WO2020042744A1 - 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法 - Google Patents

一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法 Download PDF

Info

Publication number
WO2020042744A1
WO2020042744A1 PCT/CN2019/094133 CN2019094133W WO2020042744A1 WO 2020042744 A1 WO2020042744 A1 WO 2020042744A1 CN 2019094133 W CN2019094133 W CN 2019094133W WO 2020042744 A1 WO2020042744 A1 WO 2020042744A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
micro
carrier tape
module
auxiliary
Prior art date
Application number
PCT/CN2019/094133
Other languages
English (en)
French (fr)
Inventor
陈建魁
金一威
尹周平
黄永安
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US17/041,464 priority Critical patent/US11031263B2/en
Publication of WO2020042744A1 publication Critical patent/WO2020042744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67736Loading to or unloading from a conveyor

Definitions

  • the invention belongs to the field of semiconductor technology, and more particularly, relates to a device and method for laser stripping of a micro device based on a winding process.
  • Micro-LED technology that is, LED miniaturization and matrix technology, refers to the integration of a high-density micro-sized LED array on a chip. For example, each pixel of an LED display can be addressed and individually driven to light, which can be regarded as an LED. Miniaturized version of the display, reducing pixel distance from millimeters to micrometers.
  • the advantages of Micro-LED are obvious. It inherits the characteristics of high efficiency, high brightness, high reliability and fast response time of inorganic LEDs. It has the characteristics of self-luminous and no backlight, more energy-saving, simple structure, and small size. , Thin and other advantages.
  • the micro device size is extremely small, it is very easy to achieve ultra-high resolution, and its resolution can easily reach more than 1500ppi. At the same time, compared with OLED, the color is more accurate and has a longer life and higher brightness.
  • the required CMOS integrated circuit manufacturing process is first used to make the LED display driving circuit, and then the Micro-LED is transferred to the display driving circuit to form a Micro-LED array.
  • the existing wafer transfer technology generally uses a robot to pick up the wafer and then transfer it to the target substrate.
  • a Micro-LED display requires millions of Micro-LED wafers. The traditional method is too inefficient to meet Micro-LED Requirement for massive transfer of micro-devices in LED display production.
  • the present invention provides a micro device laser peeling massive transfer device and method based on a winding process, which is used to peel key components such as the micro device peeling and transferring module, auxiliary carrier tape module, Research and design of the structure and specific assembly relationship of the transition carrier module, transfer carrier module, substrate carrier module, micro-device filling module, curing module, packaging module, and substrate handling module, using the winding process and laser lift-off technology
  • the huge transfer of micro-devices effectively improves the production efficiency and reduces the production cost.
  • a micro device laser peeling mass transfer device based on a winding process
  • a micro device peeling and transferring module includes a micro device peeling and transferring module, an auxiliary carrier module, a transition carrier module, and a transfer printing device.
  • Tape carrier module, substrate carrier module, micro device filling module, curing module, packaging module, and substrate handling module of which:
  • the micro-device peeling transfer module is located above the left side of the auxiliary carrier tape module, and is used to implement micro-device detection and peeling;
  • the auxiliary carrier tape module is used for adhering and peeling off the micro-devices and aligning them uniformly, and then transferring them to the transition carrier tape module;
  • the transitional carrier tape module is located above the right side of the auxiliary carrier tape module, and is used for continuously picking up micro devices from the auxiliary carrier tape module and transferring the micro devices to the transfer carrier tape module;
  • the transfer carrier tape module is located on the right side of the transition carrier tape module, and is used for continuously picking up micro devices from the transition carrier tape module and transferring the micro devices to the substrate carrier module;
  • the substrate carrying module is located below the transfer carrier module, and is used for receiving the micro-devices transferred from the transfer carrier module, and sequentially sending the micro-device filling module, the curing module, and the packaging module;
  • micro-device vacancy filling module, curing module, packaging module and substrate handling module are all arranged on the right side of the transfer carrier module, and are arranged from left to right, respectively, for filling, curing, packaging and loading and unloading.
  • the micro-device peeling and transferring module includes a wafer automatic disk changing unit, a laser scanning moving unit, a transferring laser scanning unit, a transferring laser peeling unit, a wafer moving unit and a scanning vision unit.
  • the automatic disc changing unit is arranged behind the wafer disc moving unit, and is used for loading the wafer disc on the wafer tray above the wafer disc moving unit.
  • the transfer laser scanning unit and the transfer laser stripping unit are arranged on the wafer.
  • the upper part of the meta disk is used to weaken the bonding strength between the micro device on the wafer and the wafer, and to peel the micro device from the wafer.
  • the transfer laser scanning unit is connected to the laser scanning moving unit.
  • the vision unit is located under the wafer, and is used to detect the quality of the micro-devices and identify bad micro-devices.
  • the auxiliary carrier tape module includes an auxiliary unwinding roll, a pair of rollers, an idler roller, an auxiliary carrier tape, an auxiliary vision unit, an auxiliary laser scanning unit, an auxiliary laser peeling unit, and an auxiliary receiving roll.
  • the tape is wound on the auxiliary unwinding roll and auxiliary rewinding roll on its surface.
  • the surface is provided with an adhesive layer to achieve stable adhesion of the microdevices, and the microdevice peeling and transfer module is used to make the microdevices evenly arranged on the auxiliary carrier tape.
  • the auxiliary unwinding roll, pair roll, idler roll, auxiliary vision unit, auxiliary laser scanning unit, auxiliary laser stripping unit, and auxiliary take-up roll are arranged in order along the feeding direction of the auxiliary carrier tape, wherein the pair of rollers are located on the auxiliary carrier tape. Both sides are used to drive the auxiliary carrier tape feed.
  • the idler roller is located below the auxiliary carrier tape to support the auxiliary carrier tape and adjust the span of the auxiliary carrier tape.
  • the auxiliary vision unit is located above the auxiliary carrier tape to detect the auxiliary The running speed of the carrier tape.
  • the auxiliary laser scanning unit is located below the auxiliary carrier tape. It is used to weaken the bonding strength between the micro device and the auxiliary carrier tape.
  • the auxiliary laser stripping unit is located on the auxiliary tape. The lower part of the auxiliary carrier tape is used to peel the micro device from the auxiliary carrier tape.
  • the transition carrier tape module includes a transition unwinding coil, a transition receiving coil, a transition roller provided between the transition unwinding coil and the transition receiving coil, a transition carrier tape, and a transition laser peeling unit, wherein,
  • the transition carrier tape passes around the transition roll and is wound on the transition unwinding roll and transition rewinding roll end to end.
  • the surface is provided with an adhesive layer.
  • the transition laser stripping unit is provided in the transition roll and is used to emit laser light to realize The micro-device is peeled off the transition carrier tape, and a slit on the cylindrical surface of the transition roller is configured to allow the laser light emitted by the transition laser peeling unit to pass through.
  • the transition roller is near the auxiliary carrier tape and the right side is near the transfer carrier tape. Module to continuously pick up micro devices from the auxiliary carrier tape, and then transfer the micro devices to the transfer carrier tape module.
  • the transfer carrier tape module includes a transfer unwinding roll, a transfer pressure roller, a transfer vision unit, a transfer idler roller, a transfer laser scanning unit, a transfer laser peeling unit, and a transfer carrier tape.
  • a transfer take-up roll wherein the transfer carrier tape is wound around the transfer take-up roll and the transfer take-up roll end to end, and the surface is provided with an adhesive layer, and the transfer take-up roll and transfer pressure
  • the roller, the transfer vision unit, the transfer idle roller, the transfer laser scanning unit, the transfer laser peeling unit, and the transfer take-up roll are arranged sequentially in space along the transfer carrier tape feeding direction.
  • the transfer carrier it is used to adjust the gap between the transition carrier and the transfer carrier, so as to realize the stable transfer of the micro device from the transition carrier to the transfer carrier.
  • the transfer vision unit is provided on the transfer carrier. Below, it is used to detect the running speed of the transfer carrier.
  • the transfer idler roller is set above the transfer carrier. It is used to support the transfer carrier and adjust the span layout of the transfer carrier.
  • the transfer laser scanning unit is set at Above the transfer carrier tape, used to weaken the bonding strength between the micro device and the transfer carrier tape, and transfer laser peeling Module disposed above the transfer carrier belt, the micro device for realizing the transfer from the carrier release tape.
  • the substrate carrying module includes an XYZ module, a substrate base, an adjustment component, a substrate support plate, and a substrate vision unit, wherein the substrate base is arranged on the XYZ module, and the substrate support plate is connected with the substrate through the adjustment component.
  • the substrate base is connected, and a substrate is provided on the substrate supporting plate for receiving micro-devices peeled off from the transfer carrier tape.
  • the substrate vision unit is disposed above the substrate and is used to realize the micro-device array attached to the substrate. Consistency check.
  • the transfer laser unit of the micro-device peeling transfer module preferably can simultaneously emit three independently controllable laser beams, namely a first laser beam, a second laser beam and a third laser beam, three laser beams, etc.
  • the interval is distributed and the interval is adjustable;
  • the wafer disk preferably includes a first wafer disk, a second wafer disk, and a third wafer disk.
  • the three wafer disks are equally spaced, and three independently controllable laser beams act on Three wafer disks.
  • the first wafer disk contains the first type of microdevices.
  • the second wafer disk contains the second type of microdevices.
  • the third wafer disk contains the third type of microdevices.
  • the same size specifications, the first type of microdevices, the second type of microdevices and the third type of microdevices are three types of microdevices, and the three types of microdevices are transferred to the auxiliary carrier tape under the action of the laser beam and formed at uniform intervals.
  • the wafer tray preferably includes a first wafer tray, a second wafer tray, and a third wafer tray
  • the wafer tray moving unit preferably includes a first wafer tray moving unit and a second wafer tray
  • Mobile unit and third wafer disk mobile unit, Freedom of movement within the XY plane of the mobile unit are independent.
  • the first type of microdevices, the second type of microdevices and the third type of microdevices are arranged at equal intervals on the auxiliary carrier tape by the following methods:
  • m is the distance between adjacent laser beams among the three independently controllable laser beams of the microdevice peeling transfer module
  • v is the actual speed of the auxiliary carrier tape detected by the auxiliary vision unit
  • ⁇ v is the auxiliary carrier tape speed fluctuation. Compensation amount
  • t is the laser radiation interval of the transfer laser stripping unit
  • Z is an integer, and its value is
  • the delay amount can be preferably obtained from the following formula:
  • n is the distance between similar microdevices
  • v is the actual speed of the auxiliary carrier tape detected by the auxiliary vision unit
  • ⁇ v is the compensation amount of auxiliary carrier speed fluctuations
  • g is the difference between the first type microdevice and the third type microdevice.
  • Distance f is the distance between the first type microdevice and the second type of microdevice
  • d is the width of the microdevice
  • ⁇ ta is the delay amount of the first laser beam
  • ⁇ tb is the delay amount of the second laser beam
  • t is the transfer laser Laser radiation interval of the peeling unit.
  • the following formula is preferably used to calculate the equidistance interval of each micro device on the auxiliary carrier tape:
  • s is the equal interval between the micro devices on the auxiliary carrier tape
  • v the actual speed of the auxiliary carrier tape detected by the auxiliary vision unit
  • ⁇ v is the compensation amount of the auxiliary carrier speed
  • t is the laser radiation interval of the transfer laser stripping unit
  • d is the width of the micro device
  • k is the equal interval of each micro device on the transition carrier tape
  • s is the interval of the equally spaced micro devices on the auxiliary carrier tape
  • d is the width of the micro device
  • v is the actual speed of the auxiliary carrier tape detected by the auxiliary vision unit
  • ⁇ v is Auxiliary carrier tape speed compensation amount
  • w is the actual speed of the transition carrier tape
  • ⁇ w is the speed compensation amount of the transition carrier tape
  • h is the equal interval of each micro device on the transfer carrier tape
  • k is the equal interval of each micro device on the transition carrier tape
  • d is the width of the micro device
  • q is the transfer carrier tape detected by the transfer vision unit Speed
  • ⁇ q is the speed compensation amount of the transfer carrier tape
  • w is the actual speed of the transition carrier tape
  • ⁇ w is the speed compensation amount of the transition carrier tape
  • p is the equal interval of each micro device on the substrate
  • h is the equal interval of each micro device on the transfer carrier
  • d is the width of the micro device
  • q is the transfer carrier speed detected by the transfer vision unit
  • ⁇ q is the speed compensation amount of the transfer carrier tape
  • j is the actual speed of the substrate detected by the substrate vision unit
  • ⁇ j is the speed compensation amount of the substrate.
  • a micro device laser peeling mass transfer method based on a winding process which is performed by using the micro device laser peeling mass transfer device based on a winding process, and includes the following steps:
  • the laser irradiation interval t, the auxiliary carrier tape speed v, the transition carrier tape speed w, and the transfer carrier tape speed of the transfer laser peeling unit are set.
  • q and substrate speed j; and the laser beam spacing m is determined according to the auxiliary carrier tape speed v and the laser radiation interval t of the transfer laser stripping unit;
  • the wafer tray is loaded into the wafer tray by the wafer tray automatic disk changing unit;
  • the wafer tray moving unit is used to move the wafer tray above the scanning vision unit to detect the quality of the microdevices and identify the bad microdevices;
  • S3 moves the wafer disk to transfer the laser scanning unit to scan the micro-devices, which weakens the bonding strength between the micro-device and the wafer through laser ablation, and facilitates the transfer of the micro-devices from the wafer.
  • the transfer laser stripping unit emits a point laser to act on On the micro-devices of the wafer disk, the micro-devices are separated from the wafer disk and transferred to the auxiliary carrier tape, arranged in a single column with a uniform layout;
  • the S4 transition carrier tape picks up the micro device from the auxiliary carrier tape, and the micro device is picked up from the transition carrier tape by the transfer carrier tape; the micro device is continuously transferred from the transfer carrier tape to the substrate by the transfer laser unit, and is continuously transferred During the process, the substrate carrier module always controls the substrate and the transfer carrier to move at the same speed. After receiving a row of microdevices on the substrate, the substrate moves a distance to receive the next row of microdevices. Repeat the above process to form an array on the substrate. Micro device pattern;
  • S5 uses the substrate vision unit to inspect the substrate to determine whether there is a lack of micro-devices on the substrate. If so, the micro-device filling module is used to fill the vacancies; then the curing module is used to make the micro-devices and the substrate reliably connected; and then the packaging module is used to connect The rear micro-device and the substrate are integrally packaged with a protective layer; finally, the substrate is unloaded by a substrate handling module.
  • the present invention is designed by designing a micro device including a micro device peeling transfer module, an auxiliary carrier module, a transition carrier module, a transfer carrier module, a substrate carrier module, a micro device filling module, a curing module, a packaging module, and a substrate handling module.
  • the present invention applies to various key components such as a micro device peeling transfer module, an auxiliary carrier module, a transition carrier module, a transfer carrier module, a substrate carrier module, a micro device filling module, a curing module, a packaging module, and a substrate handling module.
  • a micro device peeling transfer module such as a micro device peeling transfer module, an auxiliary carrier module, a transition carrier module, a transfer carrier module, a substrate carrier module, a micro device filling module, a curing module, a packaging module, and a substrate handling module.
  • the specific structure and specific assembly relationship have been specially researched and designed. Through the coordination and cooperation of each module, a huge amount of micro-devices have been realized. It has the advantages of simple structure, convenient operation, and strong applicability.
  • the invention also relates to parameters such as the distance between adjacent laser beams in the laser beam of the microdevice peeling transfer module, the actual speed of the auxiliary carrier tape, the compensation amount of the auxiliary carrier tape speed fluctuation, and the laser radiation interval of the transfer laser peeling unit. Research and design are carried out to ensure that micro-devices are arranged at equal intervals on the auxiliary carrier tape.
  • the present invention also compensates for uneven distribution intervals of the micro devices on the auxiliary carrier tape by controlling the trigger delay of the first laser beam and the second laser beam, and further ensures that the micro devices are arranged at equal intervals on the auxiliary carrier tape.
  • the present invention also provides the equal interval between the micro devices on the auxiliary carrier tape, the equal interval between the micro devices on the transition carrier tape, the equal interval between the micro devices on the transfer carrier tape, and the
  • the specific calculation formula of the equally spaced interval of micro-devices is to determine the running speed of each carrier tape and substrate according to the required interval of the micro-devices, to ensure the equally spaced distribution of micro-devices on each carrier tape and substrate, and through reasonable parameter settings, It can be applied to substrates that require any micro-device pitch.
  • FIG. 1 is an overall structural diagram of a microdevice laser lift-off mass transfer device based on a winding process constructed according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a microdevice peel-off transfer module
  • FIG. 3 is a schematic structural diagram of an auxiliary carrier tape module
  • FIG. 5 is a schematic structural diagram of a transfer carrier module
  • FIG. 6 is a schematic structural diagram of a substrate carrying module
  • FIG. 7 is a principle diagram for calculating a laser beam pitch under an equally spaced wafer arrangement according to the present invention.
  • FIG. 8 is a schematic diagram of calculating a pitch of a micro device on a transition carrier tape according to the present invention.
  • FIG. 9 is a schematic diagram of calculating a micro device pitch on a transfer carrier tape according to the present invention.
  • FIG. 10 is a schematic diagram of calculating a pitch of a micro device on a substrate according to the present invention.
  • FIG. 11 is a flowchart of a method for laser ablation of a micro device based on a winding process according to the present invention.
  • 10-microdevice peel-off transfer module 20-auxiliary carrier tape module, 30-transition carrier tape module, 40-transfer carrier tape module, 50-substrate carrier module, 60-microdevice fill module, 70-curing module, 80- Packaging module, 90-substrate handling module, 11-automatic disk changing unit, 12-laser scanning moving unit, 13-transfer laser scanning unit, 14-transfer laser stripping unit, 15-wafer tray, 16-wafer tray, 17-wafer tray moving unit, 18-scanning vision unit, 19-vision moving unit, 21- auxiliary unwinding roll, 22- pair of rollers, 23- idle roller, 24- auxiliary carrier tape, 25- auxiliary visual unit, 26 -Auxiliary laser scanning unit, 27-Auxiliary laser stripping unit, 28-Auxiliary take-up roll, 31-transition unwinding roll, 32-transition take-up roll, 33-transition carrier tape, 34-transition laser stripping unit, 35-transition Roller, 41-transfer unwinding roll,
  • a microdevice laser peeling mass transfer device based on a winding process includes a microdevice peeling transfer module 10, an auxiliary carrier module 20, a transition carrier module 30, and a transfer device.
  • the micro device peeling transfer module 10 is located above the left side of the auxiliary carrier module 20, and In order to realize the detection of micro-device quality and identification of bad micro-devices, and to achieve the peeling of good micro-devices, the auxiliary carrier tape module 20 is used to receive the micro-devices peeled from the micro-device peeling transfer module (10), and The device is transferred to the transition carrier tape module (30); the transition carrier tape module 30 is located above the right side of the auxiliary carrier tape module 20, and is used for continuously picking up micro devices from the auxiliary carrier tape module 20 and transferring the micro devices to the transfer On the carrier tape module 40; the transfer carrier tape module 40 is located on the right side of the transition carrier tape module 30, and is used for continuously picking up micro devices from the transition carrier tape module 30 and transferring the micro devices to the substrate carrier module 50 The substrate carrying module 50 is located below the transfer carrier module 40 and is used to receive the micro-devices transferred from the transfer carrier module 40 and sequentially send them into the micro-device filling module 60, the curing module
  • the micro device peeling and transferring module 10 includes a wafer automatic disk changing unit 11, a laser scanning moving unit 12, a transferring laser scanning unit 13, a transferring laser peeling unit 14, a wafer moving unit 17, and a scanning vision unit. 18.
  • the wafer automatic disk changing unit 11 is arranged behind the wafer moving unit 17, and is used to load the wafer 15 (the wafer is bonded to the wafer, and the wafer is a micro device).
  • the transfer laser scanning unit 13 and the transfer laser stripping unit 14 are arranged above the wafer 15 and are used to weaken the micro-devices on the wafer and the wafers, respectively. Adhesion strength and peeling of micro-devices from the wafer disc.
  • the scanning vision unit 18 is located below the wafer-disk 15. It is used to test the quality of the micro-devices and identify the bad micro-devices. Good microdevices peel off.
  • the scanning vision unit 18 is connected with a vision moving unit 19 to realize the movement of the scanning vision unit 18.
  • the wafer tray moving unit 17 is used to realize the movement and transfer of the wafer tray 16 and the wafer tray 15 on the wafer tray 16.
  • the laser scanning unit 13 is connected to the laser scanning moving unit 12 to realize the movement of the transfer laser scanning unit.
  • the auxiliary carrier module 20 includes an auxiliary unwinding roll 21, a pair of rollers 22, an idler roller 23, an auxiliary carrier tape 24, an auxiliary vision unit 25, an auxiliary laser scanning unit 26, an auxiliary laser peeling unit 27, and an auxiliary take-up unit.
  • Material roll 28 in which the auxiliary carrier tape 24 is wound around the auxiliary unwinding coil 21 and the auxiliary rewinding coil 28, and the surface is provided with an adhesive layer to achieve stable adhesion of the microdevice, and cooperate with the microdevice peeling transfer module 10 makes the micro devices evenly arranged on the auxiliary carrier tape 24, the auxiliary unwinding roll 21, the pair of rollers 22, the idler roller 23, the auxiliary carrier tape 24, the auxiliary vision unit 25, the auxiliary laser scanning unit 26, the auxiliary laser peeling unit 27, and the auxiliary
  • the take-up rolls 28 are sequentially arranged in space along the feeding direction of the auxiliary carrier tape 24.
  • the pair of rollers 22 are located on both sides of the auxiliary carrier tape 24 for driving the feeding of the auxiliary carrier tape 24.
  • the idler roller 23 is located on the auxiliary carrier tape. Below 24, it is used to support the auxiliary carrier tape 24 and adjust the span layout of the auxiliary carrier tape 24.
  • the idler roller 23 is specifically provided with two, so that the auxiliary carrier tape 24 is arranged according to the required arrangement form, and the auxiliary vision unit 25 is located on the auxiliary carrier tape.
  • the auxiliary laser scanning unit 26 is located below the auxiliary carrier tape 24, and is used to weaken the bonding strength between the micro device and the auxiliary carrier tape 24 through laser ablation, to facilitate the transfer of micro devices from the auxiliary carrier tape, and to assist the laser stripping unit 27 is located below the auxiliary carrier tape 24 and is used to peel the micro-device from the auxiliary carrier tape 24.
  • the transition carrier tape module 30 includes a transition feeder roll 31, a transition receiver roll 32, a transition roller 35, a transition carrier tape 33, and a transition laser peeling unit 34, wherein the transition roller 35 is located at the transition feeder roll 31.
  • the transition carrier tape 33 bypasses the transition roll 35, and is wound on the transition take-up roll 31 and the transition take-up roll 32 end to end.
  • the surface has an adhesive layer, and the transition laser peeling unit 34 is provided inside the transition roller 35, it is used to emit laser light to realize the peeling of the micro device from the transition carrier tape 33.
  • a slit is provided on the cylindrical surface of the transition roller 35 to allow the laser light emitted by the transition laser peeling unit 34 to pass through.
  • the transition roller 35 The lower part is close to the auxiliary carrier tape 24, and the right side is close to the transfer carrier tape module 40, so as to continuously pick up the micro devices from the auxiliary carrier tape 24, and then transfer the micro devices to the transfer carrier tape module 40.
  • the transfer carrier module 40 picks up the micro devices from the transition carrier module 30 and cooperates with the substrate carrier module 50 to continuously transfer the micro devices to the substrate 55, which includes a transfer unwinding roll 41, a transfer The platen roller 42, the transfer vision unit 43, the transfer idler 44, the transfer laser scanning unit 45, the transfer laser peeling unit 46, the transfer carrier tape 47, and the transfer take-up roll 48, among which the transfer carrier tape 47 is wound around the transfer and unwinding roll 41 and the transfer and rewinding roll 48 with a glue layer on the surface, the transfer and unwinding roll 41, the transfer pressure roll 42, the transfer vision unit 43, and the transfer idler roll 44.
  • the transfer laser scanning unit 45, the transfer laser peeling unit 46 and the transfer take-up roll 48 are sequentially arranged in space along the feeding direction of the transfer carrier 47, and the transfer pressure roller 42 is provided on the transfer carrier Above 47, it is used to adjust the distance between the transition carrier tape 33 and the transfer carrier tape 47 above the transition roller 35, so as to realize the stable transfer of the micro device from the transition carrier tape 33 to the transfer carrier tape 47.
  • the transfer vision unit 43 It is provided below the transfer carrier belt 47 for detecting the running speed of the transfer carrier belt 47, and a transfer idler 44 is provided above the transfer carrier belt 47 for The transfer carrier belt 47 is supported and the span layout of the transfer carrier belt 47 is adjusted.
  • the transfer carrier belt 47 is arranged in a desired arrangement form.
  • the transfer laser scanning unit 45 is provided on the Above the print carrier tape 47 is used to weaken the bonding strength between the micro device and the transfer carrier tape 47.
  • the transfer laser peeling module 46 is provided above the transfer carrier tape 47 and is used to realize the transfer of the micro devices from the transfer carrier 47. The tape 47 is peeled off.
  • the substrate carrying module 50 includes an XYZ module 51, a substrate base 52, an adjustment component 53, a substrate support plate 54, and a substrate vision unit 56, wherein the substrate base 52 and the substrate support plate 54 are arranged in order from bottom to top.
  • the substrate base 52 is connected to the XYZ module 51.
  • the substrate support plate 54 is connected to the substrate base 52 through the adjustment component 53.
  • the substrate support plate 54 is provided with a substrate 55 for receiving the transfer The micro device peeled off the print carrier tape 47.
  • the substrate vision unit 56 is provided above the substrate 55, and is used to implement the consistency detection of the micro device array attached to the substrate 55.
  • the vision unit 56 detects the The spacing of the micro devices on the substrate 55 peeled off by the belt 47, and by adjusting the speed of the substrate 55 in the feeding direction of the transfer carrier tape 47, the spacing of adjacent micro devices on the substrate 55 is compensated in real time to ensure that the micro devices are in The substrate 55 is equally spaced.
  • the XYZ module 51 is used to drive the substrate 55 to perform three-way movement, and the adjustment component 53 is used to adjust the inclination of the substrate support plate 54.
  • the micro-device vacancy module 60 implements the replacement of micro-devices on the substrate 55 by micro-devices, and it is preferable to use a conventional micro-device pick-and-place transfer process, that is, to place the required micro-devices on the micro-device-missing locations.
  • the curing module 70 is used for curing the solder on the substrate to ensure the physical connection between the micro-device and the substrate circuit. A UV curing process is preferred.
  • the packaging module 80 is used for integrally packaging a protective layer for the connected micro device and the substrate circuit to isolate the water and oxygen environment from corrosion, and a TFE packaging process is preferably printed.
  • the substrate transfer module 90 loads and unloads the substrates 55 before and after packaging.
  • the transfer laser unit 14 of the microdevice peeling transfer module 10 may preferably emit three independently controllable laser beams, namely a first laser beam 14a, a second laser beam 14b, and a third laser beam, respectively. 14c, the three laser beams are equally spaced and adjustable; the wafer 15 preferably includes a first wafer 15a, a second wafer 15b, and a third wafer 15c, and the three wafers are equally spaced. Independently controllable laser beams are respectively applied to three wafers.
  • the first wafer 15a is equipped with a first type micro device 1501
  • the second wafer 15b is equipped with a second type micro device 1502
  • the third wafer Disk 15c is equipped with a third type of microdevice 1503.
  • the three types of microdevices have the same size specifications.
  • the first type of microdevices 1501, the second type of microdevices 1502, and the third type of microdevices 1503 are three types of microdevices.
  • the micro-devices are transferred to the auxiliary carrier tape under the action of the laser beam, and are arranged at even intervals. According to the process selection, the first-type micro-devices 1501, the second-type micro-devices 1502 and the third-type micro-devices 1503 can also be the same type.
  • wafer tray 16 is preferably packaged The first wafer tray 16a, the second wafer tray 16b, and the third wafer tray 16c;
  • the wafer tray moving unit 17 preferably includes a first wafer tray moving unit 17a, a second wafer tray moving unit 17b, and The third wafer disk moving unit 17c, the three wafer disk moving units all have independent XY moving degrees of freedom in the plane.
  • m is the distance between adjacent laser beams among the three independently controllable laser beams of the microdevice peeling transfer module 10
  • v is the actual speed of the auxiliary carrier tape 24 detected by the auxiliary vision unit 25
  • ⁇ v is the auxiliary carrier With 24 speed fluctuation compensation amount
  • t is the laser radiation interval of the transfer laser stripping unit 14 (that is, the respective radiation interval of each laser beam)
  • Z is an integer, and its value is
  • the trigger delay of the first laser beam 14a and the second laser beam 14b by controlling the trigger delay of the first laser beam 14a and the second laser beam 14b, the uneven distribution of the microdevices on the auxiliary carrier tape 24 is compensated, and the uniformity of the microdevice intervals is detected by the auxiliary vision unit 25.
  • the three laser beams 14c are used as a reference, and the trigger delay of the first laser beam 14a and the second laser beam 14b relative to the third laser beam 14c can be adjusted by adjusting the delay amount of the control pulses to adjust the micro device on the auxiliary carrier tape 24
  • the distribution interval makes it evenly distributed, and the delay amount can be preferably obtained from the following formula:
  • n is the distance between similar micro devices
  • v is the actual speed of the auxiliary carrier tape 24 detected by the auxiliary vision unit
  • ⁇ v is the compensation amount of the speed fluctuation of the auxiliary carrier tape
  • g is the first type of micro device 1501 and the third
  • the distance between similar microdevices 1503, e is the distance between the second type of microdevices 1502 and the third type of microdevices 1503
  • f is the distance between the first type of microdevices 1501 and the second type of microdevices 1502
  • d is the width of the microdevice
  • ⁇ ta Is the delay amount of the first laser beam 14a
  • ⁇ tb is the delay amount of the second laser beam 14b
  • t is the laser radiation interval of the transfer laser peeling unit 14.
  • the following formula is preferably used to calculate the equal interval between micro devices on the auxiliary carrier tape 24:
  • s is the equal interval between the micro devices on the auxiliary carrier tape 24 (the distance between two adjacent micro devices is s), that is, s is the interval between the equally spaced micro devices 1504 on the auxiliary carrier tape 24, and the equally spaced micro devices 1504 may be any one of the first type of microdevices 1501, the second type of microdevices 1502, and the third type of microdevices 1503.
  • the actual speed of the auxiliary carrier tape 24 detected by the v auxiliary vision unit 25, and ⁇ v is the auxiliary carrier tape.
  • 24 Speed compensation amount t is the laser radiation interval of the transfer laser peeling unit 14, and d is the width of the micro device.
  • the following formula is preferably used to calculate the equal interval between micro devices on the transition carrier module 30:
  • k is the equally spaced interval of each micro device on the transition carrier tape 33 (the distance between two adjacent micro devices is k)
  • s is the space of the equally spaced micro devices on the auxiliary carrier tape 23
  • d is the width of the micro device
  • v The actual speed of the auxiliary carrier tape 24 detected by the auxiliary vision unit 25
  • ⁇ v is the speed compensation amount of the auxiliary carrier tape 24
  • w is the actual speed of the transition carrier tape 33
  • ⁇ w is the speed compensation amount of the transition carrier tape 33.
  • h is the equal interval between the micro devices on the transfer carrier tape 47 (the distance between two adjacent micro devices is h)
  • k is the equal interval between the micro devices on the transition carrier tape 33
  • d is the micro device Width
  • q is the speed of the transfer carrier 47 detected by the transfer vision unit 43
  • ⁇ q is the speed compensation amount of the transfer carrier 47
  • w is the actual speed of the transition carrier 33
  • ⁇ w is the speed compensation of the transition carrier 33 the amount.
  • p is an equal interval between micro devices on the substrate 55 (the distance between two adjacent micro devices is p)
  • h is an equal interval between micro devices on the transfer carrier tape 47
  • d is the width of the micro devices
  • q is the speed of the transfer carrier 47 detected by the transfer vision unit 43
  • ⁇ q is the speed compensation amount of the transfer carrier 47
  • j is the actual speed of the substrate 55 detected by the substrate vision unit 56
  • ⁇ j is the speed compensation of the substrate 55 the amount.
  • the transfer carrier tape 47, the transition carrier tape 33, and the auxiliary carrier tape 24 According to the required microdevice intervals on the substrate 55, the transfer carrier tape 47, the transition carrier tape 33, and the auxiliary carrier tape 24, the laser emission interval t of the transfer laser peeling unit 14, the auxiliary carrier tape speed 24, and the transition carrier tape 33 are set reasonably.
  • the speed w, the transfer carrier tape 47 speed q, and the substrate 55 speed j; and the laser beam spacing m is determined according to the auxiliary carrier tape 24 speed v and the laser radiation interval t of the transfer laser peeling unit 14;
  • the wafer disk 15 is loaded into the wafer disk tray 16 by the wafer disk automatic disk changing unit 11.
  • the wafer disk moving unit 17 moves the wafer disk 15 above the scanning vision unit 18 for testing the micro-device manufacturing quality. , Create a Map to identify bad micro-devices;
  • S3 moves the wafer disk 15 so that the transfer laser scanning unit 13 scans the microdevices with good quality, and weakens the bonding strength between the microdevice and the wafer disk by laser ablation, which facilitates the transfer of the microdevices from the wafer disk; transfer laser stripping
  • the unit 14 emits a point laser to act on the micro-devices of the wafer disk 15 so that the good-quality micro-devices are separated from the wafer disk and transferred to the auxiliary carrier tape 24 in the winding feed to be arranged in a single row with a uniform layout.
  • the micro-devices are adhered to the auxiliary carrier tape 24 at equal intervals.
  • the auxiliary vision unit 25 is used to detect the spacing of the micro-devices on the auxiliary carrier tape 24 in real time, and the information of the distance is fed back to the transfer laser stripping unit 14.
  • the amount of delay realizes the adjustment of the trigger delay of the first laser beam 14a and the second laser beam 14b relative to the third laser beam 14c, and compensates the spacing of the micro devices to ensure that the micro devices are evenly arranged on the auxiliary carrier tape 24;
  • the transition carrier tape 33 picks up the micro device from the auxiliary carrier tape 24, and the micro device is picked up from the transition carrier tape 33 by the transfer carrier tape 47; the micro devices are continuously transferred from the transfer carrier tape 47 by the transfer laser unit 46
  • the substrate carrying module 50 always controls the substrate 55 and the transfer carrier 47 to move at the same speed during the continuous transfer process; after receiving a row of microdevices on the substrate 55, the substrate 55 moves a distance to perform the next row of microdevices.
  • S5 detects the substrate 55 through the substrate vision unit 56 to determine whether there is a lack of micro-devices on the substrate. If so, the micro-devices fill module 60 fills the substrates; then the curing module 70 is used to make the micro-devices and the substrates reliably connected; reuse The packaging module 80 encapsulates the connected micro device and the substrate as a whole with a protective layer; finally, the substrate handling module 90 realizes the cutting of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明属于半导体技术领域,并具体公开了一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法,其包括微器件剥离转移模块、辅助载带模块、过渡载带模块、转印载带模块、基板承载模块、微器件补缺模块、固化模块、封装模块及基板搬运模块,微器件剥离转移模块用于实现微器件的检测及剥离;辅助载带模块用于粘附剥微器件;过渡载带模块用于拾取微器件,并将其转移至转印载带模块;转印载带模块用于拾取微器件,并将其转移至基板承载模块;基板承载模块用于将微器件送入补缺模块、固化模块、封装模块、基板搬运模块中实现补缺、固化、封装及上下料。通过本发明,利用卷绕工艺和激光技术实现微器件的巨量转移,具有生产效率高、生产成本低等优点。

Description

一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法 【技术领域】
本发明属于半导体技术领域,更具体地,涉及一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法。
【背景技术】
Micro-LED技术,即LED微缩化和矩阵化技术,指的是在一个晶片上集成高密度微小尺寸的LED阵列,如LED显示屏每一个像素可定址、单独驱动点亮,可看成是LED显示屏的微缩版,将像素点距离从毫米级降低至微米级。Micro-LED优点表现的很明显,它继承了无机LED的高效率、高亮度、高可靠度及反应时间快等特点,并且具自发光无需背光源的特性,更具节能、机构简易、体积小、薄型等优势。除此之外,因为微器件尺寸极小,非常容易实现超高解析度,其解析度可轻松达到1500ppi以上。同时,相比于OLED,色彩的准确度更高且具由更长的寿命以及更高的亮度。
在Micro-LED显示屏制备中,首先需要的CMOS集成电路制造工艺制成LED显示驱动电路,然后将Micro-LED搬运到显示驱动电路上,行成Micro-LED阵列。现有的晶片转移技术一般是采用机械手拾取晶片,然后再转移到目标基板上,而一个Micro-LED显示屏需要有数以百万计的Micro-LED晶片,传统方法效率过低,无法满足Micro-LED显示屏制备中微器件巨量转移的要求。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法,其通过对关键组件如微器件剥离转移模块、辅助载带模块、过渡载带模块、转印载带模块、基板承载模块、微器件补缺模块、固化模块、封装模块及基板搬运模块的结构及具体装配关系的研究与设计,以利用卷绕工艺和激光剥离技术实现了微器件的巨量转移,有效的提高了生产效率,降低了生产成本。
为实现上述目的,按照本发明的一个方面,提出了一种基于卷绕工艺的微器 件激光剥离巨量转移装置,其包括微器件剥离转移模块、辅助载带模块、过渡载带模块、转印载带模块、基板承载模块、微器件补缺模块、固化模块、封装模块以及基板搬运模块,其中:
所述微器件剥离转移模块位于所述辅助载带模块左侧的上方,用于实现微器件的检测及剥离;
所述辅助载带模块用于粘附剥离下来的微器件,并使其均匀排列,然后转移至过渡载带模块上;
所述过渡载带模块位于所述辅助载带模块右侧的上方,其用于从辅助载带模块上连续拾取微器件,并将微器件转移至转印载带模块上;
所述转印载带模块位于过渡载带模块的右侧,其用于从过渡载带模块上连续拾取微器件,并将微器件转移至基板承载模块上;
所述基板承载模块位于转印载带模块的下方,其用于接收从转印载带模块转移过来的微器件,并依次送入微器件补缺模块、固化模块、封装模块中;
所述微器件补缺模块、固化模块、封装模块和基板搬运模块均设置在转印载带模块的右侧,并从左至右依次设置,分别用于补缺、固化、封装及上下料。
作为进一步优选的,所述微器件剥离转移模块包括晶元盘自动换盘单元、激光扫描移动单元、转移激光扫描单元、转移激光剥离单元、晶元盘移动单元和扫描视觉单元,所述晶元盘自动换盘单元布置于晶元盘移动单元的后方,用于将晶元盘装入晶元盘移动单元上方的晶元盘托盘上,所述转移激光扫描单元与转移激光剥离单元布置于晶元盘的上方,分别用于弱化晶元盘上微器件与晶元盘的粘结强度以及将微器件从晶元盘上剥离,所述转移激光扫描单元与激光扫描移动单元相连,所述扫描视觉单元位于晶元盘的下方,用于检测微器件的质量并标识不良微器件。
作为进一步优选的,所述辅助载带模块包括辅助放料卷、对辊、惰辊、辅助载带、辅助视觉单元、辅助激光扫描单元、辅助激光剥离单元及辅助收料卷,所述辅助载带首尾绕卷在辅助放料卷和辅助收料卷上,其表面带有胶层,实现微器件的稳定粘附,并配合微器件剥离转移模块使得微器件在辅助载带上均匀排列, 所述辅助放料卷、对辊、惰辊、辅助视觉单元、辅助激光扫描单元、辅助激光剥离单元及辅助收料卷沿着辅助载带进给方向顺序依次布置,其中对辊位于辅助载带的两侧,用于驱动辅助载带进给,惰辊位于辅助载带的下方,用于支撑辅助载带并调整辅助载带跨距布局,辅助视觉单元位于辅助载带的上方,用于检测辅助载带的运行速度,辅助激光扫描单元位于辅助载带的下方,用于弱化微器件与辅助载带的粘结强度,辅助激光剥离单元位于辅助载带的下方,用于将微器件从辅助载带上剥离。
作为进一步优选的,所述过渡载带模块包括过渡放料卷、过渡收料卷、设于过渡放料卷和过渡收料卷之间的过渡辊、过渡载带以及过渡激光剥离单元,其中,所述过渡载带绕过过渡辊并且首尾绕卷在过渡放料卷和过渡收料卷上,其表面带有胶层,所述过渡激光剥离单元设于过渡辊内,用于发射激光以实现将微器件从过渡载带上剥离,所述过渡辊圆柱面上设计有允许过渡激光剥离单元发出的激光穿过的狭缝,该过渡辊的下方靠近辅助载带,右侧靠近转印载带模块,以实现从辅助载带上连续拾取微器件,再将微器件转移到转印载带模块上。
作为进一步优选的,所述转印载带模块包括转印放料卷、转印压辊、转印视觉单元、转印惰辊、转印激光扫描单元、转印激光剥离单元、转印载带及转印收料卷,其中,所述转印载带首尾绕卷在转印放料卷和转印收料卷上,其表面带有胶层,所述转印放料卷、转印压辊、转印视觉单元、转印惰辊、转印激光扫描单元、转印激光剥离单元与转印收料卷在空间上沿着转印载带进给方向依次顺序布置,转印压辊设于转印载带的上方,用于调整过渡载带与转印载带的间距,以实现微器件从过渡载带到转印载带的稳定转移,转印视觉单元设于转印载带的下方,用于检测转印载带的运行速度,转印惰辊设于转印载带的上方,用于支撑转印载带并调整转印载带跨距布局,转印激光扫描单元设于转印载带的上方,用于弱化微器件与转印载带的粘结强度,转印激光剥离模块设于转印载带的上方,用于实现将微器件从转印载带上剥离。
作为进一步优选的,所述基板承载模块包括XYZ模组、基板底座、调节组件、基板支撑板以及基板视觉单元,其中,所述基板底座布置在XYZ模组上,基板支 撑板通过调节组件与所述基板底座相连,该基板支撑板上设置有基板,用于接收从转印载带上剥离下来的微器件,所述基板视觉单元设于基板的上方,用于实现基板上附着的微器件阵列的一致性检测。
作为进一步优选的,所述微器件剥离转移模块的转移激光单元优选可同时发射三束独立可控的激光束,分别为第一激光束、第二激光束和第三激光束,三束激光等间隔分布且间隔可调;晶元盘优选包括第一晶元盘、第二晶元盘和第三晶元盘,三个晶元盘等间隔分布,三束独立可控的激光束分别作用于三个晶元盘,第一晶元盘上装有第一类微器件,第二晶元盘上装有第二类微器件,第三晶元盘上装有第三类微器件,三类微器件具有相同的尺寸规格,第一类微器件、第二类微器件和第三类微器件分别为三种微器件,三种微器件在激光束作用下被转移到辅助载带上,并形成均匀间隔排布;晶元盘托盘优选包括第一晶元盘托盘、第二晶元盘托盘和第三晶元盘托盘;晶元盘移动单元优选包括第一晶元盘移动单元、第二晶元盘移动单元和第三晶元盘移动单元,三个移动单元均有独立的平面内XY移动自由度。
作为进一步优选的,通过以下方式保证第一类微器件、第二类微器件和第三类微器件在辅助载带上等间隔排布:
Figure PCTCN2019094133-appb-000001
其中,m为微器件剥离转移模块的三束独立可控的激光束中相邻激光束之间的间距,v为辅助视觉单元检测到的辅助载带的实际速度,Δv为辅助载带速度波动补偿量,t为转移激光剥离单元的激光放射间隔,Z表示整数,其值为
Figure PCTCN2019094133-appb-000002
通过控制第一激光束及第二激光束的触发延时,补偿辅助载带上微器件分布间隔的不均匀,其延时量可优选从下式获得:
Figure PCTCN2019094133-appb-000003
其中,n为同类微器件之间的间距,v辅助视觉单元检测到的辅助载带的实际速度,Δv为辅助载带速度波动补偿量,g为第一类微器件与第三类微器件的间距,f为第一类微器件与第二类微器件的间距,d为微器件宽度,Δta为第一激光束的延时量,Δtb为第二激光束的延时量,t为转移激光剥离单元的激光放射间隔。
作为进一步优选的,优选下式计算辅助载带上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000004
其中,s为辅助载带上各个微器件的等间隔间距,v辅助视觉单元检测到的辅助载带的实际速度,Δv为辅助载带速度补偿量,t为转移激光剥离单元的激光放射间隔,d为微器件的宽度;
优选下式计算过渡载带上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000005
其中,k为过渡载带上各个微器件的等间隔间距,s为辅助载带等间隔微器件的间距,d为微器件宽度,v辅助视觉单元检测到的辅助载带的实际速度,Δv为辅助载带速度补偿量,w为过渡载带的实际速度,Δw为过渡载带的速度补偿量;
优选下式计算转印载带上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000006
其中,h为转印载带上各个微器件的等间隔间距,k为过渡载带上各个微器件的等间隔间距,d为微器件宽度,q为转印视觉单元所检测的转印载带速度,Δq为转印载带的速度补偿量,w为过渡载带的实际速度,Δw为过渡载带的速度补偿量;
优选下式计算基板上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000007
其中,p为基板上各个微器件的等间隔间距,h为转印载带上各个微器件的等 间隔间距,d为微器件宽度,q为转印视觉单元所检测的转印载带速度,Δq为转印载带的速度补偿量,j为基板视觉单元检测的基板的实际速度,Δj为基板的速度补偿量。
按照本发明的另一方面,提供了一种基于卷绕工艺的微器件激光剥离巨量转移方法,其采用所述的基于卷绕工艺的微器件激光剥离巨量转移装置进行,包括下列步骤:
S1根据基板、转印载带、过渡载带及辅助载带上要求的微器件间隔,设置转移激剥离单元激光放射间隔t、辅助载带速度v、过渡载带速度w、转印载带速度q及基板速度j;并根据辅助载带速度v与转移激剥离单元激光放射间隔t确定激光束间距m;
S2由晶元盘自动换盘单元将晶元盘装入晶元盘托盘;由晶元盘移动单元将晶元盘移动至扫描视觉单元上方,检测微器件质量并标识不良微器件;
S3移动晶元盘使得转移激光扫描单元激光扫描微器件,通过激光烧蚀弱化微器件与晶元盘的粘结强度,方便微器件从晶元盘的转移;转移激光剥离单元发出点激光作用于晶元盘的微器件上,使得微器件与晶元盘剥离并转移到辅助载带上,排列为均匀布局的单列;
S4过渡载带从辅助载带上拾取微器件,该微器件再由转印载带从过渡载带上拾取;通过转印激光单元将微器件从转印载带连续转移到基板,在连续转移过程中基板承载模块始终控制基板与转印载带等速移动;在基板上接收完一列微器件后,基板运动一段距离,进行下一列微器件的接收;重复上述过程,以在基板上行成阵列化的微器件图案;
S5通过基板视觉单元对基板进行检测,判断基板上是否缺少微器件,若是,则由微器件补缺模块对基板进行补缺;接着利用固化模块使得微器件与基板实现可靠连接;再利用封装模块对连接后的微器件与基板整体封装一层保护层;最后由基板搬运模块实现基板的下料。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明通过设计包括微器件剥离转移模块、辅助载带模块、过渡载带模块、 转印载带模块、基板承载模块、微器件补缺模块、固化模块、封装模块及基板搬运模块的微器件激光剥离巨量转移,将卷绕工艺和激光剥离技术完美融合,以利用卷绕工艺和激光剥离技术实现微器件(晶片)的巨量转移,有效的提高了生产效率,降低了生产成本。
2.本发明对各个关键组件如微器件剥离转移模块、辅助载带模块、过渡载带模块、转印载带模块、基板承载模块、微器件补缺模块、固化模块、封装模块及基板搬运模块的具体结构及具体装配关系均进行了专门的研究与设计,通过各个模块的相互搭配与相互配合作用,实现了微器件的巨量转移,具有结构简单、操作方便、适用性强等优点。
3.本发明还对微器件剥离转移模块激光束中相邻激光束之间的间距、辅助载带的实际速度、辅助载带速度波动补偿量、转移激光剥离单元的激光放射间隔等参数的关系进行了研究与设计,以保证微器件在辅助载带上等间隔排布。
4.本发明还通过控制第一激光束及第二激光束的触发延时,补偿辅助载带上微器件分布间隔的不均匀,进一步保证微器件在辅助载带上等间隔排布。
5.此外,本发明还给出了辅助载带上各个微器件的等间隔间距、过渡载带上各个微器件的等间隔间距、转印载带上各个微器件的等间隔间距以及基板上各个微器件的等间隔间距具体计算公式,以便于根据要求的微器件间隔,确定各载带及基板的运行速度,保证微器件在各载带及基板上等间距间隔分布,通过合理的参数设置,可适用于要求任意微器件间距的基板。
【附图说明】
图1是按照本发明优选实施方式所构建的基于卷绕工艺的微器件激光剥离巨量转移装置的整体结构图;
图2是微器件剥离转移模块的结构示意图;
图3是辅助载带模块的结构示意图;
图4是过渡载带模块的结构示意图;
图5是转印载带模块的结构示意图;
图6是基板承载模块的结构示意图;
图7是按照本发明的等间隔晶片排列下激光束间距计算原理图;
图8是按照本发明的过渡载带上微器件间距计算原理图;
图9是按照本发明的转印载带上微器件间距计算原理图;
图10是按照本发明的基板上微器件间距计算原理图;
图11是按照本发明的基于卷绕工艺的微器件激光剥离巨量转移方法的流程图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
10-微器件剥离转移模块、20-辅助载带模块、30-过渡载带模块、40-转印载带模块、50-基板承载模块、60-微器件补缺模块、70-固化模块、80-封装模块、90-基板搬运模块、11-自动换盘单元、12-激光扫描移动单元、13-转移激光扫描单元、14-转移激光剥离单元、15-晶元盘、16-晶元盘托盘、17-晶元盘移动单元、18-扫描视觉单元、19-视觉移动单元、21-辅助放料卷、22-对辊、23-惰辊、24-辅助载带、25-辅助视觉单元、26-辅助激光扫描单元、27-辅助激光剥离单元、28-辅助收料卷、31-过渡放料卷、32-过渡收料卷、33-过渡载带、34-过渡激光剥离单元、35-过渡辊、41-转印放料卷、42-转印压辊、43-转印视觉单元、44-转印惰辊、45-转印激光扫描单元、46-转印激光剥离单元、47-转印载带、48-转印收料卷、51-XYZ模组、52-基板底座、53-调节组件、54-基板支撑板、55-基板、56-基板视觉单元、14a-第一激光束、14b-第二激光束、14c-第三激光束、15a-第一晶元盘、15b-第二晶元盘、15c-第三晶元盘、16a-第一晶元盘托盘、16b-第二晶元盘托盘、16c-第三晶元盘托盘、17a-第一晶元盘移动单元、17b-第二晶元盘移动单元、17c-第三晶元盘移动单元、1501-第一类微器件,1502-第二类微器件、1503-第三类微器件、1504-等间隔微器件。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明实施例提供的一种基于卷绕工艺的微器件激光剥离巨量 转移装置,其包括微器件剥离转移模块10、辅助载带模块20、过渡载带模块30、转印载带模块40、基板承载模块50、微器件补缺模块60、固化模块70、封装模块80以及基板搬运模块90,其中,微器件剥离转移模块10位于辅助载带模块20左侧的上方,用于实现微器件质量的检测与不良微器件的标识,并实现良好微器件的剥离;所述辅助载带模块20用于接收从微器件剥离转移模块(10)剥离下来的微器件,并将微器件转移至过渡载带模块(30)上;过渡载带模块30位于辅助载带模块20右侧的上方,用于从辅助载带模块20上连续拾取微器件,并将微器件转移至转印载带模块40上;转印载带模块40位于过渡载带模块30的右侧,其用于从过渡载带模块30上连续拾取微器件,并将微器件转移至基板承载模块50上;基板承载模块50位于转印载带模块40的下方,其用于接收从转印载带模块40转移过来的微器件,并依次送入微器件补缺模块60、固化模块70、封装模块80中;微器件补缺模块60、固化模块70、封装模块80和基板搬运模块90均设置在转印载带模块40的右侧,并从左至右依次设置,分别用于微器件的补缺、固化、封装及上下料。
如图2所示,微器件剥离转移模块10包括晶元盘自动换盘单元11、激光扫描移动单元12、转移激光扫描单元13、转移激光剥离单元14、晶元盘移动单元17和扫描视觉单元18,晶元盘自动换盘单元11布置于晶元盘移动单元17的后方,用于将晶元盘15(晶元盘上粘接有晶元,该晶元即为微器件)装入晶元盘移动单元17上方的晶元盘托盘16上,转移激光扫描单元13与转移激光剥离单元14布置于晶元盘15的上方,分别用于弱化晶元盘上的微器件与晶元盘的粘结强度以及将微器件从晶元盘上剥离,扫描视觉单元18位于晶元盘15的下方,用于检测微器件的质量并标识不良微器件,后续剥离过程中转移激光剥离单元14仅对良好的微器件进行剥离。扫描视觉单元18连接有视觉移动单元19,以实现扫描视觉单元18的移动,晶元盘移动单元17用于实现晶元盘托盘16以及晶元盘托盘16上的晶元盘15的移动,转移激光扫描单元13连接有激光扫描移动单元12,以实现转移激光扫描单元的移动。
如图3所示,辅助载带模块20包括辅助放料卷21、对辊22、惰辊23、辅助 载带24、辅助视觉单元25、辅助激光扫描单元26、辅助激光剥离单元27、辅助收料卷28,其中,辅助载带24首尾绕卷在辅助放料卷21和辅助收料卷28上,其表面带有胶层,以实现微器件的稳定粘附,并配合微器件剥离转移模块10使得微器件在辅助载带24上均匀排列,辅助放料卷21、对辊22、惰辊23、辅助载带24、辅助视觉单元25、辅助激光扫描单元26、辅助激光剥离单元27、辅助收料卷28在空间上沿着辅助载带24进给方向顺序依次布置,其中对辊22位于辅助载带24的两侧,用于驱动辅助载带24进给,惰辊23位于辅助载带24的下方,用于支撑辅助载带24并调整辅助载带24跨距布局,惰辊23具体设置有两个,使得辅助载带24按所需布置形式布置,辅助视觉单元25位于辅助载带24的上方,用于检测辅助载带24的运行速度,辅助激光扫描单元26位于辅助载带24的下方,用于通过过激光烧蚀弱化微器件与辅助载带24的粘结强度,方便微器件从辅助载带的转移,辅助激光剥离单元27位于辅助载带24的下方,用于将微器件从辅助载带24上剥离。
如图4所示,过渡载带模块30包括过渡放料卷31、过渡收料卷32、过渡辊35、过渡载带33以及过渡激光剥离单元34,其中,过渡辊35位于过渡放料卷31和过渡收料卷32之间,过渡载带33绕过过渡辊35,并且首尾绕卷在过渡放料卷31和过渡收料卷32上,其表面带有胶层,过渡激光剥离单元34设于过渡辊35内,用于发射激光以实现将微器件从过渡载带33上剥离,过渡辊35圆柱面上设计有允许过渡激光剥离单元34发出的激光穿过的狭缝,该过渡辊35的下方靠近辅助载带24,右侧靠近转印载带模块40,以实现从辅助载带24上连续拾取微器件,再将微器件转移到转印载带模块40上。
如图5所示,转印载带模块40将微器件从过渡载带模块30上拾取,并配合基板承载模块50将微器件连续转移到基板55上,其包括转印放料卷41、转印压辊42、转印视觉单元43、转印惰辊44、转印激光扫描单元45、转印激光剥离单元46、转印载带47及转印收料卷48,其中,转印载带47首尾绕卷在转印放料卷41和转印收料卷48上,其表面带有胶层,转印放料卷41、转印压辊42、转印视觉单元43、转印惰辊44、转印激光扫描单元45、转印激光剥离单元46与转印收 料卷48在空间上沿着转印载带47进给方向依次顺序布置,转印压辊42设于转印载带47的上方,用于调整过渡辊35上方的过渡载带33与转印载带47的间距,以实现微器件从过渡载带33到转印载带47上的稳定转移,转印视觉单元43设于转印载带47的下方,用于检测转印载带47的运行速度,转印惰辊44设于转印载带47的上方,用于支撑转印载带47并调整转印载带47跨距布局,转印惰辊44具体设置有两个,使得转印载带47按所需布置形式布置,转印激光扫描单元45设于转印载带47的上方,用于实现弱化微器件与转印载带47的粘结强度,转印激光剥离模块46设于转印载带47的上方,用于实现将微器件从转印载带47上剥离。
如图6所示,基板承载模块50包括XYZ模组51、基板底座52、调节组件53、基板支撑板54以及基板视觉单元56,其中,基板底座52与基板支撑板54由下而上依次布置于XYZ模组51上方,基板底座52与XYZ模组51相连,基板支撑板54通过调节组件53与基板底座52相连,该基板支撑板54上设置有基板55,该基板55用于接收从转印载带47上剥离下来的微器件,基板视觉单元56设于基板55的上方,用于实现基板55上附着的微器件阵列的一致性检测,具体的,视觉单元56实时检测从转印载带47剥离下的微器件在基板55上的间距,并通过调整基板55沿转印载带47进给方向的速度,实时对相邻微器件在基板55上的间距进行补偿,保证微器件在基板55上实现等间隔分布。具体的,XYZ模组51用于带动基板55做三向运动,调节组件53用于实现基板支撑板54倾角的调节。
具体的,微器件补缺模块60实现将基板55上缺少微器件的位置补上微器件,优选采用常规微器件拾放逐片转移工艺,即在缺少微器件的位置上放上所需的微器件。固化模块70用于固化基板上的焊料,确保微器件与基板电路的物理连接,优选UV固化工艺。封装模块80用于对连接后的微器件与基板电路整体封装一层保护层,隔离水氧环境腐蚀,优选喷印TFE封装工艺。基板搬运模块90实现封装前、后的基板55的上下料。
如图2和7所示,微器件剥离转移模块10的转移激光单元14优选可同时发射三束独立可控的激光束,分别为第一激光束14a、第二激光束14b和第三激光束 14c,三束激光等间隔分布且间隔可调;晶元盘15优选包括第一晶元盘15a、第二晶元盘15b和第三晶元盘15c,三个晶元盘等间隔分布,三束独立可控的激光束分别作用于三个晶元盘,第一晶元盘15a上装有第一类微器件1501,第二晶元盘15b上装有第二类微器件1502,第三晶元盘15c上装有第三类微器件1503,三类微器件具有相同的尺寸规格,第一类微器件1501、第二类微器件1502和第三类微器件1503分别为三种微器件,三种微器件在激光束作用下被转移到辅助载带上,并均匀间隔排布,根据工艺选择,第一类微器件1501、第二类微器件1502和第三类微器件1503也可以为同一种微器件,行成单一微器件阵列;晶元盘托盘16优选包括第一晶元盘托盘16a、第二晶元盘托盘16b和第三晶元盘托盘16c;晶元盘移动单元17优选包括第一晶元盘移动单元17a、第二晶元盘移动单元17b和第三晶元盘移动单元17c,三个晶元盘移动单元均有独立的平面内XY移动自由度。
如图7所示,为了实现第一类微器件1501、第二类微器件1502和第三类微器件1503在辅助载带24上的等间隔排布,即第二类微器件1502与第三类微器件1503的间距e,第一类微器件1501与第二类微器件1502的间距f,第一类微器件1501与第三类微器件1503的间距g,使e=f=g,设置相关参数满足以下表达式:
Figure PCTCN2019094133-appb-000008
其中,m为微器件剥离转移模块10的三束独立可控的激光束中相邻激光束之间的间距,v为辅助视觉单元25检测到的辅助载带24的实际速度,Δv为辅助载带24速度波动补偿量,t为转移激光剥离单元14的激光放射间隔(即每束激光束各自的放射间隔),Z表示整数,其值为
Figure PCTCN2019094133-appb-000009
具体的,通过控制第一激光束14a及第二激光束14b的触发延时,补偿辅助载带24上微器件分布间隔的不均匀,微器件间隔均匀性由辅助视觉单元25进行检测,以第三激光束14c为基准,通过调整控制脉冲的延时量实现第一激光束14a与第二激光束14b相对于第三激光束14c的触发延时的调整,以调整辅助载带24上微器件的分布间隔,使其分布均匀,其延时量可优选从下式获得:
Figure PCTCN2019094133-appb-000010
其中,n为同类微器件之间的间距,v辅助视觉单元25检测到的辅助载带24的实际速度,Δv为辅助载带24速度波动补偿量,g为第一类微器件1501与第三类微器件1503的间距,e为第二类微器件1502与第三类微器件1503的间距,f为第一类微器件1501与第二类微器件1502的间距,d为微器件宽度,Δta为第一激光束14a的延时量,Δtb为第二激光束14b的延时量,t为转移激光剥离单元14的激光放射间隔。
进一步的,如图8所示,优选下式计算辅助载带24上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000011
其中,s为辅助载带24上各个微器件的等间隔间距(相邻两微器件间的距离均为s),即s为辅助载带24上等间隔微器件1504的间距,等间隔微器件1504可以为第一类微器件1501、第二类微器件1502、第三类微器件1503中的任意一种,v辅助视觉单元25检测到的辅助载带24的实际速度,Δv为辅助载带24速度补偿量,t为转移激光剥离单元14的激光放射间隔,d为微器件的宽度。
如图9所示,优选下式计算过渡载带模块30上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000012
其中,k为过渡载带33上各个微器件的等间隔间距(相邻两微器件间的距离均为k),s为辅助载带23等间隔微器件的间距,d为微器件宽度,v辅助视觉单元25检测到的辅助载带24的实际速度,Δv为辅助载带24速度补偿量,w为过渡载带33的实际速度,Δw为过渡载带33的速度补偿量。
如图10所示,优选下式计算转印载带47上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000013
其中,h为转印载带47上各个微器件的等间隔间距(相邻两微器件间的距离均为h),k为过渡载带33上各个微器件的等间隔间距,d为微器件宽度,q为转印视觉单元43所检测的转印载带47速度,Δq为转印载带47的速度补偿量,w为过渡载带33的实际速度,Δw为过渡载带33的速度补偿量。
如图10所示,优选下式计算基板55上各个微器件的等间隔间距:
Figure PCTCN2019094133-appb-000014
其中,p为基板55上各个微器件的等间隔间距(相邻两微器件间的距离均为p),h为转印载带47上各个微器件的等间隔间距,d为微器件宽度,q为转印视觉单元43所检测的转印载带47速度,Δq为转印载带47的速度补偿量,j为基板视觉单元56检测的基板55的实际速度,Δj为基板55的速度补偿量。
下面对本发明的基于卷绕工艺的微器件激光剥离巨量转移装置的工作过程进行说明,包括以下步骤:
S1根据基板55、转印载带47、过渡载带33、辅助载带24上要求的微器件间隔,合理设置转移激剥离单元14激光放射间隔t、辅助载带24速度v、过渡载带33速度w、转印载带47速度q及基板55速度j;并根据辅助载带24速度v与转移激剥离单元14激光放射间隔t确定激光束间距m;
S2由晶元盘自动换盘单元11将晶元盘15装入晶元盘托盘16;由晶元盘移动单元17将晶元盘15移动至扫描视觉单元18上方,用于检测微器件制造质量,建立Map图,标识不良微器件;
S3移动晶元盘15使得转移激光扫描单元13激光扫描质量良好的微器件,通过激光烧蚀弱化微器件与晶元盘的粘结强度,方便微器件从晶元盘上的转移;转移激光剥离单元14发出点激光作用于晶元盘15的微器件上,使得质量良好的微器件与晶元盘剥离,并转移到卷绕进给中的辅助载带24上,以排列为均匀布局的单列,微器件等间隔的粘附于辅助载带24上,利用辅助视觉单元25实时检测微器件在辅助载带24上的间距,并将该间距信息反馈给转移激光剥离单元14,通过调整控制脉冲的延时量实现第一激光束14a与第二激光束14b相对于第三激光束14c的触发延时的调整,对微器件的间距进行补偿,确保微器件在辅助载带24上均匀排列;
S4过渡载带33从辅助载带24上拾取微器件,该微器件再由转印载带47从过渡载带33上拾取;通过转印激光单元46将微器件从转印载带47连续转移到基板55,在连续转移过程中基板承载模块50始终控制基板55与转印载带47等速移动;在基板55上接收完一列微器件后,基板55运动一段距离,进行下一列微器件的接收,具体是沿Y向(水平前后运动,与转印载带47进给方向垂直)微动一段距离;重复上述过程,以在基板55上行成阵列化的微器件图案;
S5通过基板视觉单元56对基板55进行检测,判断基板上是否缺少微器件,若是,则由微器件补缺模块60对基板进行补缺;接着利用固化模块70使得微器件与基板实现可靠连接;再利用封装模块80对连接后的微器件与基板整体封装一层保护层;最后由基板搬运模块90实现基板的下料。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,包括微器件剥离转移模块(10)、辅助载带模块(20)、过渡载带模块(30)、转印载带模块(40)、基板承载模块(50)、微器件补缺模块(60)、固化模块(70)、封装模块(80)以及基板搬运模块(90),其中:
    所述微器件剥离转移模块(10)位于所述辅助载带模块(20)左侧的上方,用于实现微器件的检测及剥离;
    所述辅助载带模块(20)用于粘附剥离下来的微器件,并使其均匀排列,然后转移至过渡载带模块(30)上;
    所述过渡载带模块(30)位于所述辅助载带模块(20)右侧的上方,其用于从辅助载带模块(20)上连续拾取微器件,并将微器件转移至转印载带模块(40)上;
    所述转印载带模块(40)位于过渡载带模块(30)的右侧,其用于从过渡载带模块(30)上连续拾取微器件,并将微器件转移至基板承载模块(50)上;
    所述基板承载模块(50)位于转印载带模块(40)的下方,其用于接收从转印载带模块(40)转移过来的微器件,并依次送入微器件补缺模块(60)、固化模块(70)、封装模块(80)中;
    所述微器件补缺模块(60)、固化模块(70)、封装模块(80)和基板搬运模块(90)均设置在转印载带模块(40)的右侧,并从左至右依次设置,分别用于补缺、固化、封装及上下料。
  2. 如权利要求1所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,所述微器件剥离转移模块(10)包括晶元盘自动换盘单元(11)、激光扫描移动单元(12)、转移激光扫描单元(13)、转移激光剥离单元(14)、晶元盘移动单元(17)和扫描视觉单元(18),所述晶元盘自动换盘单元 (11)布置于晶元盘移动单元(17)的后方,用于将晶元盘(15)装入晶元盘移动单元(17)上方的晶元盘托盘(16)上,所述转移激光扫描单元(13)与转移激光剥离单元(14)布置于晶元盘(15)的上方,分别用于弱化晶元盘上微器件与晶元盘的粘结强度以及将微器件从晶元盘上剥离,所述转移激光扫描单元(13)与激光扫描移动单元(12)相连,所述扫描视觉单元(18)位于晶元盘(15)的下方,用于检测微器件的质量并标识不良微器件。
  3. 如权利要求1所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,所述辅助载带模块(20)包括辅助放料卷(21)、对辊(22)、惰辊(23)、辅助载带(24)、辅助视觉单元(25)、辅助激光扫描单元(26)、辅助激光剥离单元(27)及辅助收料卷(28),所述辅助载带(24)首尾绕卷在辅助放料卷(21)和辅助收料卷(28)上,其表面带有胶层,实现微器件的稳定粘附,并配合微器件剥离转移模块(10)使得微器件在辅助载带(24)上均匀排列,所述辅助放料卷(21)、对辊(22)、惰辊(23)、辅助视觉单元(25)、辅助激光扫描单元(26)、辅助激光剥离单元(27)及辅助收料卷(28)沿着辅助载带(24)进给方向顺序依次布置,其中对辊(22)位于辅助载带(24)的两侧,用于驱动辅助载带(24)进给,惰辊(23)位于辅助载带(24)的下方,用于支撑辅助载带(24)并调整辅助载带(24)跨距布局,辅助视觉单元(25)位于辅助载带(24)的上方,用于检测辅助载带的运行速度,辅助激光扫描单元(26)位于辅助载带(24)的下方,用于弱化微器件与辅助载带(24)的粘结强度,辅助激光剥离单元(27)位于辅助载带(24)的下方,用于将微器件从辅助载带(24)上剥离。
  4. 如权利要求1所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,所述过渡载带模块(30)包括过渡放料卷(31)、过渡收料卷(32)、设于过渡放料卷(31)和过渡收料卷(32)之间的过渡辊(35)、 过渡载带(33)以及过渡激光剥离单元(34),其中,所述过渡载带(33)绕过过渡辊(35)并且首尾绕卷在过渡放料卷(31)和过渡收料卷(32)上,其表面带有胶层,所述过渡激光剥离单元(34)设于过渡辊(35)内,用于发射激光以实现将微器件从过渡载带(33)上剥离,所述过渡辊(35)圆柱面上设计有允许过渡激光剥离单元(34)发出的激光穿过的狭缝,该过渡辊(35)的下方靠近辅助载带(24),右侧靠近转印载带模块(40),以实现从辅助载带(24)上连续拾取微器件,再将微器件转移到转印载带模块(40)上。
  5. 如权利要求1所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,所述转印载带模块(40)包括转印放料卷(41)、转印压辊(42)、转印视觉单元(43)、转印惰辊(44)、转印激光扫描单元(45)、转印激光剥离单元(46)、转印载带(47)及转印收料卷(48),其中,所述转印载带(47)首尾绕卷在转印放料卷(41)和转印收料卷(48)上,其表面带有胶层,所述转印放料卷(41)、转印压辊(42)、转印视觉单元(43)、转印惰辊(44)、转印激光扫描单元(45)、转印激光剥离单元(46)与转印收料卷(48)在空间上沿着转印载带(47)进给方向依次顺序布置,转印压辊(42)设于转印载带(47)的上方,用于调整过渡载带(33)与转印载带(47)的间距,以实现微器件从过渡载带(33)到转印载带(47)的稳定转移,转印视觉单元(43)设于转印载带(47)的下方,用于检测转印载带的运行速度,转印惰辊(44)设于转印载带(47)的上方,用于支撑转印载带(47)并调整转印载带(47)跨距布局,转印激光扫描单元(45)设于转印载带(47)的上方,用于弱化微器件与转印载带(47)的粘结强度,转印激光剥离模块(46)设于转印载带(47)的上方,用于实现将微器件从转印载带(47)上剥离。
  6. 如权利要求1所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,所述基板承载模块(50)包括XYZ模组(51)、基板底座(52)、 调节组件(53)、基板支撑板(54)以及基板视觉单元(56),其中,所述基板底座(52)布置在XYZ模组(51)上,基板支撑板(54)通过调节组件(53)与所述基板底座(52)相连,该基板支撑板(54)上设置有基板(55),用于接收从转印载带(47)上剥离下来的微器件,所述基板视觉单元(56)设于基板(55)的上方,用于实现基板(55)上附着的微器件阵列的一致性检测。
  7. 如权利要求1所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,所述微器件剥离转移模块(10)的转移激光单元(14)优选可同时发射三束独立可控的激光束,分别为第一激光束(14a)、第二激光束(14b)和第三激光束(14c),三束激光等间隔分布且间隔可调;晶元盘(15)优选包括第一晶元盘(15a)、第二晶元盘(15b)和第三晶元盘(15c),三个晶元盘等间隔分布,三束独立可控的激光束分别作用于三个晶元盘,第一晶元盘(15a)上装有第一类微器件(1501),第二晶元盘(15b)上装有第二类微器件(1502),第三晶元盘(15c)上装有第三类微器件(1503),三类微器件具有相同的尺寸规格,第一类微器件(1501)、第二类微器件(1502)和第三类微器件(1503)分别为三种微器件,三种微器件在激光束作用下被转移到辅助载带上,并形成均匀间隔排布;晶元盘托盘(16)优选包括第一晶元盘托盘(16a)、第二晶元盘托盘(16b)和第三晶元盘托盘(16c);晶元盘移动单元(17)优选包括第一晶元盘移动单元(17a)、第二晶元盘移动单元(17b)和第三晶元盘移动单元(17c),三个移动单元均有独立的平面内XY移动自由度。
  8. 如权利要求7所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,通过以下方式保证第一类微器件(1501)、第二类微器件(1502)和第三类微器件(1503)在辅助载带(24)上等间隔排布:
    Figure PCTCN2019094133-appb-100001
    其中,m为微器件剥离转移模块(10)的三束独立可控的激光束中相邻激光束之间的间距,v为辅助视觉单元(25)检测到的辅助载带(24)的实际速度,Δv为辅助载带(24)速度波动补偿量,t为转移激光剥离单元(14)的激光放射间隔,Z表示整数,其值为
    Figure PCTCN2019094133-appb-100002
    通过控制第一激光束(14a)及第二激光束(14b)的触发延时,补偿辅助载带(24)上微器件分布间隔的不均匀,其延时量可优选从下式获得:
    Figure PCTCN2019094133-appb-100003
    其中,n为同类微器件之间的间距,v辅助视觉单元(25)检测到的辅助载带(24)的实际速度,Δv为辅助载带(24)速度波动补偿量,g为第一类微器件(1501)与第三类微器件(1503)的间距,f为第一类微器件(1501)与第二类微器件(1502)的间距,d为微器件宽度,Δta为第一激光束(14a)的延时量,Δtb为第二激光束(14b)的延时量,t为转移激光剥离单元(14)的激光放射间隔。
  9. 如权利要求7或8所述的基于卷绕工艺的微器件激光剥离巨量转移装置,其特征在于,优选下式计算辅助载带(24)上各个微器件的等间隔间距:
    Figure PCTCN2019094133-appb-100004
    其中,s为辅助载带(24)上各个微器件的等间隔间距,v辅助视觉单元(25)检测到的辅助载带(24)的实际速度,Δv为辅助载带(24)速度补偿量,t为转移激光剥离单元(14)的激光放射间隔,d为微器件的宽度;
    优选下式计算过渡载带(33)上各个微器件的等间隔间距:
    Figure PCTCN2019094133-appb-100005
    其中,k为过渡载带(33)上各个微器件的等间隔间距,s为辅助载带(23)等间隔微器件的间距,d为微器件宽度,v辅助视觉单元(25)检测到的辅助载带(24)的实际速度,Δv为辅助载带(24)速度补偿量,w为过渡载带(33)的实际速度,Δw为过渡载带(33)的速度补偿量;
    优选下式计算转印载带(47)上各个微器件的等间隔间距:
    Figure PCTCN2019094133-appb-100006
    其中,h为转印载带(47)上各个微器件的等间隔间距,k为过渡载带(33)上各个微器件的等间隔间距,d为微器件宽度,q为转印视觉单元(43)所检测的转印载带(47)速度,Δq为转印载带(47)的速度补偿量,w为过渡载带(33)的实际速度,Δw为过渡载带(33)的速度补偿量;
    优选下式计算基板(55)上各个微器件的等间隔间距:
    Figure PCTCN2019094133-appb-100007
    其中,p为基板(55)上各个微器件的等间隔间距,h为转印载带(47)上各个微器件的等间隔间距,d为微器件宽度,q为转印视觉单元(43)所检测的转印载带(47)速度,Δq为转印载带(47)的速度补偿量,j为基板视觉单元(56)检测的基板(55)的实际速度,Δj为基板(55)的速度补偿量。
  10. 一种基于卷绕工艺的微器件激光剥离巨量转移方法,其采用如权利要求1-9任一项所述的基于卷绕工艺的微器件激光剥离巨量转移装置进行,其特征在于,包括下列步骤:
    S1根据基板(55)、转印载带(47)、过渡载带(33)及辅助载带(24)上要求的微器件间隔,设置转移激剥离单元(14)激光放射间隔t、辅助载带(24)速度v、过渡载带(33)速度w、转印载带(47)速度q及基板(55)速度j;并根据辅助载带(24)速度v与转移激剥离单元(14)激光放射间隔t确定激光束间距m;
    S2由晶元盘自动换盘单元(11)将晶元盘(15)装入晶元盘托盘(16); 由晶元盘移动单元(17)将晶元盘(15)移动至扫描视觉单元(18)上方,检测微器件质量并标识不良微器件;
    S3移动晶元盘(15)使得转移激光扫描单元(13)激光扫描微器件,通过激光烧蚀弱化微器件与晶元盘的粘结强度,方便微器件从晶元盘的转移;转移激光剥离单元(14)发出点激光作用于晶元盘(15)的微器件上,使得微器件与晶元盘剥离并转移到辅助载带(24)上,排列为均匀布局的单列;
    S4过渡载带(33)从辅助载带(24)上拾取微器件,该微器件再由转印载带(47)从过渡载带(33)上拾取;通过转印激光单元(46)将微器件从转印载带(47)连续转移到基板(55),在连续转移过程中基板承载模块(50)始终控制基板(55)与转印载带(47)等速移动;在基板(55)上接收完一列微器件后,基板(55)运动一段距离,进行下一列微器件的接收;重复上述过程,以在基板(55)上行成阵列化的微器件图案;
    S5通过基板视觉单元(56)对基板(55)进行检测,判断基板上是否缺少微器件,若是,则由微器件补缺模块(60)对基板进行补缺;接着利用固化模块(70)使得微器件与基板实现可靠连接;再利用封装模块(80)对连接后的微器件与基板整体封装一层保护层;最后由基板搬运模块(90)实现基板的下料。
PCT/CN2019/094133 2018-08-29 2019-07-01 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法 WO2020042744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,464 US11031263B2 (en) 2018-08-29 2019-07-01 Laser stripping mass-transfer device and method for microdevices based on winding process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810991542.8A CN109244196B (zh) 2018-08-29 2018-08-29 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法
CN201810991542.8 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020042744A1 true WO2020042744A1 (zh) 2020-03-05

Family

ID=65068762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094133 WO2020042744A1 (zh) 2018-08-29 2019-07-01 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法

Country Status (3)

Country Link
US (1) US11031263B2 (zh)
CN (1) CN109244196B (zh)
WO (1) WO2020042744A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244196B (zh) 2018-08-29 2020-01-03 华中科技大学 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法
US10910239B1 (en) * 2019-07-10 2021-02-02 Mikro Mesa Technology Co., Ltd. Method of transferring micro devices and device transfer system
CN110379738B (zh) * 2019-07-11 2021-03-02 东莞普莱信智能技术有限公司 一种微型电子元件排料转移与定位装置及其方法
CN110422660A (zh) * 2019-08-23 2019-11-08 南通华达微电子集团股份有限公司 一种新型高效卷盘拆卷机及其拆卷方法
CN111106267B (zh) * 2019-12-31 2021-02-09 华中科技大学 一种柔性显示电流体雾化薄膜封装系统及工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621687A (ja) * 1992-07-02 1994-01-28 Seiko Epson Corp 半導体装置のテーピング品による実装方法及び実装装置
CN1275882A (zh) * 1999-04-09 2000-12-06 超传感器(私有)有限公司 高速模件转移系统和方法
CN105070674A (zh) * 2015-07-31 2015-11-18 华中科技大学 一种适用于成卷柔性电子器件的逐片转移装置
CN105762096A (zh) * 2016-03-28 2016-07-13 华中科技大学 一种柔性电子制备、转移与封装系统及方法
CN107068593A (zh) * 2017-03-30 2017-08-18 京东方科技集团股份有限公司 芯片转移方法及设备
CN109244196A (zh) * 2018-08-29 2019-01-18 华中科技大学 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786091B2 (ja) * 2002-03-22 2006-06-14 セイコーエプソン株式会社 電子デバイス製造装置、電子デバイスの製造方法および電子デバイスの製造プログラム
EP2243711B1 (de) * 2009-04-22 2012-07-11 Roche Diagnostics GmbH Herstellung von Bandware mit diagnostischen Hilfsmitteln
CN102556747B (zh) * 2011-12-30 2014-08-27 华中科技大学 一种薄膜非连续卷绕输送模切装置
CN203758924U (zh) * 2014-03-13 2014-08-06 武汉虹之彩包装印刷有限公司 全息底纹镭射包装材料印刷品质量检测系统
KR101908915B1 (ko) * 2016-06-10 2018-10-18 크루셜머신즈 주식회사 릴-투-릴 레이저 리플로우 방법
NL2019558B1 (en) * 2017-09-15 2019-03-28 Tno Method for producing modules of thin film photovoltaic cells in a roll-to-roll process and apparatus configured for using such a method.
CN107910413B (zh) * 2017-11-21 2019-07-12 福州大学 一种MicroLED的巨量转移装置及转移方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621687A (ja) * 1992-07-02 1994-01-28 Seiko Epson Corp 半導体装置のテーピング品による実装方法及び実装装置
CN1275882A (zh) * 1999-04-09 2000-12-06 超传感器(私有)有限公司 高速模件转移系统和方法
CN105070674A (zh) * 2015-07-31 2015-11-18 华中科技大学 一种适用于成卷柔性电子器件的逐片转移装置
CN105762096A (zh) * 2016-03-28 2016-07-13 华中科技大学 一种柔性电子制备、转移与封装系统及方法
CN107068593A (zh) * 2017-03-30 2017-08-18 京东方科技集团股份有限公司 芯片转移方法及设备
CN109244196A (zh) * 2018-08-29 2019-01-18 华中科技大学 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法

Also Published As

Publication number Publication date
CN109244196B (zh) 2020-01-03
US20210013066A1 (en) 2021-01-14
CN109244196A (zh) 2019-01-18
US11031263B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2020042744A1 (zh) 一种基于卷绕工艺的微器件激光剥离巨量转移装置及方法
US11804397B2 (en) Parallel assembly of discrete components onto a substrate
KR100278137B1 (ko) 반도체소자의 탑재방법 및 그 시스템, 반도체소자 분리장치 및ic카드의 제조방법
US10923622B2 (en) Micro light-emitting diode (LED) elements and display
US10804132B2 (en) Apparatus for manufacturing semiconductor
US11784081B2 (en) Micro device transfer apparatus and method
KR101665249B1 (ko) 다이 본더 및 본딩 방법
US7712652B2 (en) Component mounting apparatus and component mounting method
US11201077B2 (en) Parallel assembly of discrete components onto a substrate
JP2004311938A (ja) マルチチップパッケージ用のダイ貼付と硬化インライン装置
KR20050118100A (ko) 소자 전사 방법 및 표시장치
US20190326143A1 (en) Transfer substrate for component transferring and micro leds carrying substrate
CN109256350B (zh) 一种基于逐级均匀扩展的微器件巨量转移装置及方法
KR101575651B1 (ko) 발광 소자의 본딩 시스템 및 발광 소자의 본딩 방법
KR102486671B1 (ko) 트랜스퍼 프린팅을 이용한 엘이디 모듈 제조방법
CN103781341B (zh) 元件安装装置和元件安装方法
CN109244021B (zh) 一种基于转印轴差速匹配的微器件巨量转移装置及方法
CN109285802B (zh) 一种基于双向扩晶法的微器件巨量转移装置及方法
US20220415698A1 (en) Apparatus and method for transferring light-emitting diodes
EP4080550A1 (en) Micro-led transfer method and micro-led transfer apparatus
KR101642659B1 (ko) 반도체 칩 다이 본딩 장치
CN112216627B (zh) 转移微型元件的方法和元件转移系统
KR100709504B1 (ko) 보호막 도포 장치
KR20130081053A (ko) Led칩 분류장치 및 분류방법
KR20170070349A (ko) 인라인 자동 olb/cog 공용 본딩장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19854332

Country of ref document: EP

Kind code of ref document: A1