WO2020043618A1 - Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles - Google Patents

Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles Download PDF

Info

Publication number
WO2020043618A1
WO2020043618A1 PCT/EP2019/072598 EP2019072598W WO2020043618A1 WO 2020043618 A1 WO2020043618 A1 WO 2020043618A1 EP 2019072598 W EP2019072598 W EP 2019072598W WO 2020043618 A1 WO2020043618 A1 WO 2020043618A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
ethylene
formula
copolymers
vinyl
Prior art date
Application number
PCT/EP2019/072598
Other languages
English (en)
Inventor
Ana Maria CENACCHI-PEREIRA
Julie Prevost
Original Assignee
Total Marketing Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services filed Critical Total Marketing Services
Priority to EP19755939.6A priority Critical patent/EP3844250B1/fr
Priority to US17/272,049 priority patent/US20210348073A1/en
Publication of WO2020043618A1 publication Critical patent/WO2020043618A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2368Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel

Definitions

  • the present invention relates to the use of particular copolymers to improve the cold-keeping properties of fuels and combustibles during their storage and / or their use at low temperature.
  • the present invention also relates to additive compositions (or “additive packages”) containing these copolymers, as well as fuel and fuel compositions additivated with such copolymers, preferably in combination with at least one cold-thinning additive. (CFI) and / or at least one paraffin anti-sedimentation additive (WASA).
  • CFI cold-thinning additive
  • WASA paraffin anti-sedimentation additive
  • Fuels or combustibles containing paraffinic compounds in particular compounds containing n-alkyl, iso-alkyl or n-alkenyl groups such as paraffinic waxes, are known to exhibit deteriorated flow properties at low temperature, typically below 0 ° C.
  • the middle distillates obtained by distillation from crude oils of petroleum origin such as diesel or heating oil, contain different amounts of n-alkanes or n-paraffins depending on their origin. These compounds tend to crystallize at low temperatures, clogging hoses, pipes, pumps and filters, for example in the fuel circuits of motor vehicles.
  • cold flow improvers in English “cold flow improvers” or CFI
  • CFI cold thinning additives
  • TLF Filterability Limit Temperature
  • PE pour point
  • TLF additives polymers of ethylene and vinyl acetate and / or vinyl propionate
  • EVA EVP
  • TLF additives This type of additive, widely known to those skilled in the art, is systematically added to conventional medium distillates at the end of the refinery. These additive distillates are used as fuel for diesel engines or as heating fuel. Additional quantities of these additives can be added to the fuels sold in service stations, in particular to satisfy the so-called “Great Cold” specifications.
  • Document EP0857776 proposes using alkylphenol-aldehyde resins resulting from the condensation of alkylphenol and aldehyde in combination with ethylene / vinyl ester copolymers or terpolymers, to improve the fluidity of mineral oils.
  • Patent application WO 2008/006965 describes the use of a combination of a homopolymer obtained from an olefinic ester of carboxylic acid of 3 to 12 carbon atoms and a fatty alcohol comprising a chain of 16 carbon atoms and possibly an olefinic double bond and of a cold fluidizing additive (CFI) of EVA or EVP type, to increase the effectiveness of CFI additives by amplifying their effect on TLF.
  • CFI cold fluidizing additive
  • Patent application WO 2016/128379 describes the use, as a cold-keeping additive of a fuel or combustible, of a block copolymer comprising:
  • a block A consisting of a chain of structural units derived from one or more ⁇ , b-unsaturated acrylate or alkyl methacrylate monomers
  • a block B consisting of a chain of structural units derived from one or more a, b-unsaturated monomers containing at least one aromatic nucleus.
  • This additive is particularly useful as a TLF booster in association with a cold fluidizing additive (CFI).
  • CFI cold fluidizing additive
  • Another object of the cold-keeping additives is to ensure the dispersion of the paraffin crystals, so as to delay or prevent the sedimentation of such crystals and of avoid the formation of a layer rich in paraffins at the bottom of containers, tanks or storage tanks; these paraffin dispersant additives are called anti-sedimentation additives or WASA (acronym of the English term "Wax Anti-Settling Additive").
  • WASA anti-sedimentation additives
  • Modified alkylphenol-aldehyde resins have been described in document FR2969620 as an anti-sedimentation additive in combination with a TLF additive.
  • This need is particularly important for fuels or fuels comprising one or more paraffinic compounds, for example compounds containing n-alkyl, iso-alkyl or n-alkenyl groups exhibiting a tendency to crystallize at low temperature.
  • paraffinic compounds for example compounds containing n-alkyl, iso-alkyl or n-alkenyl groups exhibiting a tendency to crystallize at low temperature.
  • distillates used in fuels and fuels are increasingly produced from more complex refining operations than those resulting from direct petroleum distillation, and can originate in particular from cracking, hydrocracking, catalytic cracking and visbreaking processes.
  • the refiner tends to introduce into these fuels cuts that are more difficult to use, such as the heavier cuts resulting from cracking and visbreaking processes which are rich in long chain paraffins.
  • the present invention applies to fuels and combustibles containing not only conventional distillates such as those resulting from the direct distillation of crude oils, but also to bases obtained from other sources, such as those described above.
  • the aim of the present invention is to propose new additives and concentrates containing them which can advantageously be used as additives to improve the cold-resistance properties, in particular the cold-flow properties of these fuels or combustibles, during storage and / or their use at low temperature, typically less than 0 ° C.
  • the aim of the present invention is further to propose new additives for fuels and combustibles, and concentrates containing such additives, acting on the Filterability Limit Temperature (TLF), the pour point (PE), and delaying and / or preventing the sedimentation of crystals of hydrocarbon compounds, in particular paraffins.
  • TEZ Filterability Limit Temperature
  • PE pour point
  • Another object of the invention is to provide a fuel or fuel composition having improved cold-holding properties, in particular at temperatures below 0 ° C, preferably below -5 ° C.
  • the present invention thus relates to the use, to improve the cold-keeping properties of a fuel or fuel composition, of one or more copolymers comprising:
  • Ri represents a hydrogen atom or a methyl group
  • X represents -O-CO-, or -CO-O- or -NH-CO- or -CO-NH-, and
  • R2 represents a C1 to C24 alkyl group
  • R represents a substituted or unsubstituted imidazole ring.
  • the polymer defined above is used as an additive called “TLF booster”, that is to say in combination with a flow improvement additive or cold fluidizing additive (in English “cold flow improvers ”or CFI) which it improves performance.
  • TEZ booster a flow improvement additive or cold fluidizing additive
  • the subject of the invention is also an additive composition comprising such a copolymer in combination with at least one cold-keeping additive different from the copolymers according to the invention, as well as an additive concentrate containing such a composition.
  • the cold-keeping additive is preferably chosen from copolymers and terpolymers of ethylene and of vinyl ester (s) and / or acrylic (s), alone or as a mixture.
  • the invention also has for its object and a fuel or fuel composition, comprising:
  • At least one cut of hydrocarbons from one or more sources chosen from the group consisting of mineral (preferably petroleum), animal, vegetable and synthetic sources, and
  • said composition also comprises at least one cold-keeping additive different from the copolymers according to the invention defined above.
  • CN compound or group denotes a compound or group containing in its chemical structure N carbon atoms.
  • copolymer The copolymer:
  • the invention uses a copolymer, comprising at least one unit of formula (I) below:
  • Ri represents a hydrogen atom or a methyl group
  • X represents -O-CO-, or -CO-O- or -NH-CO- or -CO-NH-, and
  • R2 represents a C1 to C24 alkyl radical.
  • the group X of formula (I) is preferably the group -O- CO-.
  • the group X of formula (I) is chosen from: -CO-O- and -CO-NH-, it being understood that the group X is linked to the vinyl carbon by the carbon atom.
  • the group X of formula (I) is preferably the group -CO-O-
  • the group X is a group -CO-O-, X being linked to the vinyl carbon by the carbon atom.
  • the group R 2 of formula (I) is a C 1 to C 24 alkyl radical.
  • This alkyl radical can be linear or branched, cyclic or acyclic.
  • This alkyl radical can comprise a linear or branched part and a cyclic part.
  • the group R 2 of formula (I) is a linear or branched acyclic alkyl radical in C to C 1 4, preferably in Cs to C 1 4, more preferably still in C 1 2 to C 1 4.
  • alkyl groups such as octyl, decyl, dodecyl, ethyl-2-hexyl, isooctyl, isodecyl and isododecyl, alkyl groups containing C 1 4.
  • the group X is a group -CO-O-, X being connected to the vinyl carbon by the carbon atom, and the group R2 is a linear or branched Cs to C 1 acyclic alkyl radical 4, preferably in Cio to C 1 4, and more preferably still in C 1 2 to C 1 4.
  • the patterns according to this embodiment correspond to those derived from monomers chosen from acrylates and methacrylates alkyl group having a alklyle Cs to C 4, preferably Cio to C 14, more preferably still C12 to Ci 4.
  • the group R2 of formula (I) is a linear or branched acyclic alkyl radical in C14 to C24, preferably in C1 to C22, more preferably still in Cis to C22.
  • the group X is a group -CO-O-, X being linked to the vinyl carbon by the carbon atom, and the group R2 is an acyclic linear or branched C14 to C24 alkyl radical, preferably in CI ⁇ to C22, more preferably still in Cis to C22.
  • the units according to this embodiment correspond to those derived from monomers selected from acrylates and alkyl methacrylates having a alklyle group C14 to C24, preferably CI O to C 22, more preferably still C22 to Cis.
  • the copolymer used in the present invention also comprises at least one unit of formula (II) below:
  • R represents a substituted or unsubstituted imidazole ring.
  • the substituent (s) possibly present on the imidazole cycle (s) may be saturated or unsaturated, and may in particular be chosen from hydrocarbon, oxygenated, nitrogenous, halogenated substituents, etc.
  • the units of formula (II) come from one or more vinyl monomers carrying an R group as described above.
  • l-vinylimidazole or N-vinylimidazole:
  • the copolymer used in the present invention may or may not be crosslinked. Preferably, it is not crosslinked.
  • the copolymer used in the present invention can advantageously be a random copolymer, or a block copolymer. According to a particularly preferred embodiment, it is a random copolymer.
  • the copolymer according to the invention advantageously contains from 50 to 99 mol% of units of formula (I), preferably from 60 to
  • the copolymer according to the invention advantageously contains from 1 to 50 mol% of units of formula (II), preferably from 5 to 40 mol%, more preferably from 10 to 30 mol%, and better still from 10 to 25 % in moles.
  • the copolymer used in the present invention contains only units of formula (I) and units of formula (II).
  • the copolymer used in the present invention can be obtained by copolymerization of:
  • Ri, X and R 2 are as defined above, the preferred variants of Ri, X and R 2 according to formula (I) described above being also preferred variants of formula (IA), and
  • the monomer of formula (IA) is preferably chosen from vinyl alkyl esters having a C 1 to C 24 alkyl group, and more preferably from vinyl alkyl esters having a C 1 2 to C 1 4 or C 1 to C 22 alkyl group.
  • the alkyl radical of the vinyl ester is linear or branched, cyclic or acyclic, preferably acyclic.
  • vinyl ester alkyl monomers that may be mentioned, by way of nonlimiting example, vinyl octanoate, vinyl decanoate, vinyl dodecanoate, vinyl tetradecanoate, vinyl 2-ethylhexanoate.
  • the monomer of formula (IA) is typically chosen from alkyl acrylates and methacrylates having a C 1 to C 24 alkyl group, and more preferably from alkyl acrylates and methacrylates having a C 1 to C 14 or C 1 to C 22 alkyl group .
  • alkyl (meth) acrylates which may be used as monomers in the manufacture of the copolymer of the invention
  • the monomers of formula (IIA) are vinyl monomers carrying an R group as described above.
  • the polymer according to the invention were obtained from monomers different from those of formula (IA) and (IIA) above, insofar as the final copolymer corresponds to a polymer comprising units of formula (I) and units of formula (II) as defined above.
  • the polymer were obtained by polymerization of different monomers, followed by post-functionalization.
  • the units of formula (I) can be obtained from acrylic acid, by transesterification reaction.
  • the polymer according to the invention can be prepared according to any known method of polymerization.
  • the various techniques and conditions of polymerization and crosslinking are widely described in literature and fall within the general knowledge of those skilled in the art.
  • a polymerization is advantageously chosen from controlled radical polymerization; for example, by atomic transfer radical polymerization (ATRP in English “Atom Transfer Radical Polymerization”); radical polymerization with nitroxide (NMP in English “Nitroxide-mediated polymerization”); degenerative transfer processes (in English “degenerative transfer processes") such as degenerative iodine transfer polymerization (in English "ITRP- iodine transfer radical polymerization") or radical polymerization by reversible chain transfer by addition-fragmentation ( RAFT in English "Reversible Addition-Fragmentation Chain Transfer”); polymerizations derived from ATRP such as polymerizations using initiators for continuous regeneration of the activator (ICAR - Initiators for continuous activator regeneration) or using activators regenerated by electron transfer (ARGET in English "activators regenerated by electron transfer ”).
  • ATRP atomic transfer radical polymerization
  • NMP radical polymerization with nitroxide
  • degenerative transfer processes in English “degenerative
  • the copolymer according to the invention advantageously has a weight-average molar mass (Mw) of between 1,000 and 50,000 g. mol ⁇ 1 , more preferably between 1,000 and 20,000, even more preferably between 3,000 and 15,000 g. mol 1 .
  • the copolymer according to the invention advantageously has a number-average molar mass (Mn) of between 1,000 and 50,000 g. mol 1 , more preferably between 1,000 and 20,000, even more preferably between 2,000 and 10,000 g. mol 1 .
  • the number and weight average molar masses are measured by size exclusion chromatography (SEC in English “Size Exclusion Chromatography”).
  • the copolymer described above is used to improve the cold-keeping properties of a fuel or fuel composition, in particular, of a composition chosen from gas oils, biodiesels, gas oils of type B x and fuel oils , preferably, domestic fuel oils (FOD).
  • a fuel or fuel composition in particular, of a composition chosen from gas oils, biodiesels, gas oils of type B x and fuel oils , preferably, domestic fuel oils (FOD).
  • FOD domestic fuel oils
  • the fuel or fuel composition is as described below and advantageously comprises at least one section of hydrocarbons obtained from one or more sources chosen from the group consisting of mineral sources, preferably petroleum, animal sources , vegetable and synthetic.
  • said copolymer is used to improve the flow properties at low temperature of the fuel or fuel during its storage and / or its use at low temperature, by lowering its limit filterability temperature (or TLF, measured according to the NF standard).
  • TLF limit filterability temperature
  • EN 1 16 and / or its pour point or PE, measured according to standard ASTM D 7346
  • PE measured according to standard ASTM D 7346
  • TLF limit filterability temperature
  • the copolymer according to the invention can be used to delay or prevent the sedimentation of paraffin crystals and more particularly of n-alkanes, preferably, the n-alkanes containing at least 12 carbon atoms, more preferably at least 20 carbon atoms , even more preferably preferably at least 24.
  • the copolymer according to the invention is used as a TLF booster additive, that is to say in combination with at least one flow-improving additive or cold-thinning additive (in English “cold flow” improvers "or CFI).
  • the cold fluidizing additive (CFI) is preferably chosen from copolymers and terpolymers of ethylene and of vinyl ester (s) and / or acrylic (s), alone or as a mixture.
  • the copolymer according to the invention is used to amplify the fluidizing effect of the cold fluidizing additive, in particular by lowering the limit filterability temperature (TLF) and / or the pour point, and / or by delaying or preventing the sedimentation of crystals, such as those containing paraffins.
  • TLF limit filterability temperature
  • TLF booster This effect is usually called the “TLF booster” effect insofar as the presence of the copolymer according to the invention improves the fluidizing nature of the CFI additive.
  • This improvement is reflected, in particular, by a significant drop in the TLF of the fuel composition or fuel additivated with this combination compared to the same fuel composition or fuel additivated only with the additive CFI, at the same treatment rate.
  • a significant drop in TLF results in a decrease of at least 3 ° C in TLF according to standard NF EN 1 16.
  • the copolymer is used to amplify the fluidizing (flow) effect of the cold fluidizing additive (CFI) by improving the Limit of Filterability (TLF) of the fuel or fuel, the TLF being measured according to standard NF EN 1 16.
  • CFI cold fluidizing additive
  • TLF Limit of Filterability
  • the copolymer can be added to the fuels or combustibles within the refinery, and / or be incorporated downstream of the refinery, possibly, in mixture with other additives, in the form of an additive concentrate, also called according to the use "additive package".
  • the copolymer is advantageously used in fuel or fuel at a content of at least 0.0001% by weight, relative to the total weight of the fuel or fuel composition.
  • the content of said copolymer ranges from 0.0001 to 0.01% by weight, preferably from 0.0002 to 0.005% by weight, and better still from 0.0003 to 0.003% by weight, relative to the total weight of the fuel or fuel composition.
  • the subject of the invention is also an additive composition comprising a copolymer as described above, and one or more additive (s) for cold resistance different from the copolymers comprising formula (I) and units of formula (II) as described above.
  • the cold-keeping additive (s) are chosen from cold-thinning additives (s), anti-sedimentation additives and / or paraffin dispersants, and mixtures of these additives .
  • the cold-thinning additives can in particular be chosen from copolymers and terpolymers of ethylene and of vinyl ester (s) and / or acrylic (s), alone or as a mixture.
  • copolymers of ethylene and of an unsaturated ester such as ethylene / vinyl acetate (EVA), ethylene / vinyl propionate (EVP), ethylene / vinyl ethanoate (EVE) copolymers.
  • EVA ethylene / vinyl acetate
  • EVE ethylene / vinyl ethanoate
  • EMMA ethylene / methyl methacrylate
  • Mention may also be made of terpolymers of ethylene, vinyl acetate and another vinyl ester, for example vinyl neodecanoate.
  • the composition contains at least one cold-thinning additive (CFI) chosen from copolymers of ethylene and of vinyl ester (s), alone or as a mixture, in particular ethylene / vinyl acetate (EVA), ethylene vinyl propionate copolymers (TEU) and terpolymers of ethylene, vinyl acetate and another vinyl ester; more preferably ethylene / vinyl acetate copolymers (EVA) and their mixtures with a terpolymer of ethylene, vinyl acetate and another vinyl ester, such as in particular vinyl neodecanoate.
  • CFI cold-thinning additive
  • the weight ratio between the content of copolymer (s) according to the invention on the one hand, and the content of copolymer (s) of ethylene and of vinyl ester (s) of on the other hand is advantageously included in the range from 0.01: 100 to 20: 100, preferably from 0.1: 100 to 10: 100, and better still from 0.5:
  • a particularly preferred weight ratio is 1: 100 ⁇ 10%.
  • the anti-sedimentation additives and / or paraffin dispersants can be in particular, but not limited to, chosen from the group consisting of (meth) acrylic acid / alkyl (meth) acrylate copolymers amidified by a polyamine, polyamine alkenyl succinimides, phthalamic acid derivatives and double chain fatty amines; optionally grafted alkylphenol resins.
  • WASA paraffin dispersants
  • the particularly preferred anti-sedimentation additives and / or paraffin dispersants are chosen from alkylphenol resins and alkylphenol resins grafted, for example, by functional groups such as polyamines.
  • the additive composition can also comprise one or more other additives commonly used in fuels or combustibles, different from the copolymer according to the invention and the cold-keeping additives described above.
  • the additive composition can typically include one or more other additives chosen from detergents, anti-corrosion agents, dispersants, demulsifiers, biocides, reodorants, procetane additives, friction modifiers, lubricant additives or oiliness additives, combustion aid agents (catalytic combustion and soot promoters), antiwear agents and / or agents modifying conductivity.
  • additives chosen from detergents, anti-corrosion agents, dispersants, demulsifiers, biocides, reodorants, procetane additives, friction modifiers, lubricant additives or oiliness additives, combustion aid agents (catalytic combustion and soot promoters), antiwear agents and / or agents modifying conductivity.
  • procetane additives in particular (but not limited to) selected from alkyl nitrates, preferably 2-ethyl hexyl nitrate, aryl peroxides, preferably benzyl peroxide, and alkyl peroxides, preferably ter-butyl peroxide;
  • anti-foam additives in particular (but not limited to) chosen from polysiloxanes, oxyalkylated polysiloxanes, and fatty acid amides derived from vegetable or animal oils. Examples of such additives are given in EP861882, EP663000, EP736590;
  • detergent and / or anti-corrosion additives in particular (but not limited to) chosen from the group consisting of amines, succinimides, alkenyl succinimides, polyalkylamines, polyalkyl polyamines, polyetheramines, quaternary ammonium salts and triazole derivatives; examples of such additives are given in the following documents: EP0938535, US2012 / 00101 12 and W02012 / 004300. It is also advantageously possible to use block copolymers formed from at least one polar unit and one apolar unit, such as for example those described in patent application FR 1761700 in the name of the Applicant;
  • the additive composition can advantageously comprise from 0.1 to 50% by weight of copolymer as described above, relative to the total weight of the additive composition.
  • the present invention also relates to an additive concentrate comprising an additive composition as described above, in admixture with an organic liquid.
  • the organic liquid is advantageously inert with respect to the constituents of the additive composition, and miscible with fuels or combustibles, in particular those from one or more sources chosen from the group consisting of mineral sources, preferably petroleum, animal, vegetable and synthetic.
  • the organic liquid is preferably chosen from aromatic hydrocarbon solvents such as the solvent sold under the name "SOLVESSO", alcohols, ethers and other oxygenated compounds, and paraffinic solvents such as hexane, pentane or isoparaffins, only or mixed.
  • aromatic hydrocarbon solvents such as the solvent sold under the name "SOLVESSO”
  • alcohols, ethers and other oxygenated compounds such as hexane, pentane or isoparaffins, only or mixed.
  • paraffinic solvents such as hexane, pentane or isoparaffins, only or mixed.
  • the invention also relates to a fuel or fuel composition, comprising:
  • the mineral sources are preferably petroleum.
  • the fuel or fuel composition according to the invention advantageously comprises said copolymer (s) in a content of at least 0.0001% by weight, relative to the total weight of the fuel or fuel composition.
  • the content of copolymer (s) ranges from 0.0001 to 0.01% by weight, preferably from 0.0002 to 0.005% by weight, and better still from 0.0003 to 0.003% by weight, relative the total weight of the fuel or fuel composition.
  • said composition also comprises at least one cold-keeping additive, chosen from cold-thinning additives (CEI) and anti-sedimentation additives and / or paraffin dispersants (WASA), different (s) copolymers according to the invention comprising units of formula (I) and units of formula (II).
  • cold-keeping additive chosen from cold-thinning additives (CEI) and anti-sedimentation additives and / or paraffin dispersants (WASA), different (s) copolymers according to the invention comprising units of formula (I) and units of formula (II).
  • CEI cold-thinning additives
  • WASA paraffin dispersants
  • the composition contains advantageously at least 20 ppm, preferably at least 50 ppm, advantageously between 20 and 5000 ppm, more preferably between 50 and 1000 ppm in total of cold-keeping additive (s).
  • the fuels or fuels can be chosen from liquid hydrocarbon fuels or fuels, alone or as a mixture.
  • Fuels or liquid hydrocarbon fuels include in particular distillais with a boiling temperature of between 100 and 500 ° C.
  • These distillates can for example be chosen from distillates obtained by direct distillation of crude hydrocarbons, vacuum distillates, hydrotreated distillates, distillates from catalytic cracking and / or hydrocracking of vacuum distillates, distillates resulting from ARDS-type conversion processes (by desulfurization of atmospheric residue) and / or visbreaking, the distillates resulting from the recovery of Fischer Tropsch cuts, the distillates resulting from the BTL (biomass to liquid) conversion of plant and / or animal biomass, taken alone or in combination, and / or biodiesels of animal and / or vegetable origin and / or oils and / or esters of vegetable and / or animal oils.
  • the sulfur content of fuels is preferably less than 5000 ppm, preferably less than 500 ppm, and more preferably less than 50 ppm, or even less than 10 ppm, and advantageously without sulfur.
  • the fuel or fuel is preferably chosen from gas oils, biodiesel, type B x gas oils and fuel oils, preferably domestic fuel oils (FOD).
  • FOD domestic fuel oils
  • type B x diesel for diesel engine is meant a diesel fuel which contains x% (v / v) of vegetable or animal oil esters (including used cooking oils) transformed by a process chemical called transesterification reacting this oil with an alcohol in order to obtain fatty acid esters (EAG).
  • EAG fatty acid esters
  • EMAG methyl esters of fatty acids
  • EEAG ethyl esters of fatty acids
  • B followed by a number x ranging from 0 to 100, which indicates the percentage of EAG contained in diesel.
  • a B99 contains 99% of EAG and 1% of middle distillates of fossil origin, B20, 20% of EAG and 80% of middle distillates of fossil origin, etc.
  • diesel fuels of type Bo which do not contain oxygenated compounds
  • diesel fuels of type Bx which contain x% (v / v) of vegetable or animal oil esters or fatty acids, most often methyl esters (EMHV or EMAG).
  • EAG methyl esters
  • the fuel or combustible can also contain hydrogenated vegetable oils, known to a person skilled in the art under the name HVO (from the English “hydrogenated vegetable oil”) or HDRD (from the English “hydrogenation-derived renewable diesel”) .
  • HVO from the English “hydrogenated vegetable oil”
  • HDRD from the English “hydrogenation-derived renewable diesel”
  • the fuel or fuel is chosen from gas oils, biodiesel and gas oils of type B x , hydrogenated vegetable oils (HVO), and their mixtures.
  • the fuel or combustible composition can also contain one or more additional additives, different from the copolymers and cold-keeping additives described above.
  • additional additives can in particular be chosen from detergents, anti-corrosion agents, dispersants, demulsifiers, anti-foaming agents, biocides, reodorants, procetane additives, friction modifiers, lubricant additives or additives oiliness, combustion aid agents (catalytic combustion and soot promoters), antiwear agents and / or agents modifying conductivity.
  • Additional additives can generally be present in an amount ranging from 50 to 1000 ppm (each).
  • a method for improving the cold-keeping properties of a fuel or combustible composition comprises the successive steps of:
  • an additive composition (s) most suitable for the fuel composition or fuel to be treated as well as treatment rate necessary to reach a given specification relating to the cold-keeping properties for the specific fuel or fuel composition, said additive composition (s) comprising at least one copolymer according to the invention and, optionally, at least one additive cold resistance, chosen from cold-thinning additives and paraffin dispersants and / or anti-sedimentation additives, different from the copolymers comprising units of formula (I) and units of formula (II);
  • step b) treatment of the fuel or combustible composition with the quantity determined in step a) of said additive composition (s).
  • the process for improving the cold resistance properties is typically intended for a fuel or combustible composition as described above.
  • Step a) is carried out according to any known process and is part of current practice in the field of additivation of fuels or combustibles. This step involves defining a characteristic representative of the cold-keeping properties of the fuel or fuel, for example the characteristics of flow at low temperature, setting the target value and then determining the improvement which is required to reach the specification.
  • a specification relating to the resistance to cold can be a European specification for Great Cold defining, in particular, a maximum TLF according to standard NF EN 1 16.
  • the determination of the quantity of composition of additive (s) to be added to the composition of fuel or combustible to reach the specification will be carried out typically by comparison with the composition of fuel or combustible without said composition of additive (s).
  • the amount of copolymer necessary to treat the composition of fuel or combustible can vary according to the nature and the origin of the fuel or combustible, in particular according to the rate and the nature of the paraffinic compounds which it contains. The nature and origin of the fuel or combustible can therefore also be a factor to take into account for step a).
  • the process for improving the cold resistance properties may also include an additional step after step b) of verifying the target reached and / or of adjusting the treatment rate with the additive composition (s).
  • Monomer 2 1 -vinylimidazole (NVI) (CAS 1072-63-5)
  • Control agent Trithiocarbonate (CAS 558484-21 -2)
  • the flask containing the reaction medium is heated and once the target temperature is reached (70 ° C), the initiator solution is introduced to start the polymerization.
  • the reaction is left for 6 h at 70 ° C.
  • the heating is switched off and the medium is exposed to air in order to stop the polymerization.
  • the solvent is then evaporated under vacuum in order to recover the polymer.
  • the block copolymers of the various examples were synthesized according to this protocol.
  • the amount of the monomers was adapted in each case.
  • the polymers were characterized by steric exclusion chromatography (SEC in English “Size Exclusion Chromatography”), in order to determine the composition and the molar mass of each copolymer.
  • SEC steric exclusion chromatography
  • the characteristics of the polymers synthesized according to the protocols described above are collated in Table I below:
  • Example 2 Evaluation of the Cold Resistance Performance
  • the polymers described in Example 1 were tested as cold resistance additives in a fuel composition G of the diesel fuel type which is particularly difficult to process, and the characteristics of which are detailed in the table. II below:
  • the diesel fuel composition G was added with a package containing the following two standard commercial cold-thinning additives (CFI additives), in Solvesso 150 solvent:
  • additive CP7956C sold by the company Total Additives Special Fuels, and which is an ethylene / vinyl acetate (EVA) copolymer;
  • Dodiflow additive D4134 sold by the company Clariant, and which is an ethylene / vinyl acetate / vinyl neodecanoate terpolymer.
  • This package was incorporated into the diesel composition G at a content of 300 ppm by weight of active material (ie 150 ppm by weight of each additive) relative to the total weight of the diesel composition.

Abstract

Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles La présente invention a pour objet l'utilisation, pour améliorer les propriétés de tenue à froid d'une composition de carburant ou de combustible, d'un ou plusieurs copolymères comprenant : - au moins un motif de formule (I) : dans laquelle R1 représente un atome d'hydrogène ou un groupement méthyle; X représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-; R2 représente un groupe alkyle en C6 à C24; et au moins un motif de formule (II) : dans laquelle R représente un cycle imidazole substitué ou non substitué. L'invention concerne également des compositions d'additifs contenant un tel polymère, ainsi que des compositions de carburant et de combustible additivées avec de tels polymères, de préférence en combinaison avec un additif fluidifiant à froid (CFI) ou un additif anti -sédimentation de paraffines (WASA).

Description

Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles
La présente invention concerne l’utilisation de copolymères particuliers pour améliorer les propriétés de tenue à froid des carburants et des combustibles lors de leur stockage et/ou leur utilisation à basse température.
La présente invention concerne également des compositions d’additifs (ou « packages d’additifs ») contenant ces copolymères, ainsi que des compositions de carburant et de combustible additivées avec de tels copolymères, de préférence en combinaison avec au moins un additif fluidifiant à froid (CFI) et/ou au moins un additif anti sédimentation de paraffines (WASA). ETAT DE L'ART ANTERIEUR
Les carburants ou combustibles contenant des composés paraffiniques, notamment des composés contenant des groupements n- alkyle, iso-alkyle ou n-alcényle telles que des cires paraffiniques, sont connus pour présenter des propriétés d'écoulement détériorées à basse température, typiquement en dessous de 0°C. En particulier, on sait que les distillais moyens obtenus par distillation à partir d'huiles brutes d'origine pétrolière comme le gazole ou le fioul domestique, contiennent différentes quantités de n-alcanes ou n-paraffines selon leur provenance. Ces composés ont tendance à cristalliser à basse température, bouchant les tuyaux, canalisations, pompes et filtres, par exemple dans les circuits du carburant des véhicules automobiles. En hiver ou dans des conditions d'utilisation des carburants ou combustibles à température inférieure à 0°C, le phénomène de cristallisation de ces composés peut conduire à la diminution des propriétés d’écoulement des carburants ou combustibles et, par conséquent engendrer des difficultés lors de leur transport, de leur stockage et/ou de leur utilisation. L'opérabilité à froid des carburants ou combustibles est une propriété très importante, notamment pour assurer le démarrage des moteurs à froid. Si des paraffines sont cristallisées au fond du réservoir, elles peuvent être entraînées au démarrage dans le circuit de carburant et colmater notamment les filtres et préfiltres disposés en amont des systèmes d'injection (pompe et inj ecteurs). De même, pour le stockage des fiouls domestiques, si des paraffines précipitent en fond de cuve, elles peuvent être entraînées et obstruer les conduites en amont de la pompe et du système d’alimentation de la chaudière (gicleur et filtre).
Ces problèmes sont bien connus dans le domaine des carburants et combustibles, et de nombreux additifs ou mélanges d'additifs ont été proposés et commercialisés pour réduire la taille des cristaux de paraffines et/ou changer leur forme et/ou les empêcher de se former. Une taille de cristaux la plus faible possible est préférée car elle minimise les risques de bouchage ou de colmatage des filtres.
Les agents d’amélioration d’écoulement habituels dits fluidifiants à froid (en anglais « cold flow improvers » ou CFI) sont en général des co- et ter-polymères d'éthylène et d'ester(s) vinylique(s) et/ou acrylique(s), employés seuls ou en mélange. Ces additifs fluidifiants à froid (CFI), destinés à abaisser la Température Limite de Filtrabilité (TLF) et le point d’écoulement (PE), inhibent la croissance des cristaux à basse température en favorisant la dispersion des cristaux de paraffine ; ce sont par exemple les polymères d’éthylène et d'acétate de vinyle et/ou de propionate de vinyle (EVA ou EVP), aussi communément appelés additifs de TLF. Ce type d'additifs, très largement connu par l’homme du métier, est systématiquement ajouté aux distillais moyens classiques en sortie de raffinerie. Ces distillais additivés sont utilisés comme carburant pour moteur Diesel ou comme combustible de chauffage. Des quantités supplémentaires de ces additifs peuvent être ajoutées aux carburants vendus en stations service notamment pour satisfaire les spécifications dites Grand Froid.
Pour améliorer à la fois la TLF et le point d’écoulement des distillais, il est connu d’ajouter à ces additifs CFI des additifs supplémentaires ou « boosters » ayant la fonction d'agir en combinaison avec les additifs CFI de manière à en augmenter l’efficacité. L'art antérieur décrit abondamment de telles combinaisons d’additifs.
A titre d’exemple, on peut citer le brevet US 3 275427 décrivant un distillât moyen de coupe de distillation comprise entre 177 et 400°C contenant un additif constitué de 90 à 10 % massique d'un copolymère d'éthylène comprenant de 10 à 30% de motifs acétate de vinyle de masse molaire en poids comprise entre 1000 et 3000 g. mol 1 et de 10 à 90 % massique d’un polyacrylate de lauryle et/ou d’un polyméthacrylate de lauryle de masse molaire en poids variant de 760 à 100.000 g. mol 1.
Le document EP0857776 propose d’employer des résines alkylphénol-aldéhyde issues de la condensation d’alkylphénol et d’aldéhyde en association avec des copolymères ou terpolymères éthylène /ester vinylique, pour améliorer la fluidité d’huiles minérales.
La demande de brevet WO 2008/006965 décrit l’utilisation d’une combinaison d’un homopolymère obtenu à partir d'un ester oléfinique d’acide carboxylique de 3 à 12 atomes de carbone et d’un alcool gras comprenant une chaîne de plus de 16 atomes de carbone et éventuellement une double liaison oléfinique et d’un additif fluidifiant à froid (CFI) de type EVA ou EVP, pour augmenter l’efficacité des additifs CFI en amplifiant leur effet sur la TLF.
La demande de brevet WO 2016/128379 décrit l’utilisation, comme additif de tenue à froid d’un carburant ou combustible, d’un copolymère à blocs comprenant :
(i) un bloc A consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères a,b-insaturés acrylate ou méthacrylate d’alkyle,
(ii) un bloc B consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères a,b-insaturés contenant au moins un noyau aromatique.
Cet additif est notamment utile comme booster de TLF en association avec un additif fluidifiant à froid (CFI).
Outre l'amélioration de l'écoulement de la composition de carburant ou combustible, un autre but des additifs de tenue à froid est d’assurer la dispersion des cristaux de paraffines, de manière à retarder ou empêcher la sédimentation de tels cristaux et d’éviter la formation d'une couche riche en paraffines au fond des récipients, cuves ou réservoirs de stockage ; ces additifs dispersants de paraffines sont dénommés additifs anti-sédimentation ou WASA (acronyme du terme anglais « Wax Anti-Settling Additive »).
Des résines alkylphénol-aldéhyde modifiées ont été décrites dans le document FR2969620 comme additif anti-sédimentation en combinaison avec un additif de TLF.
Du fait de la diversification des sources de carburants et de combustibles, il existe toujours un besoin de trouver de nouveaux additifs pour améliorer les propriétés des carburants ou combustibles à basse température également dénommées propriétés de tenue à froid, et notamment leurs propriétés d’écoulement lors de leur stockage et/ou leur utilisation à basse température.
Ce besoin est particulièrement important pour les carburants ou combustibles comprenant un ou plusieurs composés paraffiniques, par exemple des composés contenant des groupements n-alkyle, iso-alkyle ou n-alcényle présentant une tendance à la cristallisation à basse température.
Notamment, les distillais utilisés dans les carburants et combustibles sont de plus en plus issus d’opérations de raffinage plus complexes que ceux issus de la distillation directe du pétrole, et peuvent provenir notamment des procédés de craquage, d’hydrocraquage, de craquage catalytique et des procédés de viscoréduction. Avec la demande croissante en carburants Diesel, le raffineur a tendance à introduire dans ces carburants des coupes plus difficilement exploitables, comme les coupes les plus lourdes issues des procédés de craquage et de viscoréduction qui sont riches en paraffines à longues chaînes.
En outre, des distillais synthétiques issus de la transformation du gaz tels que ceux issus du procédé Fischer Tropsch, ainsi que des distillats résultant du traitement de biomasses d'origine végétale ou animale, comme notamment le NexBTL et des distillats comprenant des ester d'huiles végétales ou animales sont apparus sur le marché, et constituent une nouvelle gamme de produits utilisables comme base pour formuler des carburants et ou des fiouls domestiques. Ces produits comprenant également des hydrocarbures à chaînes paraffiniques longues.
De plus, on a constaté l'arrivée de nouveaux pétroles bruts sur le marché, beaucoup plus riches en paraffines que ceux communément raffinés et dont la température de filtrabilité des distillats issus de distillation directe était difficilement améliorée par les additifs de filtrabilité classique au même titre que ceux précédemment cités.
On a constaté que les propriétés de tenue à froid des distillats obtenus par combinaison des anciennes bases et de ces nouvelles sources était difficilement améliorée par l'ajout d'additifs classiques de filtrabilité, entre autres du fait de la présence importante de paraffines à longue chaîne et de la distribution complexe en paraffines dans leur composition. On a pu noter en effet dans ces nouvelles combinaisons de distillats, des distributions discontinues en paraffines, en présence desquelles les additifs de filtrabilité connus ne sont pas toujours suffisamment efficaces.
Il existe donc un besoin d'adapter les additifs de tenue à froid à ces nouveaux types de bases pour carburants et combustibles, considérés comme particulièrement difficiles à traiter.
La présente invention s'applique aux carburants et combustibles contenant non seulement des distillats classiques tels que ceux issus de la distillation directe des pétroles bruts, mais également aux bases issues d’autres sources, telles que celles décrites ci-avant.
Ainsi, le but de la présente invention est de proposer de nouveaux additifs et des concentrés les contenant qui peuvent avantageusement être utilisés comme additifs pour améliorer les propriétés de tenue à froid, en particulier les propriétés d’écoulement à froid de ces carburants ou combustibles, lors de leur stockage et/ou leur utilisation à basse température, typiquement inférieure à 0°C .
Le but de la présente invention est en outre de proposer de nouveaux additifs pour carburants et combustibles, et des concentrés contenant de tels additifs, agissant sur la Température Limite de Filtrabilité (TLF), le point d’écoulement (PE), et retardant et/ou empêchant la sédimentation de cristaux de composés hydrocarbonés, notamment des paraffines.
Enfin, un autre objet de l’invention est de proposer une composition de carburant ou de combustible ayant des propriétés de tenue à froid améliorées, en particulier à des températures inférieures à 0°C, de préférence inférieures à -5°C.
OBJET DE L’INVENTION
La demanderesse a maintenant découvert que des copolymères particuliers, tels que décrits ci-après, possédaient des propriétés inattendues pour améliorer la tenue à froid des compositions de carburants et de combustibles, y compris celles qui sont particulièrement difficiles à traiter.
La présente invention a ainsi pour objet l’utilisation, pour améliorer les propriétés de tenue à froid d’une composition de carburant ou de combustible, d’un ou plusieurs copolymères comprenant :
- au moins un motif de formule (I) suivante :
Figure imgf000007_0001
dans laquelle
Ri représente un atome d’hydrogène ou un groupement méthyle,
X représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, et
R2 représente un groupe alkyle en Ce à C 24 ; et
- au moins un motif de formule (II) suivante :
Figure imgf000008_0001
dans laquelle R représente un cycle imidazole substitué ou non substitué.
Selon un mode de réalisation préféré, le polymère défini ci- avant est employé comme additif dit « booster de TLF », c’est à dire en combinaison avec un additif d’amélioration d’écoulement ou additif fluidifiant à froid (en anglais « cold flow improvers » ou CFI) dont il améliore les performances.
L'invention a également pour objet une composition d’additifs comprenant un tel copolymère en association avec au moins un additif de tenue à froid différent des copolymères selon l’invention, ainsi qu’un concentré d’additifs contenant une telle composition. L’additif de tenue à froid est de préférence choisi parmi les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s), seuls ou en mélange.
L’invention a également pour obj et une composition de carburant ou de combustible, comprenant :
( 1 ) au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales (de préférence le pétrole), animales, végétales et synthétiques, et
(2) au moins un copolymère tel que défini ci-avant.
Selon un mode de réalisation préféré, ladite composition comprend en outre au moins un additif de tenue à froid différent des copolymères selon l’invention définis ci-avant.
D’autres objets, caractéristiques, aspects et avantages de l’invention apparaîtront encore plus clairement à la lecture de la description et des exemples qui suivent.
Dans ce qui va suivre, et à moins d’une autre indication, les bornes d’un domaine de valeurs sont comprises dans ce domaine, notamment dans les expressions « compris entre » et « allant de ... à
. .. » .
Par ailleurs, les expressions « au moins un » et « au moins » utilisées dans la présente description sont respectivement équivalentes aux expressions « un ou plusieurs » et « supérieur ou égal ».
Enfin, de manière connue en soi, on désigne par composé ou groupe en CN un composé ou un groupe contenant dans sa structure chimique N atomes de carbone. DE SCRIPTION DETAILLEE
Le copolymère:
L’invention met en œuvre un copolymère, comprenant au moins un motif de formule (I) suivante :
Figure imgf000009_0001
dans laquelle
Ri représente un atome d’hydrogène ou un groupement méthyle,
X représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, et
R2 représente un radical alkyle en Ce à C24.
Le groupement X de la formule (I) est choisi parmi :
- X = -O-CO-, étant entendu que X est alors relié au carbone vinylique par l’atome d’oxygène ;
- X = -CO-O-, étant entendu que X est alors relié au carbone vinylique par l’atome de carbone ;
- X = -NH-CO-, étant entendu que X est alors relié au carbone vinylique par l’atome d’azote ; et
- X = -CO-NH-, étant entendu que X est alors relié au carbone vinylique par l’atome de carbone. Selon un premier mode de réalisation, le groupement X de la formule (I) est choisi parmi : -O-CO- et -NH-CO-, étant entendu que le groupement X= -O-CO- est relié au carbone vinylique par l’atome d’oxygène et que le groupement X= -NH-CO- est relié au carbone vinylique par l’atome d’azote. Dans ce mode de réalisation, le groupement X de la formule (I) est de préférence le groupement -O- CO-.
Selon un deuxième mode de réalisation, le groupement X de la formule (I) est choisi parmi : -CO-O- et -CO-NH-, étant entendu que le groupement X est relié au carbone vinylique par l’atome de carbone. Dans ce mode de réalisation, le groupement X de la formule (I) est de préférence le groupement -CO-O-
Selon un mode de réalisation particulièrement préféré, le groupement X est un groupement -CO-O-, X étant relié au carbone vinylique par l’atome de carbone.
Le groupement R2 de la formule (I) est un radical alkyle en Ce à C 24 . Ce radical alkyle peut être linéaire ou ramifié, cyclique ou acyclique. Ce radical alkyle peut comprendre une partie linéaire ou ramifiée et une partie cyclique.
Selon un premier mode de réalisation, le groupement R2 de la formule (I) est un radical alkyle acyclique linéaire ou ramifié en C à C 1 4 , de préférence en Cs à C 1 4 , plus préférentiellement encore en C 1 2 à C 1 4 .
On peut citer par exemple, de façon non limitative, les groupements alkyles tels que l’octyle, le décyle, le dodécyle, l’éthyl- 2-hexyle, l’isooctyle, l’isodécyle et l’isododécyle, les groupements alkyle en C 1 4 .
Selon un mode de réalisation particulièrement préféré, le groupement X est un groupement -CO-O-, X étant relié au carbone vinylique par l’atome de carbone, et le groupement R2 est un radical alkyle acyclique linéaire ou ramifié en Cs à C 1 4 , de préférence en Cio à C 1 4 , et plus préférentiellement encore en C 1 2 à C 1 4 .
Les motifs selon ce mode de réalisation correspondent à ceux issus de monomères choisis parmi les acrylates et les méthacrylates d’alkyle ayant un groupe alklyle en Cs à Ci4, de préférence en Cio à C 14 , et plus préférentiellement encore en C12 à Ci4.
Selon un second mode de réalisation, le groupement R2 de la formule (I) est un radical alkyle acyclique linéaire ou ramifié en C14 à C24, de préférence en CI à C22, plus préférentiellement encore en Cis à C22.
Selon un mode de réalisation particulièrement préféré, le groupement X est un groupement -CO-O-, X étant relié au carbone vinylique par l’atome de carbone, et le groupement R2 est un radical alkyle acyclique linéaire ou ramifié en C14 à C24, de préférence en CIÔ à C22, plus préférentiellement encore en Cis à C22.
Les motifs selon ce mode de réalisation correspondent à ceux issus de monomères choisis parmi les acrylates et les méthacrylates d’alkyle ayant un groupe alklyle en C14 à C24, de préférence en CIÔ à C 22, plus préférentiellement encore en Cis à C22.
Le copolymère employé dans la présente invention comprend également au moins un motif de formule (II) suivante :
Figure imgf000011_0001
dans laquelle
R représente un cycle imidazole substitué ou non substitué.
Le ou les substituant(s) éventuellement présent(s) sur le ou les cycle(s) imidazole peuvent être saturés ou insaturés, et être notamment choisis parmi les substituants hydrocarbonés, oxygénés, azotés, halogénés,...
Selon un mode de réalisation, les motifs de formule (II) sont issus d’un ou plusieurs monomères vinyliques portant un groupe R tel que décrit ci-avant.
On peut citer à titre d’exemple de monomère particulièrement préféré le l-vinylimidazole (ou N-vinylimidazole):
Figure imgf000012_0001
Le copolymère employé dans la présente invention peut être réticulé ou non. De préférence, il n’est pas réticulé.
Le copolymère employé dans la présente invention peut être avantageusement un copolymère statistique, ou un copolymère à blocs. Selon un mode de réalisation particulièrement préféré, il s’agit d’un copolymère statistique.
Le copolymère selon l’invention contient avantageusement de 50 à 99% en moles de motifs de formule (I), de préférence de 60 à
95% en moles, plus préférentiellement de 70 à 90% en moles, et mieux encore de 75 à 90% en moles.
Le copolymère selon l’invention contient avantageusement de 1 à 50% en moles de motifs de formule (II), de préférence de 5 à 40% en moles, plus préférentiellement de 10 à 30% en moles, et mieux encore de 10 à 25% en moles.
De préférence, le copolymère employé dans la présente invention contient uniquement des motifs de formule (I) et des motifs de formule (II).
Le copolymère employé dans la présente invention peut être obtenu par copolymérisation de :
au moins un monomère répondant à la formule suivante (IA) :
Figure imgf000012_0002
dans laquelle
Ri , X et R2 sont tels que définis ci-dessus, les variantes préférées de Ri , X et R2 selon la formule (I) décrites ci-dessus étant également des variantes préférées de la formule (IA), et
au moins un monomère répondant à la formule suivante (IIA) :
Figure imgf000013_0001
dans laquelle R est tel que défini ci-avant, les variantes préférées de R selon la formule (II) décrites ci-dessus étant également des variantes préférées de la formule (IIA)
Lorsque le groupement X du monomère de formule (IA) est le groupement -O-CO-, étant entendu que le groupement -O-CO- est relié au carbone vinylique par l’atome d’oxygène, le monomère de formule (IA) est, de préférence, choisi parmi les alkyl esters vinyliques ayant un groupe alkyle en Ce à C 24 , et plus préférentiellement parmi les alkyl esters vinyliques ayant un groupe alkyle en C 1 2 à C 1 4 ou en Cis à C 22 . Le radical alkyle de l’alkyl ester vinylique est linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique.
Parmi les monomères ester vinylique d’alkyle, on peut citer à titre d’exemple non limitatif l’octanoate de vinyle, le décanoate de vinyle, le dodécanoate de vinyle, le tétradécanoate de vinyle, le 2- éthylhexanoate de vinyle.
Lorsque le groupement X du monomère de formule (IA) est le groupement -CO-O-, étant entendu que le groupement -CO-O- est relié au carbone vinylique par l’atome de carbone, le monomère de formule (IA) est typiquement choisi parmi les acrylates et les méthacrylates d’alkyle ayant un groupe alkyle en Ce à C 24 , et plus préférentiellement parmi les acrylates et les méthacrylates d’alkyle ayant un groupe alkyle en C 1 2 à C 14 ou en Cis à C 22 .
Parmi les (méth)acrylates d’alkyle susceptibles d’être utilisés comme monomères dans la fabrication du copolymère de l’invention, on peut citer les acrylates d’alkyle en C à C 24 et les méthacrylates d’alkyle en C à C 24 , et notamment, à titre d’exemples non limitatifs : l’acrylate de n-octyle, le méthacrylate de n-octyle, l’acrylate de n- décyle, le méthacrylate de n-décyle, l’acrylate de n-dodécyle, le méthacrylate de n-dodécyle, l’acrylate d’éthyl-2-hexyle, le méthacrylate d’éthyl-2-hexyle, l’acrylate d’isooctyle, le méthacrylate d’isooctyle, l’acrylate d’isodécyle, le méthacrylate d’isodécyle, les acrylates d’alkyle en C 1 2 à C 1 4 et les méthacrylates d’alkyle en C 1 2 à C 1 4 , les acrylates d’alkyle en C is à C 22 et les méthacrylates d’alkyle en Cis à C 22 . On préfère tout particulièrement employer les acrylates d’alkyle en C 12 à C 1 4 et les méthacrylates d’alkyle en C 1 2 à C 1 4 .
Les monomères de formule (IIA) sont des monomères vinyliques portant un groupe R tel que décrit ci-avant.
On peut citer à titre de monomère de formule (IIA) particulièrement préféré le 1 -vinylimidazole (ou N-vinylimidazole) de formule:
Figure imgf000014_0001
Il est entendu que l’on ne sortirait pas de l’invention si l’on obtenait le polymère selon l’invention à partir de monomères différents de ceux de formule (IA) et (IIA) ci-avant, dans la mesure où le copolymère final correspond à un polymère comprenant des motifs de formule (I) et des motifs de formule (II) tels que définis ci-avant. Par exemple, on ne sortirait pas de l’invention, si l’on obtenait le polymère par polymérisation de monomères différents, suivie d’une post-fonctionnalisation. Par exemple, les motifs de formule (I) peuvent être obtenus à partir de l’acide acrylique, par réaction de transestérification.
Le polymère selon l’invention peut être préparé selon tout procédé connu de polymérisation. Les différentes techniques et conditions de polymérisation et de réticulation sont largement décrites dans la littérature et relèvent des connaissances générales de l’homme de l’art.
Dans le cas d’un copolymère statistique, on peut procéder notamment par polymérisation radicalaire classique : on procède généralement par mélange des différents monomères dans un solvant approprié, et la copolymérisation est amorcée au moyen d’un agent de polymérisation radicalaire.
Dans le cas d’un copolymère à blocs, on peut procéder notamment par polymérisation séquencée et contrôlée. Une telle polymérisation est, avantageusement, choisie parmi la polymérisation radicalaire contrôlée ; par exemple, par polymérisation radicalaire par transfert d’atome (ATRP en anglais « Atom Transfer Radical Polymerization») ; la polymérisation radicalaire par le nitroxyde (NMP en anglais « Nitroxide-mediated polymerization ») ; les procédés de transfert dégénératif (en anglais « degenerative transfer processes ») tels que la polymérisation par transfert d'iode dégénérative (en anglais « ITRP- iodine transfer radical polymerization ») ou la polymérisation radicalaire par transfert de chaîne réversible par addition-fragmentation (RAFT en anglais « Réversible Addition-Fragmentation Chain Transfer ») ; les polymérisations dérivées de l’ATRP telles que les polymérisations utilisant des initiateurs pour la régénération continue de l’activateur (ICAR -Initiators for continuous activator régénération) ou utilisant des activateurs régénérés par transfert d’électron (ARGET en anglais « activators regenerated by électron transfer »).
Le copolymère selon l’invention a, avantageusement, une masse molaire moyenne en poids (Mw) comprise entre 1 000 et 50 000 g. mol·1 , plus préférentiellement entre 1 000 et 20 000, encore plus préférentiellement entre 3 000 et 15 000 g. mol 1.
Le copolymère selon l’invention a, avantageusement, une masse molaire moyenne en nombre (Mn) comprise entre 1 000 et 50 000 g. mol 1 , plus préférentiellement entre 1 000 et 20 000, encore plus préférentiellement entre 2 000 et 10 000 g. mol 1.
Les masses molaires moyennes en nombre et en poids sont mesurées par chromatographie d'exclusion stérique (SEC en anglais «Size Exclusion Chromatography »).
L’utilisation:
Le copolymère décrit ci-avant est utilisé pour améliorer les propriétés de tenue à froid d’une composition de carburant ou de combustible, en particulier, d’une composition choisie parmi les gazoles, les biodiesels, les gazoles de type Bx et les fiouls, de préférence, les fiouls domestiques (FOD).
La composition de carburant ou de combustible est telle que décrite ci-après et comprend avantageusement au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, de préférence le pétrole, les sources animales, végétales et synthétiques.
Avantageusement, ledit copolymère est utilisé pour améliorer les propriétés d’écoulement à basse température du carburant ou du combustible lors de son stockage et/ou son utilisation à basse température, en abaissant sa température limite de filtrabilité (ou TLF, mesurée selon la norme NF EN 1 16) et/ou son point d’écoulement (ou PE, mesuré selon la norme ASTM D 7346) et/ou en retardant ou en empêchant la sédimentation de cristaux, et de préférence en abaissant sa température limite de filtrabilité (TLF, mesurée selon la norme NF EN 1 16).
Le copolymère selon l’invention peut être utilisé pour retarder ou empêcher la sédimentation des cristaux de paraffines et plus particulièrement de n-alcanes, de préférence, les n-alcanes contenant au moins 12 atomes de carbone, plus préférentiellement au moins 20 atomes de carbone, encore plus préférentiellement de préférence au moins 24.
Selon un mode de réalisation préféré, le copolymère selon l’invention est employé comme additif booster de TLF, c’est à dire en combinaison avec au moins un additif d’amélioration d’écoulement ou additif fluidifiant à froid (en anglais « cold flow improvers » ou CFI). L’additif fluidifiant à froid (CFI) est, de préférence, choisi parmi les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s), seuls ou en mélange.
Dans ce mode de réalisation, le copolymère selon l’invention est utilisé pour amplifier l’effet fluidifiant de l’additif fluidifiant à froid, notamment en abaissant la température limite de filtrabilité (TLF) et/ou le point d’écoulement, et/ou en retardant ou en empêchant la sédimentation de cristaux, tels que ceux contenant des paraffines.
Cet effet est usuellement dénommé effet « booster de TLF » dans la mesure où la présence du copolymère selon l’invention améliore le caractère fluidifiant de l’additif CFI. Cette amélioration se traduit, en particulier, par une baisse significative de la TLF de la composition de carburant ou combustible additivée avec cette association comparativement à la même composition de carburant ou combustible additivée uniquement avec l’additif CFI, au même taux de traitement. Généralement, une baisse significative de la TLF se traduit par une diminution d’au moins 3 °C de la TLF selon la norme NF EN 1 16.
Selon un mode de réalisation particulièrement préféré, le copolymère est utilisé pour amplifier l’effet fluidifiant (d’écoulement) de l’additif fluidifiant à froid (CFI) en améliorant la Température Limite de Filtrabilité (TLF) du carburant ou combustible, la TLF étant mesurée selon la norme NF EN 1 16.
Le copolymère peut être ajouté dans les carburants ou combustibles au sein de la raffinerie, et/ou être incorporé en aval de la raffinerie, éventuellement, en mélange avec d'autres additifs, sous forme d’un concentré d’additif, encore appelé selon l’usage « package d'additif » .
Le copolymère est avantageusement utilisé dans le carburant ou combustible à une teneur d’au moins 0,0001 % en poids, par rapport au poids total de la composition de carburant ou de combustible.
De préférence, la teneur dudit copolymère va de 0,0001 à 0,01 % en poids, de préférence de 0,0002 à 0,005 % en poids, et mieux encore de 0,0003 à 0,003% en poids, par rapport au poids total de la composition de carburant ou de combustible.
La composition d’additifs : L'invention a également pour objet une composition d’additifs comprenant un copolymère tel que décrit ci-avant, et un ou plusieurs additif(s) de tenue à froid différent(s) des copolymères comprenant des motifs de formule (I) et des motifs de formule (II) tels que décrits ci-avant.
Selon un mode de réalisation préféré, le ou les additif(s) de tenue à froid sont choisis parmi les additifs fluidifiant(s) à froid, les additifs d'anti-sédimentation et/ou dispersants de paraffines, et les mélanges de ces additifs.
Les additifs fluidifiants à froid (CFI) peuvent être notamment choisis parmi les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s), seuls ou en mélange. A titre d’exemple, on peut citer les copolymères d'éthylène et d'ester insaturé, tels que les copolymères éthylène/acétate de vinyle (EVA), éthylène/propionate de vinyle (EVP), éthylène/éthanoate de vinyle (EVE), éthylène/méthacrylate de méthyle (EMMA), et éthylène/fumarate d'alkyle décrits, par exemple, dans les documents US3048479, US3627838, US3790359, US3961961 et EP261957. On peut également citer les terpolymères d’éthylène, d’acétate de vinyle et d’un autre ester vinylique, par exemple le néodécanoate de vinyle.
Selon un mode de réalisation préféré, la composition contient au moins un additif fluidifiant à froid (CFI) choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s), seuls ou en mélange, en particulier les copolymères éthylène/acétate de vinyle (EVA), le copolymères éthylène/propionate de vinyle (EVP) et les terpolymères d’éthylène, d’acétate de vinyle et d’un autre ester vinylique ; plus préférentiellement les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’acétate de vinyle et d’un autre ester vinylique, tel que notamment le néodécanoate de vinyle. Dans ce mode de réalisation, le ratio pondéral entre la teneur en copolymère(s) selon l’invention d’une part, et la teneur en copolymère(s) d’éthylène et d’ester(s) vinylique(s) d’autre part, est avantageusement compris dans la gamme allant de 0,01 : 100 à 20 : 100 , de préférence de 0, 1 : 100 à 10 : 100, et mieux encore de 0,5 :
100 à 5 : 100. Un ratio pondéral particulièrement préféré est de 1 : 100 ± 10% .
Les additifs d'anti-sédimentation et/ou dispersants de paraffines (WASA) peuvent être notamment, mais non limitativement, choisis dans le groupe constitué par les copolymères acide (méth)acrylique/(méth)acrylate d’alkyle amidifiés par une polyamine, les alkénylsuccinimides de polyamine, les dérivés d'acide phtalamique et d'amine grasse à double chaîne; des résines alkylphénol éventuellement greffées. Des exemples de tels additifs sont donnés dans les documents suivants : EP261959, EP59333 1 , EP674689, EP327423 , EP5 12889, EP832172; US2005/022363 1 ; US5998530; W093/14178.
Les additifs d'anti-sédimentation et/ou dispersants de paraffines (WASA) particulièrement préférés sont choisis parmi les résines alkylphénol et les résines alkylphénol greffées par exemple par des groupes fonctionnels tels que des polyamines.
La composition d’additifs peut également comprendre un ou plusieurs autres additifs couramment utilisés dans les carburants ou combustibles, différents du copolymère selon l’invention et des additifs de tenue à froid décrits précédemment.
La composition d’additifs peut, typiquement, comprendre un ou plusieurs autres additifs choisis parmi les détergents, les agents anti corrosion, les dispersants, les désémulsifiants, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents anti-usure et/ou les agents modifiant la conductivité.
Parmi ces additifs, on peut citer en particulier :
a) les additifs procétane, notamment (mais non limitativement) choisis parmi les nitrates d'alkyle, de préférence le nitrate de 2-éthyl hexyle, les peroxydes d'aryle, de préférence le peroxyde de benzyle, et les peroxydes d'alkyle, de préférence le peroxyde de ter-butyle;
b) les additifs anti-mousse, notamment (mais non limitativement) choisis parmi les polysiloxanes, les polysiloxanes oxyalkylés, et les amides d'acides gras issus d'huiles végétales ou animales. Des exemples de tels additifs sont donnés dans EP861882, EP663000, EP736590 ;
c) les additifs détergents et/ou anti-corrosion, notamment (mais non limitativement) choisis dans le groupe constitué par les amines, les succinimides, les alkénylsuccinimides, les polyalkylamines, les polyalkyles polyamines, les polyétheramines, les sels d’ammonium quaternaire et les dérivés du triazole ; des exemples de tels additifs sont donnés dans les documents suivants : EP0938535 , US2012/00101 12 et W02012/004300. On peut également avantageusement employer les copolymères blocs formés d’au moins un motif polaire et un motif apolaire, tels que par exemple ceux décrits dans la demande de brevet FR 1761700 au nom de la Demanderesse ;
d) les additifs de lubrifiance ou agents anti-usure, notamment
(mais non limitativement) choisis dans le groupe constitué par les acides gras et leurs dérivés ester ou amide, notamment le monooléate de glycérol, et les dérivés d'acides carboxyliques mono- et polycycliques. Des exemples de tels additifs sont donnés dans les documents suivants : EP680506, EP860494, WO98/04656, EP915944, FR2772783 , FR2772784.
La composition d’additifs peut, avantageusement, comprendre de 0, 1 à 50% en poids de copolymère tel que décrit précédemment, par rapport au poids total de la composition d’additifs.
La présente invention a également pour objet un concentré d’additifs comprenant une composition d’additifs telle que décrite ci- avant, en mélange avec un liquide organique. Le liquide organique est avantageusement inerte vis-à-vis des constituants de la composition d’additifs, et miscible aux carburants ou combustibles, notamment ceux issus d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérale, de préférence le pétrole, animale, végétale et synthétique.
Le liquide organique est de préférence choisi parmi les solvants hydrocarbonés aromatiques tels que le solvant commercialisé sous le nom « SOLVESSO », les alcools, les éthers et autres composés oxygénés, et les solvants paraffiniques tels que l’hexane, pentane ou les isoparaffines, seuls ou en mélange. La composition de carburant ou de combustible :
L’invention concerne également une composition de carburant ou de combustible, comprenant :
( 1 ) au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques, et
(2) au moins un copolymère tel que défini ci-avant.
Les sources minérales sont de préférence le pétrole.
La composition de carburant ou de combustible selon l’invention comprend avantageusement ledit ou lesdits copolymère(s) en une teneur d’au moins 0,0001 % en poids, par rapport au poids total de la composition de carburant ou de combustible. De préférence, la teneur en copolymère(s) va de 0,0001 à 0,01 % en poids, de préférence de 0,0002 à 0,005% en poids, et mieux encore de 0,0003 à 0,003% en poids, par rapport au poids total de la composition de carburant ou de combustible.
Selon un mode de réalisation préféré, ladite composition comprend en outre au moins un additif de tenue à froid, choisi parmi les additifs fluidifiants à froid (CEI) et les additifs d'anti- sédimentation et/ou dispersants de paraffines (WASA), différent(s) des copolymères selon l’invention comprenant des motifs de formule (I) et des motifs de formule (II). De tels additifs sont avantageusement choisis parmi ceux décrits ci-avant.
Dans ce mode de réalisation, la composition contient avantageusement au moins 20 ppm, de préférence au moins 50 ppm, avantageusement entre 20 et 5000 ppm, plus préférentiellement entre 50 et 1 000 ppm au total d’additif(s) de tenue à froid.
Les carburants ou combustibles peuvent être choisis parmi les carburants ou combustibles hydrocarbonés liquides, seuls ou en mélange. Les carburants ou combustibles hydrocarbonés liquides comprennent notamment des distillais moyens de température d'ébullition comprise entre 100 et 500°C . Ces distillats peuvent par exemple être choisis parmi les distillats obtenus par distillation directe d'hydrocarbures bruts, les distillats sous vide, les distillats hydrotraités, les distillats issus du craquage catalytique et/ou de l'hydrocraquage de distillats sous vide, les distillats résultant de procédés de conversion type ARDS (par désulfuration de résidu atmosphérique) et/ou de viscoréduction, les distillats issus de la valorisation des coupes Fischer Tropsch, les distillats résultant de la conversion BTL (biomass to liquid) de la biomasse végétale et/ou animale, prise seule ou en combinaison, et/ou les biodiesels d'origine animale et/ou végétale et/ou les huiles et/ou esters d'huiles végétales et/ou animales.
La teneur en soufre des carburants ou combustibles est, de préférence, inférieure à 5000 ppm, de préférence inférieure à 500 ppm, et plus préférentiellement inférieure à 50 ppm, voire même inférieure à 10 ppm, et avantageusement sans soufre.
Le carburant ou combustible est, de préférence, choisi parmi les gazoles, les biodiesel, les gazoles de type Bx et les fiouls, de préférence, les fiouls domestiques (FOD).
On entend par gazole de type Bx pour moteur Diesel (moteur à compression), un carburant gazole qui contient x% (v/v) d’esters d’huiles végétales ou animale (y compris huiles de cuisson usagées) transformés par un procédé chimique appelé transestérification faisant réagir cette huile avec un alcool afin d'obtenir des esters d’acide gras (EAG). Avec le méthanol et l’éthanol, on obtient respectivement des esters méthyliques d’acides gras (EMAG) et des esters éthyliques d’acides gras (EEAG). La lettre "B" suivie par un nombre x allant de 0 à 100, qui indique le pourcentage d’EAG contenu dans le gazole. Ainsi, un B99 contient 99% de EAG et 1 % de distillais moyens d’origine fossile, le B20, 20% de EAG et 80% de distillats moyens d’origine fossile etc... On distingue donc les carburants gazoles de type Bo qui ne contiennent pas de composés oxygénés, des carburants gazoles de type Bx qui contiennent x% (v/v) d’esters d’huiles végétales ou animales ou d’acides gras, le plus souvent esters méthyliques (EMHV ou EMAG). Lorsque l’EAG est utilisé seul dans les moteurs, on désigne le carburant par le terme B 100.
Le carburant ou combustible peut également contenir des huiles végétales hydrogénées, connues de l’homme du métier sous l’appellation HVO (de l’anglais « hydrogenated vegetable oil ») ou HDRD (de l’anglais « hydrogenation-derived renewable diesel »).
Selon un développement particulier, le carburant ou combustible est choisi parmi les gazoles, les biodiesel et les gazoles de type Bx, les huiles végétales hydrogénées (HVO), et leurs mélanges.
La composition de carburant ou combustible peut également contenir un ou plusieurs additifs additionnels, différents des copolymères et des additifs de tenue à froid décrits ci-avant. De tels additifs peuvent être notamment choisis parmi les détergents, les agents anti-corrosion, les dispersants, les désémulsifiants, les agents anti-mousse, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents anti-usure et/ou les agents modifiant la conductivité.
Ces additifs additionnels peuvent être en général présents en quantité allant de 50 à 1 000 ppm (chacun).
Selon un autre mode de réalisation de l’invention, un procédé d’amélioration des propriétés de tenue à froid d’une composition de carburant ou combustible comprend les étapes successives de :
a) détermination d’une composition d’additif(s) la plus adaptée à la composition de carburant ou combustible à traiter ainsi que du taux de traitement nécessaire pour atteindre une spécification donnée relative aux propriétés de tenue à froid pour la composition de carburant ou combustible spécifique, ladite composition d’additif(s) comprenant au moins un copolymère selon l’invention et, en option, au moins additif de tenue à froid, choisi parmi les additifs fluidifiants à froid et les additifs d'anti-sédimentation et/ou dispersants de paraffines, différent(s) des copolymères comprenant des motifs de formule (I) et des motifs de formule (II);
b) traitement de la composition de carburant ou combustible avec la quantité déterminée à l’étape a) de ladite composition d’additif(s).
Le procédé d’amélioration des propriétés de tenue à froid est typiquement destiné à une composition de carburant ou combustible telle que décrite ci-avant.
L’étape a) est réalisée selon tout procédé connu et relève de la pratique courante dans le domaine de l’additivation des carburants ou combustibles. Cette étape implique de définir une caractéristique représentative des propriétés de tenue à froid du carburant ou combustible, par exemple les caractéristiques d’écoulement à basse température, de fixer la valeur cible puis de déterminer l’amélioration qui est requise pour atteindre la spécification.
Par exemple, une spécification relative à la tenue à froid peut être une spécification européenne Grand Froid définissant, en particulier, une TLF maximale selon la norme NF EN 1 16. La détermination de la quantité de composition d’additif(s) à ajouter à la composition de carburant ou combustible pour atteindre la spécification sera réalisée typiquement par comparaison avec la composition de carburant ou combustible sans ladite composition d’additif(s).
La quantité de copolymère nécessaire pour traiter la composition de carburant ou combustible peut varier en fonction de la nature et de l’origine du carburant ou combustible, en particulier en fonction du taux et de la nature des composés paraffiniques qu’il contient. La nature et l’origine du carburant ou combustible peut donc être également un facteur à prendre en compte pour l’étape a).
Le procédé d’amélioration des propriétés de tenue à froid peut également comprendre une étape supplémentaire après l’étape b) de vérification de la cible atteinte et/ou d’ajustement du taux de traitement avec la composition d’additif(s).
Les exemples ci-après sont donnés à titre d’illustration de l’invention, et ne sauraient être interprétés de manière à en limiter la portée.
EXEMPLES
Exemple 1 : Synthèse de différents polymères Composés de départ :
- Monomère 1 : Acrylate d’alkyle en C 1 2/C 1 4 (A 12/ 14) (CAS 2156-
97-0 et 21643-42-5)
Monomère 2 : 1 -vinylimidazole (NVI) (CAS 1072-63-5)
Amorceur : 2,2’-Azobis-(2-methylpropionitrile) (AIBN) (CAS 78- 67- 1 )
- Agent de transfert : Butanethiol (CAS 109-79-5)
Agent de contrôle : Trithiocarbonate (CAS 558484-21 -2)
- Solvant : l ,4-Dioxane (CAS 123 -91 - 1 )
Protocole de synthèse d’un copolymère statistique acrylate d’alkyle C 1 2/C 1 4 et N-vinylimidazole avec un ratio molaire 80/20 :
8,84g (35 ,4 mmol) d’acrylate d’alkyle en C 1 2/C 1 4 , 0,832g (8,84 mmol) de 1 -vinylimidazole, 0, l 46g ( 1 ,62 mmol) de butanethiol et 15 , 23g ( 14,7 mL) de l ,4-Dioxane sont introduits dans un ballon de 25 mL équipé d’une entrée et d’une sortie d’azote. Le mélange est ensuite agité et dégazé avec un flux d’azote pendant 30 minutes. En parallèle, une solution d’AIBN (0,097g ; 0,57 mmol) dans du l ,4-Dioxane ( 1 mL) est également préparé et mise à dégazer pendant 30 minutes. Le ballon contenant le milieu réactionnel est mis à chauffer et une fois la température cible atteinte (70°C), la solution d’amorceur est introduite pour démarrer la polymérisation. La réaction est laissée pendant 6h à 70°C . En fin de réaction, le chauffage est coupé et le milieu est exposé à l’air afin d’arrêter la polymérisation. Le solvant est ensuite évaporé sous vide afin de récupérer le polymère.
Les polymères statistiques des différents exemples dont les caractéristiques figurent dans le tableau I ci-après ont été synthétisés suivant ce protocole. La quantité et la nature des monomères ont été adaptées dans chaque cas.
Protocole de synthèse d’un copolymère à blocs acrylate d’alkyle
C 1 2/C 1 4 et N-vinylimidazole avec un ratio molaire 80/20
Synthèse du bloc 1 :
8,5g (34 mmol) d’acrylate d’alkyle en C 1 2/C 1 4 , 0,329g (0,94 mmol) de trithiocarbonate et 9,0g de l ,4-Dioxane sont introduits dans un ballon de 25 mL équipé d’une entrée et d’une sortie d’azote. Le mélange est ensuite agité et dégazé avec un flux d’azote pendant 30 minutes. En parallèle, une solution d’AIBN (0,0 l 5 g ; 0,094 mmol) dans du 1 ,4- Dioxane ( 1 mL) est également préparée et mise à dégazer pendant 30 minutes. Le ballon contenant le milieu réactionnel est mis à chauffer et une fois la température cible atteinte (70°C), la solution d’amorceur est introduite pour démarrer la polymérisation. La réaction est laissée à 70°C jusqu’à ce que la conversion en acrylate d’alkyle en C 1 2/C 1 4 soit supérieure à 95%.
Synthèse du bloc 2 :
0,795g (8 ,46 mmol) de 1 -vinylimidazole sont introduits au milieu réactionnel issu de la synthèse du bloc 1 , et le mélange est agité et dégazé avec un flux d’azote pendant 30 minutes. En parallèle, une nouvelle solution d’AIBN (0,0 l 5g ; 0,094 mmol) est préparée dans du l ,4-Dioxane et mise à dégazer pendant 30 minutes. La solution d’AIBN est ensuite ajoutée au milieu réactionnel pour redémarrer la polymérisation. La réaction est laissée pendant 6h à 70°C. En fin de réaction, le chauffage est coupé et le milieu est exposé à l’air afin d’arrêter la polymérisation. Le solvant est ensuite évaporé sous vide afin de récupérer le polymère. Les copolymères à blocs des différents exemples dont les caractéristiques figurent dans le tableau I ci-après ont été synthétisés suivant ce protocole. La quantité des monomères a été adaptée dans chaque cas. Les polymères ont été caractérisés par chromatographie d'exclusion stérique (SEC en anglais «Size Exclusion Chromatography »), afin de déterminer la composition et la masse molaire de chaque copolymère. Les caractéristiques des polymères synthétisés selon les protocoles décrits ci-avant sont rassemblées dans le tableau I ci- dessous :
Figure imgf000028_0001
Exemple 2 : Evaluation des performances de tenue à froid Les polymères décrits dans l’exemple 1 ont été testés comme additifs de tenue à froid dans une composition G de carburant de type gazole particulièrement difficile à traiter, et dont les caractéristiques sont détaillées dans le tableau II ci-dessous :
Figure imgf000029_0001
La composition de gazole G a été additivée avec un package contenant les deux additif commerciaux classiques fluidifiants à froid (additifs CFI) suivants, dans du solvant Solvesso 150 :
- 0,5 % en poids d’additif CP7956C commercialisé par la société Total Additifs Carburants Spéciaux, et qui est un copolymère éthylène / acétate de vinyle (EVA) ;
- 0,5% en poids d’additif Dodiflow D4134 commercialisé par la société Clariant, et qui est un terpolymère éthylène / acétate de vinyle / néodécanoate de vinyle.
Ce package a été incorporé dans la composition de gazole G à une teneur de 300 ppm en poids de matière active (soit 150 ppm en poids de chaque additif) par rapport au poids total de la composition de gazole.
On a ainsi obtenu la composition de gazole additivée G l . Celle-ci présente une Température limite de filtrabilité (TLF, norme EN 1 16) de -6°C.
Les performances comme additifs de tenue à froid de chacun des polymères de l’exemple 1 ont été testées, en évaluant leur aptitude à abaisser la température limite de filtrabilité (TFL) de la composition de gazole additivée G l .
Chaque polymère a été ajouté à une teneur de 3 ppm en poids (0,0003% en poids) à la composition G l , pour donner le gazole G2, dont on a ensuite mesuré la TLF, conformément à la norme EN 1 16.
Les résultats obtenus figurent dans le tableau III ci-dessous :
Figure imgf000031_0001
Les résultats ci-dessus montrent que l’utilisation des copolymères selon l’invention conduit à un abaissement significatif de la TLF, allant de 7 à 9 points pour les copolymères statistiques, et de 5 à 6 points pour les copolymères à blocs.

Claims

REVENDICATIONS
1 . Utilisation, pour améliorer les propriétés de tenue à froid d’une composition de carburant ou de combustible, d’un ou plusieurs copolymères comprenant :
- au moins un motif de formule (I) suivante :
Figure imgf000033_0001
dans laquelle
Ri représente un atome d’hydrogène ou un groupement méthyle,
X représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, et
R2 représente un groupe alkyle en Ce à C 24 ; et
- au moins un motif de formule (II) suivante :
Figure imgf000033_0002
dans laquelle R représente un cycle imidazole substitué ou non substitué.
2. Utilisation selon la revendication 1 , caractérisée en ce que le groupement X de la formule (I) est choisi parmi : -CO-O- et -CO-NH-, étant entendu que le groupement X est relié au carbone vinylique par l’atome de carbone, et de préférence le groupement X de la formule (I) est le groupement -CO-O-.
3. Utilisation selon l’une quelconque des revendications 1 à 2, caractérisée en ce que le groupement R2 de la formule (I) est un radical alkyle acyclique linéaire ou ramifié en Cs à C 24 , de préférence en C 8 à C 1 4 ou en Ci6 à C 22 , plus préférentiellement encore en C 1 2 à C 1 4 ou en C is à C22 et mieux encore en C is à C22.
4. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que le motif de formule (II) est le N- vinylimidazole.
5. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que ledit copolymère contient de 1 à 50% en moles de motifs de formule (II), de préférence de 5 à 40% en moles, plus préférentiellement de 10 à 30% en moles, et mieux encore de 10 à 25% en moles.
6. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que ledit copolymère contient uniquement des motifs de formule (I) et des motifs de formule (II).
7. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que ledit copolymère est un copolymère statistique, ou un copolymère à blocs, et de préférence ledit copolymère est un copolymère statistique.
8. Utilisation d’un copolymère selon l’une quelconque des revendications précédentes, pour abaisser la température limite de filtrabilité mesurée selon la norme NF EN 1 16 et/ou le point d’écoulement mesuré selon la norme ASTM D 7346, et/ou pour retarder ou en empêcher la sédimentation de cristaux, et de préférence pour abaisser le température limite de filtrabilité mesurée selon la norme NF EN 1 16.
9. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que ledit copolymère est employé en combinaison avec au moins un additif fluidifiant à froid, de préférence choisi parmi les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s), seuls ou en mélange.
10. Composition d’additifs comprenant un copolymère tel que défini dans l’une quelconque des revendications 1 à 7, et un ou plusieurs additif(s) de tenue à froid différent(s) des copolymères comprenant des motifs de formule (I) et des motifs de formule (II), de préférence choisis parmi les additifs fluidifiant(s) à froid, les additifs d'anti-sédimentation et/ou dispersants de paraffines, et les mélanges de ces additifs.
1 1 . Composition d’additifs selon la revendication précédente, caractérisée en ce qu’elle contient au moins un additif fluidifiant à froid choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s), seuls ou en mélange; de préférence choisi parmi les copolymères éthylène/acétate de vinyle (EVA), le copolymères éthylène/propionate de vinyle (EVP) et les terpolymères d’éthylène, d’acétate de vinyle et d’un autre ester vinylique ; plus préférentiellement choisi parmi les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’acétate de vinyle et d’un autre ester vinylique, tel que notamment le néodécanoate de vinyle.
12. Composition d’additifs selon la revendication précédente, caractérisée en ce que le ratio pondéral entre la teneur en copolymère(s) selon l’invention d’une part, et la teneur en copolymère(s) d’éthylène et d’ester(s) vinylique(s) d’autre part, est compris dans la gamme allant de 0,01 : 100 à 20 : 100, de préférence de 0, 1 : 100 à 10 : 100, et mieux encore de 0,5 : 100 à 5 : 100.
13. Composition de carburant ou de combustible, comprenant :
( 1 ) au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques, et
(2) au moins un copolymère tel que défini dans l’une quelconque des revendications 1 à 7.
14. Composition selon la revendication précédente, caractérisée en ce qu’elle contient le ou les copolymère(s) en une teneur d’au moins 0,0001 % en poids, de préférence en une teneur allant de 0,0001 à 0,01 % en poids, de préférence de 0,0002 à 0,005% en poids, et mieux encore de 0,0003 à 0,003% en poids, par rapport au poids total de la composition.
15. Composition selon l’une des revendications 13 et 14, caractérisée en ce qu’elle comprend en outre au moins un additif fluidifiant à froid choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s), seuls ou en mélange; de préférence choisi parmi les copolymères éthylène/acétate de vinyle (EVA), le copolymères éthylène/propionate de vinyle (EVP) et les terpolymères d’éthylène, d’acétate de vinyle et d’un autre ester vinylique ; plus préférentiellement choisis parmi les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’acétate de vinyle et d’un autre ester vinylique, tel que notamment le néodécanoate de vinyle.
PCT/EP2019/072598 2018-08-28 2019-08-23 Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles WO2020043618A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19755939.6A EP3844250B1 (fr) 2018-08-28 2019-08-23 Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles
US17/272,049 US20210348073A1 (en) 2018-08-28 2019-08-23 Use of specific copolymers for improving the cold properties of fuels or combustibles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857716 2018-08-28
FR1857716A FR3085384B1 (fr) 2018-08-28 2018-08-28 Utilisation de copolymeres specifiques pour ameliorer les proprietes a froid de carburants ou combustibles

Publications (1)

Publication Number Publication Date
WO2020043618A1 true WO2020043618A1 (fr) 2020-03-05

Family

ID=65201180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/072598 WO2020043618A1 (fr) 2018-08-28 2019-08-23 Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles

Country Status (4)

Country Link
US (1) US20210348073A1 (fr)
EP (1) EP3844250B1 (fr)
FR (1) FR3085384B1 (fr)
WO (1) WO2020043618A1 (fr)

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048479A (en) 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3275427A (en) 1963-12-17 1966-09-27 Exxon Research Engineering Co Middle distillate fuel composition
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US3790359A (en) 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
US3961961A (en) 1972-11-20 1976-06-08 Minnesota Mining And Manufacturing Company Positive or negative developable photosensitive composition
EP0120512A2 (fr) * 1983-03-18 1984-10-03 Shell Internationale Researchmaatschappij B.V. Une huile brute ou huile combustible contenant de la paraffine comprenant un agent qui abaisse la température d'écoulement
EP0261959A2 (fr) 1986-09-24 1988-03-30 Exxon Chemical Patents Inc. Additifs pour mazout
EP0261957A2 (fr) 1986-09-24 1988-03-30 Exxon Chemical Patents Inc. Compositions chimiques et usage comme additifs de combustibles
EP0327423A1 (fr) 1988-02-03 1989-08-09 Institut Français du Pétrole Polymères dérivés de polyesters insaturés par addition de composés à fonction amine et leur utilisation comme additifs de modification des propriétés à froid de distillats moyens de pétrole
EP0448166A2 (fr) * 1990-03-21 1991-09-25 Shell Internationale Researchmaatschappij B.V. Compositions de polymère
EP0479353A1 (fr) * 1990-09-25 1992-04-08 Shell Internationale Researchmaatschappij B.V. Compositions d'huile hydrocarburée
EP0512889A1 (fr) 1991-05-02 1992-11-11 Elf France Polymères amino substitués et leur utilisation comme additifs de modification des propriétés à froid de distillats moyens d'hydrocarbures
WO1993014178A1 (fr) 1992-01-14 1993-07-22 Exxon Chemical Patents Inc. Additifs et compositions du type combustible
EP0593331A1 (fr) 1992-10-09 1994-04-20 Institut Francais Du Petrole Phosphates d'amines comportant un cycle imide terminal, leur préparation et leur utilisation comme additifs pour carburants moteurs
EP0663000A1 (fr) 1992-09-22 1995-07-19 Exxon Chemical Patents Inc Additifs pour liquides organiques.
EP0674689A1 (fr) 1992-12-17 1995-10-04 Inst Francais Du Petrole Composition de distillat moyen de petrole renfermant un agent limitant la vitesse de sedimentation des paraffines.
EP0680506A1 (fr) 1993-01-21 1995-11-08 Exxon Chemical Patents Inc Composition de fuel-oil.
WO1998004656A1 (fr) 1996-07-31 1998-02-05 Elf Antar France Carburant pour moteurs diesel a faible teneur en soufre
EP0832172A1 (fr) 1995-06-13 1998-04-01 Elf Antar France Additif bifonctionnel de tenue a froid des carburants et composition de carburant
US5747616A (en) * 1993-10-02 1998-05-05 Basf Aktiengesellschaft Ethylene-based copolymers and their use as flow improvers in mineral oil middle distillates
EP0857776A1 (fr) 1997-01-07 1998-08-12 Clariant GmbH Amélioration de la fluidité d'huiles minérales et de distillates d'huiles minérales par l'utilisation de résines alkylphénol-aldéhyde
EP0860494A1 (fr) 1997-02-26 1998-08-26 The Lubrizol Corporation Esters dérivés d'huiles végétales utilisés comme additifs pour combustibles
EP0861882A1 (fr) 1997-02-26 1998-09-02 Tonen Corporation Composition d'huile combustible pour motors diesel
FR2772784A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
FR2772783A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
EP0938535A1 (fr) 1996-09-18 1999-09-01 Société Anonyme dite : ELF ANTAR FRANCE Additif detergent et anti-corrosion pour carburants et composition de carburants
US20050223631A1 (en) 2004-04-07 2005-10-13 Graham Jackson Fuel oil compositions
WO2008006965A2 (fr) 2006-07-10 2008-01-17 Total Raffinage Marketing Utilisation de composes revelateurs d'efficacite des additifs de filtrabilite dans des distillats hydrocarbones, et composition synergique les contenant
US20120010112A1 (en) 2010-07-06 2012-01-12 Basf Se Acid-free quaternized nitrogen compounds and use thereof as additives in fuels and lubricants
WO2012004300A1 (fr) 2010-07-06 2012-01-12 Basf Se Composés azotés quaternisés exempts d'acide et utilisation desdits composés comme additifs pour carburants ou pour lubrifiants
FR2969620A1 (fr) 2010-12-23 2012-06-29 Total Raffinage Marketing Resines alkylphenol-aldehyde modifiees, leur utilisation comme additifs ameliorant les proprietes a froid de carburants et combustibles hydrocarbones liquides
WO2016128379A1 (fr) 2015-02-11 2016-08-18 Total Marketing Services Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9222458D0 (en) * 1992-10-26 1992-12-09 Exxon Chemical Patents Inc Oil additives and compositions
CN101691508B (zh) * 2009-10-20 2012-10-03 济南开发区星火科学技术研究院 一种柴油低温流动性改进剂及其制备方法
FR3045658A1 (fr) * 2015-12-22 2017-06-23 Total Marketing Services Additif detergent pour carburant

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048479A (en) 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3275427A (en) 1963-12-17 1966-09-27 Exxon Research Engineering Co Middle distillate fuel composition
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US3790359A (en) 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
US3961961A (en) 1972-11-20 1976-06-08 Minnesota Mining And Manufacturing Company Positive or negative developable photosensitive composition
EP0120512A2 (fr) * 1983-03-18 1984-10-03 Shell Internationale Researchmaatschappij B.V. Une huile brute ou huile combustible contenant de la paraffine comprenant un agent qui abaisse la température d'écoulement
EP0261959A2 (fr) 1986-09-24 1988-03-30 Exxon Chemical Patents Inc. Additifs pour mazout
EP0261957A2 (fr) 1986-09-24 1988-03-30 Exxon Chemical Patents Inc. Compositions chimiques et usage comme additifs de combustibles
EP0327423A1 (fr) 1988-02-03 1989-08-09 Institut Français du Pétrole Polymères dérivés de polyesters insaturés par addition de composés à fonction amine et leur utilisation comme additifs de modification des propriétés à froid de distillats moyens de pétrole
EP0448166A2 (fr) * 1990-03-21 1991-09-25 Shell Internationale Researchmaatschappij B.V. Compositions de polymère
EP0479353A1 (fr) * 1990-09-25 1992-04-08 Shell Internationale Researchmaatschappij B.V. Compositions d'huile hydrocarburée
EP0512889A1 (fr) 1991-05-02 1992-11-11 Elf France Polymères amino substitués et leur utilisation comme additifs de modification des propriétés à froid de distillats moyens d'hydrocarbures
WO1993014178A1 (fr) 1992-01-14 1993-07-22 Exxon Chemical Patents Inc. Additifs et compositions du type combustible
EP0663000A1 (fr) 1992-09-22 1995-07-19 Exxon Chemical Patents Inc Additifs pour liquides organiques.
EP0736590A2 (fr) 1992-09-22 1996-10-09 Exxon Chemical Patents Inc. Additifs pour liquides organiques
EP0593331A1 (fr) 1992-10-09 1994-04-20 Institut Francais Du Petrole Phosphates d'amines comportant un cycle imide terminal, leur préparation et leur utilisation comme additifs pour carburants moteurs
EP0674689A1 (fr) 1992-12-17 1995-10-04 Inst Francais Du Petrole Composition de distillat moyen de petrole renfermant un agent limitant la vitesse de sedimentation des paraffines.
EP0680506A1 (fr) 1993-01-21 1995-11-08 Exxon Chemical Patents Inc Composition de fuel-oil.
US5747616A (en) * 1993-10-02 1998-05-05 Basf Aktiengesellschaft Ethylene-based copolymers and their use as flow improvers in mineral oil middle distillates
EP0832172A1 (fr) 1995-06-13 1998-04-01 Elf Antar France Additif bifonctionnel de tenue a froid des carburants et composition de carburant
EP0915944A1 (fr) 1996-07-31 1999-05-19 Société Anonyme dite : ELF ANTAR FRANCE Carburant pour moteurs diesel a faible teneur en soufre
WO1998004656A1 (fr) 1996-07-31 1998-02-05 Elf Antar France Carburant pour moteurs diesel a faible teneur en soufre
EP0938535A1 (fr) 1996-09-18 1999-09-01 Société Anonyme dite : ELF ANTAR FRANCE Additif detergent et anti-corrosion pour carburants et composition de carburants
EP0857776A1 (fr) 1997-01-07 1998-08-12 Clariant GmbH Amélioration de la fluidité d'huiles minérales et de distillates d'huiles minérales par l'utilisation de résines alkylphénol-aldéhyde
US5998530A (en) 1997-01-07 1999-12-07 Clariant Gmbh Flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins
EP0860494A1 (fr) 1997-02-26 1998-08-26 The Lubrizol Corporation Esters dérivés d'huiles végétales utilisés comme additifs pour combustibles
EP0861882A1 (fr) 1997-02-26 1998-09-02 Tonen Corporation Composition d'huile combustible pour motors diesel
FR2772783A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
FR2772784A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
US20050223631A1 (en) 2004-04-07 2005-10-13 Graham Jackson Fuel oil compositions
WO2008006965A2 (fr) 2006-07-10 2008-01-17 Total Raffinage Marketing Utilisation de composes revelateurs d'efficacite des additifs de filtrabilite dans des distillats hydrocarbones, et composition synergique les contenant
US20120010112A1 (en) 2010-07-06 2012-01-12 Basf Se Acid-free quaternized nitrogen compounds and use thereof as additives in fuels and lubricants
WO2012004300A1 (fr) 2010-07-06 2012-01-12 Basf Se Composés azotés quaternisés exempts d'acide et utilisation desdits composés comme additifs pour carburants ou pour lubrifiants
FR2969620A1 (fr) 2010-12-23 2012-06-29 Total Raffinage Marketing Resines alkylphenol-aldehyde modifiees, leur utilisation comme additifs ameliorant les proprietes a froid de carburants et combustibles hydrocarbones liquides
WO2016128379A1 (fr) 2015-02-11 2016-08-18 Total Marketing Services Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles

Also Published As

Publication number Publication date
EP3844250A1 (fr) 2021-07-07
FR3085384A1 (fr) 2020-03-06
US20210348073A1 (en) 2021-11-11
EP3844250B1 (fr) 2024-04-03
FR3085384B1 (fr) 2021-05-28

Similar Documents

Publication Publication Date Title
CA2710839C (fr) Terpolymere comme additif ameliorant la tenue a froid des hydrocarbures liquides
EP2231728B1 (fr) Utilisation de copolymères d'éthylène et/ou de propylène et d'esters vinyliques modifiés par greffage comme additifs bifonctionnels de lubrifiance et de tenue à froid pour hydrocarbures liquides
CA2765245C (fr) Terpolymere ethylene/acetate de vinyle/esters insatures comme additif ameliorant la tenue a froid des hydrocarbures liquides comme les distillats moyens et les carburants ou combustibles
CA2874572C (fr) Compositions d'additifs et leur utilisation pour ameliorer les proprietes a froid de carburants et combustibles
WO2016128379A1 (fr) Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles
CA2975028A1 (fr) Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles
EP3844250B1 (fr) Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles
EP3906292A1 (fr) Utilisation de copolymères spécifiques pour abaisser la température limite de filtrabilité de carburants ou combustibles
WO2019121485A1 (fr) Utilisation de polymères réticulés pour abaisser la température limite de filtrabilité de carburants ou combustibles
WO2020043619A1 (fr) Composition d'additifs comprenant au moins un copolymère, un additif fluidifiant à froid et un additif anti-sédimentation
EP4045618A1 (fr) Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles
EP4189048A1 (fr) Utilisation de copolymères à distribution de masse molaire spécifique pour abaisser la température limite de filtrabilité de carburants ou de combustibles
FR3054240A1 (fr) Utilisation de copolymeres pour ameliorer les proprietes a froid de carburants ou combustibles
EP4065672B1 (fr) Utilisation de diols comme additifs de détergence
EP3394225A1 (fr) Additif détergent pour carburant
FR3000102A1 (fr) Utilisation d'un compose viscosifiant pour ameliorer la stabilite au stockage d'un carburant ou combustible hydrocarbone liquide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019755939

Country of ref document: EP

Effective date: 20210329