WO2020042851A1 - 三维扫描转台的调节方法、装置、计算机设备和存储介质 - Google Patents

三维扫描转台的调节方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2020042851A1
WO2020042851A1 PCT/CN2019/098270 CN2019098270W WO2020042851A1 WO 2020042851 A1 WO2020042851 A1 WO 2020042851A1 CN 2019098270 W CN2019098270 W CN 2019098270W WO 2020042851 A1 WO2020042851 A1 WO 2020042851A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration unit
coordinates
point
rotation
image
Prior art date
Application number
PCT/CN2019/098270
Other languages
English (en)
French (fr)
Inventor
张健
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Publication of WO2020042851A1 publication Critical patent/WO2020042851A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35349Display part, programmed locus and tool path, traject, dynamic locus

Definitions

  • the present application relates to the technical field of three-dimensional scanning printing, and in particular, to a method, a device, a computer device, and a storage medium for adjusting a three-dimensional scanning turntable.
  • the three-dimensional scanner is used to collect and analyze the geometric structure and appearance data of the object or environment, and perform three-dimensional reconstruction on the collected data to obtain a three-dimensional digital model of the scanned object.
  • These three-dimensional digital models will be applied to technical fields such as industrial design, defect detection, reverse engineering, robot guidance, landform measurement, medical information, biological information, criminal identification, digital cultural relics collection, film production, and game creative materials.
  • the initial position of the turntable is directly facing the scanning head, so that it is convenient for the selection of the calibration position during the calibration process and for determining the orientation of the dental mold.
  • the initial position of the turntable is directly opposite the scanning head, the rotation angle is recorded, and then it is repeatedly used. This adjustment increases the workload of the operator, and because the manual adjustment is observed through the human eye, the accuracy of the adjustment cannot be guaranteed.
  • a method for adjusting a three-dimensional scanning turntable includes: obtaining an image of a calibration unit placed on the turntable, and calculating coordinates of each point of the calibration unit in the calibration unit image; and adjusting each point of the calibration unit in the calibration unit image Corresponding to the actual coordinates of each point of the calibration unit at the corresponding position; according to the coordinates of each point of the calibration unit in the calibration unit image, the actual coordinates of each point of the calibration unit, the coordinates and calibration of each point of the calibration unit in the calibration unit image The corresponding relationship between the actual coordinates of each point of the unit and the optimal rotation parameter of the calibration unit relative to the camera, the rotation angle of the rotation axis is calculated; and the angle of the turntable is adjusted according to the rotation angle of the rotation axis.
  • the one-to-one correspondence between the coordinates of each point of the calibration unit in the calibration unit image and the actual coordinates of each point of the calibration unit at the corresponding location includes: obtaining from the coordinates of each point of the calibration unit of the calibration unit image The coordinates of the calibration unit mark point and the coordinates of the calibration unit special mark point; according to the coordinates of the calibration unit special mark point, the coordinates of the calibration unit mark point in the calibration unit image are in one-to-one correspondence with the actual coordinates of the calibration unit mark point.
  • the optimal rotation parameter of the calibration unit relative to the camera includes: calculating the rotation parameter of the calibration unit relative to the camera according to the coordinates of the calibration unit mark point in the calibration unit image and the actual coordinates of the calibration unit mark point; according to The rotation parameter of the calibration unit relative to the camera and the optimal rotation parameter of the calibration unit relative to the camera calculate the rotation angle of the rotation shaft.
  • calculating the rotation parameters of the calibration unit relative to the camera based on the coordinates of the calibration unit mark points in the calibration unit image and the actual coordinates of the calibration unit mark points includes: comparing the actual coordinates of all the calibration points of the calibration unit with Correspond to the calibration unit mark point coordinates in the corresponding calibration unit image to get the difference between all the marked point coordinates; calculate the norms of all the marked point coordinate differences to get the norms of all the marked points; calculate the square of the norms of all the marked points After summing, the rotation parameter of the calibration unit relative to the camera is obtained.
  • the calibration unit includes: a tablet, and the tablet is provided with a marker point and a special marker point; the coordinates of the marker point include: coordinates of the position of the marker point on the calibration unit; the coordinates of the special marker point include: calibration The coordinates of the position of the marked point of the special mark on the cell.
  • the method includes: obtaining an image of a calibration unit after adjusting the rotation table angle, and calculating the rotation axis rotation angle; and adjusting the rotation table angle according to the rotation axis rotation angle.
  • the adjusting the turntable angle according to the rotation axis rotation angle includes: comparing the rotation axis rotation angle with a preset rotation angle; if the rotation axis rotation angle is less than the preset rotation angle, completing the adjustment of the scanning turntable; If the rotation angle of the rotation shaft is greater than or equal to a preset rotation angle, the angle of the turntable is adjusted according to the rotation angle of the rotation shaft.
  • An adjustment device for a three-dimensional scanning turntable includes: an acquisition module configured to acquire a calibration unit image placed on the turntable and calculate the coordinates of each point of the calibration unit in the calibration unit image; a mapping module configured to set all The coordinates of each point of the calibration unit in the calibration unit image are in one-to-one correspondence with the actual coordinates of each point of the calibration unit at the corresponding position; the calculation module is set to be based on the coordinates of each point of the calibration unit in the calibration unit image and the actual of each point of the calibration unit Coordinates, the correspondence between the coordinates of each point of the calibration unit in the calibration unit image and the actual coordinates of each point of the calibration unit, and the optimal rotation parameters of the calibration unit relative to the camera, calculate the rotation angle of the rotation shaft; an adjustment module is set to be based on the rotation angle of the rotation shaft Adjust the turntable angle.
  • a computer device includes a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, the steps of any one of the foregoing methods are implemented.
  • a computer-readable storage medium stores a computer program thereon, and when the computer program is executed by a processor, the steps of any one of the methods described above are implemented.
  • the adjustment method, device, computer equipment and storage medium of the three-dimensional scanning turntable described above obtain the image of the calibration unit on the turntable and calculate the coordinates of each point of the calibration unit in the image of the calibration unit.
  • the coordinates of each point of the calibration unit in the calibration unit image are corresponding to the actual coordinates of each point of the corresponding location calibration unit, and the coordinates of each point of the calibration unit in the corresponding calibration unit image are corresponding to the actual coordinates of each point of the corresponding location calibration unit.
  • FIG. 1 is a schematic flowchart of a three-dimensional scanning turntable adjustment method according to an embodiment
  • FIG. 2 is a schematic flowchart of a method for calculating a rotation angle of a rotating shaft in an embodiment
  • FIG. 3 is a schematic flowchart of a three-dimensional scanning turntable adjustment method in another embodiment
  • FIG. 4 is a structural block diagram of a three-dimensional scanning turntable adjusting device according to an embodiment
  • mapping module 5 is a structural block diagram of a mapping module in an embodiment
  • FIG. 6 is a structural block diagram of a calculation module in an embodiment
  • FIG. 7 is a structural block diagram of a rotation parameter calculation unit in an embodiment
  • FIG. 8 is an internal structural diagram of a computer device in one embodiment.
  • the 3D scanning technology is an advanced full-automatic high-precision stereo scanning technology. By measuring the 3D coordinate values of points on the surface of a space object, the point cloud information of the object surface is obtained and converted into a 3D model that can be directly processed by a computer.
  • Real-world replication technology “ 3D scanning technology is a high-tech integrating light, machinery, electricity and computer technology. It is mainly used to scan the space shape and structure of objects to obtain the space coordinates of the object surface. Software is used to perform 3D reconstruction calculations in the virtual world. In creating digital models of actual objects, these models have quite a wide range of applications. Three-dimensional laser scanners are classified according to different working principles and can be divided into pulse ranging (time difference ranging) and triangulation.
  • a three-dimensional scanning turntable adjustment method including the following steps:
  • step S102 an image of the calibration unit placed on the turntable is acquired, and coordinates of each point of the calibration unit in the image of the calibration unit are calculated.
  • the calibration unit includes a tablet, and the tablet is provided with marked points and special marked points.
  • the calibration unit may be a calibration plate.
  • the calibration unit only needs to be capable of calibrating the position of the turntable through marked points and special marked points, and this embodiment does not specifically limit the calibration unit.
  • Step S104 One-to-one correspondence between the coordinates of each point of the calibration unit in the calibration unit image and the actual coordinates of each point of the calibration unit at the corresponding position.
  • the actual coordinates of each point of the calibration unit are: based on the calibration unit, taking the real calibration unit as a reference, establishing a second coordinate system on the real calibration unit, and calculating the real calibration unit's within the second coordinate system.
  • the second coordinate system is a three-dimensional coordinate system.
  • the coordinates of the marker point of the calibration unit and the coordinates of the special marker point of the calibration unit are obtained;
  • the coordinates of the marker point include: the coordinates of the position of the marker point on the calibration unit; : The coordinates of the position of the marked point of the special mark on the calibration unit.
  • the coordinates of the special mark points of the calibration unit correspond to the actual coordinates of the marks of the calibration unit.
  • the calibration unit is a calibration plate in which a dot matrix is set on a flat plate. There are four points in the dot matrix of the calibration unit that are specially marked with circles.
  • the points in the dot matrix are the calibration points of the calibration unit, and the points marked with a circle in the dot matrix are the special marked points of the calibration unit. According to the point coordinates specially marked with circles in the dot matrix, each point coordinate of the calibration unit dot matrix in the calibration unit image is corresponding to the actual coordinates of each point of the calibration unit dot matrix.
  • Step S106 According to the coordinates of the points of the calibration unit in the calibration unit image, the actual coordinates of the points of the calibration unit, the correspondence between the coordinates of the points of the calibration unit and the actual coordinates of the points of the calibration unit in the calibration unit image, and the Optimal rotation parameters, calculate the rotation angle of the shaft.
  • the rotation parameters of the calibration unit relative to the camera are calculated; according to the rotation parameters of the calibration unit relative to the camera and the optimal rotation parameters of the calibration unit relative to the camera , Calculate the rotation angle of the shaft.
  • the rotation parameter of the calibration unit relative to the camera is a parameter in the form of a matrix
  • the optimal rotation parameter of the calibration unit relative to the camera is a parameter in the form of a matrix.
  • step S108 the angle of the turntable is adjusted according to the rotation angle of the rotating shaft.
  • the rotation angle of the rotation shaft is compared with the preset rotation angle based on the calculated rotation angle of the rotation shaft. If the rotation angle of the rotation shaft is less than the preset rotation angle, the adjustment of the scanning turntable is completed; if the rotation angle of the rotation shaft is greater than or equal to the preset rotation angle , The angle of the turntable is adjusted according to the rotation angle of the rotating shaft. According to the calculated rotation angle of the rotating shaft, rotate the turntable by the corresponding angle, so that the initial position of the turntable is directly facing the scanning head.
  • the method for adjusting the three-dimensional scanning turntable described above obtains the image of the calibration unit on the turntable and calculates the coordinates of each point of the calibration unit in the image of the calibration unit.
  • the coordinates of each point of the calibration unit in the calibration unit image are corresponding to the actual coordinates of each point of the corresponding location calibration unit, and the coordinates of each point of the calibration unit in the corresponding calibration unit image are corresponding to the actual coordinates of each point of the corresponding location calibration unit.
  • a method for calculating a rotation angle of a rotating shaft including the following steps:
  • step S202 the actual coordinates of all the marked points of the calibration unit are different from the coordinates of the marked points of the calibration unit in the corresponding calibration unit image to obtain the coordinate difference values of all the marked points.
  • Step S204 Calculate the norms of the coordinate differences of all the marked points to obtain the norms of all the marked points.
  • step S206 the squares of the norms of all the marked points are calculated and summed to obtain the rotation parameters of the calibration unit relative to the camera.
  • equations for calculating the rotation parameters of the calibration unit relative to the camera in steps S202-S206 are:
  • Q i is the actual coordinate of the i-th mark point of the calibration unit
  • P i is the coordinate of the i-th mark point of the calibration unit in the image of the calibration unit
  • K is the internal parameter of the scanning head camera
  • R is the rotation parameter of the calibration unit relative to the camera
  • Step S208 Calculate the rotation axis rotation angle according to the rotation parameter of the calibration unit relative to the camera and the optimal rotation parameter of the calibration unit relative to the camera.
  • the equation for calculating the rotation angle of the rotating shaft is:
  • R * is the optimal rotation parameter of the calibration unit relative to the camera
  • R -1 is the inverse matrix of the rotation parameter of the calibration unit relative to the camera
  • ⁇ R is the rotation axis rotation angle.
  • the method for calculating the rotation axis rotation angle can accurately calculate the rotation parameters of the calibration unit relative to the scanning head, and further determine the rotation axis rotation angle. Based on the precise rotation angle, the determination of the initial position is more accurate.
  • a three-dimensional scanning turntable adjustment method including the following steps:
  • Step S302 Acquire an image of a calibration unit placed on the turntable, and calculate the coordinates of each point of the calibration unit in the image of the calibration unit.
  • the calibration unit includes a tablet, and the tablet is provided with marked points and special marked points.
  • the calibration unit may be a calibration plate.
  • the calibration unit only needs to be capable of calibrating the position of the turntable through marked points and special marked points, and this embodiment does not specifically limit the calibration unit.
  • Step S304 One-to-one correspondence between the coordinates of each point of the calibration unit in the calibration unit image and the actual coordinates of each point of the calibration unit at the corresponding position.
  • the actual coordinates of each point of the calibration unit are: based on the calibration unit, taking the real calibration unit as a reference, establishing a second coordinate system on the real calibration unit, and calculating the real calibration unit's within the second coordinate system.
  • the second coordinate system is a three-dimensional coordinate system.
  • the coordinates of the marker point of the calibration unit and the coordinates of the special marker point of the calibration unit are obtained;
  • the coordinates of the marker point include: the coordinates of the position of the marker point on the calibration unit; : The coordinates of the position of the marked point of the special mark on the calibration unit.
  • the coordinates of the special mark points of the calibration unit correspond to the actual coordinates of the marks of the calibration unit.
  • the calibration unit is a calibration plate in which a dot matrix is set on a flat plate. There are four points in the dot matrix of the calibration unit that are specially marked with circles.
  • the points in the dot matrix are the calibration points of the calibration unit, and the points marked with a circle in the dot matrix are the special marked points of the calibration unit. According to the point coordinates specially marked with circles in the dot matrix, each point coordinate of the calibration unit dot matrix in the calibration unit image is corresponding to the actual coordinates of each point of the calibration unit dot matrix.
  • Step S306 According to the coordinates of the points of the calibration unit in the calibration unit image, the actual coordinates of the points of the calibration unit, the correspondence between the coordinates of the points of the calibration unit and the actual coordinates of the points of the calibration unit in the calibration unit image, and the Optimal rotation parameters, calculate the rotation angle of the shaft.
  • the rotation parameters of the calibration unit relative to the camera are calculated; according to the rotation parameters of the calibration unit relative to the camera and the optimal rotation parameters of the calibration unit relative to the camera , Calculate the rotation angle of the shaft.
  • the rotation parameter of the calibration unit relative to the camera is a parameter in the form of a matrix
  • the optimal rotation parameter of the calibration unit relative to the camera is a parameter in the form of a matrix.
  • step S308 the angle of the turntable is adjusted according to the rotation angle of the rotating shaft.
  • the turntable is rotated by a corresponding angle, so that the initial position of the turntable is directly facing the scanning head.
  • Step S310 Obtain an image of the calibration unit after adjusting the angle of the turntable, and calculate the rotation angle of the rotation axis.
  • the rotation shaft rotation angle cannot be adjusted in one place under normal circumstances, and the rotation shaft rotation angle needs to be calculated multiple times and adjusted multiple times. Until the rotation angle of the rotating shaft is basically fixed, it means that the position of the turntable is facing the scanning head at this time. That is, after adjusting the angle of the turntable based on the rotation angle of the rotation shaft, it is necessary to obtain the image of the calibration unit again, and calculate the rotation shaft rotation angle of the current calibration unit position again according to the above method.
  • step S312 the rotation angle of the rotating shaft is compared with a preset rotation angle.
  • the rotation axis rotation angle calculated again is compared with a preset rotation angle.
  • the preset rotation angle is the maximum allowable deviation angle.
  • step S314 if the rotation angle of the rotating shaft is smaller than the preset rotation angle, the adjustment of the scanning turntable is completed.
  • the current position of the turntable is considered to be directly facing the scanning head, and the adjustment of the scan turntable is completed.
  • step S316 if the rotation angle of the rotation shaft is greater than or equal to a preset rotation angle, the angle of the turntable is adjusted according to the rotation angle of the rotation shaft.
  • the rotation angle of the rotary shaft is greater than or equal to the maximum allowable deviation angle, it is considered that there is still a deviation between the current rotary table position and the position of the rotary table facing the scanning head, so the rotary table angle needs to be adjusted again according to the rotary shaft rotation angle. After that, acquire the image of the calibration unit after adjusting the angle of the turntable again, calculate the rotation angle of the rotation axis, and determine whether the rotation angle of the rotation axis is less than the preset rotation angle. If not, continue to adjust until the recalculated rotation axis rotation angle after adjustment is less than the preset Rotate the angle to complete the adjustment of the scanning turntable.
  • steps in the flowchart of FIGS. 1-3 are sequentially displayed according to the directions of the arrows, these steps are not necessarily performed sequentially in the order indicated by the arrows. Unless explicitly stated in this document, the execution of these steps is not strictly limited, and these steps can be performed in other orders. Moreover, at least some of the steps in Figures 1-3 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily performed at the same time, but may be performed at different times. These sub-steps or stages The execution order of is not necessarily performed sequentially, but may be performed in turn or alternately with at least a part of another step or a sub-step or stage of another step.
  • a three-dimensional scanning turntable adjustment device including: an acquisition module 100, a mapping module 200, a calculation module 300, and an adjustment module 400, where:
  • the obtaining module 100 is configured to obtain a calibration unit image placed on the turntable, and calculate the coordinates of each point of the calibration unit in the calibration unit image.
  • the mapping module 200 is configured to correspond the coordinates of each point of the calibration unit in the calibration unit image with the actual coordinates of each point of the corresponding calibration unit.
  • the calculation module 300 is configured to be based on the coordinates of each point of the calibration unit in the calibration unit image, the actual coordinates of each point of the calibration unit, the correspondence between the coordinates of each point of the calibration unit in the calibration unit image and the actual coordinates of each point of the calibration unit, and the calibration unit Calculate the rotation angle of the shaft relative to the optimal rotation parameters of the camera.
  • the adjustment module 400 is configured to adjust the angle of the turntable according to the rotation angle of the rotation shaft.
  • the mapping module 200 includes a coordinate obtaining unit 210 and a mapping unit 220.
  • the coordinate acquisition unit 210 is configured to acquire, from the coordinates of each point of the calibration unit of the calibration unit image, the coordinates of the calibration unit mark point and the coordinates of the calibration unit special mark point.
  • the mapping unit 220 is configured to correspond to the coordinates of the calibration unit mark points in the calibration unit image with the actual coordinates of the calibration unit mark points according to the coordinates of the calibration unit special mark points.
  • the calculation module 300 includes a rotation parameter calculation unit 310 and a rotation angle calculation unit 320.
  • the rotation parameter calculation unit 310 is configured to calculate a rotation parameter of the calibration unit relative to the camera according to the coordinates of the calibration unit mark point in the calibration unit image and the actual coordinates of the calibration unit mark point.
  • the rotation angle calculation unit 320 is configured to calculate a rotation axis rotation angle according to a rotation parameter of the calibration unit relative to the camera and an optimal rotation parameter of the calibration unit relative to the camera.
  • the rotation parameter calculation unit 310 includes: a difference calculation subunit 311, a norm calculation subunit 312, and a rotation parameter calculation. Sub-unit 313.
  • the difference calculation sub-unit 311 is configured to make difference between the actual coordinates of all the marked points of the calibration unit and the coordinates of the marked unit of the calibration unit in the corresponding calibration unit image to obtain the difference values of the coordinates of all the marked points.
  • the norm calculation sub-unit 312 is configured to calculate the norms of the coordinate difference values of all the marked points to obtain the norms of all the marked points.
  • the rotation parameter calculation sub-unit 313 is set to calculate the sum of the squares of the norms of all the marked points and obtain the rotation parameter of the calibration unit relative to the camera.
  • the three-dimensional scanning turntable adjusting device further includes a comparison module 500.
  • the comparison module 500 is configured to compare the rotation angle of the rotation axis with a preset rotation angle. If the rotation angle of the rotation axis is smaller than the preset rotation angle, the adjustment of the scanning turntable is completed; Rotate the angle to adjust the turntable angle.
  • Each module in the above-mentioned three-dimensional scanning turntable adjustment device may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the hardware form or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor calls and performs the operations corresponding to the above modules.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 8.
  • the computer equipment includes a processor, a memory, a network interface, a display screen, and an input device connected through a system bus.
  • the processor of the computer device is configured to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for running an operating system and computer programs in a non-volatile storage medium.
  • the network interface of the computer device is configured to communicate with an external terminal through a network connection.
  • the computer program is executed by a processor to implement a three-dimensional scanning turntable adjustment method.
  • the display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen.
  • the input device of the computer device may be a touch layer covered on the display screen, or a button, a trackball, or a touchpad provided on the computer device casing. , Or an external keyboard, trackpad, or mouse.
  • FIG. 8 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment that the solution of the present application should be set to.
  • the specific computer equipment It may include more or fewer components than shown in the figure, or some components may be combined, or have different component arrangements.
  • a computer device including a memory and a processor.
  • the memory stores a computer program
  • the processor implements the following steps when the computer program is executed:
  • the coordinates of each point of the calibration unit in the calibration unit image are corresponding to the actual coordinates of each point of the calibration unit at the corresponding position.
  • the optimal rotation of the calibration unit relative to the camera Parameter to calculate the rotation angle of the shaft. Adjust the angle of the turntable according to the rotation angle of the shaft.
  • the processor executes the computer program to further implement the following steps:
  • the actual coordinates of all the marked points of the calibration unit are different from the coordinates of the marked points of the calibration unit in the corresponding calibration unit image to obtain the coordinate difference values of all the marked points.
  • the processor executes the computer program to further implement the following steps:
  • the coordinates of each point of the calibration unit in the calibration unit image are corresponding to the actual coordinates of each point of the calibration unit at the corresponding position.
  • the optimal rotation of the calibration unit relative to the camera Parameter to calculate the rotation angle of the shaft. Adjust the angle of the turntable according to the rotation angle of the shaft.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the following steps are implemented:
  • the coordinates of each point of the calibration unit in the calibration unit image are corresponding to the actual coordinates of each point of the calibration unit at the corresponding position.
  • the optimal rotation of the calibration unit relative to the camera Parameter to calculate the rotation angle of the shaft. Adjust the angle of the turntable according to the rotation angle of the shaft.
  • the computer program when executed by the processor further implements the following steps:
  • the actual coordinates of all the marked points of the calibration unit are different from the coordinates of the marked points of the calibration unit in the corresponding calibration unit image to obtain the coordinate difference values of all the marked points.
  • the computer program when executed by the processor further implements the following steps:
  • the coordinates of each point of the calibration unit in the calibration unit image are corresponding to the actual coordinates of each point of the calibration unit at the corresponding position.
  • the optimal rotation of the calibration unit relative to the camera Parameter to calculate the rotation angle of the shaft. Adjust the angle of the turntable according to the rotation angle of the shaft.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in various forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), dual data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM dual data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • the solution provided in the embodiment of the present application can be used to calculate the rotation angle of the three-dimensional scanning turntable, so that the adjustment of the turntable can be more accurate.
  • it can be applied to the three-dimensional scanning turntable.
  • Image of the calibration unit and calculate the coordinates of each point of the calibration unit in the calibration unit image, and then one-to-one correspondence between the coordinates of each point of the calibration unit in the calibration unit image and the actual coordinates of each point of the calibration unit at the corresponding position.
  • the coordinates of each point of the calibration unit in the calibration unit image and the actual coordinates of each point of the calibration unit at the corresponding position calculate the rotation axis rotation angle, and finally adjust the angle of the turntable according to the rotation axis rotation angle.
  • the rotation angle of the rotation axis of the three-dimensional scanning turntable can be accurately obtained, and the turntable can be adjusted more accurately, which solves the technical problem of manually adjusting the turntable angle and low adjustment accuracy in related technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

涉及一种三维扫描转台调节方法、装置、计算机设备和存储介质。方法包括:S102获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标;S104将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应;S106根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度;S108根据转轴旋转角度调整转台角度。

Description

三维扫描转台的调节方法、装置、计算机设备和存储介质
本申请要求于2018年08月30日提交中国专利局、申请号为201810999159.7、申请名称“三维扫描转台的调节方法、装置、计算机设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及三维扫描打印技术领域,特别是涉及一种三维扫描转台的调节方法、装置、计算机设备和存储介质。
背景技术
三维扫描仪用于采集并分析物体或环境的几何构造和外观数据,并将采集到的数据进行三维重建,得到被扫描物体的三维数字模型。这些三维数字模型将被应用于工业设计、瑕疵检测、逆向工程、机器人导引、地貌测量、医学信息、生物信息、刑事鉴定、数字文物典藏、电影制片、游戏创作素材等技术领域。
在牙齿三维扫描仪中,通常希望转台的初始位置是正对扫描头的,这样既方便标定过程中,标定位置的选取,也方便牙模朝向的确定。相关技术中,通过手动调节转台,使转台的初始位置正对扫描头,记录转动角度,之后重复使用。这样调整增大了操作人员的工作量,并且由于手动调整是通过人眼进行观察,不能保证调整的精确度。
发明内容
基于此,有必要针对上述技术问题,提供一种能够精确调整转台角度的三维扫描转台的调节方法、装置、计算机设备和存储介质。
一种三维扫描转台的调节方法,所述调节方法包括:获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标;将所述标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应;根据所述标定单元图像中标定单元各个点的坐标、标定单元各个点的实 际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度;根据所述转轴旋转角度调整转台角度。
可选地,所述将所述标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应包括:在所述标定单元图像的标定单元各个点的坐标中,获取标定单元标记点坐标以及标定单元特殊标记点坐标;根据所述标定单元特殊标记点坐标,将标定单元图像中的所述标定单元标记点坐标与所述标定单元标记点的实际坐标一一对应。
可选地,所述根据所述标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度包括:根据标定单元图像中的所述标定单元标记点坐标以及标定单元标记点的实际坐标,计算所述标定单元相对相机的旋转参数;根据所述标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
可选地,所述根据标定单元图像中的所述标定单元标记点坐标以及标定单元标记点的实际坐标,计算所述标定单元相对相机的旋转参数包括:将标定单元所有标记点的实际坐标与相应标定单元图像中的标定单元标记点坐标做差,得到所有标记点坐标差值;计算所有标记点坐标差值的范数,得到所有标记点的范数;计算所有标记点的范数的平方后求和,得到所述标定单元相对相机的旋转参数。
可选地,所述标定单元包括:平板,所述平板上设置有标记点以及特殊标记点;所述标记点坐标包括:标定单元上标记点位置的坐标;所述特殊标记点坐标包括:标定单元上特殊标记的标记点位置的坐标。
可选地,所述根据所述转轴旋转角度调整转台角度之后包括:获取调整转台角度后的标定单元的图像,并计算转轴旋转角度;根据所述转轴旋转角度调整转台角度。
可选地,所述根据所述转轴旋转角度调整转台角度包括:将所述转轴旋转角度与预设旋转角度进行比较;若所述转轴旋转角度小于预设旋转角度时,完 成扫描转台的调节;若所述转轴旋转角度大于等于预设旋转角度时,则根据所述转轴旋转角度调整转台角度。
一种三维扫描转台的调节装置,所述调节装置包括:获取模块,设置为获取转台上放置的标定单元图像,并计算标定单元各个点在标定单元图像中的坐标;映射模块,设置为将所述标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应;计算模块,设置为根据所述标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度;调整模块,设置为根据所述转轴旋转角度调整转台角度。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一种所述方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种所述的方法的步骤。
上述三维扫描转台的调节方法、装置、计算机设备和存储介质,通过获取转台上的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标。再将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应,通过相对应的标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标计算转轴旋转角度,最后根据转轴旋转角度调整转台的角度。根据采集到的图像自动计算转轴旋转角度,然后进行调整,能够更加精确的计算得到旋转的角度,使转台的调整更加的精准。
附图说明
图1为一个实施例中三维扫描转台调节方法的流程示意图;
图2为一个实施例中计算转轴旋转角度方法的流程示意图;
图3为另一个实施例中三维扫描转台调节方法的流程示意图;
图4为一个实施例中三维扫描转台调节装置的结构框图;
图5为一个实施例中映射模块的结构框图;
图6为一个实施例中计算模块的结构框图;
图7为一个实施例中旋转参数计算单元的结构框图;
图8为一个实施例中计算机设备的内部结构图。
附图标记:获取模块100、映射模块200、坐标获取单元210、映射单元220、计算模块300、旋转参数计算单元310、差值计算子单元311、范数计算子单元312、旋转参数计算子单元313、旋转角度计算单元320、调整模块400、比较模块500。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
三维扫描技术是一种先进的全自动高精度立体扫描技术,通过测量空间物体表面点的三维坐标值,得到物体表面的点云信息,并转化为计算机可以直接处理的三维模型,又称为“实景复制技术”。三维扫描技术是集光、机、电和计算机技术于一体的高新技术,主要用于对物体空间外形和结构进行扫描,以获得物体表面的空间坐标,用软件来进行三维重建计算,在虚拟世界中创建实际物体的数字模型,这些模形具有相当广泛的应用。三维激光扫描仪按照不同工作原理分类,可分为脉冲测距法(时间差测距法)和三角测量法。
在一个实施例中,如图1所示,提供了一种三维扫描转台调节方法,包括以下步骤:
步骤S102,获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标。
具体地,标定单元包括:平板,平板上设置有标记点以及特殊标记点。优选的,标定单元可以为标定板。标定单元只需能够通过标记点以及特殊标记点对转台位置进行标定即可,本实施例不对标定单元做具体限定。在标定三维扫描仪转台的初始位置时,首先将标定单元固定在三维扫描仪的转台上,通过扫描仪的扫描头中任意相机获取转台上标定单元的图像。基于获取到的标定单元 的图像,在标定单元的图像上建立第一坐标系,并在第一坐标系内,计算标定单元图像中的标定单元在第一坐标系中的坐标。第一坐标系为三维坐标系。
步骤S104,将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应。
具体地,标定单元各个点的实际坐标为:基于标定单元,以真实的标定单元为基准,在真实的标定单元上建立第二坐标系,并在第二坐标系内,计算真实的标定单元的各个点在第二坐标系中的坐标。第二坐标系为三维坐标系。将标定单元图像中标定单元各个点在第一坐标系中的坐标与相应位置真实的标定单元各个点在第二坐标系中的坐标进行一一对应。更具体的,在标定单元图像的标定单元各个点的坐标中,获取标定单元标记点坐标以及标定单元特殊标记点坐标;标记点坐标包括:标定单元上标记点位置的坐标;特殊标记点坐标包括:标定单元上特殊标记的标记点位置的坐标。根据标定单元特殊标记点坐标,将标定单元图像中的标定单元标记点坐标与标定单元标记点的实际坐标一一对应。例如,标定单元为平板上设置点阵的标定板。在标定单元的点阵中存在四个点用圆圈进行特殊标记。点阵中的点为标定单元的标定点,点阵中用圆圈进行特殊标记的点为标定单元的特殊标记点。根据点阵中用圆圈进行特殊标记的点坐标,将标定单元图像中标定单元点阵的各个点坐标与标定单元点阵的各个点实际坐标一一对应。
步骤S106,根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
具体地,根据标定单元图像中的标定单元标记点坐标以及标定单元标记点的实际坐标,计算标定单元相对相机的旋转参数;根据标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。其中,标定单元相对相机的旋转参数为矩阵形式的参数,标定单元相对相机的最佳旋转参数为矩阵形式的参数。通过标定单元图像中的标定单元标记点坐标以及标定单元标记点的实际坐标,还能够计算的到标定单元相对相机的位移。其中标定单元相对相机的旋转参数以及标定单元相对相机的位移,是在三维扫描仪的空 间坐标系下的旋转参数以及位移。
步骤S108,根据转轴旋转角度调整转台角度。
具体地,根据计算得到的转轴旋转角度,将转轴旋转角度与预设旋转角度进行比较,若转轴旋转角度小于预设旋转角度时,完成扫描转台的调节;若转轴旋转角度大于等于预设旋转角度时,则根据所述转轴旋转角度调整转台角度。根据计算到的转轴的旋转角度,将转台旋转相应的角度,使转台的初始位置正对扫描头。
上述三维扫描转台的调节方法,通过获取转台上的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标。再将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应,通过相对应的标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标计算转轴旋转角度,最后根据转轴旋转角度调整转台的角度。根据采集到的图像自动计算转轴旋转角度,然后进行调整,能够更加精确的计算得到旋转的角度,使转台的调整更加的精准。
在一个实施例中,如图2所示,提供了一种计算转轴旋转角度方法,包括以下步骤:
步骤S202,将标定单元所有标记点的实际坐标与相应标定单元图像中的标定单元标记点坐标做差,得到所有标记点坐标差值。
具体地,获取标定单元所有标记点的实际坐标,再获取标定单元图像中标定单元所有标记点的坐标。用标定单元所有标记点的实际坐标减去相应标定单元图像中标定单元标记点的坐标,得到所有标记点的坐标差。
步骤S204,计算所有标记点坐标差值的范数,得到所有标记点的范数。
步骤S206,计算所有标记点的范数的平方后求和,得到标定单元相对相机的旋转参数。
可选地,步骤S202-步骤S206计算标定单元相对相机的旋转参数的方程为:
E(R,T)=∑ i||K[R|T]Q i-P i|| 2
其中,Q i为标定单元第i个标记点的实际坐标;P i为标定单元图像中标定 单元第i个标记点的坐标;K为扫描头相机的内参;R为标定单元相对相机的旋转参数;T标定单元相对相机的位移。使用非线性优化器优化,使得计算标定单元相对相机的旋转参数的方程能量最小。
步骤S208,根据标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
可选地,计算转轴旋转角度的方程为:
ΔR=R **R -1
其中,R *为标定单元相对相机的最佳旋转参数;R -1为标定单元相对相机的旋转参数的逆矩阵;ΔR为转轴旋转角度。在转轴方向已知的情况下,计算转轴旋转角度,通过根据转轴旋转角度调整转台,使转台的初始位置正对扫描头。
上述计算转轴旋转角度方法,能够准确的计算标定单元相对扫描头的旋转参数,并进一步确定转轴旋转角度。基于精准的旋转角度,使初始位置的确定更加的精准。
在一个实施例中,如图3所示,提供了一种三维扫描转台调节方法,包括以下步骤:
步骤S302,获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标。
具体地,标定单元包括:平板,平板上设置有标记点以及特殊标记点。优选的,标定单元可以为标定板。标定单元只需能够通过标记点以及特殊标记点对转台位置进行标定即可,本实施例不对标定单元做具体限定。在标定三维扫描仪转台的初始位置时,首先将标定单元固定在三维扫描仪的转台上,通过扫描仪的扫描头中任意相机获取转台上标定单元的图像。基于获取到的标定单元的图像,在标定单元的图像上建立第一坐标系,并在第一坐标系内,计算标定单元图像中的标定单元在第一坐标系中的坐标。第一坐标系为三维坐标系。
步骤S304,将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应。
具体地,标定单元各个点的实际坐标为:基于标定单元,以真实的标定单 元为基准,在真实的标定单元上建立第二坐标系,并在第二坐标系内,计算真实的标定单元的各个点在第二坐标系中的坐标。第二坐标系为三维坐标系。将标定单元图像中标定单元各个点在第一坐标系中的坐标与相应位置真实的标定单元各个点在第二坐标系中的坐标进行一一对应。更具体的,在标定单元图像的标定单元各个点的坐标中,获取标定单元标记点坐标以及标定单元特殊标记点坐标;标记点坐标包括:标定单元上标记点位置的坐标;特殊标记点坐标包括:标定单元上特殊标记的标记点位置的坐标。根据标定单元特殊标记点坐标,将标定单元图像中的标定单元标记点坐标与标定单元标记点的实际坐标一一对应。例如,标定单元为平板上设置点阵的标定板。在标定单元的点阵中存在四个点用圆圈进行特殊标记。点阵中的点为标定单元的标定点,点阵中用圆圈进行特殊标记的点为标定单元的特殊标记点。根据点阵中用圆圈进行特殊标记的点坐标,将标定单元图像中标定单元点阵的各个点坐标与标定单元点阵的各个点实际坐标一一对应。
步骤S306,根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
具体地,根据标定单元图像中的标定单元标记点坐标以及标定单元标记点的实际坐标,计算标定单元相对相机的旋转参数;根据标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。其中,标定单元相对相机的旋转参数为矩阵形式的参数,标定单元相对相机的最佳旋转参数为矩阵形式的参数。通过标定单元图像中的标定单元标记点坐标以及标定单元标记点的实际坐标,还能够计算的到标定单元相对相机的位移。其中标定单元相对相机的旋转参数以及标定单元相对相机的位移,是在三维扫描仪的空间坐标系下的旋转参数以及位移。
步骤S308,根据转轴旋转角度调整转台角度。
具体地,根据计算到的转轴的旋转角度,将转台旋转相应的角度,使转台的初始位置正对扫描头。
步骤S310,获取调整转台角度后的标定单元的图像,并计算转轴旋转角度。
具体地,转轴旋转角度通常情况下无法一次性调整到位,需要多次计算转轴旋转角度并多次进行调整。直到转轴旋转角度基本固定,则说明此时转台的位置正对扫描头。也就是,在基于转轴旋转角度调整转台角度后,需要再次获取标定单元的图像,并根据上述方法再次计算当前标定单元位置的转轴旋转角度。
步骤S312,将转轴旋转角度与预设旋转角度进行比较。
具体地,将调整转台角度后,再次计算得到的转轴旋转角度与预设旋转角度进行比较。其中预设旋转角度为最大允许偏差角度。当转轴旋转角度小于预设旋转角度时,说明当前转台的位置已经无限接近于转台正对扫描头的位置。
步骤S314,若转轴旋转角度小于预设旋转角度时,完成扫描转台的调节。
具体地,当转轴旋转角度小于最大允许偏差角度,则认为当前转台位置为正对扫描头的位置,完成扫描转台的调节。
步骤S316,若转轴旋转角度大于等于预设旋转角度时,则根据转轴旋转角度调整转台角度。
具体地,当转轴旋转角度大于等于最大允许偏差角度,则认为当前转台位置与转台正对扫描头的位置还存在偏差,因此需要再次根据转轴旋转角度调整转台角度。之后再次获取调整转台角度后的标定单元的图像,计算转轴旋转角度,判断转轴旋转角度是否小于预设旋转角度,若不小于,则继续调整,直到调整后的再次计算的转轴旋转角度小于预设旋转角度,则完成扫描转台的调节。
上述三维扫描转台调节方法,通过设置预设旋转角度,当转轴旋转角度大于等于预设旋转角度,则再次进行调整,直到转轴旋转角度小于预设旋转角度。能够保证转台的调整效率,在精准调节的基础上,达到快速调节的目的。
应该理解的是,虽然图1-3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它 步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图4所示,提供了一种三维扫描转台调节装置,包括:获取模块100、映射模块200、计算模块300和调整模块400,其中:
获取模块100,设置为获取转台上放置的标定单元图像,并计算标定单元各个点在标定单元图像中的坐标。
映射模块200,设置为将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应。
计算模块300,设置为根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
调整模块400,设置为根据转轴旋转角度调整转台角度。
在一个实施例中,如图5所示,提供了一种映射模块的结构框图,其中,映射模块200包括:坐标获取单元210以及映射单元220。
坐标获取单元210,设置为在标定单元图像的标定单元各个点的坐标中,获取标定单元标记点坐标以及标定单元特殊标记点坐标。
映射单元220,设置为根据标定单元特殊标记点坐标,将标定单元图像中的标定单元标记点坐标与标定单元标记点的实际坐标一一对应。
在一个实施例中,如图6所示,提供了一种计算模块的结构框图,其中,计算模块300包括:旋转参数计算单元310以及旋转角度计算单元320。
旋转参数计算单元310,设置为根据标定单元图像中的标定单元标记点坐标以及标定单元标记点的实际坐标,计算标定单元相对相机的旋转参数。
旋转角度计算单元320,设置为根据标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
在一个实施例中,如图7所示,提供了一种旋转参数计算单元的结构框图,其中,旋转参数计算单元310包括:差值计算子单元311、范数计算子单元312以及旋转参数计算子单元313。
差值计算子单元311,设置为将标定单元所有标记点的实际坐标与相应标定 单元图像中的标定单元标记点坐标做差,得到所有标记点坐标差值。
范数计算子单元312,设置为计算所有标记点坐标差值的范数,得到所有标记点的范数。
旋转参数计算子单元313,设置为计算所有标记点的范数的平方后求和,得到标定单元相对相机的旋转参数。
三维扫描转台调节装置,还包括:比较模块500。
比较模块500,设置为将转轴旋转角度与预设旋转角度进行比较,若转轴旋转角度小于预设旋转角度时,完成扫描转台的调节;若转轴旋转角度大于等于预设旋转角度时,则根据转轴旋转角度调整转台角度。
关于三维扫描转台调节装置的具体限定可以参见上文中对于三维扫描转台调节方法的限定,在此不再赘述。上述三维扫描转台调节装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器设置为提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口设置为与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种三维扫描转台调节方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应设置为其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些 部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标。将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应。根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。根据转轴旋转角度调整转台角度。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
将标定单元所有标记点的实际坐标与相应标定单元图像中的标定单元标记点坐标做差,得到所有标记点坐标差值。计算所有标记点坐标差值的范数,得到所有标记点的范数。计算所有标记点的范数的平方后求和,得到标定单元相对相机的旋转参数。根据标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标。将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应。根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。根据转轴旋转角度调整转台角度。获取调整转台角度后的标定单元的图像,并计算转轴旋转角度。将转轴旋转角度与预设旋转角度进行比较。若转轴旋转角度小于预设旋转角度时,完成扫描转台的调节。若转轴旋转角度大于等于预设旋转角度时,则根据转轴旋转角度调整转台角度。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图 像中的坐标。将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应。根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。根据转轴旋转角度调整转台角度。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
将标定单元所有标记点的实际坐标与相应标定单元图像中的标定单元标记点坐标做差,得到所有标记点坐标差值。计算所有标记点坐标差值的范数,得到所有标记点的范数。计算所有标记点的范数的平方后求和,得到标定单元相对相机的旋转参数。根据标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标。将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应。根据标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。根据转轴旋转角度调整转台角度。获取调整转台角度后的标定单元的图像,并计算转轴旋转角度。将转轴旋转角度与预设旋转角度进行比较。若转轴旋转角度小于预设旋转角度时,完成扫描转台的调节。若转轴旋转角度大于等于预设旋转角度时,则根据转轴旋转角度调整转台角度。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存 取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
工业实用性
本申请实施例提供的方案可以用于计算三维扫描转台的旋转的角度,使转台的调整更加的精准,在本申请实施例提供的技术方案中,可以应用于三维扫描转台中,通过获取转台上的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标,再将标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应,通过相对应的标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标计算转轴旋转角度,最后根据转轴旋转角度调整转台的角度。通过这种控制方式,可以准确获取到三维扫描转台的转轴旋转角度,对转台进行更为精准的调整,解决相关技术中手动调整转台角度,调整精度低的技术问题。

Claims (10)

  1. 一种三维扫描转台的调节方法,所述调节方法包括:
    获取转台上放置的标定单元的图像,并计算标定单元各个点在标定单元图像中的坐标;
    将所述标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应;
    根据所述标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度;
    根据所述转轴旋转角度调整转台角度。
  2. 根据权利要求1所述的方法,其中,所述将所述标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应包括:
    在所述标定单元图像的标定单元各个点的坐标中,获取标定单元标记点坐标以及标定单元特殊标记点坐标;
    根据所述标定单元特殊标记点坐标,将标定单元图像中的所述标定单元标记点坐标与所述标定单元标记点的实际坐标一一对应。
  3. 根据权利要求2所述的方法,其中,所述根据所述标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度包括:
    根据标定单元图像中的所述标定单元标记点坐标以及标定单元标记点的实际坐标,计算所述标定单元相对相机的旋转参数;
    根据所述标定单元相对相机的旋转参数以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度。
  4. 根据权利要求3所述的方法,其中,所述根据标定单元图像中的所述标定单元标记点坐标以及标定单元标记点的实际坐标,计算所述标定单元相对相机的旋转参数包括:
    将标定单元所有标记点的实际坐标与相应标定单元图像中的标定单元标记点坐标做差,得到所有标记点坐标差值;
    计算所有标记点坐标差值的范数,得到所有标记点的范数;
    计算所有标记点的范数的平方后求和,得到所述标定单元相对相机的旋转参数。
  5. 根据权利要求4所述的方法,其中,
    所述标定单元包括:平板,所述平板上设置有标记点以及特殊标记点;
    所述标记点坐标包括:标定单元上标记点位置的坐标;
    所述特殊标记点坐标包括:标定单元上特殊标记的标记点位置的坐标。
  6. 根据权利要求1所述的方法,其中,所述根据所述转轴旋转角度调整转台角度之后包括:
    获取调整转台角度后的标定单元的图像,并计算转轴旋转角度;
    根据所述转轴旋转角度调整转台角度。
  7. 根据权利要求1-6任一项所述的方法,其中,所述根据所述转轴旋转角度调整转台角度包括:
    将所述转轴旋转角度与预设旋转角度进行比较;
    若所述转轴旋转角度小于预设旋转角度时,完成扫描转台的调节;
    若所述转轴旋转角度大于等于预设旋转角度时,则根据所述转轴旋转角度调整转台角度。
  8. 一种三维扫描转台的调节装置,所述装置包括:
    获取模块,设置为获取转台上放置的标定单元图像,并计算标定单元各个点在标定单元图像中的坐标;
    映射模块,设置为将所述标定单元图像中标定单元各个点的坐标与相应位置标定单元各个点的实际坐标一一对应;
    计算模块,设置为根据所述标定单元图像中标定单元各个点的坐标、标定单元各个点的实际坐标、标定单元图像中标定单元各个点的坐标与标定单元各个点的实际坐标的对应关系以及标定单元相对相机的最佳旋转参数,计算转轴旋转角度;
    调整模块,设置为根据所述转轴旋转角度调整转台角度。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序, 所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。
PCT/CN2019/098270 2018-08-30 2019-07-30 三维扫描转台的调节方法、装置、计算机设备和存储介质 WO2020042851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810999159.7 2018-08-30
CN201810999159.7A CN109407613B (zh) 2018-08-30 2018-08-30 三维扫描转台的调节方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2020042851A1 true WO2020042851A1 (zh) 2020-03-05

Family

ID=65464483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098270 WO2020042851A1 (zh) 2018-08-30 2019-07-30 三维扫描转台的调节方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN109407613B (zh)
WO (1) WO2020042851A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407613B (zh) * 2018-08-30 2020-12-15 先临三维科技股份有限公司 三维扫描转台的调节方法、装置、计算机设备和存储介质
CN111127565B (zh) * 2019-12-24 2023-09-01 易视智瞳科技(深圳)有限公司 标定方法、标定系统和计算机可读存储介质
CN111627071B (zh) * 2020-04-30 2023-10-17 如你所视(北京)科技有限公司 一种测量电机旋转精度的方法、装置和存储介质
CN111750805B (zh) * 2020-07-06 2021-12-10 山东大学 一种基于双目相机成像和结构光技术的三维测量装置及测量方法
CN113158975B (zh) * 2021-05-13 2023-09-12 卡奥斯工业智能研究院(青岛)有限公司 智能设备的信息写入方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005157A2 (en) * 1996-07-12 1998-02-05 Real-Time Geometry Corporation High accuracy calibration for 3d scanning and measuring systems
WO2002016865A2 (en) * 2000-08-25 2002-02-28 3Shape Aps Object and method for calibration of a three-dimensional light scanner
US20030127436A1 (en) * 2001-07-31 2003-07-10 3D Systems, Inc. Selective laser sintering with optimized raster scan direction
CN101476881A (zh) * 2009-01-23 2009-07-08 清华大学 一字激光立旋式三维形貌测量装置及其方法
CN105548197A (zh) * 2015-12-08 2016-05-04 深圳大学 一种非接触的钢轨表面伤损检测方法及其装置
CN106423656A (zh) * 2016-08-11 2017-02-22 重庆大学 基于点云与图像匹配的自动喷涂系统及方法
CN107144236A (zh) * 2017-05-25 2017-09-08 西安交通大学苏州研究院 一种机器人自动扫描仪及扫描方法
CN109407613A (zh) * 2018-08-30 2019-03-01 先临三维科技股份有限公司 三维扫描转台的调节方法、装置、计算机设备和存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101640A (ja) * 1997-07-31 1999-04-13 Asahi Optical Co Ltd カメラおよびカメラのキャリブレーション方法
US7065242B2 (en) * 2000-03-28 2006-06-20 Viewpoint Corporation System and method of three-dimensional image capture and modeling
CN1184531C (zh) * 2002-09-03 2005-01-12 东南大学 实现三维像机多视角数据采集及对齐复位的方法
US7429999B2 (en) * 2004-05-24 2008-09-30 CENTRE DE RECHERCHE INDUSTRIELLE DU QUéBEC Camera calibrating apparatus and method
GB0712008D0 (en) * 2007-06-21 2007-08-01 Renishaw Plc Apparatus and method of calibration
JP2009222568A (ja) * 2008-03-17 2009-10-01 Konica Minolta Sensing Inc 3次元形状データの生成方法および装置ならびにコンピュータプログラム
CN103267491B (zh) * 2012-07-17 2016-01-20 深圳大学 自动获取物体表面完整三维数据的方法及系统
CN103148865B (zh) * 2013-01-17 2015-05-20 天津大学 一种摄像机模型标定方法及标定装置
CN103604367B (zh) * 2013-11-14 2016-10-12 上海交通大学 一种用于激光三角测量系统的校准装置和方法
CN104634248B (zh) * 2015-02-04 2017-02-22 西安理工大学 一种双目视觉下的转轴标定方法
CN106910221B (zh) * 2017-02-04 2020-12-01 景致三维(江苏)股份有限公司 一种全局标定的方法及装置
CN107608876B (zh) * 2017-08-04 2021-05-11 上海交通大学 用于三维扫描与视觉识别评测的转台控制系统
CN108269287A (zh) * 2017-09-19 2018-07-10 杭州先临三维科技股份有限公司 三维扫描仪的标定装置、方法、存储介质以及处理器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005157A2 (en) * 1996-07-12 1998-02-05 Real-Time Geometry Corporation High accuracy calibration for 3d scanning and measuring systems
WO2002016865A2 (en) * 2000-08-25 2002-02-28 3Shape Aps Object and method for calibration of a three-dimensional light scanner
US20030127436A1 (en) * 2001-07-31 2003-07-10 3D Systems, Inc. Selective laser sintering with optimized raster scan direction
CN101476881A (zh) * 2009-01-23 2009-07-08 清华大学 一字激光立旋式三维形貌测量装置及其方法
CN105548197A (zh) * 2015-12-08 2016-05-04 深圳大学 一种非接触的钢轨表面伤损检测方法及其装置
CN106423656A (zh) * 2016-08-11 2017-02-22 重庆大学 基于点云与图像匹配的自动喷涂系统及方法
CN107144236A (zh) * 2017-05-25 2017-09-08 西安交通大学苏州研究院 一种机器人自动扫描仪及扫描方法
CN109407613A (zh) * 2018-08-30 2019-03-01 先临三维科技股份有限公司 三维扫描转台的调节方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN109407613B (zh) 2020-12-15
CN109407613A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020042851A1 (zh) 三维扫描转台的调节方法、装置、计算机设备和存储介质
CN107564069B (zh) 标定参数的确定方法、装置及计算机可读存储介质
US20240153143A1 (en) Multi view camera registration
Sapirstein A high-precision photogrammetric recording system for small artifacts
CN111192235B (zh) 一种基于单目视觉模型和透视变换的图像测量方法
US9454822B2 (en) Stereoscopic measurement system and method
CN107941145A (zh) 用于基于测量的质量检测的系统和方法
WO2018201677A1 (zh) 基于光束平差的远心镜头三维成像系统的标定方法及装置
CN109272555B (zh) 一种rgb-d相机的外部参数获得及标定方法
CN103644865A (zh) 基于数字图像分析的平面面积测量方法
JP2005509877A (ja) コンピュータ視覚システムの較正方法及びそのシステム
CN112212788A (zh) 基于多台手机的视觉空间点三维坐标测量方法
CN112106055A (zh) 利用增强现实在制造期间进行实时质量控制
RU2479828C2 (ru) Стереоскопическая измерительная система и способ
US20090290759A1 (en) Stereoscopic measurement system and method
Wei et al. Flexible calibration of a portable structured light system through surface plane
CN115540775A (zh) 一种ccd单相机的3d视频引伸计
CN108596929A (zh) 融合平面网格深度计算的光切数据建模重构方法
CN108175535A (zh) 一种基于微透镜阵列的牙科三维扫描仪
JP2006098065A (ja) キャリブレーション装置および方法、ならびにそれらを利用可能な3次元モデリング装置および3次元モデリングシステム
JP4112077B2 (ja) 画像計測処理方法並びに装置及び画像計測処理プログラムを記録した記録媒体
CN108334697B (zh) 用于评估三维重建软件的仿真实验方法
JP4236202B2 (ja) モデリング装置およびカメラパラメータの計算方法
CN114485386B (zh) 工件坐标系标定方法、装置和系统
CN116297181A (zh) 一种通过标定板快速精确校正激光扫描振镜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854651

Country of ref document: EP

Kind code of ref document: A1