WO2020043141A1 - 一种摄像机 - Google Patents

一种摄像机 Download PDF

Info

Publication number
WO2020043141A1
WO2020043141A1 PCT/CN2019/103117 CN2019103117W WO2020043141A1 WO 2020043141 A1 WO2020043141 A1 WO 2020043141A1 CN 2019103117 W CN2019103117 W CN 2019103117W WO 2020043141 A1 WO2020043141 A1 WO 2020043141A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pin
crystal element
fill
current control
Prior art date
Application number
PCT/CN2019/103117
Other languages
English (en)
French (fr)
Inventor
王艳侠
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810986753.2A external-priority patent/CN110868510B/zh
Priority claimed from CN201821704663.1U external-priority patent/CN208849869U/zh
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2020043141A1 publication Critical patent/WO2020043141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the field of surveillance camera technology, and in particular, to a camera.
  • LEDs Light Emitting Diodes, light emitting diodes
  • the LED driving method used is: switch control is implemented by multiple infrared LEDs connected in series.
  • the light emitted by the infrared LED is a light of a single spectrum. Therefore, the above LED driving method is a single light source. In this way, when the hybrid LED is used for supplementary light, the aforementioned LED driving method cannot drive the hybrid LED.
  • An embodiment of the present application provides a camera, which is characterized in that the camera includes: a fill light (2), a photosensitive element (7), a single-chip microcomputer (8), and a current control circuit;
  • the fill light (2) includes: a substrate (21), and a first fill light crystal element (22) and a second fill light crystal element (23) placed on a surface of the substrate (21);
  • Phosphors (24) are laid on the surface of the area of the substrate (21) around the first fill light crystal element (22) and the second fill light crystal element (23), and the first fill light element
  • the light emitted by the crystal element (22) is in the first wave band
  • the light emitted by the second supplementary light crystal element (23) is in the second wave band and can excite the phosphor (24) to generate white light
  • the first The light emitted by the fill light crystal element (22) and the white light are used to fill the camera; wherein the light in the first band and the light out of the second band are both non-white light
  • the The first waveband is: 650nm-850nm waveband
  • the second waveband is: 400nm-620nm waveband;
  • the light-sensitive element is configured to sense a light intensity signal of light in a preset waveband range, and the light-sensitive element outputs an electrical signal matching the light intensity signal through a signal output section; wherein the preset waveband range is respectively There is an intersection between the first band and the second band;
  • the single-chip microcomputer (8) has a signal acquisition terminal and a plurality of pulse width modulation PWM signal output terminals, the signal input terminal is connected to the photosensitive element through the signal output section, and the PWM signal output terminal passes the current
  • a control circuit is connected to the fill light, the single-chip microcomputer (8) receives the electrical signal via the signal acquisition terminal, and the current control circuit receives the PWM signal output terminal of the single-chip microcomputer (8) to output a PWM signal, Controlling the fill light.
  • the first light-supply crystal element (22) is located at the center of the substrate, and the second light-supply crystal element (23) is disposed on the first light-supply crystal element. (22) The side.
  • the first light compensation crystal element (22) and the second light compensation crystal element (23) are both fixed on the substrate through a thermally conductive connection layer, wherein the The substrate is a heat sink substrate.
  • the current control circuit includes: a first current control circuit and a second current control circuit;
  • the first fill light crystal element (22) is connected to the output terminal of the first current control circuit through its own package circuit pin;
  • the second fill light crystal element (23) is connected to the output terminal of the second current control circuit through its own package current pin.
  • the first current control circuit includes: a first light input terminal, a first light output terminal, and a first current control chip (UG1);
  • the first supplemental light output end is connected to a package circuit pin of the first supplemental light crystal element (22);
  • the first current control chip (UG1) includes: a first switch output pin, an LED current detection pin, a chip work enable pin, and a chip input voltage pin; the first switch output pin passes a diode (D16 ) Is connected to the first fill light input terminal; the LED current detection pin is connected to the first fill light input terminal through a resistor (R247); the chip work enable pin is connected to an external controller through a resistor (R246) A PWM pin; a chip input voltage pin is connected to the first fill light input terminal;
  • a current limiting circuit (81) is provided between the LED current detection pin and the first fill light input terminal, and the LED current detection pin and the current limiting circuit (81) are grounded; the first The fill light input terminal is grounded through a first filter circuit (82); the first switch output pin is connected to the first fill light output terminal through a first energy storage capacitor (L2); the positive pole of the first fill light output terminal A current stabilization circuit (83) is provided between the negative electrode and the negative electrode.
  • the current limiting circuit (81) includes a first resistor (R249) and a second resistor (R248) connected in parallel; and the first filter circuit (82) includes a parallel connection A first capacitor (C273) and a second capacitor (C270); the current stabilization circuit (83) includes a third capacitor (C274) and a fourth capacitor (C269) connected in parallel.
  • the second current control circuit includes a second complementary light input terminal, a second complementary light output terminal, and a second current control chip (UW2);
  • the second supplementary light output end is connected to a package circuit pin of the second supplementary light crystal element (23);
  • the second current control chip (UW2) includes: a second switch output pin, a boost pin, a power input pin, an output current feedback pin, and a current control chip mode selection pin;
  • the second switch output pin Pin is connected to the positive terminal of the output terminal through a second energy storage capacitor (L3);
  • the boost pin is connected between the second switch output pin and the second energy storage capacitor (L3) through a boost capacitor (C6);
  • the power input pin is connected to the second fill light input terminal;
  • the output current feedback pin is grounded through an RC filter circuit;
  • the current control chip mode selection pin is connected to the PWM signal output terminal of the single chip microcomputer (8) ;
  • a second filter circuit (91) is provided between the second supplementary light input terminal and ground, a capacitor (C10) is connected across the positive and negative sides of the second supplemental light output terminal, and the second supplemental light output terminal The negative terminal is connected to ground through a resistor (R4).
  • the second filter circuit (91) includes a third capacitor (C7) and a fourth capacitor (C8) connected in parallel.
  • the camera further includes: an image sensor and a digital signal processor;
  • the digital signal processor receives brightness information of an image input by the image sensor, and sends the brightness value to the single-chip microcomputer (8) if the brightness value is lower than a corresponding preset value in the digital signal processor.
  • An instruction for adjusting the magnitude of the current intensity input to the fill light is not limited to a corresponding preset value in the digital signal processor.
  • FIG. 1 is a schematic structural diagram of a camera provided by the present application.
  • FIG. 2 is a schematic axial sectional view of the camera shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of a front cover assembly in the camera shown in FIG. 1;
  • FIG. 4 (a) is a schematic diagram of a packaging structure of a fill light in the camera shown in FIG. 1;
  • FIG. 4 (b) is a schematic diagram of a fixing manner of a first fill light crystal element and a second fill light crystal element on a substrate in the fill light lamp shown in FIG. 4 (a);
  • FIG. 4 (c) is a schematic axial sectional view of the fill light described in FIG. 4 (a);
  • FIG. 4 (d) is a schematic axial sectional view of another packaging structure of the fill light in the camera shown in FIG. 1;
  • FIG. 5 is a schematic axial sectional view of a lens member in the camera shown in FIG. 1;
  • FIG. 6 is a schematic diagram of the light path of the light emitted by the fill light in the camera shown in FIG. 1 through the lens member shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a fly-eye lens provided in a light-emitting cup mouth of the lens member shown in FIG. 5;
  • FIG. 8 is another schematic structural diagram of a fly-eye lens provided in a light-emitting cup mouth of the lens member shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the light path of the light emitted by the fill light in the camera shown in FIG. 1 through the re-examination lens shown in FIG. 7 or FIG. 8;
  • FIG. 12 and FIG. 13 are light distribution curve diagrams of a lens fill light lens provided by the present application.
  • FIG. 14 is a schematic diagram of a connection structure between an electric control component and a fill light component in the camera shown in FIG. 1;
  • connection structure 15 is a schematic diagram of a connection structure between a photosensitive element and a single-chip microcomputer in the connection structure shown in FIG. 14;
  • FIG. 16 is a schematic structural diagram of a first current control circuit in the current control circuit in the connection structure shown in FIG. 14;
  • FIG. 17 is a schematic structural diagram of a second current control circuit in the current control circuit in the connection structure shown in FIG. 14.
  • FIG. 1 is a schematic structural diagram of a camera provided in the present application
  • FIG. 2 is a schematic axial sectional view of the camera shown in FIG. 1
  • FIG. 3 is a schematic sectional view of a front cover assembly in the camera shown in FIG. 1.
  • the camera provided in the present application includes a body 6, and a cavity 61 of the body 6 is provided with a fill light component and an electronic control component.
  • the fill light component includes a light plate 1, a fill light 2, a front cover 3, and a lens member 4
  • the electric control component includes a light-sensitive element 7, a single-chip microcomputer 8, and a current control circuit.
  • the lamp board 1 has a through hole 11 and lamp mounting portions arranged at circumferential intervals around the through hole 11.
  • the extending direction of the center line of the through hole 11 is parallel to the optical axis direction of the lens (not shown in the figure) of the camera (which may be simply referred to as “axial” in the text) and is substantially aligned.
  • a fill light 2 is mounted on each lamp mounting portion.
  • the front cover 3 has a certain length along the direction of the optical axis, and the light plate 1 is mounted on the rear side of the front cover 3.
  • the light board 1 may be fixedly connected to the front cover 3 by screws.
  • the front side of the front cover 3 is provided with a lens mounting portion 31. After the light plate 1 is mounted on the rear side of the front cover 3, the lens mounting portion 31 is aligned with the fill light 2 on the light plate 1 in the optical axis direction, and The front cover 3 is penetrated in the optical axis direction. That is, one lens mounting portion 31 mounts one lens member 4 for controlling the emission direction of the light from the fill light 2 corresponding thereto.
  • front and “rear” may be in accordance with the exit direction of the light emitted by the fill light 2.
  • the upstream of the light may be understood as “rear” and the downstream may be understood as “front”.
  • the fill light 2 is provided in a combination of a first fill light portion and a second fill light portion.
  • the emitted light from the first fill light portion is in a first wave band
  • the emitted light from the second fill light portion is in a second wave band. In this way, the emitted light from the second supplementary light portion is mixed with the emitted light from the first supplemental light portion to form exposure compensation light.
  • the fill light of the present invention improves the recognition rate of the object to be photographed by adjusting the wavelength of the first fill light portion in the first band, and by setting a second fill light portion on the basis of the first fill light portion,
  • the light emitted by the second supplementary light portion is used to adjust the color of the exposure compensation light after being mixed with the light emitted by the first supplemental light portion, so that the color of the mixed light emitted by the supplemental light is softer and avoids glare to people.
  • the fill light 2 adopts a packaged structure, and includes a substrate 21 and a first fill light crystal element 22 and a second fill light crystal element 23 placed on the surface of the substrate 21, and the first fill light
  • a phosphor powder 24 may be laid on the surface in the region of the substrate 21 around the wafer 22 and the second fill-light wafer 23.
  • the skin color of a human face is usually divided into yellow, black, and brown, and the license plate generally uses white letters on a blue background.
  • the faces and license plates of different skin colors have different degrees of reflection properties on the spectrum of different wavelengths. .
  • a set of experimental data shows that the faces of different skin tones have the highest reflectivity to the spectrum with a wavelength of 650nm.
  • the wavelength is greater than 650nm, as the wavelength increases, the reflectivity of the face to the spectrum gradually decreases.
  • the higher the reflectance of the spectrum the more light received by the camera acquisition chip under the same conditions, and the easier it is to perform face recognition. Therefore, when performing face recognition, a light source with a wavelength greater than 650 nm can be selected.
  • Another set of experimental data shows that the white font of the license plate has a high spectral reflectance in the wavelength range of 400nm to 800nm, while the blue bottom has a higher reflectivity for the spectrum with a center wavelength near 450nm, and The reflectance of the spectrum in the 600nm to 800nm band is very low, and when the wavelength is greater than 800nm, as the wavelength increases, the reflectance of the blue background to the spectrum starts to rise again. Based on this, in order to better distinguish the license plate number, it is necessary to make the background color of the license plate and the reflection of the font part have a large contrast.
  • the use of a light source with a wavelength in the 600-800nm band can make the background reflectance of the license plate lower, while the font reflectance is higher, so that the contrast between the background color of the license plate and the reflection of the font part is the highest. Furthermore, using a light source in this wavelength range to supplement the light of the camera that recognizes the license plate is beneficial to the recognition of the license plate number.
  • the band of the first supplementary light portion can be determined as a band of 650 nm to 850 nm. In this way, the situation of glare (glare) of the existing white light lamp can be improved, and the recognition of the human face and the license plate can be improved.
  • the spectrum in the wavelength range of 650 nm to 850 nm is mainly concentrated in the red light region.
  • the light source in this band is used on the road, it is easy for a driver or a pedestrian to mistake it as a red light in a traffic light when viewing from a distance, misleading pedestrians.
  • the present application adopts a second supplementary light method, and the light emitted by the first supplementary light crystal element 22 is The first waveband is set to 650nm to 850nm, and the light emitted by the second supplementary light crystal element 23 is mixed with the light emitted by the first supplementary light crystal element 22.
  • This second supplementary light mode can mask the first supplementary light crystal The red light emitted by Yuan 22, therefore, not only avoids misleading users, but also can meet the needs of clearly identifying faces and license plates.
  • the light emitted by the first supplementary light crystal element 22 is a first supplementary light portion and is in a first waveband, and the first waveband is in a range of 650nm to 850nm.
  • light in the 650 nm to 850 nm band is mainly concentrated in the red light region.
  • light with a wavelength of 730nm or 750nm in the 700nm ⁇ 760nm band can be used as the main illumination band light; the light in the 700 ⁇ 760nm band is infrared light, and the color of the light is red.
  • light in the band of 650nm to 850nm can improve the contrast of human faces and license plates waiting for the subject under the infrared fill light effect, and at the same time can ensure the focus of the infrared lens.
  • the light emitted by the second supplementary light crystal element 23 is a second supplementary light portion and is in a second wavelength band, and the second wavelength band is in a wavelength range of 450 nm to 620 nm.
  • the light emitted by the second supplementary light-emitting element 23 is blue light.
  • the light after mixing the blue light and the light in the 650 nm to 850 nm wavelength band emitted by the first supplementary light crystal element 22 is purple light or blueish light.
  • the light emitted by the second supplementary light-emitting element 23 is yellow light.
  • the yellow light and the light in the 650 nm to 850 nm wavelength band emitted by the first supplementary light-emitting crystal element 22 are orange-yellow light.
  • the human eye has a sensitivity coefficient of 0.00052 for red light with a wavelength of 730nm, and the human eye has a sensitivity coefficient of 0.06 for blue light with a wavelength of 460nm. Therefore, just mix in The blue light with very low power can get purple light and partial blue light after the light is mixed, and the influence of the mixed low power blue light on the license plate recognition is small and negligible, that is, the mixed Low-power blue light does not affect ticket recognition.
  • the first supplementary light source 22 corresponding to the first band of 650nm to 850nm can be used as the supplementary light source of the camera, and the power range of the first supplementary light source 22 is 0.5W to 3W, the power of the second supplementary light-emitting chip 23 is 0.05W to 1W, and the white light power consumption is very small.
  • the first fill light crystal element 22 corresponding to the 650 nm to 850 nm band can be turned off, and the second fill light crystal element 23 can be used as a fill light source of the camera. In this way, multiple functions such as night color mode and face recognition and license plate recognition modes can be implemented in the same camera.
  • white light can be mixed in the first fill light portion, and the red color of the red light can be lightened and lightened, which can be distinguished from the existing red traffic lights. Emitted red.
  • the second supplementary light emitting element 23 can emit white light
  • the blue light chip laser phosphor can emit white light
  • the ultraviolet laser phosphor can emit white light. Therefore, the first supplemental light emitting element 22 and The phosphor powder 24 may be laid on the middle surface of the region of the substrate 21 around the second supplementary light-emitting element 23, and the light emitted by the second supplementary light-emitting element 23 in the second wavelength band may excite the phosphor 24 to generate white light. Furthermore, the light emitted from the first supplementary light crystal element 22 is mixed with the light emitted from the second supplementary light crystal element 23 to excite the phosphor to form exposure compensation light.
  • the type of the phosphor 24 may be selected so that the phosphor 24 is excited by the light emitted from the second supplementary light-emitting element 23 to emit white fluorescence, and the white fluorescence It is mixed with the red light emitted by the first fill light crystal element 22, and the color of the exposure compensation light thus formed can make the human eye slightly see or cannot see the light emitted by the first fill light portion, thereby reducing the red exposure. effect.
  • the light emitted by the second supplementary light crystal element 23 may be in a wavelength range where the white light having a color temperature between 2700k and 6500k is located.
  • the number of the second light-compensating crystal elements 23 may be one or more (for example, two).
  • the color temperature of the second fill light crystal element 23 is between 2700k and 6500k. In this way, the combination of the first supplementary light crystal element 22 and the second supplementary light crystal element 23 that emits white light can remove the red exposure phenomenon, generate no glare, and help improve the recognition success rate of the camera.
  • the irradiated areas of the first and second supplementary light crystal elements 22 and 23 are cone-shaped, and the irradiated regions of the first and second supplementary light crystal elements 22 and 22 are in a cone shape.
  • the light of the overlapping range formed by the irradiation area of the element 23 is the exposure compensation light.
  • an overlapping region range may be set in a range adjacent to the first and second fill light crystal units 22 and 23.
  • the irradiated areas of the first fill light crystal element 22 and the second fill light crystal element 23 can be as close as possible, so that the area of the overlapping range formed is larger, thereby ensuring the protection of the obtained exposure compensation light. brightness.
  • the first light compensation crystal element 22 and the second light compensation crystal element 23 are both fixed on the substrate 21 through a thermally conductive connection layer 25.
  • the substrate 21 is a heat sink substrate.
  • the thermally conductive connection layer 25 may be a eutectic layer or a silver glue layer.
  • the function of the thermally conductive connection layer 25 is mainly as follows: connecting the first light compensation crystal element 22 and the second light compensation crystal element 23 to the substrate 21, and the substrate 21 It is a heat dissipation substrate and is soldered to the lamp mounting portion on the lamp plate 1.
  • the heat-conducting connection layer 25 has a heat-conducting capability, which can enhance the heat-radiating capability of the device.
  • the ceramic substrate can be used as the heat dissipation substrate.
  • the ceramic substrate has excellent heat dissipation ability and high heat resistance. As the heat dissipation substrate of the first fill light crystal element 22 and the second fill light crystal element 23, the work of the fill light lamp 2 can be effectively reduced. temperature.
  • the light board 1 uses an aluminum substrate, and the aluminum substrate is fixed on the front cover 3 by screws. At this time, the heat emitted during the light emission of the first and second supplementary light crystal elements 22 and 23 is transmitted from the heat dissipation substrate to the light plate 1, and then to the front cover 3 through the light plate 1, and finally through the front cover 3. The case dissipates heat into the external environment of the camera.
  • the first light-supplying crystal element 22 is disposed at a center with respect to the substrate 21, that is, the first light-supplying crystal element 22 is located at the center of the substrate 21, and the second light-supplying crystal element 23 is disposed at the first light-supplying element.
  • the first and second fill-in crystal cells 22 and 23 are LED chips, and a plurality of the first and second fill-in crystal cells 22 and 23 are LED chips.
  • a plurality of second light-compensating crystal units 23 are alternately arranged on the substrate 21. That is, the package structure may include one first fill light crystal element 22 and multiple second fill light crystal elements 23; it may also include multiple first fill light crystal elements 22 and multiple second fill light crystal elements
  • the element 23, the first fill light crystal element 22 and the second fill light crystal element 23 are alternately arranged on the substrate.
  • the package structure of the fill light 2 adopts a COB (chip on board) form, and the substrate is the light plate 1. At this time, the first fill light crystal element 22 and the second fill light crystal element 23 are directly electrically connected to the light plate 1, so that Eliminates the need for silver glue and packaging layers in conventional packaging.
  • the package structure may include a first light-compensating wafer 22 with a power of 3W and a plurality of second light-filling wafers 23 with a power of 0.05W; it may also include a plurality of first light-filling wafers with a power of 1.5W.
  • the second supplementary light crystal element 23 may be a phosphor layer 26 coated on the outside of the first supplementary light crystal element 22.
  • the phosphor layer 26 may be selected, and the light emitted by the phosphor layer 26 is mixed with the red light emitted by the first supplementary light-emitting element 22, thus forming
  • the color of the exposure compensation light can make the human eye slightly see or can't see the light emitted by the first fill light chip, thereby also reducing the red exposure.
  • the subsequent embodiments of the present application only fluoresce on the surface in the region of the first supplementary light crystal element 22 having a first wavelength band of 750 nm, the second supplementary light crystal element 23 having a second wavelength band of 460 nm, and the substrate 21 around them.
  • the packaging form of the powder 24 is described, but the packaging form is not limited to the dual-crystal packaging form, and may also be a poly-crystalline packaging form.
  • the lens member 4 is fixed to the lens mounting portion 31 of the front cover 3 by a dispensing method.
  • the lens mounting portion 31 has a shape matching the outer contour of the lens member 4 and is a lens.
  • the peripheral flange 41 of the member 4 provides a supporting step 32.
  • the gap between the peripheral flange 41 of the lens member 4 and the front cover 3 is provided with a filler, such as an adhesive, so as to achieve the space between the lens member 4 and the front cover 3. Fixed connection and sealing performance of both.
  • a decorative cover 5 is attached to the outside of the lens member 4.
  • the decorative cover 5 is a two-color injection molded part and is divided into a transparent area 51 and a non-transparent area.
  • the transparent area 51 is located in front of the lens member 4 and transparent PC plastic is used.
  • the non-transparent area is transparent.
  • the periphery of the area 51 is made of black plastic.
  • the decorative cover 5 is fixedly connected to the front cover 3 by a snapping method.
  • the method of installing the decorative cover 5 to the front cover 3 is as follows: first, a snap bracket 12 is used to fix the front cover 3 with screws, and then the hook-shaped buckle 52 on the decorative cover 5 is inserted into the slot of the snap bracket 12 And cooperate with the snap bracket 12.
  • the upper side of the decorative cover 5 is a straight arm opening 14, which is fastened by a side screw 13 on the front cover 3.
  • the spatial distribution of light generated by a single light source is a Lambertian distribution
  • the Lambertian distribution means that the light intensity exhibits an I * cos ⁇ cosine distribution in space.
  • the light distributions produced by the first and second fill-in crystal units 22 and 23 are both Lambertian or approximately Lambertian.
  • the angle of view of the lens is related to the focal length of the camera and the size of the sensor target surface. For a zoom camera, the focal length is 2.8-12mm or 8-32mm or other zoom categories. The focal length is different, and the field of view is different. The focal length is changed, and the field of view is also changed accordingly.
  • the full angle of the spatial distribution of light generated by a single light source is generally 170 degrees, while the field of view of a lens with a focal length of 2.8mm is about 135 degrees, and the field of view of a lens with a focal length of 8mm is about 50 degrees. It can be seen that the full angle of the spatial distribution of light generated by a single light source is much larger than the field angle of the lens, so the two do not match.
  • the present invention achieves a new light spatial distribution by performing secondary light distribution on the light emitted by the fill light 2, that is, the light spatial distribution of the light emitted by the fill light 2 and the field of view of the lens Corner match.
  • the “matching” can be exemplified. For example, if the field angle of the lens is 100 degrees, the light spatial distribution angle after controlling light through the lens member 4 is also 100 degrees or more; the field angle of the lens is 50 degrees. , The light spatial distribution angle after controlling the light through the lens member 4 is also 50 degrees or more.
  • FIG. 5 is a schematic cross-sectional view of the lens member 4 along the optical axis direction.
  • the lens member 4 has a trumpet-shaped cup body 42 that is transparent at both ends.
  • the cup body 42 has a light-entry cup tail 421 and a light-exit cup mouth 422.
  • the cup 42 extends from the light-entry cup tail 421 to the light-exit cup mouth 422.
  • the outer diameter gradually increases, and the light emitting cup port 422 extends outward in the radial direction (lateral direction) to form a circumferential flange 41.
  • Ring and “transverse” can be understood as directions perpendicular to “optical axis O”, and “transverse section” is a section perpendicular to “optical axis O”.
  • the “circumferential direction” is a direction of rotation about the optical axis O.
  • the light entrance cup tail 421 is provided with a light entrance opening 433.
  • the light entrance opening 433 extends in the axial direction toward the light cup opening 422 and terminates in the parallel light collimating convex lens surface 431.
  • the cavity between the light entrance opening 433 and the parallel light collimating convex lens surface 431 is defined as the light source incident groove 43.
  • the lateral cross-sectional area of the light entrance opening 433 is larger than the area of the fill light 2, so that all the light emitted by the fill light 2 can enter the light source incident groove 43.
  • the front end surface of the light source incident groove 43 opposite to the light entrance opening 433 is a parallel light collimating convex lens surface 431, and the parallel light collimating convex lens surface 431 projects in an arc shape in the axial direction toward the light entrance opening 433, which is convex. Convex shape.
  • the axial distance between the light entrance opening 433 and the parallel light collimating convex lens surface 431 is smaller than or equal to the focal length of the parallel light collimating convex lens surface 431.
  • the first fill light crystal element 22 is located in the center of the fill light 2 and on the center axis of the lens member 4, that is, it is arranged in a center with respect to the parallel light collimating convex lens surface 431, and is placed on the parallel light collimating convex lens surface 431
  • the preset position is a focal point of the parallel light collimating convex lens surface 431, that is, a light emitting surface of the fill light 2 is located on a focal plane of the parallel light collimating convex lens surface 431.
  • the collimation of incident light can be achieved by collimating the convex lens surface 431 with parallel light, that is, a part of the light emitted by the first supplementary light crystal element 22 passes through the collimating convex lens surface 431 with parallel light to form an edge. Axial parallel light is emitted.
  • the side wall of the light source incident slot 43 is a spectroscopic side wall 432, which is generally conical, and the taper and the optical axis O are inclined at an angle of 1 degree or more, and is generally set to 2 degrees, and the aperture of the parallel light collimating convex lens surface 431 is smaller than The aperture of the light opening 433.
  • the beam splitting sidewall 432 on the one hand, the beam splitting can be realized, and on the other hand, the product molding mold can be more easily released from the mold during injection production.
  • the first supplementary light crystal element 22 is a surface light source. Therefore, a part of the light emitted by the first supplementary light crystal element 22 passes through the parallel light collimated convex lens surface 431 to form parallel light in the axial direction. The other part of the light emitted by the crystal element 22 and the white light emitted by the phosphor 24 excited by the second supplementary light element 23 are incident on the spectroscopic side wall 432, and the parallel light collimated by the spectroscopic side wall 432 and incident on the cup 42 is collimated. Straight reflection surface 423.
  • the curvature of the parallel light collimating reflection surface 423 near the fill light 2 is large, and the curvature of the parallel light collimation reflection surface 423 far from the fill light 2 is small, that is, the collimated light collimation reflection surface 423 enters the light automatically
  • the diameter from the cup tail 421 to the light exit cup opening 422 gradually increases. Therefore, the portion of the parallel light collimating and reflecting surface 423 close to the fill light 2 can reflect the incident light to the light receiving surface 4221 in the axial direction, and the parallel light collimating The part of the straight reflecting surface 423 far from the fill light 2 so that the incident light will be slightly deflected relative to the optical axis O and reflected to the light receiving surface 4221. Therefore, the light received by the light receiving surface 4221 is substantially parallel to Optical axis O.
  • the inner surface of the side wall of the cup body 42 is a parallel light collimating reflection surface 423 for reflecting incident light in the axial direction.
  • a parallel light collimating reflection surface 423 for reflecting incident light in the axial direction.
  • the wall thickness At the time of production, first, after setting the aperture diameter of the light source, preset the wall thickness. Get the coordinate position of the starting point of the reflecting surface. Because the light output form of the light source is fixed (I * cos ⁇ ), that is, the light incident on the side wall of the beam splitter is a known vector, that is, the incident light on the reflecting surface is known, and the collimation is achieved based on the reflected light from f. Obviously, after parallel The light collimated reflecting surface 423 reflects, and the reflected light is known.
  • the incident light and reflected light are known, and the single point normal and tangent can be solved by snell's theorem. Based on the position and size of the first point, the subsequent points are located on the tangent to the previous point, and the parallel light collimation can be generated iteratively. Reflective surface 423.
  • the light-exiting cup mouth 422 is provided with a fly-eye lens, and the inside surface of the fly-eye lens is a flat surface, which serves as a light receiving surface 4221; the outside surface of the fly-eye lens has a fly-eye bead surface, which serves as a light emitting surface 4222.
  • the compound eye bead surface on the light emitting surface 4222 is composed of the same hexagonal compound eye microstructure A as shown in FIG. 7.
  • the hybrid fill light corresponding to the full angle of the spatial distribution of light achieved by this pattern form light control is low beam. light.
  • the compound eye bead surface on the light emitting surface 4222 can also be said as shown in Figure 8.
  • the central area is composed of the same hexagonal compound eye microstructure B, and the periphery of the central area uses a diamond compound eye microstructure C.
  • This pattern form is achieved by light control
  • the hybrid fill light corresponding to the full-angle light spatial distribution is a high beam.
  • the compound eye microstructures A, B, and C are all convex, and the size is related to the number of area setting microstructures.
  • the distance between the boundaries of two adjacent fly-eye microstructures is 0, which can also be understood as the continuous outer sides of the fly-eye lens.
  • the shape of the compound eye bead surface on the light emitting surface 4222 is only for distinguishing the types and specifications of the lens member 4. In principle and effect, they all conform to the form of collimation and compound eye light control.
  • the diameter of the light emitting surface 4222 is in the range of 15mm-40mm. In the present invention, the diameter of the light emitting surface 4222 is set to 23mm. In this way, the size of the light emitting surface 4222 is appropriate and easy to be molded.
  • the fly-eye lens has three functions in the present invention:
  • the compound eye microstructure with respect to the outermost side of the optical axis O is composed of M points, H points, and N points in order from the outside to the inside.
  • the M point is the outermost point of the compound eye microstructure.
  • Point N is the innermost point of the compound eye microstructure, and point H is the point of maximum curvature on the compound eye microstructure.
  • the new light space distribution can be rectangular or rotationally symmetrical, depending on the shape of the compound eyeball surface.
  • the rectangular distribution can match or fit the field of view of the lens.
  • the contour boundary of the compound eye bead can be set to a rectangle, so that the new light space distribution emitted through the lens member 4 appears as a rectangle, and meets the length of the screen image presentation screen.
  • the aspect ratio is 4: 3 or 16: 9.
  • the rotationally symmetrical distribution generally adopts the shape of a hexagonal compound eye microstructure, boundary removal processing, or an irregular and inconsistent compound eye pattern (a combination of a diamond compound eye microstructure and a hexagonal compound eye microstructure shown in FIG. 8).
  • a field angle DFOV of the lens focal length of 8mm is generally recorded as ⁇ 1 at about 45 degrees, and the lens focal length is A 32mm field of view angle DFOV is generally described as ⁇ 2 at about 10 degrees.
  • the fill light is divided into near and far light lamps. Among them, the low beam light meets the lens focal length of 8mm fill light requirement, ⁇ in Figure 8 is greater than ⁇ 1 ; ⁇ in FIG. 8 is larger than ⁇ 2 .
  • the centers of the first supplementary light crystal unit 22 and the parallel light collimating convex lens surface 431 are located on the optical axis O and are aligned with each other.
  • the position of the second supplementary light crystal element 23 and the light emitted by the phosphor 24 are deviated from the optical axis 0. This will cause the light emitted by the phosphor 24 to deviate from the optical axis 0. Therefore, in the application of supplemental light, There are bright and dark image effects. Therefore, through the fly-eye lens, the position of the second light-compensating crystal element 23 can also be corrected to deviate from the optical axis 0, resulting in poor light compensation.
  • the principle of correcting decentering is as follows:
  • the light in the 750 nm band emitted by the first light-compensating crystal element 22 is divided into two parts by the spectroscopic side wall 432, and a part of the parallel light collimating convex lens surface 431 is deflected to achieve parallel collimation incident on the light incident surface. 4221; Another part of the light is deflected and incident on the parallel light collimating and reflecting surface 423 through the spectroscopic side wall 432, and is reflected by the parallel light collimating and reflecting surface 423 to achieve parallel collimation to the light incident surface 4221.
  • the formed parallel light is deflected through the compound eyeball surface of the light emitting surface 4222, thereby realizing a new spatial distribution of light.
  • the light emitted by the second supplementary light crystal element 23 and the phosphor 24 is excited. Based on the position of the second supplementary light crystal element 23 and the light emitted by the phosphor 24, there is a deviation from the optical axis 0, and the light is collimated by parallel light. After the convex lens surface 431 is deflected and reflected by the parallel light collimating and reflecting surface 423, the light path propagation direction changes, and the light incident surface 4221 is non-parallel incident. Collimation is achieved based on the parallel light collimating and reflecting surface 423. Such deflection is small, and the spatial distribution of light formed is uneven. At this time, the compound eyeball surface of the light emitting surface 4222 is improved.
  • the light emitted by the second supplementary light crystal element 23 and the phosphor 24 is excited by the compound eyeball surface of the light emitting surface 4222, and the obtained light spatial distribution has no unevenness and eccentricity, and can be directly used for illumination, thereby achieving the dual supplementary light function At the same time, no red exposure occurred at 750nm fill light angles.
  • the light incident on the light emitting surface of the lens member has a larger deflection angle with respect to the optical axis, and is not parallel light parallel to the optical axis O in this application. Therefore, even if the fly-eye lens is applied to an existing lens member, there is still little overlap between the light output of the fly-eye microstructure, and the problem of eccentricity cannot be improved.
  • the structural form of the lens 4 can also increase the visible light area of the lens to the maximum, thereby improving comfort.
  • FIG. 10 is a pseudo-color diagram of 750 candela diagram (grey scale diagram on white background) of the light distribution method of the present application
  • FIG. 11 is a pseudo-color diagram (gray diagram of white shade) of white light distribution candela of the application, which is in accordance with the formula of the existing light distribution technology.
  • 12 and 13 are rectangular coordinate diagrams of the light distribution curve of the lens member 4 for 750nm light distribution and decentered white light distribution in the present application. Obviously, whether it is 750nm or white light, A and B are basically in the trend of coincidence, and there is no obvious deviation. shift.
  • FIG. 14 it is a schematic diagram of a connection relationship between an electric control component and a fill light component in the camera shown in FIG. 1, wherein the electric control component includes a photosensitive element 7, a single-chip microcomputer 8, and a current control circuit.
  • the photosensitive element 7 is a triode that senses visible light.
  • the current output by the triode is different under the light intensity of different brightness. Therefore, the external light intensity can be judged according to the current output by the triode.
  • the preset waveband ranges respectively intersect with the first waveband and the second waveband.
  • the photosensitive element 7 in the present application can sense light in the 400nm to 680nm band, that is, the preset waveband is in the 400nm to 680nm band.
  • the preset band range includes the entire range of the second band range, and the preset band range includes a partial range of the first band range.
  • the spectral energy in the 400-680 nm band decreases.
  • one end of the photosensitive element 7 is connected to a power source VDD, and the other end is grounded through a resistor Rss, and a current Iss flowing through the resistor Rss.
  • a signal output portion 71 is connected between the photosensitive element 7 and the resistor Rss, so that the photosensitive element 7 can output an electrical signal matching the light intensity signal that is sensed through the signal output portion 71.
  • the single-chip microcomputer 8 has a signal signal collecting terminal and a PWM signal output terminal.
  • the signal collecting terminal of the single-chip microcomputer 8 is connected to the light-sensitive element 7 through the signal output section 71.
  • the PWM signal output terminal of the single-chip microcomputer 8 is connected to the fill light 2 through a current control circuit.
  • the single-chip microcomputer 8 receives the electric signal output from the light-sensitive element 7 through its signal acquisition terminal, and turns on the fill light 2 or turns off the fill light 2 through the current control circuit according to the electric signal.
  • the single-chip microcomputer 8 controls the fill light 2 to be turned on; when the voltage output from the signal output section 71 to the single-chip microcomputer 8 is detected When it is higher than the first preset voltage (for example, 1.125V), the single-chip microcomputer 8 controls the fill light 2 to turn off.
  • the fill-light lamp includes the low-beam lamp and / or the high-beam lamp.
  • the irradiation distance of the low-beam lamp is not greater than 50 m
  • the irradiation distance of the high-beam lamp is not greater than 100 m.
  • the hybrid fill light is a low-beam light with an irradiation distance of not more than 50 m (as shown in FIG. 7). ).
  • the fill light is an illumination distance of not more than 100m High beam (as shown in Figure 8).
  • the fill light lamp 2 includes a first fill light crystal element 22 and a second fill light crystal element 23.
  • the single-chip microcomputer 8 since the single-chip microcomputer 8 has a plurality of PWM signal output terminals, the first light compensation crystal element 22 and the second light compensation crystal element 23 can be connected to one PWM signal output terminal through a current control circuit.
  • the single-chip microcomputer 8 controls the opening and closing and power adjustment of the corresponding first and second supplementary light crystal elements 22 and 23, respectively, by controlling the duty cycle of the PWM signal supplied to the current control circuit.
  • the single-chip microcomputer 8 controls the PWM2 signal sent to the current control circuit by Duty cycle, controlling the opening and closing and power adjustment of the second supplementary light crystal element 23 in the low beam; the single chip microcomputer 8 controls the first compensation in the high beam by controlling the duty cycle of the PWM3 signal sent to the current control circuit The on-off and power adjustment of the light crystal element 22; the single-chip microcomputer 8 controls the on-off and power adjustment of the second supplementary light crystal element 23 in the high beam lamp by controlling the duty cycle of the PWM4 signal supplied to the current control circuit.
  • a PWM signal can be sent to the current control circuit through a PWM signal output terminal of the single-chip microcomputer 8.
  • control The power of each light-compensating crystal element overcomes the technical defect that an existing current control circuit cannot drive multiple light-compensating crystal elements simultaneously.
  • the current control circuit includes a first current control circuit and a second current control circuit, wherein the first light compensation crystal element 22 is connected to the first current control circuit through its own package circuit pin. The output end is connected; the second supplementary light crystal element 23 is connected to the output end of the second current control circuit through its own packaged current pin.
  • the first current control circuit controls the magnitude of the current intensity input to the first light compensation crystal element 22 in a current control manner, and the current intensity is hereinafter referred to as the first light compensation current intensity to control the first light compensation crystal Luminous intensity of element 22.
  • the second current control circuit also controls the magnitude of the current intensity input to the second supplementary light crystal element 23 in a current control manner. This current intensity is hereinafter referred to as the second supplementary light current intensity to control the second supplementary light crystal element 23. Luminous intensity.
  • the range of the ratio of the first supplemental photocurrent intensity to the second supplemental photocurrent intensity is controlled from 1:10 to 1: 200. Practice has proved that the ratio range will not make the white light too dazzling, but also cover the red light.
  • the input current range of the second fill light crystal element 23 is 1 mA to 10 mA.
  • the input current range of the second fill light crystal element 23 is 150 mA.
  • the current intensity input by the first current control circuit to the first supplementary light crystal element 22 is 800 mA
  • the current intensity input by the second current control circuit to the 3000 K warm white light is 5-10 mA.
  • the first current control circuit includes a first complementary light input terminal IR and a first complementary light output terminal and a first current control chip UG1.
  • IRLEDO + is the positive electrode of the first supplementary light output terminal
  • IRLEDO- is the negative electrode of the first supplemental light output terminal
  • the positive LEDIRLED + and the negative IRLEDO- of the first supplemental light output terminal are used to connect the current input terminal of the first supplemental light crystal element 22.
  • the type of the first current control chip UG1 may be SYHV12ABC.
  • pin 161 of the first current control chip UG1 is the first switch output pin
  • pin 162 is the ground return pin
  • pin 163 is the test pin
  • pin 164 is the chip work enable pin
  • pin 165 is the chip.
  • pin 166 is the LED current detection pin.
  • Pin 161 is connected to the first fill light input IR through a diode D16.
  • the diode D16 is a freewheeling diode of an asynchronous DCDC chip.
  • Pin 166 is connected to the first light input IR through a resistor R247, and the resistor R247 is used for a resistor station for solving the radiation problem.
  • Pin 164 is connected to the PWM pin MAIN LED CTL A1 of the external controller through resistor R246, and the PWM signal sent to pin 164 by the external controller controls the current output by the first current control circuit.
  • Resistor R246 is a resistor station for solving radiation problems.
  • Both pins 165 are connected to the first fill light input IR, and both pins 162 and 163 are grounded.
  • a current-limiting circuit 81 is provided between the pin 166 and the first supplementary light input end IR, and a ground is connected between the pin 166 and the current-limiting circuit 81.
  • the current limiting circuit 81 is used to control the maximum value of the current flowing through the first light-compensating wafer 22.
  • the current limiting circuit 81 includes a first resistor R249 and a second resistor R248 connected in parallel.
  • the resistance of the first resistor R249 and the second resistor R248 in parallel is 0.125 ⁇ .
  • the first supplemental light input IR is grounded through a first filter circuit 82.
  • the first filter circuit 82 includes a first capacitor C273 and a second capacitor C270 connected in parallel to filter the first supplemental light input IR to prevent unstable input voltage. .
  • Pin 161 is connected to the output terminal IRLEDO- through the first energy storage capacitor L2.
  • a current stabilization circuit 83 is provided between the output ends IRLEDO + and IRLEDO-.
  • the current stabilizing circuit 83 includes a third capacitor C274 and a fourth capacitor C269 connected in parallel, and is used to suppress the current ripple of the first light compensation chip 22 and ensure the current of the first light compensation chip 22 to be stable.
  • the second current control circuit has a second complementary light input terminal VIN and a second complementary light output terminal and a second current control chip UW2;
  • LED + is the positive electrode of the second supplementary light output terminal
  • LED- is the negative electrode of the second supplemental light output terminal
  • the positive LED + and the negative LED- of the second supplemental light output terminal are used to connect to the current input terminal of the second supplementary light crystal element 23.
  • the model of the second current control chip UW2 may be TPS54201.
  • pin 171 of the second current control chip UW2 is a ground return pin
  • pin 172 is a second switch output pin
  • pin 173 is a power input pin
  • pin 174 is an output current feedback pin
  • pin 175 is a current Control chip mode selection pin
  • pin 176 is a boost pin
  • pin 176 controls the SW output signal.
  • a second filter circuit 91 is provided between the second supplementary light input terminal VIN and the ground.
  • the second filter circuit 91 includes a third capacitor C7 and a fourth capacitor C8 connected in parallel to filter the second supplemental light input terminal VIN.
  • Pin 172 is connected to the output terminal LED + through the second energy storage capacitor L3.
  • Pin 176 is connected between pin 172 and the second energy storage capacitor L3 through a boost capacitor C6.
  • the step-up capacitor C6 has a step-up function and controls the upper tube of the second current control circuit to be turned on.
  • Pin 173 is connected to the second fill light input terminal VIN.
  • Pin 174 is connected to the output LED- through a resistor R3, and pin 174 is also connected to ground through a capacitor C9.
  • Resistor R3 and capacitor C9 form an RC filter circuit, and form a pole with pin 174 to ensure loop bandwidth and stability.
  • Pin 175 is connected to the PWM pin of the external controller, and the PWM signal sent to pin 175 by the external controller controls the current output by the first current control circuit.
  • the duty cycle of the PWM determines the magnitude of the output current.
  • the warm white light current in the present invention is 1 mA, and the duty cycle of the PWM is 1%.
  • Capacitor C10 is connected between the positive LED + of the second supplementary light output terminal and the negative LED- of the second supplemental light output terminal.
  • the capacitor C10 is used to stabilize the output of the second supplemental photocurrent intensity, reduce current fluctuations, and ensure the second supplementary light crystal 23 works as much as possible in the standard constant current mode to prevent the second fill light element 23 from flickering.
  • the output LED is grounded through a resistor R4.
  • the resistor R4 is used to detect the current flowing through the second supplementary light crystal element 23 to ensure that the intensity of the current flowing through the second supplementary light crystal element 23 is a set current value.
  • the current intensity I of the second supplementary light-emitting element 23 is 0.2V / R4.
  • the first supplementary light crystal element 22 selects light in a wavelength band of 700 nm to 760 nm, wherein the first supplementary light crystal element 22 corresponding to a wavelength band of 700 to 760 nm emits infrared light and the color is red .
  • the second supplementary light crystal element 23 uses warm white light with a color temperature of 3000K, and the color is yellow.
  • the color of the light emitted by the 3000K warm white light and the light emitted by the first supplementary light crystal element 22 corresponding to the 700-760nm band is Warm white and yellow, this color can solve the glare problem caused by pure white light on the one hand, and the red exposure problem caused by simply using light corresponding to the 700-760 nm band after the second supplementary light, to prevent Think of a red light at an intersection.
  • this second fill light method is beneficial to improve the contrast of the face and the license plate under the infrared fill light effect.
  • the current intensity input by the first current control circuit to the first supplementary light crystal element 22 is 800 mA
  • the current intensity input by the second current control circuit to the 3000 K warm white light is 5-10 mA.
  • the first fill light crystal element 22 and the second fill light crystal element 23 may be connected in parallel.
  • the first fill light crystal element 22 It has a first package circuit pin
  • the second light-compensating wafer 23 has a second package circuit pin.
  • the first fill light crystal element 22 and the second fill light crystal element 23 are each connected to the current control circuit through corresponding packaging circuit pins, that is, the first fill light crystal element 22 is connected to the current control circuit through the first packaging circuit pin.
  • the second light compensation wafer 23 is connected to the current control circuit through a second package circuit pin.
  • the first current control circuit as shown in FIG. 16 is packaged in the supplementary light 2.
  • the first package circuit pin 223 is connected to the first supplemental light output terminals IRLEDO + and IRLEDO- of the first current control circuit.
  • the second package circuit pin 224 is connected to the second supplementary light output terminals LED + and LED- of the second current control circuit.
  • the first fill light crystal element 22 and the second fill light crystal element 23 may also be connected in series.
  • the first fill light crystal element Two ends of a series circuit composed of 22 and the second supplementary light-emitting crystal element 23 are connected to the current control circuit through a third package circuit pin.
  • the third The pins of the packaging circuit are connected to the first supplemental light output terminals IRLEDO + and IRLEDO- of the first current control circuit.
  • the electronic control component of the camera provided in the present application may further include a digital signal processor and an image sensor.
  • the image sensor is used to collect the image obtained by the camera lens and output it to the digital signal processor.
  • the digital signal processor is used for receiving the image transmitted by the image sensor, and judging whether the current supplementary light intensity meets the requirements by counting the data brightness value of the received image.
  • the digital signal processor can exchange information with the single-chip microcomputer 8 through a UART (full name in English: Universal Asynchronous Receiver / Transmitter; Chinese full name: Universal Asynchronous Transceiver). Through the UART, the communication interface of the main platform can be saved to realize multi-channel control.
  • the UART is notified to the microcontroller 8 to adjust the duty cycle of the PWM signal of the supplementary light 2 through the UART, so as to control the supply to the first through the current control circuit.
  • the magnitudes of the currents of the fill light crystal element 22 and the second fill light crystal element 23 are used to control the power of the first fill light crystal element 22 and the second fill light crystal element 23, thereby realizing the brightness adjustment of the overall image screen. If the duty cycle of the PWM signal is below 100%, it is in the dimming state. If the duty cycle has reached 100%, then the corresponding fill-up wafer is in the maximum on state.
  • the process of controlling the power of the first fill light crystal element 22 and the second fill light crystal element 23 through the PWM signal is: when the PWM signal is at a high level, the first fill light crystal element 22 and the second fill light crystal element 23 are turned on at the same time; When the PWM signal is at a low level, the first fill light crystal element 22 and the second fill light crystal element 23 are turned off at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种摄像机,包括补光灯、光敏元件、单片机和电流控制电路;补光灯包括基板以及置于基板表面的第一补光晶元和第二补光晶元;第一补光晶元和第二补光晶元的周围的基板的区域中表面铺设有荧光粉,第一补光晶元的发出光处于第一波段内,第二补光晶元的发出光处于第二波段内并可激发荧光粉产生白光;光敏元件用于感应预设波段范围的光线的光强度信号,光敏元件通过信号输出部输出与光强度信号相匹配的电信号;单片机具有信号采集端和多个脉冲宽度调制PWM信号输出端,信号输入端通过信号输出部与光敏元件连接,PWM信号输出端通过电流控制电路连接补光灯,单片机经由信号采集端接收电信号,电流控制电路接收单片机的PWM信号输出端输出PWM信号,控制补光灯。

Description

一种摄像机
本申请要求于2018年8月28日提交中国专利局、申请号为201810986753.2、发明名称为“一种摄像机补光装置及具有其的摄像机”的中国申请专利的优先权,以及2018年10月22日提交中国专利局、申请号为201821704663.1、发明名称为“一种混合补光摄像机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及监控摄像技术领域,特别是涉及一种摄像机。
背景技术
现有摄像机通常采用红外LED(Light Emitting Diode,发光二极管)作为辅助补光光源,其中,在利用红外LED进行补光时,所采用的LED驱动方式为:通过多个红外LED串联实现开关控制。然而,由于在相关技术中,红外LED发出的光线是单一光谱的光线,因此,上述LED驱动方式为单一光源。这样,在利用混合LED进行补光时,上述LED驱动方式将无法驱动混合LED。
发明内容
本申请实施例提供了一种摄像机,其特征在于,所述摄像机包括:补光灯(2)、光敏元件(7)、单片机(8)和电流控制电路;
其中,所述补光灯(2)包括:基板(21)以及置于所述基板(21)表面的第一补光晶元(22)和第二补光晶元(23);
所述第一补光晶元(22)和所述第二补光晶元(23)的周围的所述基板(21)的区域中表面铺设有荧光粉(24),所述第一补光晶元(22)的发出光处于第一波段内,所述第二补光晶元(23)的发出光处于第二波段内并可激发所述荧光粉(24)产生白光;所述第一补光晶元(22)的发出光和所述白光,用于给所述摄像机进行补光;其中,所述处于第一波段的光和出于第二波段的光均为非白光;所述第一波段为:650nm-850nm波段;所述第二波段为: 400nm-620nm波段;
所述光敏元件,用于感应预设波段范围的光线的光强度信号,所述光敏元件通过信号输出部输出与所述光强度信号相匹配的电信号;其中,所述预设波段范围分别与所述第一波段和所述第二波段存在交集;
所述单片机(8),具有信号采集端和多个脉冲宽度调制PWM信号输出端,所述信号输入端通过所述信号输出部与所述光敏元件连接,所述PWM信号输出端通过所述电流控制电路连接所述补光灯,所述单片机(8)经由所述信号采集端接收所述电信号,所述电流控制电路接收所述单片机(8)的所述PWM信号输出端输出PWM信号,控制所述补光灯。
可选的,一种具体实现方式中,所述第一补光晶元(22)位于所述基板的中心,所述第二补光晶元(23)布置在所述第一补光晶元(22)的侧边。
可选的,一种具体实现方式中,所述第一补光晶元(22)和所述第二补光晶元(23)均通过导热连接层固定在所述基板上,其中,所述基板为散热基板。
可选的,一种具体实现方式中,所述电流控制电路包括:第一电流控制电路和第二电流控制电路;
所述第一补光晶元(22)通过自身的封装电路引脚与所述第一电流控制电路的输出端连接;
所述第二补光晶元(23)通过自身的封装电流引脚与所述第二电流控制电路的输出端连接。
可选的,一种具体实现方式中,所述第一电流控制电路包括:第一补光输入端、第一补光输出端和第一电流控制芯片(UG1);
所述第一补光输出端连接所述第一补光晶元(22)的封装电路引脚;
所述第一电流控制芯片(UG1)包括:第一开关输出管脚、LED电流检测管脚、芯片工作使能管脚和芯片输入电压管脚;所述第一开关输出管脚通过二极管(D16)连接所述第一补光输入端;所述LED电流检测管脚通过电阻(R247) 连接所述第一补光输入端;所述芯片工作使能管脚通过电阻(R246)连接外部控制器的PWM管脚;芯片输入电压管脚连接所述第一补光输入端;
所述LED电流检测管脚和所述第一补光输入端之间设置有限流电路(81),所述LED电流检测管脚和所述限流电路(81)之间接地;所述第一补光输入端通过第一滤波电路(82)接地;所述第一开关输出管脚通过第一储能电容(L2)连接所述第一补光输出端;所述第一补光输出端的正极和负极之间设置有稳流电路(83)。
可选的,一种具体实现方式中,所述限流电路(81)包括并联连接的第一电阻(R249)和第二电阻(R248);所述第一滤波电路(82)包括并联连接的第一电容(C273)和第二电容(C270);所述稳流电路(83)包括并联连接的第三电容(C274)和第四电容(C269)。
可选的,一种具体实现方式中,所述第二电流控制电路包括:第二补光输入端、第二补光输出端和第二电流控制芯片(UW2);
所述第二补光输出端连接所述第二补光晶元(23)的封装电路引脚;
所述第二电流控制芯片(UW2)包括:第二开关输出管脚、升压管脚、电源输入管脚、输出电流反馈管脚和电流控制芯片模式选择管脚;所述第二开关输出管脚通过第二储能电容(L3)连接输出端正极;所述升压管脚通过升压电容(C6)连接在所述第二开关输出管脚与第二储能电容(L3)之间;所述电源输入管脚连接所述第二补光输入端;所述输出电流反馈管脚通过RC滤波电路接地;所述电流控制芯片模式选择管脚连接所述单片机(8)的PWM信号输出端;
所述第二补光输入端和地之间设置有第二滤波电路(91),所述第二补光输出端的正极和负极之间跨接电容(C10),所述第二补光输出端负极通过电阻(R4)接地。
可选的,一种具体实现方式中,所述第二滤波电路(91)包括并联连接的第三电容(C7)和第四电容(C8)。
可选的,一种具体实现方式中,所述摄像机还包括:图像传感器和数字 信号处理器;
其中,所述数字信号处理器接收所述图像传感器输入的图像的亮度信息,并在该亮度值低于所述数字信号处理器中相应的预设值的情形下向所述单片机(8)发送调整输入到所述补光灯的电流强度大小的指令。
以上可见,应用本申请提供的方案,由于在摄像机中增设了单片机,并利用单片机本身具有多个PWM信号输出端,因此,能够解决现有驱动方式无法驱动混合LED的问题,从而为混合补光灯需要多路补光光源调光控制提供有利条件。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请所提供的一种摄像机中的结构示意图;
图2是图1所示的摄像机的轴向剖面示意图;
图3是图1所示的摄像机中前盖组件的剖面示意图;
图4(a)是图1所示的摄像机中的补光灯的一种封装结构示意图;
图4(b)是图4(a)所示的补光灯中,第一补光晶元和第二补光晶元在基板上的固定方式的示意图;
图4(c)是图4(a)所述的补光灯的轴向剖面示意图;
图4(d)是图1所示的摄像机中的补光灯的另一种封装结构的轴向剖面示意图;
图5是图1所示的摄像机中的透镜构件的一种轴向剖面示意图;
图6是图1所示的摄像机中的补光灯的发出光通过图5所示的透镜构件的光路示意图;
图7是图5所示的透镜构件中的出光杯口内设置的复眼透镜的一种结构示意图;
图8是图5所示的透镜构件中的出光杯口内设置的复眼透镜的另一种结构示意图;
图9是图1所示的摄像机中的补光灯的发出光通过图7或图8所示的复验透镜的光路示意图;
图10和图11是本申请所提供的透镜补光透镜坎德拉图;
图12和图13是本申请所提供的透镜补光透镜配光曲线图;
图14是图1所示摄像机中电控组件与补光灯组件的连接结构示意图;
图15是图14所示的连接结构中光敏元件与单片机的连接结构示意图;
图16是图14所示的连接结构中的电流控制电路中的第一电流控制电路的一种结构示意图;
图17是图14所示的连接结构中的电流控制电路中的第二电流控制电路的一种结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。
图1为本申请提供的一种摄像机的结构示意图,图2为图1所示的摄像机的轴向剖面示意图,图3为图1所示摄像机中前盖组件的剖面示意图。
如图1至图3所示,本申请所提供的摄像机包括机身6,机身6的空腔61内设有补光灯组件和电控组件。其中:补光灯组件包括灯板1、补光灯2、前盖3和透镜构件4;电控组件包括光敏元件7、单片机8和电流控制电路。
下面将一一详述各组成部分以及各组成部分之间的连接及配合关系。
如图1至图3所示,灯板1具有通孔11以及环绕通孔11周向间隔布置的灯安装部。其中:通孔11的中心线的延伸方向与摄像机的镜头(图中未示出)的光轴方向(文中可简称为“轴向”)平行,且大致对齐。每一个灯安装部上装配一个补光灯2。
前盖3沿光轴方向具有一定的长度,前盖3的后侧面安装灯板1。例如,灯板1可以通过螺钉固定连接到前盖3。前盖3的前侧面设有透镜安装部31,灯板1安装到前盖3的后侧面上后,透镜安装部31与灯板1上的补光灯2在光轴方向上相对齐,且沿光轴方向贯通前盖3。也就是说,一个透镜安装部31安装一个透镜构件4,该透镜构件4用于控制与其相对应的补光灯2的发出光线的出射方向。
本申请中,“前”、“后”可以按照补光灯2发出的光线的出射方向,光线的上游可以理解为本申请中的“后”,下游可以理解为“前”。
补光灯2设置成由第一补光部分和第二补光部分的组合形式,第一补光部分的发出光处于第一波段内,第二补光部分的发出光处于第二波段内。这样,第二补光部分的发出光与第一补光部分的发出光混合,形成曝光补偿光。
本发明的补光灯通过在第一波段内调整第一补光部分的波长,提高对待拍摄对象的识别率,并通过在第一补光部分的基础之上设置第二补光部分,通过第二补光部分的发出光来调节与第一补光部分的发出光混合后的曝光补偿光的颜色,使补光灯发出的混合光的颜色更加柔和,避免对人造成眩光。
如图4(a)所示,补光灯2采用封装式结构,包括基板21以及置于基板21表面的第一补光晶元22和第二补光晶元23,并且,第一补光晶元22和第二补光晶元23的周围的基板21的区域中表面可以铺设有荧光粉24。
本领域普通技术人员可以知晓的是:人脸的肤色通常分为黄色、黑色和棕色,车牌一般采用蓝底白字,不同肤色的人脸和车牌均对不同波长的光谱都有不同程度的反射属性。
一组实验数据显示:不同肤色的人脸对波长为650nm的光谱的反射率最高,当波长大于650nm之后,随着波长的增长,人脸对光谱的反射率逐渐降低。光谱的反射率越高,同种条件下,被摄像机采集芯片接收到的光量越多,也就更容易进行人脸识别,因此,在进行人脸识别时,可以选择波长大于650nm的光源。
另一组实验数据显示:车牌的白色字体对波长处于400nm~800nm波段内的光谱反射率都比较高,而蓝底对中心波长在450nm的附近的光谱的反射率较高,而对中心波长在600nm~800nm波段内的光谱的反射率很低,而当波长大于800nm之后,随着波长的增长,蓝底对光谱的反射率又开始上升。基于此,为了更好地分辨车牌号码,需要使车牌的底色和字体部分的反光存在较大的对比度。其中,使用波长在600~800nm波段内的光源,可以使得车牌的底色的反光率较低,而字体的反光率较高,从而,使得车牌的底色和字体部分的反光的对比度是最高的,进而,采用此波段范围的光源对识别车牌的摄像机进行补光,有利于车牌号码的识别。
因此,本申请综合人脸识别和车牌识别的需求,可以第一补光部分的波段确定为650nm~850nm波段。这样,既能改善现有白光灯刺眼(眩光)的情况,也有利于提高对人脸和车牌的识别。
需要说明的是,波段为650nm~850nm的光谱主要集中在红光区域。在实际的应用中,此波段的光源在道路使用中,容易使驾驶员或者行人在远处观看的时候误认为是交通灯中的红灯,误导行人。
根据色度学的相关理论,通过在一种颜色的光源中,混入其它颜色的光, 可以改变当前光的颜色。为了避免人们将上述650nm~850nm之间波段的第一补光部分误认为交通灯中的红灯,本申请采用了第二补光的方式,并将第一补光晶元22的发出光的第一波段设定为650nm~850nm波段,通过第二补光晶元23发出的光与第一补光晶元22的发出光混合,这种第二补光的方式可以掩盖第一补光晶元22发出的红光,因此,既避免误导用户,而且能够达到清晰识别人脸和车牌的需求。
具体的:在本申请提供的摄像机中,第一补光晶元22发出的光是第一补光部分,且处于第一波段内,该第一波段为650nm~850nm波段。具体的,处于650nm~850nm波段内的光主要集中在红光区域。例如,700nm~760nm波段内,波长为730nm或750nm的光,可以作为主照明波段光;700~760nm波段的光的是红外光,光的颜色是红色。这样,处于650nm~850nm波段内的光能够改善人脸、车牌等待拍摄对象在红外补光效果下的对比度,同时能够保证红外镜头对焦。
第二补光晶元23发出的光是第二补光部分,且处于第二波段内,该第二波段为450nm~620nm波段。
例如:第二补光晶元23发出光的中心波长为460nm,则第二补光晶元23的发出光为蓝光。这样,蓝光和第一补光晶元22发出的处于650nm~850nm波段的光混合后的光为紫光或者偏蓝光。
又例如,第二补光晶元23发出光的中心波长为580nm,则第二补光晶元23的发出光为黄光。这样,黄光和第一补光晶元22发出的处于650nm~850nm波段的光混合后的光为橙黄色光。
由于人眼对于不同颜色的光,具有不同的敏感度,例如,人眼对波长为730nm的红光的感光系数是0.00052,人眼对波长为460nm的蓝光的感光系数是0.06,因此,只要混入很小功率的蓝光,在光混合后,便可以得到紫光和偏蓝光,并且,所混入的很小功率的蓝光对车牌识别产生的影响是较小且可忽略的,即可以认为所混入的很小功率的蓝光对车票识别不造成影响。
此外,在人脸识别和车牌识别模式中,可以使用对应第一波段为650nm~ 850nm波段的第一补光晶元22作为摄像机的补光光源,且第一补光晶元22的功率范围是0.5W~3W,第二补光晶元23的功率范围是0.05W~1W,白光功耗很小。在夜晚全彩模式下,可以关闭对应波段为650nm~850nm波段的第一补光晶元22,第二补光晶元23作为摄像机的补光光源。这样,可以在同一台摄像机中实现夜晚彩色模式以及人脸识别和车牌识别模式等多种功能。
进一步的,为了使第一补光部分不显示为红色,可以在第一补光部分中混入白光,将红光的显出的红色变淡、变浅,而能够区别于现有的红色交通灯发出的红色。
基于此,考虑到第二补光晶元23发出白光的实现方式可以为:蓝光芯片激光荧光粉可发出白光,或者,紫外光激光荧光粉发出白光,因此,在第一补光晶元22和第二补光晶元23的周围的基板21的区域中表面可以铺设有荧光粉24的基础上,第二补光晶元23发出的处于第二波段内的光可以激发荧光粉24产生白光。进而,第一补光晶元22的发出光与第二补光晶元23激发荧光粉发出的光混合,形成曝光补偿光。
例如,第一补光晶元22发出的光的颜色是红色,那么可以选择荧光粉24的种类,使荧光粉24经由第二补光晶元23发出的光激发,发出白色荧光,该白色荧光与第一补光晶元22发出的红光混合,这样形成的曝光补偿光的颜色能够使人眼轻微看到或者看不到第一补光部分发出的光,从而也起到减弱红曝的作用。
优选的,一种实施例中,为了能够在第一补光部分中混入白光,第二补光晶元23的发出光可以处于色温在2700k~6500k之间的白光所处的波段。
其中,第二补光晶元23的数量可以是1颗或多颗(比如2颗)。第二补光晶元23的色温在2700k~6500k之间。这样,第一补光晶元22与发出白光的第二补光晶元23组合,可去除红曝现象,不产生眩光,有利于提高摄像机的识别成功率。
优选的,一种实施例中,第一补光晶元22和第二补光晶元23的辐照区域呈锥体状,第一补光晶元22的辐照区域和第二补光晶元23的辐照区域形 成的重叠范围的光即为曝光补偿光。并且,可以在邻近第一补光晶元22和第二补光晶元23的范围内设置重叠区域范围。
也就是说,可以将第一补光晶元22和第二补光晶元23的辐照区域尽量靠近,以使得所形成的重叠范围的面积更大,从而保障保障所得到的曝光补偿光的亮度。
优选的,一种实施例中,如图4(b)所示,第一补光晶元22和第二补光晶元23均通过导热连接层25固定在基板21上。其中,基板21为散热基板。
其中,导热连接层25可以为共晶层或者银胶层,导热连接层25的作用主要体现在:将第一补光晶元22和第二补光晶元23连接到基板21上,基板21为散热基板,并焊接于灯板1上的灯安装部上。
导热连接层25具有热传导能力,这样能够增强器件的散热能力。散热基板可以采用陶瓷基板,陶瓷基板具有优良的散热能力,而且耐热程度高,作为第一补光晶元22和第二补光晶元23的散热基板,可以有效降低补光灯2的工作温度。
灯板1采用的是铝基板,再将铝基板通过螺丝固定安装在前盖3上。此时,第一补光晶元22和第二补光晶元23发光过程中散发的热量从散热基板传导到灯板1,再通过灯板1传导到前盖3,最后通过前盖3的外壳把热量散到摄像机的外部环境中。
优选的,一种实施例中,第一补光晶元22相对于基板21居中设置,即第一补光晶元22位于基板21的中心,第二补光晶元23设置在第一补光晶元22的侧边。
优选的,一种实施例中,如图4(c)所示,第一补光晶元22和第二补光晶元23均为LED芯片,并且,多个第一补光晶元22和多个第二补光晶元23交替隔开布置在基板21上。也就是说,该封装结构可以包括一颗第一补光晶元22和多颗个第二补光晶元23;也可以包括多颗第一补光晶元22和多颗第二补光晶元23,第一补光晶元22和第二补光晶元23交替隔开布置在基板上。其中,补光灯2的封装结构采用COB(chip on board)形式,基板即灯板1, 此时的第一补光晶元22和第二补光晶元23直接电连接灯板1,从而省去常规封装中的银胶和封装层。
其中,该封装结构可以包括一颗功率是3W的第一补光晶元22和多颗功率是0.05W的第二补光晶元23;也可以包括多颗功率是1.5W的第一补光晶元22和多颗功率是0.05W的第二补光晶元23。
优选的,一种实施例中,如图4(d)所示,第二补光晶元23可以为涂覆在第一补光晶元22外的荧光粉层26。比如,第一补光晶元22发出的光的颜色是红色,那么可以选择荧光粉层26,利用荧光粉层26发出的光与第一补光晶元22发出的红光混合,这样形成的曝光补偿光的颜色能够使人眼轻微看到或者看不到第一补光芯片发出的光,从而也起到减弱红曝的作用。
其中,本申请的后续实施例仅以第一波段为750nm的第一补光晶元22、第二波段为460nm的第二补光晶元23及二者周围的基板21的区域中表面铺设荧光粉24的封装形式进行描述,但该封装形式并不局限于双晶的封装形式,还可以是多晶的封装形式。
如图1至图3所示,透镜构件4通过点胶方式固定在前盖3的透镜安装部31,透镜安装部31呈现为一个形状与透镜构件4的外轮廓相匹配的形状,并为透镜构件4的周向凸缘41提供支撑台阶32,透镜构件4的周向凸缘41与前盖3之间的间隙设有填充物,比如粘胶,从而实现透镜构件4与前盖3之间固定连接以及二者密封性能。
透镜构件4的外侧附加有装饰盖5,装饰盖5采用双色注塑件,分为透明区域51和非透明区域,其中透明区域51位于透镜构件4的前方,采用透明PC塑胶;非透明区域为透明区域51的外围,由黑色塑胶制成。装饰盖5通过卡扣方式固定连接到前盖3。装饰盖5安装到前盖3的方法为:首先利用一个卡扣支架12通过螺钉固定在前盖3上,然后将装饰盖5上的钩状卡扣52伸入卡扣支架12的卡槽内,与卡扣支架12配合。装饰盖5的上侧为直臂开孔14,通过前盖3侧边螺钉13紧固。
本领域普通技术人员可以知晓的是:单光源产生的光空间分布为朗伯体分布,朗伯体分布指的是光强在空间上呈现I*cosθ余弦分布。第一补光晶元22和第二补光晶元23产生的光分布均为朗伯体或者近似朗伯体分布。然而,镜头的视场角与摄像机的焦距以及sensor靶面大小相关。于变倍的摄像机而言,焦距在2.8-12mm或者是8-32mm亦或是其它变焦范畴,焦距不一样,视场角则不一样;焦距是变化的,视场角相应也是变化的。单光源产生的光空间分布的全角一般在170度,而焦距是2.8mm的镜头视场角在135度左右,焦距是8mm的镜头视场角在50度左右。由此可以看出:单光源产生的光空间分布的全角远远大于镜头的视场角,故二者并不匹配。
鉴于此,本发明通过改进透镜构件4的结构,对补光灯2的发出光进行二次配光实现新的光空间分布,亦即实现补光灯2发出光的光空间分布与镜头视场角匹配。
其中,该“匹配”可以举例说明,例如:镜头视场角是100度,则经由透镜构件4控光之后的光空间分布角度也相应为100度或大于100度;镜头视场角是50度,则经由透镜构件4控光之后的光空间分布角度也相应为50度或大于50度。
图5示意出了透镜构件4沿其光轴方向剖面示意图。如图5所示,透镜构件4具有两端通透的喇叭状杯体42,杯体42具有进光杯尾421和出光杯口422,杯体42自进光杯尾421到出光杯口422外径逐渐增大,出光杯口422沿径向(横向)向外延伸,形成周向凸缘41。透镜构件4装配的时候,进光杯尾421置于出光杯口422的后方。“径向”和“横向”可理解为垂直于“光轴O”的方向,“横向截面”是垂直于“光轴O”的截面。“周向”是围绕光轴O旋转的方向。
如图5至图9所示,进光杯尾421设有进光开口433。进光开口433沿轴向朝出光杯口422的方向延伸,并终止于平行光准直凸透镜面431,进光开口433和平行光准直凸透镜面431之间的空腔限定为光源入射槽43。进光开口433的横向截面面积大于补光灯2的面积,这样,可供补光灯2的发出光全部进入到光源入射槽43中。
光源入射槽43的与进光开口433相对的前端面是平行光准直凸透镜面431,平行光准直凸透镜面431沿轴向朝进光开口433的方向呈弧形凸出,其呈凸透镜的凸面形状。进光开口433与平行光准直凸透镜面431之间的轴向间距小于或等于平行光准直凸透镜面431的焦距。
由于第一补光晶元22位于补光灯2的中心,位于透镜构件4的中心轴线上,亦即相对于平行光准直凸透镜面431居中布置,且置于平行光准直凸透镜面431的预设位置,该预设位置为平行光准直凸透镜面431的焦点处,亦即补光灯2的发光面位于所述平行光准直凸透镜面431的焦面上。根据光学原理,便可获知:通过平行光准直凸透镜面431可实现入射光线的准直处理,亦即第一补光晶元22发出光的一部分经由平行光准直凸透镜面431后,形成沿轴向的平行光,再出射。
光源入射槽43的侧壁为分光侧壁432,一般呈圆锥面状,锥度与光轴O呈现1度以上的倾角,一般设定为2度,并且平行光准直凸透镜面431的口径小于进光开口433的口径。通过分光侧壁432,一方面可以实现分光,另一方面可以使得产品成型模具注塑生产时能够较容易出模脱模。
除此之外,第一补光晶元22为面光源,因此,第一补光晶元22发出光的一部分经由平行光准直凸透镜面431后形成沿轴向的平行光,第一补光晶元22发出的另一部分光及荧光粉24被第二补光晶元23激发发出的白光都入射到分光侧壁432上,再由分光侧壁432偏折入射到杯体42的平行光准直反射面423上。显然,平行光准直反射面423的靠近补光灯2的曲率大,而平行光准直反射面423远离补光灯2的曲率小,也就是说,平行光准直反射面423自进光杯尾421到出光杯口422的口径逐渐增大,因此,平行光准直反射面423上的靠近补光灯2的部分可以使入射光线沿轴向反射到光接收面4221,而平行光准直反射面423上的远离补光灯2的部分以使入射光线则会相对于光轴O存在少许偏折后反射到光接收面4221,因此,光接收面4221接收到的光线基本都平行于光轴O。
杯体42的侧壁内表面为用于将入射光沿轴向反射出去的平行光准直反射面423在制作时,首先,设定好光源通光口径后,预设定壁厚,即可得到反 射面的起始点坐标位置。因为光源的出光形式是固定的(I*cosθ),即入射到分光侧壁的光是已知的矢量,即反射面入射光是已知的,基于f反射出光实现准直,显然,经过平行光准直反射面423反射,反射光是已知的。入射光与反射光已知,即可通过snell定理求解单点法线与切线,基于第一个点的位置尺寸给定,后续点位于前一个点的切线上,即可迭代生成平行光准直反射面423。
出光杯口422设置有复眼透镜,该复眼透镜的内侧面是平面,作为光接收面4221;复眼透镜的外侧面具有复眼珠面,作为出光面4222。出光面4222上的复眼珠面可以说如图7示出地,由相同的6边形复眼微结构A组成,这种花纹形式控光实现的光空间分布全角对应的混合补光灯是近光灯。出光面4222上的复眼珠面也可以说如图8示出地,中心区域由相同的6边形复眼微结构B组成,中心区域外围采用菱形复眼微结构C,这种花纹形式控光实现的光空间分布全角对应的混合补光灯是远光灯。复眼微结构A、B和C均呈外凸状,尺寸尺寸与区域设定微结构的数量相关。相邻的两个复眼微结构之间的边界的间距为0,也可以理解为述复眼透镜的外侧面由连续。出光面4222上的复眼珠面的形状仅为了区分透镜构件4的种类规格,在原理效果上,均符合准直加复眼控光的形态。出光面4222的直径大小范围是15mm-40mm,本发明将出光面4222的直径大小设定为23mm,这样,出光面4222的尺寸合适,易于成型。
复眼透镜在本发明中主要具有三个功能:
第一,如图9所示,以其中的一个复眼微结构为例,说明复眼透镜实现补光光空间的新分布的原理,具体如下:
如图9中示出的相对于光轴O最外侧的复眼微结构,该复眼微结构从外到内依次分布有M点、H点和N点,M点为复眼微结构最外侧的点,N点为复眼微结构最内侧的点,H点是复眼微结构上的曲率最大点。依据曲面的折射原理,入射到M点的平行光线将会朝靠近光轴O偏折角β出射,入射到N点的平行光线将会朝远离光轴O的方向偏折角β出射,入射到H点的平行光线将平行于光轴O的方向出射,那么补光光空间的全角为2β。这是一个复眼微结 构对于光线空间分布的重新调整,那么对于所有的复眼微结构而言,都会对每一根入射的光线均会按照上述方式出射光线,交错偏折,从而可以通过控制复眼微结构的表面曲率,则可以控制偏折角β的大小,从而实现补光光空间的新分布,这样出光杯口422实现了外围的大角度补光。
新的光空间分布可以是矩形分布,也可以是旋转对称分布,其取决于复眼珠面的形状。
矩形分布可以匹配或贴合镜头的视场,此时可以将复眼珠面的轮廓边界设置成矩形,从而经由透镜构件4出射的新的光空间分布呈现为矩形,且满足视屏图像呈现画面的长宽比4:3或者是16:9。
旋转对称分布一般采用6边形复眼微结构,消边界处理,或者是不规则不一致复眼花纹(如图8示出的菱形复眼微结构和6边形复眼微结构的组合)的形状。
进一步地,如图6和图9所示,在一个实施例中,以镜头焦距是8mm-32mm为例,镜头焦距是8mm的视场角DFOV一般在45度左右记为θ 1,镜头焦距是32mm视场角DFOV一般在10度左右记为θ 2。为了满足低功率补光要求,补光区分远近光灯,其中,近光灯满足镜头焦距是8mm补光需求,图8中的β大于θ 1;远光灯满足镜头焦距是32mm补光需求,图8中的β大于θ 2
第二,由于第一补光晶元22相对于平行光准直凸透镜面431居中布置,第一补光晶元22和平行光准直凸透镜面431的中心均位于光轴O上,相互对齐。而第二补光晶元23的位置和荧光粉24发出的光则相对于光轴0存在偏离,这样将会使得荧光粉24发出的光偏离光轴0发出,从而在补光应用时,会存在一边亮、一边暗的图像效果。因此,通过复眼透镜还可以纠正第二补光晶元23的位置偏离光轴0而出现补光不良,纠正偏心的原理具体如下:
在使用透镜构件4时,第一补光晶元22发出的750nm波段的光,经分光侧壁432分成两部分,一部分通过平行光准直凸透镜面431偏折实现平行准直入射至入光面4221;另一部分光经过分光侧壁432偏折入射至平行光准直反射面423,经平行光准直反射面423反射实现平行准直至入光面4221。形 成的平行光经出光面4222的复眼珠面实现偏折,从而实现新的光空间分布。
第二补光晶元23和荧光粉24受激发后发出的光,基于第二补光晶元23的位置和荧光粉24发出的光则相对于光轴0存在偏离,在经过平行光准直凸透镜面431偏折与平行光准直反射面423反射后,光路传播方向产生变化,非平行入射至入光面4221。基于平行光准直反射面423实现准直,此类偏折较小,形成的光空间分布不均,此时通过出光面4222的复眼珠面得以改善。第二补光晶元23和荧光粉24受激发后发出的光经出光面4222的复眼珠面后,得到的光空间分布无不均偏心现象,可直接用于照明,从而实现双补光功能的同时,750nm补光各方位角度无红曝产生。
相比于现有技术中的透镜构件,入射到透镜构件的出光面上的光线相对于光轴而言,偏折角度较大,而并不是本申请中的平行于光轴O的平行光,因此,即便将复眼透镜应用到现有的透镜构件上,复眼微结构出光之间仍然交叠少,无法改善偏心问题。
第三,增加出光单向出光面积,改善人眼感官的舒适性,其实现原理如下:
如图7所示,一个方向仅有一根光线贡献,假定单光线的出光面积为ds,则此方向的发光亮度为L_β=I/ds。而本发明提供的透镜4的配光方式中,如图8和图9所示,单光线的出光方向的发光亮度为L_β=I/(N*ds);N为复眼微结构的数量,依据眩光值计算公式GR=27+24log(L_β/LVe^0.9),LVe为环境亮度,显然,在LVe固定的前提下,GR值与L_β相关,L_β值越低,GR值越低,舒适性越好。显然地,单方向的亮度值降低,人眼感觉舒适。上述透镜4的结构形式还可以最大化的增加透镜人眼可视出光面积,从而改善舒适性。
图10为本申请配光方式750坎德拉图伪色图(白底灰阶图),图11为本申请白光配光坎德拉伪色图(白底灰阶图),与现有配光技术配方相比,白光光分布对称性改善较为明显。图12与13为本申请透镜构件4针对750nm配光以及偏心白光配光后配光曲线直角坐标图,显然的,无论是750nm亦或是白光,A与B基本处于重合趋势,无较明显偏移。
如图14所示,为图1所示摄像机中电控组件与补光灯组件的连接关系示意图,其中,电控组件包括光敏元件7、单片机8和电流控制电路。
具体的,光敏元件7为感应可见光的三极管,在不同亮度的光强照射下,三极管输出的电流不同,进而便可以根据三极管所输出的电流判断外部的光强大小。
其中,预设波段范围分别与第一波段和第二波段存在交集,例如,本申请中的光敏元件7可以感应到400nm~680nm波段的光线,即预设波段范围为400nm~680nm波段,显然,预设波段范围包括第二波段范围的全部范围,并且,预设波段范围包括第一波段范围的部分范围。进而,当拍摄环境的亮度慢慢变暗过程中,400nm~680nm波段的光谱能量降低。
如图15所示,光敏元件7的一端接电源VDD,另一端通过电阻Rss接地,且流经电阻Rss的电流Iss。此外,在光敏元件7与电阻Rss之间连接有信号输出部71,则光敏元件7可以通过信号输出部71输出与所感应到的光强度信号相匹配的电信号。
单片机8具有信号信号采集端和PWM信号输出端,单片机8的信号采集端通过信号输出部71连接光敏元件7,单片机8的PWM信号输出端分别通过电流控制电路连接补光灯2。
单片机8经由其信号采集端接收光敏元件7输出的电信号,并根据该电信号通过电流控制电路开启补光灯2或关闭补光灯2。
具体地,拍摄环境中,可见光亮度越高,电流Iss越大,信号输出部71输出到单片机8的电压值越高;可见光亮度越低,电流Iss越小,信号输出部71输出到单片机8的电压值越低。当检测到信号输出部71输出到单片机8的电压低于第一预设电压(比如:0.675V)时,单片机8控制补光灯2开启;当检测到信号输出部71输出到单片机8的电压高于第一预设电压(比如:1.125V)时,单片机8控制补光灯2关闭。
所述补光灯包括所述近光灯和/或所述远光灯,近光灯的照射距离不大于50m,远光灯的照射距离不大于100m。如上文所述的,所述复眼透镜的外侧面 由相同的6边形复眼微结构A组成的情形下,所述混合补光灯为照射距离不大于50m的近光灯(如图7所示)。所述复眼透镜的外侧面的中心区域由相同的6边形复眼微结构B组成且所述中心区域外围布置为菱形复眼微结构C的情形下,所述补光灯为照射距离不大于100m的远光灯(如图8所示)。
可选的,一种具体实现方式中,补光灯2包括第一补光晶元22和第二补光晶元23。相应的,由于单片机8具有多个PWM信号输出端,则第一补光晶元22和第二补光晶元23可以通过一个电流控制电路连接一个PWM信号输出端。具体地,单片机8通过控制输送给电流控制电路的PWM信号的占空比,分别控制相应的第一补光晶元22和第二补光晶元23的启闭和功率调节。
例如:通过控制输送给电流控制电路的PWM1信号的占空比,控制近光灯中的第一补光晶元22的启闭和功率调节;单片机8通过控制输送给电流控制电路的PWM2信号的占空比,控制近光灯中的第二补光晶元23的启闭和功率调节;单片机8通过控制输送给电流控制电路的PWM3信号的占空比,控制远光灯中的第一补光晶元22的启闭和功率调节;单片机8通过控制输送给电流控制电路的PWM4信号的占空比,控制远光灯中的第二补光晶元23的启闭和功率调节。
本申请中,即使在远光灯和近光灯同时存在的前提条件下,也可以通过单片机8的一个PWM信号输出端,向电流控制电路发出PWM信号,通过控制PWM信号的占空比,控制每一个补光晶元的功率,从而克服了现有的一个电流控制电路无法同时驱动多个补光晶元技术缺陷。
可选的,一种具体实现方式中,电流控制电路包括第一电流控制电路和第二电流控制电路,其中,第一补光晶元22通过自身的封装电路引脚与第一电流控制电路的输出端连接;第二补光晶元23通过自身的封装电流引脚与第二电流控制电路的输出端连接。
具体的:第一电流控制电路以电流控制的方式,控制输入到第一补光晶元22的电流强度的大小,该电流强度下文称作为第一补光电流强度,以控制 第一补光晶元22的发光强度。第二电流控制电路也以电流控制的方式,控制输入到第二补光晶元23的电流强度的大小,该电流强度下文称作为第二补光电流强度,以控制第二补光晶元23的发光强度。
第一补光电流强度与第二补光电流强度大小的比值的范围控制为1:10~1:200,实践证明该比例范围既不会使白光太刺眼,又能将红光掩盖住。混光模式下,即第一补光晶元22和第二补光晶元23同时开启的情形下,第二补光晶元23的输入电流范围为1mA~10mA。第一补光晶元22关闭且第二补光晶元23开启的情形下,第二补光晶元23的输入电流围为150mA。优选地,第一电流控制电路输入到第一补光晶元22的电流强度为800mA,第二电流控制电路输入到3000K暖白光的电流强度为5~10mA。
优选的,一种实施例中,如图16所示,第一电流控制电路包括:第一补光输入端IR和第一补光输出端和第一电流控制芯片UG1。
其中,IRLEDO+为第一补光输出端的正极,IRLEDO-为第一补光输出端的负极,第一补光输出端的正极IRLEDO+和负极IRLEDO-用于连接第一补光晶元22的电流输入端。
第一电流控制芯片UG1的型号可以是SYHV12ABC。图20中,第一电流控制芯片UG1的脚161是第一开关输出管脚,脚162是地回路管脚,脚163是测试管脚,脚164是芯片工作使能管脚,脚165是芯片输入电压管脚,脚166是LED电流检测管脚。
脚161通过二极管D16连接第一补光输入端IR,二极管D16是异步DCDC芯片的续流二极管。脚166通过电阻R247连接第一补光输入端IR,电阻R247用于解决辐射问题的电阻工位。脚164通过电阻R246连接外部控制器的PWM管脚MAIN LED CTL A1,通过外部控制器输送给脚164的PWM信号,控制第一电流控制电路输出的电流大小。电阻R246用于解决辐射问题的电阻工位。脚165都连接第一补光输入端IR,脚162和脚163都接地。脚166和第一补光输入端IR之间设置有限流电路81,脚166和限流电路81之间接地。限流电路81用来控制第一补光晶元22上流过的电流最大值。
具体地,限流电路81包括并联连接的第一电阻R249和第二电阻R248,第一电阻R249和第二电阻R248并联后的阻值0.125Ω。流过第一补光晶元22的电流强度是0.1/0.125(A)=0.8A。第一补光输入端IR通过第一滤波电路82接地,第一滤波电路82包括并联连接的第一电容C273和第二电容C270,对第一补光输入端IR进行滤波,防止输入电压不稳。脚161通过第一储能电容L2连接输出端IRLEDO-。输出端IRLEDO+和IRLEDO-之间设稳流电路83。稳流电路83包括并联连接的第三电容C274和第四电容C269,用于抑制第一补光晶元22的电流纹波,保证第一补光晶元22的电流稳定。
优选的,如图17所示,第二电流控制电路具有第二补光输入端VIN和第二补光输出端和第二电流控制芯片UW2;
其中,LED+为第二补光输出端的正极,LED-为第二补光输出端的负极,第二补光输出端正极LED+和负极LED-用于连接第二补光晶元23的电流输入端。
第二电流控制芯片UW2的型号可以是TPS54201。图21中,第二电流控制芯片UW2的脚171是地回路管脚,脚172是第二开关输出管脚,脚173是电源输入管脚,脚174是输出电流反馈管脚,脚175是电流控制芯片模式选择管脚,脚176是升压管脚,脚176控制SW输出信号。
优选的,第二补光输入端VIN和地之间设第二滤波电路91,第二滤波电路91包括并联连接的第三电容C7和第四电容C8,对第二补光输入端VIN进行滤波,防止输入电压不稳。脚172通过第二储能电容L3连接输出端LED+。脚176通过升压电容C6连接在脚172与第二储能电容L3之间。升压电容C6具有升压作用,控制第二电流控制电路的上管开启。脚173连接第二补光输入端VIN。脚174通过电阻R3连接输出端LED-,脚174还通过电容C9接地。电阻R3和电容C9组成RC滤波电路,和脚174构成一个极点,保证环路带宽和稳定性。脚175连接外部控制器的PWM管脚,通过外部控制器输送给脚175的PWM信号,控制第一电流控制电路输出的电流大小。PWM的占空比决定输出电流的大小,本发明中的暖白光的电流是1mA,PWM的占空比是1%。
第二补光输出端正极LED+和第二补光输出端负极LED-之间跨接电容C10, 电容C10用于稳定输出的第二补光电流强度,减少电流波动,保证第二补光晶元23尽量工作在标准的恒流模式,防止第二补光晶元23闪烁。输出端LED-通过电阻R4接地,电阻R4用于检测流过第二补光晶元23的电流大小,保证流过第二补光晶元23的电流强度大小是设定的电流值,流过第二补光晶元23的电流强度I=0.2V/R4。
在一个具体实施例中,第一补光晶元22选择波段是700nm~760nm波段的光,其中,对应波段为700~760nm波段的第一补光晶元22发出的是红外光,颜色是红色。第二补光晶元23采用色温为3000K的暖白光,颜色是黄色,因此,3000K暖白光和对应波段为700~760nm波段的第一补光晶元22发出的光,混合后光的颜色是暖白色偏黄,该颜色一方面可以解决单纯白光导致的炫光刺眼问题,另一方面,第二补光后可以解决单纯采用对应波段为700-760nm波段的光导致的红曝问题,防止被误认为路口红灯。除此之外,该种第二补光方式有利于改善人脸和车牌红外补光效果下的对比度。优选地,第一电流控制电路输入到第一补光晶元22的电流强度为800mA,第二电流控制电路输入到3000K暖白光的电流强度为5~10mA。
优选的,一种实施例中,在补光灯2的封装结构中,第一补光晶元22和第二补光晶元23可以采用并联方式连接,此时,第一补光晶元22具有第一封装电路引脚,第二补光晶元23具有第二封装电路引脚。第一补光晶元22和第二补光晶元23各自通过相应的封装电路引脚与电流控制电路连接,即,第一补光晶元22通过第一封装电路引脚与电流控制电路连接;第二补光晶元23通过第二封装电路引脚与电流控制电路连接。
进一步的,当第一补光晶元22和第二补光晶元23采用图22中示出并联方式连接时,针对如图16所示的第一电流控制电路,在补光灯2的封装结构中,第一封装电路引脚223连接第一电流控制电路的第一补光输出端IRLEDO+、IRLEDO-。并且,第二封装电路引脚224连接第二电流控制电路的第二补光输出端LED+、LED-。
优选的,一种实施例中,在补光灯2的封装结构中,第一补光晶元22和第二补光晶元23也可以采用串联方式连接,此时,第一补光晶元22和第二 补光晶元23构成的串联电路的两端通过第三封装电路引脚与电流控制电路连接。
进一步的,当第一补光晶元22和第二补光晶元23采用串联方式连接时,针对如图16所示的第一电流控制电路,在补光灯2的封装结构中,第三封装电路引脚连接第一电流控制电路的第一补光输出端IRLEDO+、IRLEDO-。
可选的,一种具体实现方式中,本申请所提供的摄像机的电控组件中,还可以包括数字信号处理器和图像传感器。
其中,图像传感器用于采集摄像机镜头获取的图像,并输出给数字信号处理器。数字信号处理器用于接收图像传感器输送的图像,并通过统计接收到的图像的数据亮度值,判断当前补光强度是否满足要求。数字信号处理器可通过UART(英文全称为:Universal Asynchronous Receiver/Transmitter;中文全称为:通用异步收发传输器)与单片机8信息交互。通过UART可以节省主平台的通信接口,以实现多路控制。
使用时,在数字信号处理器判断当前补光强度不满足要求的情形下,则通过UART通知单片机8调整补光灯2的PWM信号的占空比大小,从而通过电流控制电路控制输送给第一补光晶元22和第二补光晶元23的电流大小,以控制第一补光晶元22和第二补光晶元23的功率,进而实现整体图像画面的亮度调整。如果PWM信号的占空比低于100%,那么就处于调光状态。如果占空比已经达到100%,那么相应的补光晶元处于开启最大状态。通过PWM信号控制第一补光晶元22和第二补光晶元23的功率过程为:当PWM信号为高电平,第一补光晶元22和第二补光晶元23同时开启;当PWM信号为低电平,第一补光晶元22和第二补光晶元23同时关闭。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (9)

  1. 一种摄像机,其特征在于,所述摄像机包括:补光灯(2)、光敏元件(7)、单片机(8)和电流控制电路;
    其中,所述补光灯(2)包括:基板(21)以及置于所述基板(21)表面的第一补光晶元(22)和第二补光晶元(23);
    所述第一补光晶元(22)和所述第二补光晶元(23)的周围的所述基板(21)的区域中表面铺设有荧光粉(24),所述第一补光晶元(22)的发出光处于第一波段内,所述第二补光晶元(23)的发出光处于第二波段内并可激发所述荧光粉(24)产生白光;所述第一补光晶元(22)的发出光和所述白光,用于给所述摄像机进行补光;其中,所述处于第一波段的光和出于第二波段的光均为非白光;所述第一波段为:650nm-850nm波段;所述第二波段为:400nm-620nm波段;
    所述光敏元件,用于感应预设波段范围的光线的光强度信号,所述光敏元件通过信号输出部输出与所述光强度信号相匹配的电信号;其中,所述预设波段范围分别与所述第一波段和所述第二波段存在交集;
    所述单片机(8),具有信号采集端和多个脉冲宽度调制PWM信号输出端,所述信号输入端通过所述信号输出部与所述光敏元件连接,所述PWM信号输出端通过所述电流控制电路连接所述补光灯,所述单片机(8)经由所述信号采集端接收所述电信号,所述电流控制电路接收所述单片机(8)的所述PWM信号输出端输出PWM信号,控制所述补光灯。
  2. 如权利要求1所述的摄像机,其特征在于:所述第一补光晶元(22)位于所述基板(21)的中心,所述第二补光晶元(23)布置在所述第一补光晶元(22)的侧边。
  3. 如权利要求2所述的摄像机,其特征在于,
    所述第一补光晶元(22)和所述第二补光晶元(23)均通过导热连接层固定在所述基板(21)上,其中,所述基板(21)为散热基板。
  4. 如权利要求1-3任一项所述的摄像机,其特征在于,所述电流控制电路包括:第一电流控制电路和第二电流控制电路;
    所述第一补光晶元(22)通过自身的封装电路引脚与所述第一电流控制电路的输出端连接;
    所述第二补光晶元(23)通过自身的封装电流引脚与所述第二电流控制电路的输出端连接。
  5. 如权利要求4所述的摄像机,其特征在于,
    所述第一电流控制电路包括:第一补光输入端、第一补光输出端和第一电流控制芯片(UG1);
    所述第一补光输出端连接所述第一补光晶元(22)的封装电路引脚;
    所述第一电流控制芯片(UG1)包括:第一开关输出管脚、LED电流检测管脚、芯片工作使能管脚和芯片输入电压管脚;所述第一开关输出管脚通过二极管(D16)连接所述第一补光输入端;所述LED电流检测管脚通过电阻(R247)连接所述第一补光输入端;所述芯片工作使能管脚通过电阻(R246)连接外部控制器的PWM管脚;芯片输入电压管脚连接所述第一补光输入端;
    所述LED电流检测管脚和所述第一补光输入端之间设置有限流电路(81),所述LED电流检测管脚和所述限流电路(81)之间接地;所述第一补光输入端通过第一滤波电路(82)接地;所述第一开关输出管脚通过第一储能电容(L2)连接所述第一补光输出端;所述第一补光输出端的正极和负极之间设置有稳流电路(83)。
  6. 如权利要求5所述的摄像机,其特征在于,所述限流电路(81)包括并联连接的第一电阻(R249)和第二电阻(R248);所述第一滤波电路(82)包括并联连接的第一电容(C273)和第二电容(C270);所述稳流电路(83)包括并联连接的第三电容(C274)和第四电容(C269)。
  7. 根据权利要求4所述的摄像机,其特征在于,
    所述第二电流控制电路包括:第二补光输入端、第二补光输出端和第二 电流控制芯片(UW2);
    所述第二补光输出端连接所述第二补光晶元(23)的封装电路引脚;
    所述第二电流控制芯片(UW2)包括:第二开关输出管脚、升压管脚、电源输入管脚、输出电流反馈管脚和电流控制芯片模式选择管脚;所述第二开关输出管脚通过第二储能电容(L3)连接输出端正极;所述升压管脚通过升压电容(C6)连接在所述第二开关输出管脚与第二储能电容(L3)之间;所述电源输入管脚连接所述第二补光输入端;所述输出电流反馈管脚通过RC滤波电路接地;所述电流控制芯片模式选择管脚连接所述单片机(8)的PWM信号输出端;
    所述第二补光输入端和地之间设置有第二滤波电路(91),所述第二补光输出端的正极和负极之间跨接电容(C10),所述第二补光输出端负极通过电阻(R4)接地。
  8. 如权利要求7所述的摄像机,其特征在于,所述第二滤波电路(91)包括并联连接的第三电容(C7)和第四电容(C8)。
  9. 如权利要求1所述的摄像机,其特征在于,所述摄像机还包括:图像传感器和数字信号处理器;
    其中,所述数字信号处理器接收所述图像传感器输入的图像的亮度信息,并在该亮度值低于所述数字信号处理器中相应的预设值的情形下向所述单片机(8)发送调整输入到所述补光灯的电流强度大小的指令。
PCT/CN2019/103117 2018-08-28 2019-08-28 一种摄像机 WO2020043141A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810986753.2 2018-08-28
CN201810986753.2A CN110868510B (zh) 2018-08-28 2018-08-28 一种摄像机补光装置及具有其的摄像机
CN201821704663.1U CN208849869U (zh) 2018-10-22 2018-10-22 一种混合补光摄像机
CN201821704663.1 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020043141A1 true WO2020043141A1 (zh) 2020-03-05

Family

ID=69645021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103117 WO2020043141A1 (zh) 2018-08-28 2019-08-28 一种摄像机

Country Status (1)

Country Link
WO (1) WO2020043141A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837538A (zh) * 2021-03-27 2021-05-25 深圳市迅朗科技有限公司 一种车牌云识别相机、图像传感器组件及补光、保洁方法
CN114257751A (zh) * 2021-12-17 2022-03-29 航天信息股份有限公司 一种随动补光系统
CN117596747A (zh) * 2024-01-19 2024-02-23 杭州方千科技有限公司 用于补光灯装置的故障检测电路与补光灯故障检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955326A (zh) * 2011-08-25 2013-03-06 宏碁股份有限公司 提供可调式补光的电子装置
CN205029744U (zh) * 2015-09-30 2016-02-10 杭州海康威视数字技术股份有限公司 补光摄像机、控制器件、补光器件及用于补光的控制系统
US20160109789A1 (en) * 2014-10-20 2016-04-21 Hisense Co., Ltd. Light Source Device And Projection Display Device
CN106449617A (zh) * 2015-08-05 2017-02-22 杭州海康威视数字技术股份有限公司 用于产生光的光源设备及其补光方法和装置
CN208691390U (zh) * 2018-08-28 2019-04-02 杭州海康威视数字技术股份有限公司 一种补光光源、摄像机补光装置及摄像机
CN208691388U (zh) * 2018-08-28 2019-04-02 杭州海康威视数字技术股份有限公司 一种补光光源、及具有其的摄像机补光装置和摄像机
CN208691389U (zh) * 2018-08-28 2019-04-02 杭州海康威视数字技术股份有限公司 一种摄像机
CN208849869U (zh) * 2018-10-22 2019-05-10 杭州海康威视数字技术股份有限公司 一种混合补光摄像机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955326A (zh) * 2011-08-25 2013-03-06 宏碁股份有限公司 提供可调式补光的电子装置
US20160109789A1 (en) * 2014-10-20 2016-04-21 Hisense Co., Ltd. Light Source Device And Projection Display Device
CN106449617A (zh) * 2015-08-05 2017-02-22 杭州海康威视数字技术股份有限公司 用于产生光的光源设备及其补光方法和装置
CN205029744U (zh) * 2015-09-30 2016-02-10 杭州海康威视数字技术股份有限公司 补光摄像机、控制器件、补光器件及用于补光的控制系统
CN208691390U (zh) * 2018-08-28 2019-04-02 杭州海康威视数字技术股份有限公司 一种补光光源、摄像机补光装置及摄像机
CN208691388U (zh) * 2018-08-28 2019-04-02 杭州海康威视数字技术股份有限公司 一种补光光源、及具有其的摄像机补光装置和摄像机
CN208691389U (zh) * 2018-08-28 2019-04-02 杭州海康威视数字技术股份有限公司 一种摄像机
CN208849869U (zh) * 2018-10-22 2019-05-10 杭州海康威视数字技术股份有限公司 一种混合补光摄像机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837538A (zh) * 2021-03-27 2021-05-25 深圳市迅朗科技有限公司 一种车牌云识别相机、图像传感器组件及补光、保洁方法
CN112837538B (zh) * 2021-03-27 2023-12-22 深圳市迅朗科技有限公司 一种车牌云识别相机及补光方法
CN114257751A (zh) * 2021-12-17 2022-03-29 航天信息股份有限公司 一种随动补光系统
CN117596747A (zh) * 2024-01-19 2024-02-23 杭州方千科技有限公司 用于补光灯装置的故障检测电路与补光灯故障检测装置
CN117596747B (zh) * 2024-01-19 2024-03-29 杭州方千科技有限公司 用于补光灯装置的故障检测电路与补光灯故障检测装置

Similar Documents

Publication Publication Date Title
WO2020043141A1 (zh) 一种摄像机
US8884521B2 (en) Motor vehicle headlight element
CN208846199U (zh) 一种混合补光摄像机及其混合补光灯
US8057046B2 (en) Projector device having assembly of reflection type light emitting diodes
CN208691388U (zh) 一种补光光源、及具有其的摄像机补光装置和摄像机
EP2372765B1 (en) Integrated lamp with feedback and wireless control
JP2008053236A (ja) 高出力のコーナーledを使用するバックライト
CN110868510B (zh) 一种摄像机补光装置及具有其的摄像机
CN105723530A (zh) 光发射装置和集成所述光发射装置的照明设备
CN208691390U (zh) 一种补光光源、摄像机补光装置及摄像机
TW201331894A (zh) 具有可見光與紅外光發射之led信號燈
US10512135B2 (en) Control device, lighting device, and illumination system
US20100001653A1 (en) Optical lighting device
CN208691389U (zh) 一种摄像机
CN110868511B (zh) 一种摄像机
JP3231471U (ja) 光源モジュール及びバックライトモジュール
CN208849869U (zh) 一种混合补光摄像机
CN210156421U (zh) 一种led封装体
CN203757552U (zh) 智能调光led车灯
TWM259320U (en) LED illume device
EP3110235B1 (en) Lighting-system color-shift detection and correction
CN210323741U (zh) 一种具有夜视功能的投影系统
JP2004309543A (ja) 投写型表示装置
CN208849846U (zh) 一种摄像机
RU2317612C1 (ru) Светодиодное устройство

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854762

Country of ref document: EP

Kind code of ref document: A1