WO2020042558A1 - 一种从西瓜中提取番茄红素的方法 - Google Patents

一种从西瓜中提取番茄红素的方法 Download PDF

Info

Publication number
WO2020042558A1
WO2020042558A1 PCT/CN2019/076468 CN2019076468W WO2020042558A1 WO 2020042558 A1 WO2020042558 A1 WO 2020042558A1 CN 2019076468 W CN2019076468 W CN 2019076468W WO 2020042558 A1 WO2020042558 A1 WO 2020042558A1
Authority
WO
WIPO (PCT)
Prior art keywords
lycopene
watermelon
extraction
ultrasonic
organic solvent
Prior art date
Application number
PCT/CN2019/076468
Other languages
English (en)
French (fr)
Inventor
刘杰超
焦中高
张春岭
张强
刘慧�
吕真真
杨文博
陈大磊
Original Assignee
中国农业科学院郑州果树研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业科学院郑州果树研究所 filed Critical 中国农业科学院郑州果树研究所
Publication of WO2020042558A1 publication Critical patent/WO2020042558A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/21Alkatrienes; Alkatetraenes; Other alkapolyenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/10Purification; Separation; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention belongs to the technical field of natural substance extraction, and particularly relates to a method for extracting lycopene from watermelon.
  • Watermelons are widely planted in China, with short growth periods and high yields.
  • the annual planting area is about 2 million hectares, with a total output of 68 million tons, accounting for 58.99% and 71.45% of the world ’s total watermelon cultivation area and total output, ranking first in the world .
  • Due to the strong seasonality of watermelon planting the market is concentrated, and it is not easy to store.
  • the imbalance between supply and demand has caused watermelon prices to fall sharply or even to slow sales, causing a lot of decay.
  • the defective melons in the planting process are not suitable for fresh sales, and often can only be rotten in the ground or sold extremely cheaply, resulting in a waste of resources.
  • the key to solving these problems lies in vigorously developing deep processing of watermelon and increasing the added value of watermelon.
  • Lycopene is a natural pigment contained in plants. It is mainly found in the mature fruits of the tomato Solanaceae. Because of its unique long-chain molecular structure, containing 11 conjugated double bonds and 2 non-conjugated double bonds, it has extremely strong free radical scavenging ability and antioxidant activity. At present, the development and production of lycopene is mainly extracted from tomatoes or tomato processed products. The content of lycopene in watermelons of fully matured red lotus varieties is generally about 4.51 to 5.32mg / 100g FW, and the maximum can reach 7mg.
  • the average is 4.87mg / 100gFW, while the average lycopene content of commercially available red ripe tomatoes is only 3.02mg / 100gFW.
  • the lycopene content of watermelon is about 60% higher than that of tomatoes, so watermelon It is also a huge lycopene resource.
  • the object of the present invention is to provide a method suitable for the extraction of lycopene from watermelon, which can not only efficiently extract lycopene from watermelon, but also extract heavy metals from lycopene. And microorganisms are in compliance with relevant sanitary requirements and product quality standards.
  • a method for extracting lycopene from watermelon comprising the steps of enzymatic hydrolysis of raw materials, ultrasonic-assisted organic solvent extraction, concentration under reduced pressure, and purification steps;
  • the enzymolysis is the addition of 0.1 to 0.3% (m / m) of biological enzyme, 40 to 50 ° C, and 1 to 2 hours of enzymolysis.
  • the biological enzyme is one or a combination of pectinase, cellulase, and protease.
  • the biological enzyme is a complex enzyme composed of pectinase, cellulase, and protease.
  • the ultrasonic power is 80-120W.
  • the organic solvents are absolute ethanol, acetone, chloroform, ether, ethyl acetate, dichloromethane, n-hexane, petroleum ether, and tetrachloromethane.
  • the carbon is one or more of the carbon.
  • the organic solvent is ethyl acetate.
  • the added amount of the organic solvent is 1: 4 to 1: 8 (kg / L).
  • the extraction conditions are: a temperature of 40 to 50 ° C., an extraction time of 30 to 90 min, and two extraction times.
  • the method for extracting lycopene from watermelon includes the following steps:
  • Raw material enzymolysis treatment take the pulp of watermelon to remove the seeds, add 0.3% biological enzyme, 45 ° C, and hydrolyze for 1.5h; after the enzymolysis is complete, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue and freeze Dried to obtain enzymatic material;
  • the lycopene is used in the preparation of anti-oxidation, anti-aging, anti-hypoxia response, prevention and treatment of cancer, and protection of cardiovascular food.
  • the food is a health product.
  • the present invention uses watermelon as a raw material, and provides a lycopene extraction method suitable for watermelon.
  • the method of the present invention has a higher extraction effect on lycopene in watermelon, and the purity of the obtained lycopene product is relatively High and stable, can be used as raw materials in the food and health products industry, providing a new way for the use of watermelon, with good social and economic benefits;
  • the present invention uses ultrasonic-enzyme method to extract lycopene from watermelon with mild extraction conditions, which effectively increases the extraction rate of lycopene from watermelon.
  • the use of ethyl acetate has a good extraction effect and effectively reduces production costs.
  • the human body is non-toxic and can be effectively recycled;
  • the present invention tests the sanitary indicators such as heavy metals and microorganisms in the obtained lycopene extract, and compares it with the quality standards of commercially available lycopene oleoresin products. The results show that the lycopene obtained by the present invention meets relevant sanitary requirements And product quality standards.
  • Figure 1 The effect of different treatments on the lycopene extraction effect of watermelon
  • Figure 5 HPLC chart of watermelon lycopene extract.
  • a method for extracting lycopene from watermelon the steps are as follows:
  • Raw material enzymolysis treatment take the pulp of watermelon to remove the seeds, add 0.3% biological enzyme, 45 ° C, and hydrolyze for 1.5h; after the enzymolysis is complete, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue and freeze Dried to obtain enzymatic material;
  • the biological enzyme is 0.1% pectinase + 0.1% cellulase + 0.1% protease.
  • the pectinase, cellulase and protease were purchased from Tianjin Lihua Enzyme Preparation Technology Co., Ltd.
  • the enzyme activity was 1000 U / mg.
  • a method for extracting lycopene from watermelon the steps are as follows:
  • Raw material enzymolysis treatment take the pulp of watermelon to remove the seeds, add 0.3% biological enzyme, 45 ° C, and hydrolyze for 1.5h; after the enzymolysis is complete, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue and freeze Dried to obtain enzymatic material;
  • the biological enzyme is 0.1% pectinase + 0.1% cellulase + 0.1% protease.
  • a method for extracting lycopene from watermelon the steps are as follows:
  • Raw material enzymolysis treatment take the pulp of watermelon to remove the seeds, add 0.3% biological enzyme, 45 ° C, and hydrolyze for 1.5h; after the enzymolysis is complete, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue and freeze Dried to obtain enzymatic material;
  • the biological enzyme is 0.1% pectinase + 0.1% cellulase + 0.1% protease.
  • a method for extracting lycopene from watermelon the steps are as follows:
  • Raw material enzymolysis treatment take the pulp of watermelon to remove the seeds, add 0.3% biological enzyme, 45 ° C, and hydrolyze for 1.5h; after the enzymolysis is complete, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue and freeze Dried to obtain enzymatic material;
  • the biological enzyme is 0.1% pectinase + 0.1% cellulase + 0.1% protease.
  • a method for extracting lycopene from watermelon the steps are as follows:
  • Raw material enzymolysis treatment take the pulp of watermelon to remove the seeds, add 0.3% biological enzyme, and enzymolyze at 40 ° C for 2h; after the enzymolysis is complete, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue and freeze-dry Get enzymatic material
  • the biological enzyme is 0.1% pectinase + 0.1% cellulase + 0.1% protease.
  • a method for extracting lycopene from watermelon the steps are as follows:
  • Raw material enzymolysis treatment take the pulp of watermelon to remove the seeds, add 0.3% biological enzyme, and enzymolyze at 50 °C for 1h; after the enzymolysis is complete, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue and freeze freeze Get enzymatic material
  • the biological enzyme is 0.1% pectinase + 0.1% cellulase + 0.1% protease.
  • a method for extracting lycopene from watermelon the steps are as follows:
  • Raw material pretreatment take the pulp of watermelon to remove the seeds, filter, centrifuge the filtrate, collect the precipitate, combine the precipitate with the filter residue, and freeze dry to obtain the pretreatment material;
  • the biological enzyme is 0.1% pectinase + 0.1% cellulase + 0.1% protease.
  • Example 1 The raw material in Example 1 was replaced with tomato, and lycopene was extracted.
  • the method of the present invention can effectively extract lycopene from watermelon, and the extraction rate of lycopene is as high as 80% or more. Among them, the effect of Example 1 is the best, and the extraction rate is as high as 91.76%.
  • the enzymatic hydrolysis process in the method is to break the colloidal watermelon pulp to promote the precipitation of lycopene.
  • the enzyme was added only when the organic solvent was extracted. The enzyme was suspended in the organic solvent, which affected the contact between the enzyme and the substrate and the effect. The reaction conformation of the enzyme is restricted, which limits its function and leads to a low extraction rate of lycopene.
  • the method of the present invention is suitable for the extraction of lycopene using watermelon as a raw material. When tomato is used as a raw material, the extraction rate of lycopene is low.
  • Example 1 Based on the extraction method of lycopene in Example 1, enzymatic hydrolysis was performed without ultrasonic-assisted extraction (complex enzymatic method), without enzymatic treatment (ultrasonic method), and without ultrasonic-assisted extraction or adding biological enzymes. In the treatment, only the organic solvent extraction method (control) and the extraction method (ultrasonic-enzymatic method) of Example 1 were used to extract lycopene from watermelon, and the extraction effect was determined as shown in FIG. 1.
  • the combined ultrasonic-enzymatic treatment can improve the extraction effect of lycopene in watermelon.
  • the effect of the enzymatic hydrolysis treatment is superior to the ultrasonic treatment method.
  • Example 1 can efficiently extract lycopene from watermelon pulp.
  • the first two extractions accounted for 91.76% of the total extraction, and the third extraction only accounted for the total extraction. 8.24%, indicating that two extractions can extract most of the lycopene.
  • Example 2 Based on the method for extracting lycopene in Example 1, the lycopene in watermelon was extracted with power-assisted organic solvents of 40W, 60W, 80W, 100W, 120W, and 140W, respectively. The effects of different sonication powers on lycopene extraction in watermelon The effect is shown in Figure 2.
  • the n-hexane solution of watermelon lycopene extract has large absorption peaks at 444 nm, 472 nm, and 502 nm, and the peak shape and absorption intensity are very consistent with the absorption of the standard sample.
  • watermelon lycopene extract also contains some other pigments.
  • These pigments are mainly carotenoids that are similar in structure and properties to lycopene. It is difficult to separate them using general separation methods. However, the presence of these pigments generally does not affect the nutritional value and health function of lycopene. There are even reports that some other components in lycopene oleoresin will have a certain protective effect and synergistic effect on lycopene. It may also be one of the reasons for the extremely poor stability of high-purity lycopene, so unless special requirements are required, lycopene extracts are generally not required to be over-purified.
  • Hygienic indicators such as heavy metals and microorganisms in the watermelon lycopene extract extracted in Example 1 were tested and compared with the quality standards of commercially available lycopene oleoresin products. The results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本发明公开了一种从西瓜中提取番茄红素的方法,属于天然物质提取技术领域。本发明从西瓜中提取番茄红素的方法,包括原料酶解处理、超声辅助有机溶剂浸提、减压浓缩和纯化步骤;所述酶解为添加0.1~0.3%(m/m)的生物酶,40~50℃、酶解1~2h。本发明方法对西瓜中的番茄红素具有较高的提取效果,并且,获得番茄红素产品的纯度较高且稳定,可以作为原料用于食品和保健品行业,为西瓜的利用提供了新的途径,具有良好的社会和经济效益。

Description

一种从西瓜中提取番茄红素的方法 技术领域
本发明属于天然物质提取技术领域,具体涉及一种从西瓜中提取番茄红素的方法。
背景技术
西瓜在我国种植范围广,生长周期短,产量高,年种植面积约200万公顷,总产量6800万吨,分别占当年世界西瓜栽培总面积和总产量的58.99%和71.45%,均居世界首位。由于西瓜种植的季节性强,上市集中,不易贮存,供需失衡导致西瓜价格大幅下跌甚至滞销,造成大量腐烂。此外种植过程中的残次瓜,不适宜作为鲜销,常常只能烂在地里或者极其廉价出售,造成资源的浪费。解决这些问题的关键在于大力发展西瓜深加工,提高西瓜的附加值。
目前国内对西瓜加工通常是侧重于西瓜饮料(包括西瓜汁、西瓜酒、西瓜醋等)及西瓜酱的研制,但是,利用西瓜加工成直接食用的初级产品,对作为原料的西瓜品质(例如成熟程度、新鲜程度)要求比较高,即使这样,西瓜经过热处理后会丧失原有的风味,依然难以符合消费者的口味,所以将西瓜加工成饮料或果酱的可操作性较差,难以实现产业化。
番茄红素是植物中所含的一种天然色素。主要存在于茄科植物西红柿的成熟果实中。由于其具有独特的长链分子结构,含有11个共轭双键和2个非共轭双键,因此使其具有极强的自由基清除能力和抗氧化活性。目前,番茄红素的开发生产主要采用从番茄或者番茄加工产品中提取,在充分成熟的红瓤品种的西瓜中,番茄红素的含量一般约为4.51~5.32mg/100g FW,最高可达到7mg/100g FW以上,平均为4.87mg/100g FW,而市售红熟番茄中番茄红素的平均含量仅为3.02mg/100g FW,西瓜中的番茄红素含量较番茄高约60%,因此西瓜也是一个巨大的番茄红素资源。
尽管国内外对番茄红素的提取纯化已有较多的研究,但大部分都是以番茄及其制品为原料,所得到的工艺方法不一定适用于西瓜。因此,结合西瓜原料特性、开发从西瓜中高效提取提取番茄红素的技术,是增加西瓜附加值,推动西瓜深加工产业发展的动力。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种适用于西瓜中番茄红素提取的方法,该方法不仅能够高效的提取西瓜中的番茄红素,而且提取的番茄红素中重金属及微生物等指标均符合相关卫生要求与产品质量标准。
为了达到上述目的,本发明的技术方案为:
一种从西瓜中提取番茄红素的方法,包括原料酶解处理、超声辅助有机溶剂浸提、减压浓缩和纯化步骤;
所述酶解为添加0.1~0.3%(m/m)的生物酶,40~50℃、酶解1~2h。
在上述方案的基础上,所述生物酶为果胶酶、纤维素酶和蛋白酶中的一种或几种的组合。
在上述方案的基础上,所述生物酶为果胶酶、纤维素酶和蛋白酶组成的复合酶。
在上述方案的基础上,所述超声辅助有机溶剂浸提中,超声功率为80-120W。
在上述方案的基础上,所述超声辅助有机溶剂浸提中,所述有机溶剂为无水乙醇、丙酮、三氯甲烷、乙醚、乙酸乙酯、二氯甲烷、正己烷、石油醚、四氯化碳中的一种或几种。
在上述方案的基础上,所述超声辅助有机溶剂浸提中,所述有机溶剂为乙酸乙酯。
在上述方案的基础上,所述有机溶剂的添加量为1∶4~1∶8(kg/L)。
在上述方案的基础上,所述超声辅助有机溶剂浸提中,提取条件为:温度40~50℃、提取时间30~90min、提取次数2次。
在上述方案的基础上,所述从西瓜中提取番茄红素的方法,步骤如下:
(1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,45℃、酶解1.5h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
(2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶6的料液比加入乙酸乙酯混合均匀,45℃、超声输出功率100W、提取时间30min、提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3(kg/L)的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,除去无水乙醇,得番茄红素粉末。
上述方法制备的番茄红素。
在上述方案的基础上,所述的番茄红素在制备抗氧化、抗衰老、抗缺氧反应、防治癌症、保护心血管食品中的应用。
在上述方案的基础上,所述的食品为保健品。
本发明技术方案的优点
1、本发明以西瓜为原料,提供了一种适用于西瓜的番茄红素提取方法,本发明方法对西瓜中的番茄红素具有较高的提取效果,并且,获得番茄红素产品的纯度较高且稳定,可以作为原料用于食品和保健品行业,为西瓜的利用提供了新的途径,具有良好的社会和经济效益;
2、本发明采用超声-酶法联合提取西瓜中的番茄红素,提取条件温和,有效增加了对西瓜中番茄红素的提取率,使用乙酸乙酯提取效果好且有效降低了生产成本,对人体的无毒害,还可以有效回收利用;
3、本发明所得的番茄红素分别采用紫外/可见光吸收光谱和高效液相色谱(以Symmetry C18色谱柱为固定相,采用甲醇∶乙腈∶四氢呋喃=52∶40∶8为流动相,检测波长472nm)检测分析后,显示本发明所得的番茄红素纯度较高;
4、本发明对所得的番茄红素提取物中的重金属及微生物等卫生指标进行检验,并与市售 番茄红素油树脂产品的质量标准比较,结果显示本发明所得的番茄红素符合相关卫生要求与产品质量标准。
附图说明
图1不同处理方式对西瓜番茄红素提取效果的影响;
图2超声处理功率对西瓜番茄红素提取效果的影响;
图3温度对西瓜番茄红素超声提取效果的影响;
图4西瓜番茄红素提取物的吸收光谱;
图5西瓜番茄红素提取物的HPLC图。
具体实施方式
在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。
下面结合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。
实施例1
一种从西瓜中提取番茄红素的方法,步骤如下:
(1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,45℃、酶解1.5h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
(2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶6的料液比加入乙酸乙酯混合均匀,45℃、超声输出功率100W、提取时间30min、提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,离心,收集沉淀,冷冻干燥得番茄红素粉末。
所述生物酶为0.1%果胶酶+0.1%纤维素酶+0.1%蛋白酶。
所述果胶酶、纤维素酶和蛋白酶购自天津市利华酶制剂技术有限公司,酶活为1000U/mg。
实施例2
一种从西瓜中提取番茄红素的方法,步骤如下:
(1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,45℃、酶解1.5h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
(2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶7的料液比加入乙酸乙酯混合均匀,45℃、超声输出功率120W、提取时间30min、提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,离心,收集沉淀,冷冻干燥得番茄红素粉末。
所述生物酶为0.1%果胶酶+0.1%纤维素酶+0.1%蛋白酶。
实施例3
一种从西瓜中提取番茄红素的方法,步骤如下:
(1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,45℃、酶解1.5h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
(2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶6的料液比加入乙酸乙酯混合均匀,40℃、超声输出功率100W、提取时间60min、提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,离心,收集沉淀,冷冻干燥得番茄红素粉末。
所述生物酶为0.1%果胶酶+0.1%纤维素酶+0.1%蛋白酶。
实施例4
一种从西瓜中提取番茄红素的方法,步骤如下:
(1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,45℃、酶解1.5h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
(2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶6的料液比加入乙酸乙酯混合均匀,50℃、超声输出功率80W、提取时间90min、提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,离心,收集沉淀,冷冻干燥得番茄红素粉末。
所述生物酶为0.1%果胶酶+0.1%纤维素酶+0.1%蛋白酶。
实施例5
一种从西瓜中提取番茄红素的方法,步骤如下:
(1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,40℃、酶解2h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
(2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶6的料液比加入乙酸乙酯混合均匀,45℃、超声输出功率100W、提取时间30min、提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,离心,收集沉淀,冷冻干燥得番茄红素粉末。
所述生物酶为0.1%果胶酶+0.1%纤维素酶+0.1%蛋白酶。
实施例6
一种从西瓜中提取番茄红素的方法,步骤如下:
(1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,50℃、酶解1h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
(2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶6的料液比加入乙酸乙酯混合均匀,45℃、超声输出功率100W、提取时间30min、提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,离心,收集沉淀,冷冻干燥得番茄红素粉末。
所述生物酶为0.1%果胶酶+0.1%纤维素酶+0.1%蛋白酶。
对比例1
一种从西瓜中提取番茄红素的方法,步骤如下:
(1)原料预处理:取西瓜果肉打浆,去除种籽后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并后冷冻干燥得预处理物料;
(2)有机溶剂浸提:将冻干的预处理物料研磨成粉末,向粉末中按照1∶6的料液比加入乙酸乙酯混合均匀,再加入0.3%的生物酶,45℃、酶解1.5h;
(2)超声提取:将上述酶解后的物料超声处理,超声输出功率100W、提取时间30min;提取次数2次,得番茄红素粗提液;
(3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
(4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,离心,收集沉淀,冷冻干燥得番茄红素粉末。
所述生物酶为0.1%果胶酶+0.1%纤维素酶+0.1%蛋白酶。
对比例2
将实施例1中的原料替换成番茄,提取番茄红素。
一、不同提取方法对番茄红素提取率的影响
根据GB/T 14215-93中番茄红素测定方法,分析实施例1~6和对比例1的番茄红素的提取率,结果如表1所示:
表1 不同提取方法对番茄红素提取率的影响
组别 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 对比例1 对比例2
提取率% 91.76 88.35 85.77 80.28 89.43 86.56 41.81 32.44
由表1可知,本发明的方法能够有效的提取西瓜中的番茄红素,对番茄红素恶提取率高达80%以上,其中,实施例1效果最好,提取率高达91.76%;本发明提取方法中的酶解过程是打破胶态西瓜浆从而促使番茄红素沉淀,对比例1在有机溶剂提取时才加入酶,酶在有机溶剂中呈悬浮态,影响了酶与底物的接触以及影响了酶的反应构象,从而限制了其作用的发挥,而导致番茄红素的提取率低。此外,本发明方法适用于以西瓜为原料的番茄红素的提取,当以番茄为原料时,番茄红素的提取率低。
二、不同有机溶剂对西瓜番茄红素的提取效果
在实施例1番茄红素提取方法的基础上,分别采用无水乙醇、丙酮、二氯甲烷、三氯甲烷、正己烷、石油醚、乙醚、四氯化碳替换乙酸乙酯作为有机溶剂,以此评价不同有机溶剂对西瓜番茄红素的提取效果,如表2所示:
表2 不同有机溶剂对西瓜番茄红素的提取效果
溶剂种类 提取率/% 溶剂种类 提取率/%
无水乙醇 36.17 二氯甲烷 90.97
丙酮 82.75 正己烷 85.97
三氯甲烷 84.02 石油醚 87.69
乙醚 90.02 四氯化碳 88.16
乙酸乙酯 91.76    
由表2可知,采用乙酸乙酯作为有机溶剂对西瓜中的番茄红素具有较好的提取效果,而且其他有机溶剂存在毒性和提取率低的问题。
三、不同酶处理对西瓜番茄红素提取效果的影响
在实施例1番茄红素提取方法的基础上,分别添加不同的生物酶对西瓜浆进行酶解处理,并测定不同酶处理对西瓜番茄红素提取效果的影响,对照组不添加生物酶,结果如表3所示。
表3 不同酶处理对西瓜番茄红素提取效果的影响
Figure PCTCN2019076468-appb-000001
由表3试验结果可见,对西瓜浆原料添加果胶酶、纤维素酶和蛋白酶进行酶解处理都有利于番茄红素的提取,其中果胶酶的效果为最好,纤维素酶次之,蛋白酶稍差一些,而复合酶处理的效果更佳。这是由于复合酶预处理后增加了细胞壁结构的破坏,使萃取溶剂与番茄红素的接触更加充分,从而达到提高提取效率的效果。
四、不同处理方式对西瓜番茄红素提取效果的影响
在实施例1番茄红素提取方法的基础上,分别采用不经超声辅助提取(复合酶法)、不经酶解处理(超声波法)、既不经超声辅助提取也不添加生物酶进行酶解处理的只采用有机溶剂浸提法(对照)和实施例1的提取方法(超声-酶法)对西瓜中的番茄红素进行提取,并测定提取效果如图1所示。
由图1可知,超声-酶法联合处理能够提高西瓜中番茄红素的提取效果,此外,酶解处理的效果优于超声波处理法。
五、提取次数对西瓜番茄红素提取效果的影响
在实施例1番茄红素提取方法的基础上,分别检测每提取一次对番茄红素的提取量,共提取3次,结果如表4所示:
表4 提取次数对提取率的影响
Figure PCTCN2019076468-appb-000002
由表4的结果可以看出,实施例1的提取方法可以高效提取西瓜果肉中的番茄红素,前两次提取量占总提取量的91.76%,第三次提取量仅占总提取量的8.24%,说明提取两次即可将大部分番茄红素提取出来。
六、超声处理功率对西瓜番茄红素提取效果的影响
在实施例1番茄红素提取方法的基础上,分别采用40W、60W、80W、100W、120W、140W的功率辅助有机溶剂提取西瓜中的番茄红素,不同超声处理功率对西瓜番茄红素提取 效果的影响如图2所示。
由图2可见,随着输出功率的增大,西瓜番茄红素的提取率也呈上升趋势,但当输出功率增大到80W后,提取率增加不明显,输出功率超过100W后提取率还有下降趋势,因此选择超声输出功率80~100W作为适宜提取功率。
七、温度对西瓜番茄红素超声提取效果的影响
在实施例1番茄红素提取方法的基础上,在超声辅助有机溶剂提取中分别采用30、35、40、45、50、55℃的温度来提取西瓜中的番茄红素,不同温度对西瓜番茄红素超声提取效果的影响如图3所示。
由图3可知,在一定范围内提高提取温度可以提高提取率,但由于番茄红素不稳定,极易氧化,提取温度过高不利于番茄红素的提取,因此,将提取温度设置在40~50℃较为适宜。
八、乙醇洗涤次数对番茄红素回收量的影响
在实施例1番茄红素提取方法的基础上,分别检测乙醇洗涤1次、2次、3次番茄红素的回收率,结果如表5所示:
表5 乙醇洗涤对番茄红素回收率的影响
Figure PCTCN2019076468-appb-000003
由表7试验结果可知,用无水乙醇洗涤对西瓜番茄红素,可以有效提高番茄红素粗提物中番茄红素的含量。这是因为番茄红素难溶于乙醇,但乙酸乙酯提取物中所含有的其它一些成分溶于乙醇,因此经乙醇洗涤后这些溶于乙醇的成分可以被除去,从而提高番茄红素粗提物中番茄红素的含量。
九、西瓜番茄红素提取物的分析检测
9.1紫外/可见吸收光谱
取适量实施例1提取的西瓜番茄红素提取物以及番茄红素标准品溶于正己烷中,在350~600nm范围内扫描测定紫外/可见吸收光谱,结果见图4。
由图4可见,在350~550nm范围内,西瓜番茄红素提取物正己烷溶液在444nm、472nm、502nm处有较大吸收峰,且峰形、吸收强度等与标准样品的吸收非常一致。
9.2高效液相色谱分析结果
以Symmetry C18色谱柱为固定相,采用甲醇∶乙腈∶四氢呋喃=52∶40∶8为流动相,检测波长472nm,对实施例1提取的西瓜番茄红素提取物进行高效液相色谱分析,结果如图5所示。
由图5可见,西瓜番茄红素提取物中除含有较多的番茄红素外,还含有一些其它色素。 这些色素主要是一些与番茄红素结构与性质比较相近的类胡萝卜素,应用一般的分离方法很难将它们分离开来。但这些色素的存在一般不影响番茄红素的营养价值和保健功能,甚至还有报道称番茄红素油树脂中的一些其它成分会对番茄红素起到一定的保护作用和协同增效功能,这可能也是造成高纯度番茄红素的稳定性极差的原因之一,因此除非有特殊要求,一般无需对番茄红素提取物进行过度纯化。
9.3卫生指标
对实施例1提取的西瓜番茄红素提取物中的重金属及微生物等卫生指标进行了检验,并与市售番茄红素油树脂产品的质量标准比较,结果见表6。
表6 西瓜番茄红素提取物的卫生指标
Figure PCTCN2019076468-appb-000004
由表6检验结果可知,本发明方法提取的西瓜番茄红素提取物的重金属及微生物等指标均符合相关卫生要求与产品质量标准。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种从西瓜中提取番茄红素的方法,其特征在于:包括原料酶解处理、超声辅助有机溶剂浸提、减压浓缩和纯化步骤;
    所述酶解为添加0.1~0.3%的生物酶,40~50℃、酶解1~2h。
  2. 根据权利要求1所述从西瓜中提取番茄红素的方法,其特征在于:所述生物酶为果胶酶、纤维素酶和蛋白酶中的一种或几种的组合。
  3. 根据权利要求1所述从西瓜中提取番茄红素的方法,其特征在于:所述超声辅助有机溶剂浸提中,超声功率为80-120W。
  4. 根据权利要求1所述从西瓜中提取番茄红素的方法,其特征在于:所述超声辅助有机溶剂浸提中,所述有机溶剂为无水乙醇、丙酮、三氯甲烷、乙醚、乙酸乙酯、二氯甲烷、正己烷、石油醚、四氯化碳中的一种或几种。
  5. 根据权利要求4所述从西瓜中提取番茄红素的方法,其特征在于:所述有机溶剂的添加量为1∶4~1∶8。
  6. 根据权利要求3~5所述从西瓜中提取番茄红素的方法,其特征在于:所述超声辅助有机溶剂浸提中,提取条件为:温度40~50℃、提取时间30~90min、提取次数2次。
  7. 权利要求1-6任一项所述从西瓜中提取番茄红素的方法,其特征在于,步骤如下:
    (1)原料酶解处理:取西瓜果肉打浆去除种籽,添加0.3%的生物酶,45℃、酶解1.5h;酶解完成后过滤,滤液离心,收集沉淀,将沉淀与滤渣合并经冷冻干燥得酶解料;
    (2)超声辅助有机溶剂浸提:将冻干的酶解料研磨成粉末,向酶解料中按照1∶6的料液比加入乙酸乙酯混合均匀,45℃、超声输出功率100W、提取时间30min、提取次数2次,得番茄红素粗提液;
    (3)减压浓缩:将番茄红素粗提液经40℃减压浓缩,回收溶剂,得番茄红素粗提物;
    (4)纯化:按照1∶3的料液比向番茄红素粗提物中加入无水乙醇浸洗2次,除去无水乙醇,得番茄红素粉末。
  8. 权利要求1~7任一项所述方法制备的番茄红素。
  9. 权利要求8所述的番茄红素在制备抗氧化、抗衰老、抗缺氧反应、防治癌症、保护心血管食品中的应用。
  10. 根据权利要求9所述的应用,其特征在于:所述的食品为保健品。
PCT/CN2019/076468 2018-08-30 2019-02-28 一种从西瓜中提取番茄红素的方法 WO2020042558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811003046.3 2018-08-30
CN201811003046.3A CN109096037A (zh) 2018-08-30 2018-08-30 一种从西瓜中提取番茄红素的方法

Publications (1)

Publication Number Publication Date
WO2020042558A1 true WO2020042558A1 (zh) 2020-03-05

Family

ID=64864329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076468 WO2020042558A1 (zh) 2018-08-30 2019-02-28 一种从西瓜中提取番茄红素的方法

Country Status (2)

Country Link
CN (1) CN109096037A (zh)
WO (1) WO2020042558A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109096037A (zh) * 2018-08-30 2018-12-28 中国农业科学院郑州果树研究所 一种从西瓜中提取番茄红素的方法
CN112120225B (zh) * 2020-09-29 2023-03-10 江南大学 一种未完全成熟番茄的资源化利用的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1611467A (zh) * 2003-10-29 2005-05-04 北京市农林科学院 一种以西瓜为原料提取番茄红素的方法
CN101289364A (zh) * 2008-05-21 2008-10-22 浙江省农业科学院 一种番茄红素的提取制备方法
CN107602327A (zh) * 2017-09-11 2018-01-19 武汉华康臣生物科技有限公司 一种六氢番茄红素和八氢番茄红素的提取方法
CN109096037A (zh) * 2018-08-30 2018-12-28 中国农业科学院郑州果树研究所 一种从西瓜中提取番茄红素的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449952A (zh) * 2013-09-18 2013-12-18 南京通泽农业科技有限公司 一种高纯度番茄红素的制备方法
CN108452082A (zh) * 2018-05-17 2018-08-28 金华市飞凌生物科技有限公司 一种番茄提取物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1611467A (zh) * 2003-10-29 2005-05-04 北京市农林科学院 一种以西瓜为原料提取番茄红素的方法
CN101289364A (zh) * 2008-05-21 2008-10-22 浙江省农业科学院 一种番茄红素的提取制备方法
CN107602327A (zh) * 2017-09-11 2018-01-19 武汉华康臣生物科技有限公司 一种六氢番茄红素和八氢番茄红素的提取方法
CN109096037A (zh) * 2018-08-30 2018-12-28 中国农业科学院郑州果树研究所 一种从西瓜中提取番茄红素的方法

Also Published As

Publication number Publication date
CN109096037A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2020042558A1 (zh) 一种从西瓜中提取番茄红素的方法
CN101148631A (zh) 富含番茄红素的植物油的制备方法
CN107569433B (zh) 一种从黄酒糟中提取的酪氨酸酶抑制剂及其制备方法
CN109810909B (zh) 一株高产番茄红素的红发夫酵母菌株及番茄红素生产方法
CN103585497A (zh) 一种竹叶中多酚的提取和检测方法
CN103073914A (zh) 一种从玉米蛋白中提取玉米黄色素的方法
Gavahian et al. Power ultrasound for valorization of Citrus limon (cv. Eureka) waste: Effects of maturity stage and drying method on bioactive compounds, antioxidant, and anti-diabetic activity
CN110698525A (zh) 一种蔓越橘提取物的制备方法
CN112890160A (zh) 一种酶解芒果皮制备芒果香精增香剂的方法
CN113201401A (zh) 一种柑橘类果皮精油及其制备方法与应用
CN101390975A (zh) 柑橘活性成分的萃取方法
CN110679934A (zh) 一种含叶黄素的清肝明目的酵素及其制备方法
Kongkiattikajorn Antioxidant properties of roselle vinegar production by mixed culture of Acetobacter aceti and Acetobacter cerevisiae
CN106755175B (zh) 采用超高压辅助生物酶解提取蕨麻多糖的方法
CN110699397B (zh) 一种连续酶促酰化花青素的方法
CN110108653B (zh) 一种鲜辣椒预处理过程中辣椒红素变化规律分析方法
KR20230022672A (ko) 신규한 전통식초 유래 균주 및 이의 용도
WO2006036125A1 (en) A process for producing lycopene extract
CN103013726B (zh) 藻蓝多糖绿啤及酒类和饮料及其制备方法
EP3702467B1 (en) Pretreatment method for producing lycopene raw material
CN115025033A (zh) 一种桑叶发酵组合物、制备方法、应用
CN111909822A (zh) 一种细胞固定化法发酵菠萝果醋的方法
Ahmadi et al. Optimization of lycopene extraction from tomato waste with the integration of ultrasonic-enzymatic processes by response surface methodology
CN1274767C (zh) 从苦瓜籽假种皮提取番茄红素的方法
CN105348403B (zh) 一种残次百合鳞片中提取超白百合多糖的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855684

Country of ref document: EP

Kind code of ref document: A1