is data representing the number of times the power tool 100 has been operated (ie, the number of times the bundling operation has been performed).
  • the tool state data is data indicating a state of the power tool 100, for example, an error state.
  • the driving battery remaining amount data is data indicating the remaining amount of the driving battery 110.
  • the remaining battery capacity may be indicated by a ratio (percentage) of the current remaining capacity to the capacity.
  • the temperature data is data representing the temperature of the power tool 100.
  • the positioning data is data representing the position of the power tool 100, and is latitude / longitude data obtained using, for example, GNSS (Global Navigation / Satellite / System) such as GPS (Global / Positioning / System).
  • GNSS Global Navigation / Satellite / System
  • GPS Global / Positioning / System
  • the power tool 100 may further transmit the communication battery remaining amount data to the management server 300.
  • the communication battery remaining amount data is data indicating the remaining amount of the communication battery 170 (see FIG. 2).
  • the communication network 200 includes a base station 210 that performs wireless communication with the power tool 100.
  • the communication network 200 includes at least one of a local area communication network (LAN: Local Area Network), a high area communication network (WAN: Wide Area Network), and the Internet.
  • LAN Local Area Network
  • WAN Wide Area Network
  • the management server 300 is an example of a management device that manages the power tool 100.
  • the management server 300 is connected to the communication network 200.
  • the management server 300 acquires data from the power tool 100 via the communication network 200 and manages the acquired data.
  • the management server 300 performs work progress management based on tool data and positioning data acquired from the power tool 100.
  • the management server 300 grasps (tracks) the position of the power tool 100 when the power tool 100 is lost or stolen based on the positioning data acquired from the power tool 100.
  • FIG. 2 is a block diagram illustrating a configuration example of the power tool 100 according to the embodiment.
  • the power tool 100 includes a battery connection unit 120, a tool control unit 130, a motor drive unit 140, a temperature sensor 141, a motor 150, a communication module 160, a communication battery 170, And a positioning unit 180.
  • the battery connection section 120 is a connector that is electrically connected to the driving battery 110.
  • the battery connection unit 120 transmits power supplied from the driving battery 110 to the tool control unit 130.
  • the tool control unit 130 controls the operation of the power tool 100.
  • the tool control unit 130 includes a power control unit 131 and a drive control unit 132.
  • Each of the power control unit 131 and the drive control unit 132 includes at least one processor and at least one memory.
  • the tool control unit 130 includes at least one processor and at least one memory, and the functions of the power control unit 131 and the drive control unit 132 are performed by the at least one processor and at least one memory. It may be performed.
  • the power control unit 131 appropriately converts the voltage of the power supplied from the driving battery 110 via the battery connection unit 120, and supplies the converted power to the drive control unit 132 and the motor drive unit 140.
  • the power control unit 131 detects the remaining amount of the driving battery 110 and manages remaining amount data of the driving battery 110 (driving battery remaining amount data). The power control unit 131 notifies the communication module 160 of the latest driving battery remaining amount data in response to an inquiry from the communication module 160. Further, the power control unit 131 may perform charging control for charging the communication battery 170 with the power supplied from the driving battery 110.
  • the drive control unit 132 controls the drive of the motor 150.
  • the drive control unit 132 drives the motor drive unit to drive the motor 150 in response to the depression of the trigger 14. 140 is controlled.
  • the motor 150 is driven by the motor driving unit 140, and the binding unit 11 performs a binding operation.
  • the drive control unit 132 manages operation count data indicating the number of times the binding operation has been performed and tool state data indicating the state of the power tool 100.
  • the drive control unit 132 notifies the communication module 160 of the latest operation count data and the latest tool state data in response to an inquiry from the communication module 160.
  • the drive control unit 132 manages the temperature data detected by the temperature sensor 141, and notifies the communication module 160 of the latest temperature data in response to an inquiry from the communication module 160.
  • the temperature sensor 141 is a sensor that detects the temperature of the power tool 100 (for example, the temperature of the motor driving unit 140 or the motor 150).
  • the motor drive unit 140 drives the motor 150 by supplying drive power to the motor 150 under the control of the drive control unit 132.
  • the communication module 160 transmits the data to the management server 300.
  • the communication module 160 has a communication control unit 161 and a wireless communication unit 162.
  • the wireless communication unit 162 is an example of a communication unit.
  • the communication control unit 161 is an example of a control unit that controls the communication unit.
  • the communication control unit 161 includes at least one processor and at least one memory. Note that at least one processor and at least one memory included in the communication control unit 161 may share part or all of at least one processor and at least one memory included in the tool control unit 130.
  • the communication control unit 161 makes an inquiry to the tool control unit 130, and acquires the number of times of operation data, tool state data, remaining battery power data for driving, and temperature data from the tool control unit 130.
  • the communication control unit 161 controls the wireless communication unit 162 to transmit the acquired data.
  • the communication control unit 161 manages communication battery remaining amount data indicating the remaining amount of the communication battery 170, and controls the wireless communication unit 162 to transmit the communication battery remaining amount data.
  • the communication control unit 161 controls the wireless communication unit 162 to transmit the positioning data acquired by the positioning unit 180.
  • the communication controller 161 switches the mode between the first mode and the second mode.
  • the first mode is a mode in which positioning data indicating the position of the power tool 100 is transmitted from the wireless communication unit 162.
  • the second mode is a mode for transmitting, from the wireless communication unit 162, data indicating the position of the electric power tool 100 and having a data size smaller than that of the positioning data.
  • the second mode can be regarded as a mode in which positioning data is transmitted in a compressed state.
  • the communication control unit 161 switches from the first mode to the second mode when the power tool 100 moves into a predetermined area where the operation using the power tool 100 is performed.
  • the predetermined area is an area (work site) where work using the power tool 100 is performed, and may be, for example, a construction site of a facility such as a building.
  • the positioning tool is compressed and transmitted, so that the power tool 100 is transmitted within a limited communication capacity. 100 locations can be notified.
  • the information of the predetermined area may be set by communication from the management server 300 to the power tool 100, may be incorporated in the communication control unit 161 in advance, or may be manually set by the user of the power tool 100. May be.
  • the information of the predetermined area includes the latitude and longitude of one vertex of the rectangle and the latitude and longitude of the opposite vertex of the one vertex.
  • the communication control unit 161 controls the wireless communication unit 162 to transmit reference data indicating the reference position of the power tool 100 based on the positioning data indicating the position of the power tool 100 in the second mode. After transmitting the reference data, the communication control unit 161 causes the wireless communication unit 162 to transmit the relative data indicating the position of the power tool 100 with respect to the reference position based on the positioning data indicating the position of the power tool 100. Control.
  • the data size of the relative data is smaller than the data size of the positioning data.
  • the data size of the reference data is smaller than the data size of the positioning data. Alternatively, the data size of the reference data may be the same as the data size of the positioning data.
  • the communication control unit 161 controls the wireless communication unit 162 to transmit the reference data at the first frequency and to transmit the relative data at the second frequency higher than the first frequency.
  • the transmission data amount can be reduced as compared with the case where the positioning data is transmitted every time.
  • the reduced communication capacity can be used for transmitting tool data (number of operation data, tool state data, remaining battery power data for driving, temperature data), so that the communication capacity can be used effectively.
  • transmission at a frequency is a concept including not only a case of performing periodic transmission but also a case of performing aperiodic transmission. The following mainly describes the case of performing periodic transmission.
  • the communication control unit 161 controls the wireless communication unit 162 to transmit the reference data in the first cycle and to transmit the relative data in the second cycle shorter than the first cycle. I do.
  • the communication control unit 161 may control the wireless communication unit 162 so that the reference data is transmitted only once when the power tool 100 moves into the predetermined area.
  • the communication control unit 161 controls the wireless communication unit 162 so as to transmit the relative data at the second frequency while the power tool 100 is located within the predetermined area.
  • the total data size of the reference data and the relative data is equal to or smaller than the data size of the positioning data.
  • the reference data is composed of the upper digits of the positioning data
  • the relative data is composed of the lower digits of the positioning data.
  • the upper digit may be a digit in a range from the highest digit of the positioning data to a predetermined number of digits.
  • the lower digit may be at least one digit lower than the most significant digit.
  • the upper digit of the positioning data indicates the approximate position (reference position) of the power tool 100, and does not change unless the power tool 100 moves significantly. Further, since the power tool 100 is used, for example, in a construction site of a facility such as a building, the power tool 100 has a property of not moving significantly during use. For this reason, the upper digits of the positioning data can be used as reference data to the extent that the power tool 100 can be used in which region or work site.
  • the lower digit of the positioning data can be combined with the upper digit to represent a more detailed position of the power tool 100 with reference to the reference position.
  • the lower digits (relative data) of the positioning data can be used to specify at which work site in the area the power tool 100 is used or at which position in the work site. .
  • the data size of the relative data is different from the data size of the reference data.
  • the number of digits forming the relative data is different from the number of digits forming the reference data.
  • the data size of the relative data may be smaller than the data size of the reference data. This makes it possible to identify the data type of the reference data or the relative data based on the data size. Therefore, it is not necessary to transmit the flag indicating the data type, so that the amount of transmission data can be further reduced.
  • the wireless communication unit 162 performs wireless communication using the LPWA technology under the control of the communication control unit 161.
  • Radio communication section 162 converts data input from communication control section 161 into a radio signal, and transmits the radio signal to base station 210.
  • the communication battery 170 supplies power to the communication module 160.
  • the power tool 100 may supply power from the driving battery 110 to the communication module 160.
  • the capacity of the communication battery 170 is smaller than the capacity of the driving battery 110. That is, a small-capacity battery is used as the communication battery 170.
  • a secondary battery may be used as the communication battery 170, and for example, a lithium ion battery can be used.
  • the positioning unit 180 acquires positioning data indicating the geographical position of the power tool 100.
  • the positioning unit 180 is configured to include a GNSS receiver.
  • the GNSS receiver is, for example, a GPS receiver.
  • the positioning section 180 outputs the obtained positioning data to the communication control section 161 under the control of the communication control section 161.
  • the positioning unit 180 includes, for example, GLONASS (Global Navigation Satellite Network), IRNSS (Indian Regional Navigation Satellite Satellite System), COMPASS, Galileo, or quasi-zenith satellite system QZe Zies Satellite (QZSS) as a GNSS receiver. Machine may be included. Further, positioning section 180 may be configured by a plurality of GNSS receivers.
  • the positioning data is a set of latitude and longitude.
  • Latitudes range from -90 ° to + 90 °, with negative values representing west longitude and positive values representing east longitude.
  • Longitudes range from -180 ° to + 180 °, with negative values representing south latitude and positive values representing north latitude.
  • FIG. 3 is a diagram illustrating an example of reference data and relative data according to an embodiment.
  • latitude is exemplified as positioning data.
  • the positive and negative signs are not shown.
  • a DEG (Degree) format which is a decimal notation is adopted as a notation format of the positioning data.
  • the format is not limited to the DEG format, and another format such as a DMS format (60-digit notation), a DMM format, or a millisecond format may be adopted.
  • the positioning data has an integer part and a decimal part.
  • the first digit of the integer part represents one degree of latitude, which is approximately 111 km when converted to distance.
  • a change in the value of the first digit of the integer part by one means that the power tool 100 has moved 111 [km] or more.
  • the first decimal place of the decimal part represents 0.1 degree of latitude, which is approximately 11 [km] when converted to distance.
  • a change in the value of the first decimal place by one means that the power tool 100 has moved about 11 [km] or more.
  • the second decimal place of the decimal part represents 0.01 degrees of latitude, which is approximately 1111 [m] when converted to distance.
  • a change in the value of the second decimal place by one means that the power tool 100 has moved about 1111 [m] or more.
  • the third decimal place of the decimal part represents 0.001 degrees of latitude, which is approximately 111 [m] in terms of distance.
  • a change in the value of the third decimal place by one means that the power tool 100 has moved about 111 [m] or more.
  • the fourth decimal place of the decimal part represents 0.0001 degrees of latitude, which is approximately 11 [m] in terms of distance.
  • a change in the value of the fourth decimal place by one means that the power tool 100 has moved about 11 [m] or more.
  • the fifth decimal place of the decimal part represents 0.00001 degrees of latitude, which is approximately 1 [m] when converted to distance.
  • a change in the value of the fifth decimal place by one means that the power tool 100 has moved about 1 [m] or more.
  • the sixth decimal place of the decimal part represents 0.000001 degrees of latitude, which is about 11 [cm] in terms of distance.
  • a change in the value of the sixth decimal place by one means that the power tool 100 has moved about 11 [cm] or more.
  • the seventh decimal place of the decimal part represents 0.0000001 degrees of latitude, which is about 1 [cm] when converted to distance.
  • a change in the value of the seventh decimal place by one means that the power tool 100 has moved about 1 [cm] or more.
  • the reference data includes an integer part of the positioning data and up to the n-th decimal part of the decimal part.
  • the relative data is composed of the (n + 1) th decimal place of the decimal part of the positioning data.
  • the communication control unit 161 does not transmit any digits lower than the (n + 1) th decimal place of the decimal part of the positioning data.
  • the relative data may be configured to include the decimal part (n + 1) and the decimal number (n + 2) of the decimal part of the positioning data.
  • the reference data includes the integer part of the positioning data and the second decimal place of the decimal part.
  • the relative data includes the third decimal place of the decimal part of the positioning data.
  • the reference data can represent a position with a granularity (accuracy) of 1111 [m].
  • the relative data can represent a position at a granularity (accuracy) of 111 [m].
  • the configuration method of the reference data and the relative data shown in FIG. 3 is merely an example, and the value of n may be variably set according to the positioning accuracy of the positioning unit 180 and the required tracking accuracy.
  • the value of n may be set by communication from the management server 300 to the power tool 100, or the user of the power tool 100 may manually set the value of n.
  • difference data may be used as relative data.
  • the difference data is data representing a difference between the reference data and the second positioning data (latest positioning data).
  • the communication control unit 161 may calculate the difference data and control the wireless communication unit 162 so as to transmit the calculated difference data as relative data.
  • FIG. 4 is a diagram illustrating another example of the reference data and the relative data according to the embodiment.
  • the reference data is composed of the upper digits of the first positioning data, as in FIG. Specifically, the reference data includes the integer part of the positioning data and the second decimal place of the decimal part.
  • the relative data is data representing a difference between the reference data and the second positioning data.
  • the digits lower than the third decimal place of the second positioning data may not be included in the transmission target, and the digits lower than the third decimal place may not be the target of the difference calculation.
  • the latitude is exemplified as the positioning data here, the longitude can be handled in the same manner as the latitude.
  • FIG. 5 is a sequence diagram illustrating an example of the communication sequence according to the embodiment.
  • the example of FIG. 5 shows a communication sequence related to the transmission of the positioning data.
  • the power tool 100 (communication control unit 161) transmits the reference data to the management server 300 at a period T1 and transmits the relative data to the management server 300 at a period T2 shorter than the period T1.
  • the management server 300 determines that the latest reference data is valid during the cycle T1, and specifies the latest position of the power tool 100 by combining the latest reference data received within the cycle T1 with the latest reference data.
  • the cycle T1 may be an integral multiple of the cycle T2. This makes it possible to make the transmission timing of the reference data coincide with the transmission timing of the relative data, thereby enabling efficient transmission.
  • the period T1 is six times the period T2.
  • the cycle T1 can be 1 hour (60 minutes), and the cycle T2 can be 10 minutes.
  • the power tool 100 (communication control unit 161) performs positioning for each cycle T2 to obtain positioning data. That is, the cycle of performing positioning and the transmission cycle of relative data are equal. Alternatively, the cycle of performing the positioning may be shorter than the transmission cycle of the relative data.
  • the power tool 100 (communication control unit 161) may calculate the average value of the positioning data of each of the positioning times.
  • the transmission cycle (T1) of the reference data may be an integral multiple of the transmission cycle of the tool data.
  • the cycle T1 can be one hour (60 minutes), and the tool data transmission cycle can be 15 minutes.
  • the tool data transmission cycle may be equal to the relative data transmission cycle (T2).
  • the power tool 100 may transmit the communication battery remaining amount data to the management server 300 at the cycle T2. That is, the power tool 100 (the communication control unit 161) may transmit the communication battery remaining amount data at the transmission timing of the relative data.
  • FIG. 6 is a sequence diagram showing another example of the communication sequence according to the embodiment. In the example of FIG. 6, a communication sequence related to transmission of positioning data is shown.
  • the communication control unit 161 may control the wireless communication unit 162 to transmit the reference data only once when the power tool 100 moves into the predetermined area. Thereby, the number of times of transmission of the reference data can be reduced.
  • FIGS. 5 and 6 show an example in which relative data is transmitted at a period T2.
  • the communication control unit 161 controls the wireless communication unit 162 to perform the current transmission of the relative data only when the power tool 100 has moved a predetermined distance or more from the position of the power tool 100 when the relative data was previously transmitted. It may be controlled.
  • the communication control unit 161 may control the wireless communication unit 162 so that the relative data is transmitted each time the power tool 100 moves a predetermined distance or more while the power tool 100 is located within the predetermined area.
  • the communication control unit 161 may omit the current transmission of the relative data when the power tool 100 has not moved a predetermined distance or more from the position of the power tool 100 when the relative data was transmitted last time. Thus, when the power tool 100 hardly moves, the number of times of transmission of relative data can be reduced.
  • the periods T1 and T2 may be variably set according to the required tracking accuracy or the like.
  • various cycles may be set by communication from the management server 300 to the power tool 100, or a user of the power tool 100 may manually set various cycles.
  • FIG. 7 is a flowchart illustrating an operation example of the power tool 100 according to the embodiment.
  • FIG. 7 shows an operation related to transmission of positioning data.
  • step S1 the communication control unit 161 acquires positioning data from the positioning unit 180, and based on the acquired positioning data, determines whether the power tool 100 is in a predetermined area (work site) or It is determined whether it is outside the predetermined area.
  • step S2 the communication control unit 161 sets the first mode and transmits the positioning data by transmitting the wireless communication unit 162. Control. In other words, the communication control unit 161 controls the wireless communication unit 162 so as to transmit the positioning data indicating the position of the power tool 100 alone without transmitting the reference data and the relative data.
  • the transmission cycle of the positioning data in the first mode may be equal to the transmission cycle (T1) of the reference data.
  • step S3 the communication control unit 161 sets the second mode and transmits the reference data and the positioning data. Controls the wireless communication unit 162.
  • transmission of tool data may be required. Further, when the power tool 100 is used for work in a predetermined area, the power tool 100 does not move much. Therefore, within the predetermined area, the positioning data compressed in the second mode is transmitted.
  • This flow may be executed periodically.
  • the communication control unit 161 switches from the first mode to the second mode.
  • communication control unit 161 switches from the second mode to the first mode.
  • FIG. 8 is a flowchart showing an example of the operation of the power tool 100 in the second mode.
  • FIG. 8 shows an operation related to transmission of positioning data.
  • step S101 the communication control unit 161 causes the positioning unit 180 to execute positioning, and acquires positioning data.
  • step S102 the communication control unit 161 extracts the upper digits of the positioning data (latitude and longitude) acquired in step S101, and controls the wireless communication unit 162 to transmit the extracted upper digits as reference data. .
  • the communication control unit 161 includes a timer (hereinafter, referred to as “T1 timer”) corresponding to the transmission cycle (T1) of the reference data and a timer (hereinafter, “T2 timer”) corresponding to the transmission cycle (T2) of the relative data. ").
  • step S104 the communication control unit 161 checks whether the T2 timer has expired.
  • step S105 the communication control unit 161 causes the positioning unit 180 to execute positioning and acquire positioning data.
  • step S106 the communication control unit 161 checks whether or not the T1 timer has expired.
  • step S107 the communication control unit 161 extracts the lower digits of the positioning data (latitude and longitude) acquired in step S105, and extracts the extracted lower digits.
  • the wireless communication unit 162 is controlled to transmit digits as relative data. Further, the communication control unit 161 restarts the T2 timer. Thereafter, the process returns to step S104.
  • step S108 the communication control unit 161 extracts the upper digit and lower digit of the positioning data (latitude and longitude) acquired in step S105, and extracts The wireless communication unit 162 is controlled to transmit the extracted upper digits as reference data and transmit the extracted lower digits as relative data. Further, the communication control unit 161 restarts the T1 timer and the T2 timer. Thereafter, the process returns to step S104.
  • FIG. 9 is a flowchart showing another example of the operation of the power tool 100 in the second mode.
  • FIG. 9 shows an operation related to transmission of positioning data.
  • step S201 the communication control unit 161 causes the positioning unit 180 to execute positioning, and acquires positioning data.
  • step S202 the communication control unit 161 controls the wireless communication unit 162 to extract upper digits of the positioning data (latitude and longitude) acquired in step S201 and transmit the extracted upper digits as reference data. .
  • step S203 the communication control unit 161 activates a T2 timer corresponding to the relative data transmission cycle (T2).
  • step S204 the communication control unit 161 checks whether the T2 timer has expired.
  • step S205 the communication control unit 161 causes the positioning unit 180 to execute positioning and acquire positioning data. Further, the communication control unit 161 restarts the T2 timer.
  • step S206 the communication control unit 161 checks whether or not the third decimal place of the positioning data acquired in step S205 has changed from the third decimal place of the positioning data acquired last time. In other words, the communication control unit 161 checks whether or not the moving distance (position change) at the time of acquiring the current positioning data is about 111 [m] or more based on the position at the time of the previous acquisition of the positioning data. Such confirmation is performed for each of the latitude and longitude constituting the positioning data.
  • step S206 When the result of step S206 is “YES”, the communication control unit 161 calculates the difference between the reference data transmitted in step S202 and the positioning data acquired in step S205 for each of the latitude and longitude in step S207. Then, the wireless communication unit 162 is controlled to transmit the calculated difference data as relative data. Thereafter, the process returns to step S204.
  • step S206 if the result of step S206 is "NO", the process returns to step S204 without transmitting the relative data.
  • FIG. 10 is a block diagram showing a configuration example of the power tool 100 according to the first modification.
  • the communication module 160 includes a storage unit 163.
  • the storage unit 163 stores the position information of each of the plurality of divided areas obtained by dividing the predetermined area where the work using the tool is performed, and the identification data of each of the plurality of divided areas.
  • at least one memory configuring the communication control unit 161 may share part or all of the memory configuring the storage unit 163.
  • the identification data of the divided area may be any information as long as the information is capable of identifying the divided area.
  • the data size of the identification data of the divided area is smaller than the data size of the positioning data (latitude and longitude).
  • the management server 300 stores information similar to the information stored in the storage unit 163.
  • the information stored in the storage unit 163 may be rewritable.
  • the management server 300 may rewrite the information stored in the storage unit 163 through communication.
  • FIG. 11 is a diagram illustrating a configuration example of a divided area according to the first modification.
  • the divided area may be a rectangular area obtained by dividing a predetermined area in a matrix.
  • the predetermined area is divided into a matrix of 5 rows and 5 columns.
  • the divided area may be an area obtained by dividing a predetermined area into an arbitrary shape.
  • the predetermined area is defined as a rectangular area.
  • the predetermined area may be defined as an area having an arbitrary shape such as a polygonal shape.
  • the storage unit 163 may further store overall position information of the predetermined area and identification data of the predetermined area.
  • the communication control unit 161 controls the wireless communication unit 162 to transmit the identification data of the divided area instead of the positioning data in the second mode.
  • the communication control unit 161 specifies a divided area corresponding to the position of the power tool 100 from the plurality of divided areas based on the positioning data acquired by the positioning unit 180 and the position information stored in the storage unit 163. I do.
  • the communication control unit 161 acquires the identification data corresponding to the specified divided area from the storage unit 163, and controls the wireless communication unit 162 to transmit the acquired identification data. As a result, the amount of transmission data can be reduced as compared with the case where the positioning data is transmitted as it is.
  • the communication control unit 161 may transmit the identification data of the predetermined area together with the identification data of the divided area.
  • the communication control unit 161 may transmit the identification data of the predetermined area only when detecting that the power tool 100 has entered the predetermined area.
  • the communication control unit 161 is configured to control the power tool from one of the plurality of divided areas to another based on the positioning data acquired by the positioning unit 180 and the position information stored in the storage unit 163. The movement of 100 may be detected.
  • the communication control unit 161 may control the wireless communication unit 162 to transmit the identification data corresponding to the other divided area in response to detecting the movement of the power tool 100 to another divided area. .
  • the transmission of the identification data can be omitted, so that the amount of transmission data can be further reduced.
  • FIG. 12 is a flowchart showing an operation example of the power tool 100 in the second mode according to the first modification.
  • FIG. 12 shows an operation related to transmission of positioning data.
  • step S301 the communication control unit 161 causes the positioning unit 180 to execute positioning, and acquires positioning data.
  • step S302 the communication control unit 161 specifies the divided area where the power tool 100 is located, based on the positioning data acquired in step S301.
  • step S303 the communication control unit 161 controls the wireless communication unit 162 to transmit the identification data of the divided area specified in step S302.
  • step S304 the communication control unit 161 waits for a certain time.
  • step S305 the communication control unit 161 causes the positioning unit 180 to execute positioning, and acquires positioning data.
  • step S306 the communication control unit 161 specifies the divided area where the power tool 100 is located, based on the positioning data acquired in step S305.
  • step S307 the communication control unit 161 determines whether the divided area where the power tool 100 is located at the current positioning is different from the divided area where the power tool 100 was located at the time of the previous positioning (that is, Check whether the tool 100 has moved to another divided area). If the power tool 100 has not moved to another divided area (step S307: NO), the process returns to step S304.
  • step S308 the communication control unit 161 transmits wirelessly the identification data of the divided area specified in step S306.
  • the communication unit 162 is controlled. Thereafter, the process returns to step S304.
  • Modification 2 In the above-described embodiment, an example in which the communication module 160, the communication battery 170, and the positioning unit 180 are built in the power tool 100 has been described. However, a configuration in which a communication device including the communication module 160, the communication battery 170, and the positioning unit 180 is externally attached to the power tool 100 may be adopted. The communication device according to the second modification is configured to be detachable from the power tool 100.
  • FIG. 13 is a block diagram illustrating a configuration example of the power tool 100 and the communication device 400 according to the second modification.
  • the communication device 400 has a connection unit 191 for electrically connecting to the power tool 100.
  • the power tool 100 has a connection portion 192 for electrically connecting to the connection portion 191 of the communication device 400.
  • the communication device 400 and the driving battery 110 may be integrally configured.
  • the communication device 400 including the communication module 160, the communication battery 170, and the positioning unit 180 is configured to be externally attached to the power tool 100.
  • a communication function can be added to the power tool 100.
  • the communication device 400 can be easily replaced.
  • the second mode may be set when the power tool 100 is within a predetermined area and the power of the power tool 100 is on.
  • the first mode may be set when the power tool 100 is within a predetermined area and the power tool 100 is off.
  • the tool is the power tool 100 using the motor 150 as a power source.
  • the present invention is not limited to the electric tool 100, and a tool that does not use a motor (for example, a manual tool), a tool that uses pneumatic power (for example, a pneumatic tool), or a tool that uses hydraulic pressure as power (for example, A hydraulic tool) may be used in place of the power tool 100.
  • the power tool 100 has a wireless communication function.
  • the power tool 100 may have a wired communication function in addition to or instead of the wireless communication function.
  • the management device is the management server 300 provided on the communication network 200 and the management server 300 communicates with the power tool 100 or the communication device 400 via the communication network 200 will be described. did. However, when a management device having a wireless communication function is used, the management device may directly communicate with the power tool 100 or the communication device 400 without using the communication network 200.
  • a program that causes a computer to execute each process performed by the power tool 100 or the communication device 400 may be provided.
  • the program may be recorded on a computer-readable medium.
  • a computer-readable medium it is possible to install a program on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

一実施形態に係る工具は、通信部と、前記工具の位置を表す測位データを前記通信部から送信する第1モードと、前記工具の位置を表すデータであって、前記測位データよりもデータサイズが削減されたデータを前記通信部から送信する第2モードとの間で、モード切替を行う制御部とを備える。前記制御部は、前記工具を使用する作業が行われる所定エリア内に前記工具が移動した場合に、前記第1モードから前記第2モードに切り替える。

Description

工具及び通信装置
 本発明は、工具及び通信装置に関する。
 近年、通信機能を有する工具が提案されている。特許文献1に記載の工具は、工具の締付トルク、ねじ締め本数、作業時間、バッテリ残量などの情報を管理装置に送信し、管理装置側では、工具の状況を管理する。
特開2008-213068号公報
 第1の態様に係る工具は、通信部と、前記工具の位置を表す測位データを前記通信部から送信する第1モードと、前記工具の位置を表すデータであって、前記測位データよりもデータサイズが削減されたデータを前記通信部から送信する第2モードとの間で、モード切替を行う制御部とを備える。前記制御部は、前記工具を使用する作業が行われる所定エリア内に前記工具が移動した場合に、前記第1モードから前記第2モードに切り替える。
 第2の態様に係る通信装置は、通信部と、工具と電気的に接続するための接続部と、前記工具の位置を表す測位データを前記通信部から送信する第1モードと、前記工具の位置を表すデータであって、前記測位データよりもデータサイズが削減されたデータを前記通信部から送信する第2モードとの間で、モード切替を行う制御部とを備える。前記制御部は、前記工具を使用する作業が行われる所定エリア内に前記工具が移動した場合に、前記第1モードから前記第2モードに切り替える。
一実施形態に係る電動工具管理システムの構成例を示す図である。 一実施形態に係る電動工具の構成例を示すブロック図である。 一実施形態に係る基準データ及び相対データの一例を示す図である。 一実施形態に係る基準データ及び相対データの他の例を示す図である。 一実施形態に係る通信シーケンスの一例を示すシーケンス図である。 一実施形態に係る通信シーケンスの他の例を示すシーケンス図である。 一実施形態に係る電動工具の動作例を示すフロー図である。 一実施形態に係る第2モードにおける電動工具の動作の一例を示すフロー図である。 一実施形態に係る第2モードにおける電動工具の動作の他の例を示すフロー図である。 変更例1に係る電動工具の構成例を示すブロック図である。 変更例1に係る分割エリアの構成例を示す図である。 変更例1に係る第2モードにおける電動工具の動作例を示すフロー図である。 変更例2に係る電動工具及び通信装置の構成例を示すブロック図である。
 図面を参照して、実施形態に係る工具について説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (実施形態の概要)
 工具を使用した作業状況等を適切に管理するためには、工具が、自身の位置を表す測位データを送信することが望まれる。
 しかしながら、一定期間において電動工具に許容されるデータの送信には上限条件が設定され、小容量の通信に限定されるケースが想定される。例えば、工具がデータの送信に用いるネットワークの契約によって上限条件が設定されるケースや、省電力化等を目的にユーザやメーカが上限条件を設定するケースなどが想定される。
 このような小容量通信に限定される前提下において、測位データのデータサイズが通信容量に比較して大きいことがあり、測位データの送信が上限条件により制限されることがあるため、工具の位置を適切に管理することができない可能性がある。
 一実施形態に係る工具及び通信装置は、データの送信に上限条件が設定されているケースにおいて適切な工具位置管理を可能とする。
 一実施形態に係る工具は、通信部と、前記工具の位置を表す測位データを前記通信部から送信する第1モードと、前記工具の位置を表すデータであって、前記測位データよりもデータサイズが削減されたデータを前記通信部から送信する第2モードとの間で、モード切替を行う制御部とを備える。前記制御部は、前記工具を使用する作業が行われる所定エリア内に前記工具が移動した場合に、前記第1モードから前記第2モードに切り替える。
 一実施形態に係る通信装置は、通信部と、工具と電気的に接続するための接続部と、前記工具の位置を表す測位データを前記通信部から送信する第1モードと、前記工具の位置を表すデータであって、前記測位データよりもデータサイズが削減されたデータを前記通信部から送信する第2モードとの間で、モード切替を行う制御部とを備える。前記制御部は、前記工具を使用する作業が行われる所定エリア内に前記工具が移動した場合に、前記第1モードから前記第2モードに切り替える。
 このような工具及び通信装置によれば、工具を使用する作業が行われる所定エリア内において、例えば作業に関連する工具データの送信が必要とされる場合でも、測位データのデータサイズを削減して送信することにより、限られた通信容量内で工具の位置を通知できる。よって、データの送信に上限条件が設定されていても、適切な工具位置管理を可能とすることができる。
 (システム構成例)
 図1は、一実施形態に係る電動工具管理システム1の構成例を示す図である。
 図1に示すように、電動工具管理システム1は、電動工具100と、管理サーバ300とを有する。電動工具100は、工具の一例である。
 一実施形態において、電動工具100が結束機(例えば、鉄筋結束機)である一例について説明する。但し、電動工具100は、結束機以外の電動工具、例えば、電動ドリル、電動ドライバー、電動のこぎり、研削機、又は研磨機等であってもよい。
 電動工具100は、コードレス型の電動工具であり、駆動用バッテリ110(バッテリパック)から供給される電力によって駆動する装置である。駆動用バッテリ110は、電動工具100に着脱可能に構成される。駆動用バッテリ110は二次電池であればよく、例えばリチウムイオンバッテリである。駆動用バッテリ110は、電動工具100から取り外された状態において、図示を省略する充電器により充電される。
 電動工具100は、結束部11と、本体部12と、グリップ部13とを有する。結束部11は、鉄筋を挟むアームを有し、アームに挟まれた鉄筋に対して本体部12から供給されるワイヤを巻き付けることにより、鉄筋の結束を行う。
 本体部12は、ワイヤが巻き付けられたリールを収容する。また、本体部12は、モータ150(図2参照)を内蔵する。モータ150は、ワイヤを結束部11に供給するとともにワイヤを鉄筋に巻き付けるための駆動力を発生させる。本体部12には、電動工具100の電源オン/オフを行うための電源スイッチ15が設けられる。
 グリップ部13は、本体部12から下方に向けて延び、ユーザによって把持される部材である。グリップ部13の上端部分には、トリガ14が設けられる。トリガ14が押し下げられることにより、結束部11及び本体部12が結束動作を行う。トリガ14をロック(固定)するトリガロック16が設けられてもよい。トリガロック16がロック状態に設定される場合、トリガ14が押し下げられないようにロックされる。グリップ部13の下端部分には、駆動用バッテリ110を着脱するためのラッチ機構が設けられる。
 電動工具100は、通信機能を有する。一実施形態において、電動工具100は、LPWA(Low Power Wide Area)技術を用いた無線通信機能を有する。電動工具100は、通信ネットワーク200に含まれる基地局210との無線通信を行う。電動工具100は、上り方向のみの単方向通信を行うように構成されていてもよい。
 LPWAは主にIoT(Internet of Things)サービスを対象とした技術である。このような前提下において、ネットワークの契約によってデータ送信の上限条件が設定されるケースや、省電力化等を目的にユーザやメーカがデータ送信の上限条件を設定するケースなどが想定される。上限条件とは、単位時間(例えば1日又は1時間)あたりのデータ送信回数及び/又は単位時間あたりのデータ送信量等である。
 電動工具100は、通信ネットワーク200を介して、管理サーバ300にデータを送信する。具体的には、電動工具100は、工具データ及び測位データを管理サーバ300に送信する。
 工具データは、電動工具100を使用する作業に関連するデータであって、例えば、作動回数データ、工具状態データ、駆動用バッテリ残量データ、及び温度データのうち少なくとも1つを含む。
 作動回数データは、電動工具100が作動した回数(すなわち、結束動作を行った回数)を表すデータである。工具状態データは、電動工具100の状態、例えばエラー状態を表すデータである。駆動用バッテリ残量データは、駆動用バッテリ110の残量を表すデータである。バッテリ残量は、容量に対する現在の残量の割合(パーセンテージ)で示されてもよい。温度データは、電動工具100の温度を表すデータである。
 測位データは、電動工具100の位置を表すデータであって、例えばGPS(Global Positioning System)等のGNSS(Global Navigation Satellite System)を用いて得られる緯度経度データである。
 電動工具100は、通信用バッテリ残量データを管理サーバ300にさらに送信してもよい。通信用バッテリ残量データは、通信用バッテリ170(図2参照)の残量を表すデータである。
 通信ネットワーク200は、電動工具100との無線通信を行う基地局210を有する。通信ネットワーク200は、狭域通信網(LAN:Local Area Network)、高域通信網(WAN:Wide Area Network)、及びインターネットのうち少なくとも1つを含む。
 管理サーバ300は、電動工具100を管理する管理装置の一例である。管理サーバ300は、通信ネットワーク200に接続されている。管理サーバ300は、通信ネットワーク200を介して電動工具100からデータを取得し、取得したデータを管理する。
 例えば、管理サーバ300は、電動工具100から取得した工具データ及び測位データに基づいて作業の進捗管理を行う。また、管理サーバ300は、電動工具100から取得した測位データに基づいて、電動工具100の紛失時又は盗難時等における電動工具100の位置把握(トラッキング)を行う。
 (電動工具の構成例)
 図2は、一実施形態に係る電動工具100の構成例を示すブロック図である。
 図2に示すように、電動工具100は、バッテリ接続部120と、工具制御部130と、モータ駆動部140と、温度センサ141と、モータ150と、通信モジュール160と、通信用バッテリ170と、測位部180とを有する。
 バッテリ接続部120は、駆動用バッテリ110と電気的に接続されるコネクタである。バッテリ接続部120は、駆動用バッテリ110が電動工具100に取り付けられた場合に、駆動用バッテリ110から供給される電力を工具制御部130に伝達する。
 工具制御部130は、電動工具100の動作を制御する。工具制御部130は、電力制御部131と、駆動制御部132とを有する。電力制御部131及び駆動制御部132のそれぞれは、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含んで構成される。なお、電動工具100は、工具制御部130が少なくとも1つのプロセッサ及び少なくとも1つのメモリを含んで構成され、当該少なくとも1つのプロセッサ及び少なくとも1つのメモリにより電力制御部131及び駆動制御部132の機能が実行されてもよい。
 電力制御部131は、駆動用バッテリ110からバッテリ接続部120を介して供給される電力の電圧を適宜変換し、変換後の電力を駆動制御部132及びモータ駆動部140に供給する。
 また、電力制御部131は、駆動用バッテリ110の残量を検出し、駆動用バッテリ110の残量データ(駆動用バッテリ残量データ)を管理する。電力制御部131は、通信モジュール160からの問い合わせに応じて、最新の駆動用バッテリ残量データを通信モジュール160に通知する。さらに、電力制御部131は、駆動用バッテリ110から供給される電力によって通信用バッテリ170を充電する充電制御を行ってもよい。
 駆動制御部132は、モータ150の駆動を制御する。駆動制御部132は、電動工具100の電源オン状態(すなわち、電源スイッチ15がオンに設定されている状態)において、トリガ14が押し下げられたことに応じて、モータ150を駆動させるようモータ駆動部140を制御する。その結果、モータ150がモータ駆動部140により駆動され、結束部11が結束動作を行う。
 駆動制御部132は、結束動作を行った回数を表す作動回数データと、電動工具100の状態を表す工具状態データを管理する。駆動制御部132は、通信モジュール160からの問い合わせに応じて、最新の作動回数データ及び最新の工具状態データを通信モジュール160に通知する。また、駆動制御部132は、温度センサ141が検出した温度データを管理しており、通信モジュール160からの問い合わせに応じて、最新の温度データを通信モジュール160に通知する。温度センサ141は、電動工具100における温度(例えば、モータ駆動部140又はモータ150)の温度を検出するセンサである。
 モータ駆動部140は、駆動制御部132の制御下で、モータ150に駆動電力を供給することにより、モータ150を駆動する。
 通信モジュール160は、データを管理サーバ300に送信する。通信モジュール160は、通信制御部161と、無線通信部162とを有する。無線通信部162は、通信部の一例である。通信制御部161は、通信部を制御する制御部の一例である。通信制御部161は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含んで構成される。なお、通信制御部161を構成する少なくとも1つのプロセッサ及び少なくとも1つのメモリは、工具制御部130を構成する少なくとも1つのプロセッサ及び少なくとも1つのメモリの一部又は全部を共有してもよい。
 通信制御部161は、工具制御部130に対して問い合わせを行い、作動回数データ、工具状態データ、駆動用バッテリ残量データ、及び温度データを工具制御部130から取得する。通信制御部161は、取得したデータを送信するよう無線通信部162を制御する。また、通信制御部161は、通信用バッテリ170の残量を表す通信用バッテリ残量データを管理しており、通信用バッテリ残量データを送信するよう無線通信部162を制御する。
 通信制御部161は、測位部180により取得される測位データを送信するよう無線通信部162を制御する。一実施形態において、通信通信制御部161は、第1モードと第2モードとの間でモード切替を行う。第1モードは、電動工具100の位置を表す測位データを無線通信部162から送信するモードである。第2モードは、電動工具100の位置を表すデータであって、測位データよりもデータサイズが削減されたデータを無線通信部162から送信するモードである。第2モードは、測位データを圧縮した状態で送信するモードとみなすこともできる。
 通信制御部161は、電動工具100を使用する作業が行われる所定エリア内に電動工具100が移動した場合に、第1モードから第2モードに切り替える。所定エリアは、電動工具100を使用した作業が行われるエリア(作業現場)であって、例えばビル等の施設の建設現場であってもよい。これにより、電動工具100を使用する作業が行われる所定エリア内において、工具データの送信が必要とされる場合でも、測位データを圧縮して送信することにより、限られた通信容量内で電動工具100の位置を通知できる。
 なお、所定エリアの情報は、管理サーバ300から電動工具100に対して通信により設定してもよいし、通信制御部161に予め組み込まれていてもよいし、電動工具100のユーザがマニュアルで設定してもよい。所定エリアの情報は、例えば所定エリアが矩形の領域で定義される場合、当該矩形の1つの頂点の緯度及び経度と、当該1つの頂点の対頂点の緯度及び経度とを含む。
 通信制御部161は、第2モードにおいて、電動工具100の位置を表す測位データに基づいて、電動工具100の基準位置を表す基準データを送信するように無線通信部162を制御する。基準データの送信後、通信制御部161は、電動工具100の位置を表す測位データに基づいて、基準位置を基準とした電動工具100の位置を表す相対データを送信するように無線通信部162を制御する。相対データのデータサイズは、測位データのデータサイズよりも小さい。また、基準データのデータサイズは、測位データのデータサイズよりも小さい。或いは、基準データのデータサイズは、測位データのデータサイズと同じであってもよい。
 通信制御部161は、基準データを第1頻度で送信するとともに、相対データを第1頻度よりも高い第2頻度で送信するように、無線通信部162を制御する。このように、測位データのデータサイズよりも小さい相対データを高頻度に送信することにより、測位データを毎回送信するケースに比べて送信データ量を削減できる。その結果、削減した分の通信容量を工具データ(作動回数データ、工具状態データ、駆動用バッテリ残量データ、温度データ)の送信に用いることができるため、通信容量を有効活用できる。
 ここで、「頻度で送信」とは、周期的な送信を行うケースに限定されずに、非周期な送信を行うケースも含む概念である。以下においては、周期的な送信を行うケースについて主として説明する。周期的な送信を行うケースにおいて、通信制御部161は、基準データを第1周期で送信するとともに、相対データを第1周期よりも短い第2周期で送信するように、無線通信部162を制御する。
 或いは、通信制御部161は、電動工具100が所定エリア内に移動した際に、基準データを1回だけ送信するように無線通信部162を制御してもよい。通信制御部161は、電動工具100が所定エリア内に位置する間は、相対データを第2頻度で送信するように無線通信部162を制御する。
 一実施形態において、基準データ及び相対データの合計のデータサイズは、測位データのデータサイズ以下である。例えば、基準データは、測位データの上位桁からなり、相対データは、測位データの下位桁からなる。上位桁は、測位データの最上位桁から所定桁数までの範囲の桁であってもよい。下位桁は、最上位桁よりも下位の少なくとも1つの桁であってもよい。
 測位データの上位桁は、電動工具100のおおよその位置(基準位置)を表し、電動工具100が大きく移動しなければ変化しない。また、電動工具100は、例えばビル等の施設の建設現場等内において使用されるため、使用中において大きくは移動しないという性質を有する。このため、測位データの上位桁は、電動工具100がどの地域又はどの作業現場で使用されているかを特定できる程度の基準データとして用いることができる。
 一方、測位データの下位桁は、上位桁と組み合わせることで、基準位置を基準とした電動工具100のより詳細な位置を表すことができる。このため、測位データの下位桁(相対データ)は、電動工具100が地域内のどの作業現場で使用されているか又は作業現場内のどの位置で使用されているかを特定するために用いることができる。
 一実施形態において、相対データのデータサイズは、基準データのデータサイズと異なる。例えば、相対データを構成する桁数は、基準データを構成する桁数と異なる。相対データのデータサイズは、基準データのデータサイズよりも小さくてもよい。これにより、基準データであるか又は相対データであるかのデータ種別をデータサイズに基づいて識別可能となる。よって、データ種別を示すフラグを送信不要であるため、送信データ量をさらに削減できる。
 無線通信部162は、通信制御部161の制御下で、LPWA技術を用いた無線通信を行う。無線通信部162は、通信制御部161から入力されるデータを無線信号に変換し、無線信号を基地局210に送信する。
 通信用バッテリ170は、通信モジュール160に電力を供給する。或いは、電動工具100は、駆動用バッテリ110からの電力を通信モジュール160に供給してもよい。一実施形態において、通信用バッテリ170の容量は、駆動用バッテリ110の容量よりも小さい。すなわち、通信用バッテリ170として、小容量のバッテリが用いられる。なお、通信用バッテリ170としては二次電池を用いればよく、例えばリチウムイオンバッテリを用いることができる。
 測位部180は、通信制御部161の制御下で、電動工具100の地理的な位置を表す測位データを取得する。測位部180は、GNSS受信機を含んで構成される。GNSS受信機は、例えばGPS受信機である。測位部180は、通信制御部161の制御下で、取得した測位データを通信制御部161に出力する。測位部180は、例えば、GNSS受信機として、GLONASS(Global Navigation Satellite System)、IRNSS(Indian Regional Navigational Satellite System)、COMPASS、Galileo、或いは準天頂衛星システム(QZSS:Quasi-Zenith Satellites System)等の受信機を含んで構成されてよい。また測位部180は、複数のGNSS受信機により構成されてもよい。
 (基準データ及び相対データの例)
 一実施形態に係る測位データは、緯度及び経度のセットである。緯度は-90°~+90°の範囲であり、負の値は西経を表し、正の値は東経を表す。経度は-180°~+180°の範囲であり、負の値は南緯を表し、正の値は北緯を表す。
 図3は、一実施形態に係る基準データ及び相対データの一例を示す図である。説明の便宜上、測位データとして緯度を例示する。また、正負の符号については図示を省略している。図3の例では、測位データの表記形式として10進表記であるDEG(Degree)形式を採用している。但し、DEG形式に限定されるものではなく、DMS形式(60進表記)、DMM形式、又はミリ秒形式等の他の形式を採用してもよい。
 図3に示すように、測位データ(緯度)は、整数部と小数部とを有する。整数部の1桁目は緯度の1度を表し、距離に換算すると概算で111[km]である。整数部の1桁目の値が1つ変化することは、電動工具100が111[km]以上移動したことを意味する。
 小数部の小数第1位は緯度の0.1度を表し、距離に換算すると概算で11[km]である。小数第1位の値が1つ変化することは、電動工具100が約11[km]以上移動したことを意味する。
 小数部の小数第2位は緯度の0.01度を表し、距離に換算すると約1111[m]である。小数第2位の値が1つ変化することは、電動工具100が約1111[m]以上移動したことを意味する。
 小数部の小数第3位は緯度の0.001度を表し、距離に換算すると約111[m]である。小数第3位の値が1つ変化することは、電動工具100が約111[m]以上移動したことを意味する。
 小数部の小数第4位は緯度の0.0001度を表し、距離に換算すると約11[m]である。小数第4位の値が1つ変化することは、電動工具100が約11[m]以上移動したことを意味する。
 小数部の小数第5位は緯度の0.00001度を表し、距離に換算すると約1[m]である。小数第5位の値が1つ変化することは、電動工具100が約1[m]以上移動したことを意味する。
 小数部の小数第6位は緯度の0.000001度を表し、距離に換算すると約11[cm]である。小数第6位の値が1つ変化することは、電動工具100が約11[cm]以上移動したことを意味する。
 小数部の小数第7位は緯度の0.0000001度を表し、距離に換算すると約1[cm]である。小数第7位の値が1つ変化することは、電動工具100が約1[cm]以上移動したことを意味する。
 但し、一般的な測位部180の測位精度では、小数第5位以下の値の信憑性は低いことが多い。
 一実施形態において、基準データは、測位データの整数部と小数部の小数第n位までとからなる。相対データは、測位データの小数部の小数第(n+1)位からなる。通信制御部161は、測位データの小数部の小数第(n+1)位よりも下位の桁については送信しない。或いは、相対データを、測位データの小数部の小数第(n+1)位と小数第(n+2)位とからなるように構成してもよい。
 図3に示す例において、n=2である。すなわち、基準データは、測位データの整数部と小数部の小数第2位までとからなる。相対データは、測位データの小数部の小数第3位からなる。かかる場合、基準データは、1111[m]の粒度(精度)での位置を表すことができる。また、相対データは、111[m]の粒度(精度)での位置を表すことができる。
 但し、図3に示す基準データ及び相対データの構成方法は一例であって、測位部180の測位精度及び要求されるトラッキング精度等に応じて、nの値を可変設定してもよい。例えば、管理サーバ300から電動工具100に対して通信によりnの値を設定してもよいし、電動工具100のユーザがマニュアルでnの値を設定してもよい。
 或いは、測位データの下位桁を相対データとして用いることに代えて、差分データを相対データとして用いてもよい。差分データは、基準データと、第2測位データ(最新の測位データ)との間の差分を表すデータである。通信制御部161は、差分データを算出し、算出された差分データを相対データとして送信するように無線通信部162を制御してもよい。
 図4は、一実施形態に係る基準データ及び相対データの他の例を示す図である。
 図4に示すように、基準データは、図6と同様に、第1測位データの上位桁からなる。具体的には、基準データは、測位データの整数部と小数部の小数第2位までとからなる。
 図4に示す例において、相対データは、基準データと第2測位データとの差分を表すデータである。但し、第2測位データの小数第3位よりも下位の桁については送信対象に含めずに、小数第3位よりも下位の桁については差分の算出対象としないとしてもよい。
 なお、ここでは測位データとして緯度を例示したが、経度についても緯度と同様の取り扱いをすることができる。
 (通信シーケンス例)
 図5は、一実施形態に係る通信シーケンスの一例を示すシーケンス図である。図5の例では、測位データの送信に関連する通信シーケンスを示している。
 図5に示すように、電動工具100(通信制御部161)は、基準データを周期T1で管理サーバ300に送信するとともに、相対データを周期T1よりも短い周期T2で管理サーバ300に送信する。管理サーバ300は、周期T1の間は最新の基準データが有効であるとみなし、当該周期T1内で受信した最新の相対データと組み合わせることにより、電動工具100の最新の位置を特定する。
 周期T1は、周期T2の整数倍であってもよい。これにより、基準データの送信タイミングを相対データの送信タイミングと揃えることができるため、効率的な送信が可能となる。図5の例では、周期T1は、周期T2の6倍である。例えば、周期T1を1時間(60分間)とし、周期T2を10分間とすることができる。
 図5の例では、電動工具100(通信制御部161)は、周期T2ごとに測位を行って測位データを取得している。すなわち、測位を行う周期と相対データの送信周期とが等しい。或いは、測位を行う周期は、相対データの送信周期よりも短くてもよい。周期T2内で複数回の測位を行う場合、電動工具100(通信制御部161)は、複数回の測位のそれぞれの測位データの平均値を算出してもよい。
 基準データの送信周期(T1)は、工具データの送信周期の整数倍であってもよい。例えば、周期T1を1時間(60分間)とし、工具データの送信周期を15分間とすることができる。工具データの送信周期は、相対データの送信周期(T2)と等しくてもよい。
 なお、電動工具100(通信制御部161)は、通信用バッテリ残量データを周期T2で管理サーバ300に送信してもよい。すなわち、電動工具100(通信制御部161)は、相対データの送信タイミングにおいて通信用バッテリ残量データを送信してもよい。
 図6は、一実施形態に係る通信シーケンスの他の例を示すシーケンス図である。図6の例では、測位データの送信に関連する通信シーケンスを示している。
 図6に示すように、通信制御部161は、電動工具100が所定エリア内に移動した際に、基準データを1回だけ送信するように無線通信部162を制御してもよい。これにより、基準データの送信回数を削減できる。
 図5及び図6において、相対データを周期T2で送信する一例を示している。しかしながら、通信制御部161は、相対データを前回送信した際の電動工具100の位置から電動工具100が所定距離以上移動した場合に限り、相対データの今回の送信を行うように無線通信部162を制御してもよい。通信制御部161は、電動工具100が所定エリア内に位置する間は、電動工具100が所定距離以上移動する度に相対データを送信するように無線通信部162を制御してもよい。
 通信制御部161は、相対データを前回送信した際の電動工具100の位置から電動工具100が所定距離以上移動していない場合に、相対データの今回の送信を省略してもよい。これにより、電動工具100が殆ど移動していないような場合には相対データの送信回数を削減できる。
 なお、周期T1、T2や、工具データの送信周期、及び測位を行う周期は、要求されるトラッキング精度等に応じて可変設定してもよい。例えば、管理サーバ300から電動工具100に対して通信により各種の周期を設定してもよいし、電動工具100のユーザがマニュアルで各種の周期を設定してもよい。
 (電動工具の動作例)
 図7は、一実施形態に係る電動工具100の動作例を示すフロー図である。図7では、測位データの送信に関連する動作を示している。
 図7に示すように、ステップS1において、通信制御部161は、測位部180から測位データを取得し、取得された測位データに基づいて電動工具100が所定エリア(作業現場)内にあるか又は所定エリア外にあるかを判定する。
 電動工具100が所定エリア外にあると判定された場合(ステップS1:NO)、ステップS2において、通信制御部161は、第1モードを設定し、測位データの送信を行うように無線通信部162を制御する。言い換えると、通信制御部161は、基準データ及び相対データを送信せずに、電動工具100の位置を単独で表す測位データの送信を行うように無線通信部162を制御する。
 所定エリア外においては、工具データ(作動回数データ、工具状態データ、駆動用バッテリ残量データ、温度データ)の送信が不要である。また、所定エリア外において電動工具100が運搬されているような場合、電動工具100が大きくは移動しうる。よって、所定エリア外においては、第1モードにより非圧縮の測位データの送信を行う。なお、第1モードにおける測位データの送信周期は、基準データの送信周期(T1)と等しくてもよい。
 一方、電動工具100が所定エリア内にあると判定された場合(ステップS1:YES)、ステップS3において、通信制御部161は、第2モードを設定し、基準データ及び測位データの送信を行うように無線通信部162を制御する。
 所定エリア内においては、工具データの送信が必要とされうる。また、所定エリア内において電動工具100が作業に使用されているような場合、電動工具100は大きくは移動しない。よって、所定エリア内においては、第2モードにより圧縮された状態の測位データの送信を行う。
 本フローは周期的に実行されてもよい。電動工具100が所定エリア外から所定エリア内に移動した場合、通信制御部161は、第1モードから第2モードに切り替える。一方、電動工具100が所定エリア外から所定エリア内に移動した場合、通信制御部161は、第2モードから第1モードに切り替える。
 図8は、第2モードにおける電動工具100の動作の一例を示すフロー図である。図8では、測位データの送信に関連する動作を示している。
 図8に示すように、ステップS101において、通信制御部161は、測位部180に測位を実行させ、測位データを取得する。
 ステップS102において、通信制御部161は、ステップS101で取得した測位データ(緯度及び経度のそれぞれ)の上位桁を抽出し、抽出された上位桁を基準データとして送信するよう無線通信部162を制御する。
 ステップS103において、通信制御部161は、基準データの送信周期(T1)に対応するタイマ(以下、「T1タイマ」という)及び相対データの送信周期(T2)に対応するタイマ(以下、「T2タイマ」という)を起動する。
 ステップS104において、通信制御部161は、T2タイマが満了したか否かを確認する。
 T2タイマが満了した場合(ステップS104:YES)、ステップS105において、通信制御部161は、測位部180に測位を実行させ、測位データを取得する。
 ステップS106において、通信制御部161は、T1タイマが満了したか否かを確認する。
 T1タイマが満了していない場合(ステップS106:NO)、ステップS107において、通信制御部161は、ステップS105で取得した測位データ(緯度及び経度のそれぞれ)の下位桁を抽出し、抽出された下位桁を相対データとして送信するよう無線通信部162を制御する。また、通信制御部161は、T2タイマを再開させる。その後、処理がステップS104に戻る。
 一方、T1タイマが満了した場合(ステップS106:YES)、ステップS108において、通信制御部161は、ステップS105で取得した測位データ(緯度及び経度のそれぞれ)の上位桁及び下位桁を抽出し、抽出された上位桁を基準データとして送信するとともに、抽出された下位桁を相対データとして送信するよう無線通信部162を制御する。また、通信制御部161は、T1タイマ及びT2タイマを再開させる。その後、処理がステップS104に戻る。
 図9は、第2モードにおける電動工具100の動作の他の例を示すフロー図である。図9では、測位データの送信に関連する動作を示している。
 図9に示すように、ステップS201において、通信制御部161は、測位部180に測位を実行させ、測位データを取得する。
 ステップS202において、通信制御部161は、ステップS201で取得した測位データ(緯度及び経度のそれぞれ)の上位桁を抽出し、抽出された上位桁を基準データとして送信するよう無線通信部162を制御する。
 ステップS203において、通信制御部161は、相対データの送信周期(T2)に対応するT2タイマを起動する。
 ステップS204において、通信制御部161は、T2タイマが満了したか否かを確認する。
 T2タイマが満了した場合(ステップS204:YES)、ステップS205において、通信制御部161は、測位部180に測位を実行させ、測位データを取得する。また、通信制御部161は、T2タイマを再開させる。
 ステップS206において、通信制御部161は、ステップS205で取得した測位データの小数第3位が、前回取得した測位データの小数第3位に対して変化したか否かを確認する。言い換えると、通信制御部161は、前回の測位データ取得時における位置を基準として、今回の測位データ取得時における移動距離(位置変化)が約111[m]以上であるか否かを確認する。かかる確認は、測位データを構成する緯度及び経度のそれぞれについて行われる。
 ステップS206の結果が「YES」である場合、通信制御部161は、ステップS207において、ステップS202で送信した基準データとステップS205で取得した測位データとの間の差分を緯度及び経度のそれぞれについて算出し、算出された差分データを相対データとして送信するよう無線通信部162を制御する。その後、処理がステップS204に戻る。
 一方、ステップS206の結果が「NO」である場合、相対データを送信することなく処理がステップS204に戻る。
 (変更例1)
 実施形態の変更例1について説明する。
 図10は、変更例1に係る電動工具100の構成例を示すブロック図である。
 図10に示すように、変更例1に係る電動工具100において、通信モジュール160は、記憶部163を有する。記憶部163は、工具を使用する作業が行われる所定エリアを分割して得られた複数の分割エリアのそれぞれの位置情報と、当該複数の分割エリアのそれぞれの識別データとを記憶する。なお、通信制御部161を構成する少なくとも1つのメモリは、記憶部163を構成するメモリの一部又は全部を共有してもよい。
 分割エリアの識別データは、分割エリアを識別可能な情報であればどのような情報であってもよいが、例えば、数列、文字列、又は数字と文字の組合せにより構成される。分割エリアの識別データのデータサイズは、測位データ(緯度及び経度)のデータサイズよりも小さい。
 管理サーバ300は、記憶部163に記憶される情報と同様な情報を記憶している。記憶部163に記憶される情報は、書き換え可能であってもよい。記憶部163に記憶された情報を管理サーバ300が通信により書き換えてもよい。
 図11は、変更例1に係る分割エリアの構成例を示す図である。
 図11に示すように、分割エリアは、所定エリアを行列状に分割して得られた矩形エリアであってもよい。図11の例では、所定エリアが5行5列の行列状に分割されている。分割エリアは、所定エリアを任意の形状に分割して得られたエリアであってもよい。
 図11の例では、所定エリアは、矩形状のエリアとして定義されている。所定エリアは、多角形状等の任意の形状のエリアとして定義されてもよい。記憶部163は、所定エリアの全体的な位置情報及び所定エリアの識別データをさらに記憶してもよい。
 変更例1において、通信制御部161は、第2モードにおいて、測位データに代えて、分割エリアの識別データを送信するように無線通信部162を制御する。
 通信制御部161は、測位部180により取得された測位データと、記憶部163に記憶された位置情報とに基づいて、電動工具100の位置に対応する分割エリアを複数の分割エリアの中から特定する。通信制御部161は、特定された分割エリアに対応する識別データを記憶部163から取得し、取得された識別データを送信するように無線通信部162を制御する。これにより、測位データをそのまま送信する場合に比べて送信データ量を削減できる。
 通信制御部161は、分割エリアの識別データと共に、所定エリアの識別データを送信してもよい。通信制御部161は、電動工具100が所定エリア内に入ったことを検知した場合にのみ、所定エリアの識別データを送信してもよい。
 通信制御部161は、測位部180により取得された測位データと、記憶部163に記憶された位置情報とに基づいて、複数の分割エリアのうち一の分割エリアから他の分割エリアへの電動工具100の移動を検知してもよい。通信制御部161は、他の分割エリアへの電動工具100の移動を検知したことに応じて、当該他の分割エリアに対応する識別データを送信するように無線通信部162を制御してもよい。これにより、電動工具100が1つの分割エリア内に留まっている場合には、識別データの送信を省略できるため、送信データ量をさらに削減できる。
 図12は、変更例1に係る第2モードにおける電動工具100の動作例を示すフロー図である。図12では、測位データの送信に関連する動作を示している。
 図12に示すように、ステップS301において、通信制御部161は、測位部180に測位を実行させ、測位データを取得する。
 ステップS302において、通信制御部161は、ステップS301で取得した測位データに基づいて、電動工具100が位置する分割エリアを特定する。
 ステップS303において、通信制御部161は、ステップS302で特定された分割エリアの識別データを送信するように無線通信部162を制御する。
 ステップS304において、通信制御部161は、一定時間の経過を待つ。
 ステップS305において、通信制御部161は、測位部180に測位を実行させ、測位データを取得する。
 ステップS306において、通信制御部161は、ステップS305で取得した測位データに基づいて、電動工具100が位置する分割エリアを特定する。
 ステップS307において、通信制御部161は、前回の測位時に電動工具100が位置していた分割エリアに対して、今回の測位時に電動工具100が位置している分割エリアが異なっているか(すなわち、電動工具100が他の分割エリアに移動しているか)否かを確認する。電動工具100が他の分割エリアに移動していない場合(ステップS307:NO)、処理がステップS304に戻る。
 一方、電動工具100が他の分割エリアに移動している場合(ステップS307:YES)、ステップS308において、通信制御部161は、ステップS306で特定された分割エリアの識別データを送信するように無線通信部162を制御する。その後、処理がステップS304に戻る。
 (変更例2)
 上述した実施形態において、通信モジュール160、通信用バッテリ170、及び測位部180が電動工具100に内蔵される一例について説明した。しかしながら、通信モジュール160、通信用バッテリ170、及び測位部180を有する通信装置を電動工具100の外付けとする構成であってもよい。変更例2に係る通信装置は、電動工具100に着脱可能に構成される。
 図13は、変更例2に係る電動工具100及び通信装置400の構成例を示すブロック図である。図13に示すように、通信装置400は、電動工具100と電気的に接続するための接続部191を有する。一方、電動工具100は、通信装置400の接続部191と電気的に接続するための接続部192を有する。なお、通信装置400と駆動用バッテリ110とを一体に構成してもよい。
 このように、通信モジュール160、通信用バッテリ170、及び測位部180を有する通信装置400を電動工具100の外付けの構成とすることにより、ユーザが電動工具100を購入した後、必要に応じて電動工具100に通信機能を付加することができる。また、通信モジュール160又は通信用バッテリ170が故障又は経年劣化した際に通信装置400を容易に交換しやすい。
 (その他の実施形態)
 上述した実施形態において、電動工具100が所定エリア(作業現場)内にあるか否かに応じて第1モード及び第2モードの切替を行う一例について説明した。しかしながら、所定エリア(作業現場)内にあるか否かに加えて、電動工具100の電源スイッチ15がオン(電源オン)に設定されているか否かも考慮して第1モード及び第2モードの切替を行ってもよい。
 例えば、電動工具100が所定エリア内にあり、且つ電動工具100が電源オンである場合に、第2モードを設定してもよい。電動工具100が所定エリア内にあり、且つ電動工具100が電源オフである場合に、第1モードを設定してもよい。
 上述した実施形態において、工具が、モータ150を動力源として用いる電動工具100である一例について説明した。しかしながら、電動工具100に限定されるものではなく、モータを用いない工具(例えば、手動工具等)、空圧を動力として用いる工具(例えば、空圧工具)又は油圧を動力として用いる工具(例えば、油圧工具)を電動工具100に代えて用いてもよい。
 また、上述した実施形態において、電動工具100が無線通信機能を有する一例について説明した。しかしながら、電動工具100は、無線通信機能に加えて、又は無線通信機能に代えて、有線通信機能を有していてもよい。
 また、上述した実施形態において、管理装置が通信ネットワーク200上に設けられた管理サーバ300であり、管理サーバ300が通信ネットワーク200を介して電動工具100又は通信装置400との通信を行う一例について説明した。しかしながら、無線通信機能を有する管理装置を用いる場合、管理装置は、通信ネットワーク200を介さずに直接的に電動工具100又は通信装置400との通信を行ってもよい。
 電動工具100又は通信装置400が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。また、上述した実施形態及び変更例は、相互に矛盾しない限り組み合わせて適用可能である。そして、例示されていない無数の変更例が、この開示の範囲から外れることなく想定され得るものと解される。

Claims (10)

  1.  工具であって、
     通信部と、
     前記工具の位置を表す測位データを前記通信部から送信する第1モードと、前記工具の位置を表すデータであって、前記測位データよりもデータサイズが削減されたデータを前記通信部から送信する第2モードとの間で、モード切替を行う制御部と、を備え、
     前記制御部は、前記工具を使用する作業が行われる所定エリア内に前記工具が移動した場合に、前記第1モードから前記第2モードに切り替える、工具。
  2.  前記制御部は、前記第2モードにおいて、
      前記工具の基準位置を表す基準データを送信するように前記通信部を制御し、
      前記基準データの送信後、前記基準位置を基準とした前記工具の位置を表す相対データを送信するように前記通信部を制御する、請求項1に記載の工具。
  3.  前記制御部は、前記第2モードにおいて、
      前記工具が前記所定エリア内に移動した際に、前記基準データを送信するように前記通信部を制御し、
      前記工具が前記所定エリア内に位置する間は、前記工具が所定距離以上移動する度に前記相対データを送信するように前記通信部を制御する、請求項2に記載の工具。
  4.  前記制御部は、前記第2モードにおいて、前記基準データを第1周期で送信するとともに、前記相対データを前記第1周期よりも短い第2周期で送信するように、前記通信部を制御する、請求項2に記載の工具。
  5.  前記基準データは、前記測位データの上位桁からなり、
     前記相対データは、前記測位データの下位桁からなる、請求項2乃至4のいずれか1項に記載に記載の工具。
  6.  前記相対データは、前記基準データと前記測位データとの間の差分を表す差分データである、請求項2乃至4のいずれか1項に記載の工具。
  7.  前記所定エリアを分割して得られた複数の分割エリアのそれぞれの位置情報と、前記複数の分割エリアのそれぞれの識別データとを記憶する記憶部をさらに備え、
     前記制御部は、前記第2モードにおいて、
      前記工具の位置を表す測位データと、前記記憶部に記憶された前記位置情報とに基づいて、前記工具の位置に対応する分割エリアを前記複数の分割エリアの中から特定し、
      前記特定された分割エリアに対応する前記識別データを送信するように前記通信部を制御する、請求項1に記載の工具。
  8.  前記制御部は、前記第2モードにおいて、
      前記測位データと前記位置情報とに基づいて、前記複数の分割エリアのうち一の分割エリアから他の分割エリアへの前記工具の移動を検知し、
      前記他の分割エリアへの前記工具の移動を検知したことに応じて、前記他の分割エリアに対応する前記識別データを送信するように前記通信部を制御する、請求項7に記載の工具。
  9.  前記制御部は、前記所定エリア外に前記工具が移動した場合に、前記第2モードから前記第1モードに切り替える、請求項1乃至8のいずれか1項に記載の工具。
  10.  通信部と、
     工具と電気的に接続するための接続部と、
     前記工具の位置を表す測位データを前記通信部から送信する第1モードと、前記工具の位置を表すデータであって、前記測位データよりもデータサイズが削減されたデータを前記通信部から送信する第2モードとの間で、モード切替を行う制御部と、を備え、
     前記制御部は、前記工具を使用する作業が行われる所定エリア内に前記工具が移動した場合に、前記第1モードから前記第2モードに切り替える、通信装置。
PCT/JP2018/031956 2018-08-29 2018-08-29 工具及び通信装置 WO2020044462A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031956 WO2020044462A1 (ja) 2018-08-29 2018-08-29 工具及び通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031956 WO2020044462A1 (ja) 2018-08-29 2018-08-29 工具及び通信装置

Publications (1)

Publication Number Publication Date
WO2020044462A1 true WO2020044462A1 (ja) 2020-03-05

Family

ID=69643486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031956 WO2020044462A1 (ja) 2018-08-29 2018-08-29 工具及び通信装置

Country Status (1)

Country Link
WO (1) WO2020044462A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161695A (ja) * 1994-10-07 1996-06-21 Sony Corp 移動体管理システム、移動体管理装置、移動体管理装置システム及び移動体端末装置
JP2003224876A (ja) * 2002-01-30 2003-08-08 Pioneer Electronic Corp 位置情報送信装置、方法およびプログラム
JP2007264878A (ja) * 2006-03-28 2007-10-11 Clarion Co Ltd バス位置管理システムおよびバス位置管理システムの位置情報送受信方法。
JP2013066949A (ja) * 2011-09-20 2013-04-18 Panasonic Eco Solutions Power Tools Co Ltd 電動工具
US20140240125A1 (en) * 2013-02-22 2014-08-28 Milwaukee Electric Tool Corporation Wireless tracking of power tools and related devices
JP2017034635A (ja) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 端末装置、基地局装置、無線通信システム、および情報通知方法
JP2018072892A (ja) * 2016-10-24 2018-05-10 パイオニア株式会社 通信装置、通信システム、通信方法、通信プログラム及び記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161695A (ja) * 1994-10-07 1996-06-21 Sony Corp 移動体管理システム、移動体管理装置、移動体管理装置システム及び移動体端末装置
JP2003224876A (ja) * 2002-01-30 2003-08-08 Pioneer Electronic Corp 位置情報送信装置、方法およびプログラム
JP2007264878A (ja) * 2006-03-28 2007-10-11 Clarion Co Ltd バス位置管理システムおよびバス位置管理システムの位置情報送受信方法。
JP2013066949A (ja) * 2011-09-20 2013-04-18 Panasonic Eco Solutions Power Tools Co Ltd 電動工具
US20140240125A1 (en) * 2013-02-22 2014-08-28 Milwaukee Electric Tool Corporation Wireless tracking of power tools and related devices
JP2017034635A (ja) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 端末装置、基地局装置、無線通信システム、および情報通知方法
JP2018072892A (ja) * 2016-10-24 2018-05-10 パイオニア株式会社 通信装置、通信システム、通信方法、通信プログラム及び記録媒体

Similar Documents

Publication Publication Date Title
JP6582372B2 (ja) 電子機器及び通信接続の制御方法
CN103363957B (zh) 高度信息取得装置以及高度信息取得系统
US11902778B2 (en) Credentialed wireless fob to control power tool devices
JP2016156660A (ja) 電子時計、通信システム及びプログラム
CN102608907A (zh) 时刻校正装置带时刻校正装置的计时装置和时刻校正方法
CN108289295B (zh) 一种蓝牙设备及其广播周期调节方法、计算机存储介质
US11963079B2 (en) Power tool with shared terminal block
JP2010038798A (ja) Gps受信装置およびgps測位システム
JP2016142576A (ja) 電子時計、電子機器、更新情報送信装置、および更新情報送信プログラム
US7751283B2 (en) Electronic device and electromagnetic wave timepiece
WO2020044462A1 (ja) 工具及び通信装置
WO2020044461A1 (ja) 工具及び通信装置
JP2016024018A (ja) 電子時計
WO2020070823A1 (ja) 工具管理装置、工具管理システム、工具管理方法、及び工具
WO2021009813A1 (ja) 工具、電子機器、及びプログラム
JP2005077226A (ja) 位置端末及び測位システム
EP3358853A1 (en) Mobility, mobility maintenance system, and server apparatus
WO2020217493A1 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
EP4205908A1 (en) Work management system, work information acquisition device, information management device, and program
WO2021009812A1 (ja) 工具
WO2020021728A1 (ja) 電動工具及び通信装置
WO2020031395A1 (ja) 工具及び通信装置
WO2020217364A1 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
AU2008207406A1 (en) Pet tracking system utilizing the global-positioning system
CN114245990B (zh) 工具追踪系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP