WO2020042411A1 - 电池模组 - Google Patents

电池模组 Download PDF

Info

Publication number
WO2020042411A1
WO2020042411A1 PCT/CN2018/119125 CN2018119125W WO2020042411A1 WO 2020042411 A1 WO2020042411 A1 WO 2020042411A1 CN 2018119125 W CN2018119125 W CN 2018119125W WO 2020042411 A1 WO2020042411 A1 WO 2020042411A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
battery
battery module
functional layer
module according
Prior art date
Application number
PCT/CN2018/119125
Other languages
English (en)
French (fr)
Inventor
赵丰刚
凃俊达
陈小波
沈聃
王学辉
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US16/468,946 priority Critical patent/US11223063B2/en
Priority to EP18884851.9A priority patent/EP3641006B1/en
Publication of WO2020042411A1 publication Critical patent/WO2020042411A1/zh
Priority to US17/539,225 priority patent/US11616251B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application belongs to the field of energy storage technology, and particularly relates to a battery module.
  • Batteries can convert chemical energy into electrical energy, have stable voltage and current, have reliable performance, are environment-friendly, and have a simple structure and convenient portability. They have become the main power source for electric vehicles. In order to meet the requirements of high power and long battery life, usually multiple battery cells form a battery module, or multiple battery modules form a battery pack.
  • the electrode pads will expand in volume due to different delithiation or lithium insertion states of the active material.
  • the volume expansion of the electrode pads will inevitably cause stress in the battery cells. These stresses cannot be effectively released, resulting in distortion of the battery cell, which affects the cycle performance of the battery.
  • the volume expansion and distortion of the battery during the charge and discharge process cause the internal interlayer gaps to lock up, which will cause the electrolyte's wettability to deteriorate and the cycle performance of the battery to deteriorate. This obviously cannot meet the increasing requirements of the market for the cycle performance of battery modules in recent years.
  • the purpose of this application is to provide a battery module, which aims to make the battery module have excellent cycle performance.
  • the present application provides a battery module, including: a frame having a receiving space; a plurality of battery cells, the plurality of battery cells being sequentially arranged in the receiving space of the frame along a thickness direction of the battery cell; A separator is provided between adjacent battery cells.
  • the separator is compressible and the compression ratio ⁇ 1 of the separator under a pressure of 2 MPa or less satisfies C 0 ⁇ ⁇ 1 ⁇ A 0 ⁇ 0.2, where C 0 is a separator.
  • the initial thickness, A 0 is the initial thickness of the battery cell.
  • the battery module provided in the present application has a separator between adjacent battery cells, and the separator is compressible, which can satisfy the expansion requirements of the battery cells, play a buffering role, reduce the expansion rate, and effectively discharge electricity.
  • the stress inside the core due to the expansion of the electrode pads, and the compression ratio ⁇ 1 of the separator under a pressure of 2 MPa or less satisfies C 0 ⁇ ⁇ 1 ⁇ A 0 ⁇ 0.2, which can effectively control the expansion of the battery cell, and thus effectively control the electricity.
  • the present application can effectively prevent distortion and deformation of the battery cell and control the volume expansion of the battery cell, and ensure that the electrolyte in the battery cell is fully infiltrated, so that the battery module has excellent cycle performance.
  • FIG. 1 is a schematic exploded structure diagram of a battery module according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an arrangement of battery cells according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a separator according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a separator according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a separator according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a separator according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a separator according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a separator according to another embodiment of the present application.
  • battery module 100, battery module; 110, frame; 111, side plate; 112, end plate; 113, accommodation space; 120, battery unit; 121, gap; 130, partition plate; 131, first surface; 132, second surface 133, functional layer; 134, raised; 135, hole; 136, support layer.
  • any lower limit may be combined with any upper limit to form an unclearly stated range; and any lower limit may be combined with other lower limits to form an unclearly stated range, and likewise any arbitrary upper limit may be combined with any other upper limit to form an unclearly stated range.
  • every point or single value between the endpoints of the range is included in the range. Therefore, each point or single numerical value can be used as its own lower limit or upper limit in combination with any other point or single numerical value or in combination with other lower limits or upper limits to form an unclearly recorded range.
  • a battery module according to a first aspect of the present application will be described.
  • a battery module provided in an embodiment of the present application is described in detail below with reference to FIGS. 1 to 8.
  • FIG. 1 schematically illustrates an exploded structure diagram of a battery module according to an embodiment of the present application.
  • a battery module 100 provided by an embodiment of the present application includes a frame 110, a battery unit 120, and a separator 130.
  • the frame 110 includes two side plates 111 opposite to each other and spaced along the first direction, and two end plates 112 opposite to and spaced from each other along the second direction.
  • the aforementioned first direction intersects the second direction.
  • the first One direction is perpendicular to the second direction.
  • Adjacent side plates 111 are connected to the end plate 112, that is, an accommodating space 113 is enclosed by the two side plates 111 and the two end plates 112.
  • the plurality of battery units 120 are sequentially arranged in the accommodating space 113 along the second direction, and they may be connected in series, in parallel, or in series and parallel.
  • the second direction is, for example, a thickness direction of the battery cell 120. Please refer to FIG. 2 together.
  • the adjacent battery cells 120 are spaced apart, that is, there is a gap 121 between the adjacent battery cells 120 to accommodate the expansion and deformation of the battery cells 120 during actual use.
  • the width B of the gap 121 is usually 1 mm to 4 mm, for example, 1.3 mm to 3.6 mm, and further, for example, 1.5 mm to 2.7 mm.
  • a partition plate 130 is provided in the gap 121.
  • the partition plate 130 has compressibility, and the compression ratio ⁇ 1 of the partition plate 130 under a pressure of 2 MPa or less satisfies C 0 ⁇ ⁇ 1 ⁇ A 0 ⁇ 0.2, where C 0 is the initial thickness of the separator 130, and A 0 is the initial thickness of the battery cell 120.
  • the separator 130 has a first surface 131 and a second surface 132 opposite to each other along the thickness direction.
  • the first surface 131 is opposite to one of two adjacent battery cells 120.
  • the two surfaces 132 are disposed opposite to the other of the two adjacent battery cells 120.
  • the first surface 131 and the second surface 132 of the separator 130 are in contact with two adjacent battery cells 120, respectively.
  • first surface 131 and the second surface 132 are only for the convenience of distinguishing the two surfaces of the partition plate 130 in the thickness direction of the partition plate 130, and are not restricted, that is, the first surface 131 may also be the second surface 132.
  • the two surfaces 132 may also be the first surface 131.
  • the frame 110 is not limited to the above-mentioned structure.
  • the frame 110 may include two fixing members arranged opposite to each other in the second direction and spaced apart. Between the fixing members, the two fixing members are connected by a connecting member to fix the battery unit 120 and the separator 130 between the two fixing members.
  • the present application does not specifically limit the structure of the frame 110, as long as it can be used to receive and fix the battery unit 120 and the separator 130.
  • the compression ratio of the partition plate 130 refers to a ratio of the thickness variation ⁇ C of the partition plate 130 to the initial thickness C 0 of the partition plate 130.
  • the initial thickness C 0 of the separator 130 refers to the thickness of the separator 130 inside the fresh battery module 100 after grouping.
  • the initial thickness A 0 of the battery cells 120 refers to the thickness of the battery cells 120 inside the fresh battery module 100 after being grouped.
  • the expansion in the middle region of the large surface of the battery cell 120 is more serious, and the expansion in the peripheral region is smaller, especially the edge region is hardly expanded.
  • the thickness of the edge region of the large surface of the battery cell 120 can be considered to be equal to the initial thickness A 0 of the battery cell 120, and the area of the separator 130 corresponding to the thickness of the battery cell 120 is hardly compressed Can be considered to be equal to the initial thickness C 0 of the separator 130; the maximum thickness of the middle region of the large surface of the battery cell 120 can be considered to be the thickness of the battery cell 120 after the charge and discharge cycle expands.
  • the area corresponding to the maximum thickness of the unit 120 can be considered as the thickness C 10 of the separator 130 after being compressed by the battery unit 120 during the charge and discharge cycle.
  • the separator 130 is compressible to meet the requirements of the battery cells 120. Expansion requirements, and play a buffering role, reduce the battery expansion rate, and effectively release the stress caused by the expansion of the electrode pads inside the cell; and the compression ratio ⁇ 1 of the separator 130 under a pressure of 2 MPa or less satisfies C 0 ⁇ ⁇ 1 ⁇ A 0 ⁇ 0.2, so it can prevent the battery unit 120 from further expanding, so as to effectively control the internal stress of the battery cell and prevent the battery cell from being excessively expanded; therefore, this application can effectively prevent the battery cell from being deformed and deformed and control the volume expansion of the battery cell.
  • the battery module 100 has excellent cycle performance, and at the same time, it can avoid short-circuit in the battery caused by the distortion of the battery core and the squeeze of the electrode pads. Safety performance of the battery module 100.
  • the battery unit 120 shown in FIG. 1 and FIG. 2 includes only one single battery, the battery unit 120 may also be more than two single batteries, It can be a series connection, a parallel connection, or a series-parallel hybrid connection. That is, the battery module 100 may be provided with a separator 130 every two or more single cells. This can improve the safety performance and cycle performance of the battery module 100 while enabling the battery module 100 to have Smaller length and volume.
  • the single cell includes a positive electrode sheet, a negative electrode sheet, a separator, and an electrolyte.
  • the positive electrode piece and the negative electrode piece can generate and conduct current, wherein the positive electrode piece includes a positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector.
  • the negative electrode piece may be a lithium metal piece or may include A negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the separation film is used to isolate between the positive electrode sheet and the negative electrode sheet.
  • the electrolyte provides and conducts ions between the positive electrode sheet and the negative electrode sheet.
  • the present application is particularly applicable to a battery module containing a single cell having an expansion effect.
  • the positive electrode active material of the aforementioned single cell with expansion benefit is Li 1 + x Ni a Me 1-a O 2- y X y , where -0.1 ⁇ x ⁇ 0.2, 0 ⁇ a ⁇ 1, 0 ⁇ y ⁇ 0.2, Me is one or more of Mn, Co, Fe, Cr, Ti, Zn, V, Al, Zr, and Ce, X is one or more of S, N, F, Cl, Br, and I
  • 0.5 ⁇ a ⁇ 1 such as LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
  • the compression ratio ⁇ 1 of the separator 130 under a pressure of 2 MPa or less satisfies C 0 ⁇ ⁇ 1 ⁇ A 0 ⁇ 0.1.
  • the high-nickel batteries especially refer to the positive electrode active material as Li 1 + x Ni a Me 1-a O 2-y X y , where -0.1 ⁇ x ⁇ 0.2, 0.7 ⁇ a ⁇ 1, 0 ⁇ y ⁇ 0.2, Me is one or more of Mn, Co, Fe, Cr, Ti, Zn, V, Al, Zr and Ce, and X is S, N Or F, Cl, Br, and I, such as LiNi 0.8 Co 0.1 Mn 0.1 O 2 and the like.
  • the above-mentioned separator 130 is obtained by applying a pressure of 0.06 MPa to 0.35 MPa to the motherboard, so that the separator 130 can satisfy the condition that the separator 130 is assembled in the gap 121 between two adjacent battery cells 120.
  • the required assembly force is also more conducive to the effect of the partition plate 130.
  • the battery unit 120 and the motherboard are alternately arranged side by side between the two end plates 112 to form an assembly group, and the assembly group is prestressed by applying a pressure of 0.06 MPa to 0.35 MPa in the second direction.
  • the mother board is compressed to a predetermined degree to form the partition plate 130.
  • the assembly group in the pre-tensioned state is set between the two side plates 111 of the frame 110, and the end plate 112 and the side plate 111 are welded to form a fresh battery. Module 100.
  • the thickness of the mother board is C 1 , and preferably, 0 ⁇ C 1 -C 0 , so that there can be a certain shear force between the separator 130 and the single cell, so that the group of fresh battery modules 100 structure is stable to avoid shaking between the battery unit 120 and the separator 130; more preferably, 0 ⁇ C 1 -C 0 ⁇ 1 mm, and by controlling a smaller mother board, the thickness change of the separator 130 is changed. It is beneficial to exert the effect of the partition plate 130, and on the other hand, the space utilization ratio of the gap 121 can be improved.
  • the spacer 130 is greater than the thickness C a spacer with a thickness of 130 under a pressure of 2MPa C b meet at a pressure of 2MPa: (C b -C a) / C b ⁇ 100% ⁇ 0.15%.
  • the gaps between the separator and the negative electrode sheet and the separator are kept in a proper range to ensure that the electrolyte is fully wetted, and the positive electrode active material layer and the negative electrode active material layer are more stable.
  • the partition plate 130 also has a function of heat insulation, and the thickness C b of the partition plate 130 under a pressure of 2 MPa is 0.015 mm or more, such as 0.1 mm or more.
  • the thickness C b of the partition plate 130 under a pressure of 2 MPa is 0.015 mm or more, such as 0.1 mm or more.
  • the thickness C b of the partition plate 130 under the pressure of 2 MPa is 0.015 mm to 4 mm, such as 0.1 mm to 2 mm, under the conditions of meeting the requirements of heat insulation and module assembly.
  • the thermal conductivity of the separator 130 at 25 ° C. is 0.04 W ⁇ m -1 ⁇ K -1 or less, and the heat insulation function can be better performed.
  • the temperature difference between the first surface 131 and the second surface 132 of the separator 130 can be 100 ° C. to 150 ° C. and above, which significantly delays or even prevents the spread of thermal failure of adjacent single cells.
  • the separator 130 has closed holes inside, and the closed hole has a pore diameter of 10 nm to 120 ⁇ m, such as 15 ⁇ m to 120 ⁇ m.
  • the closed-cell structure in the partition plate 130 inhibits the movement of air molecules, thereby reducing air convective heat transfer.
  • the existence of the closed-cell structure extends the solid conduction path of heat and limits solid heat conduction; and it also reduces heat Radiation; therefore, the thermal insulation effect of the partition plate 130 is greatly improved.
  • the separator 130 is compressed under the compression of the battery's expansion force, which reduces the closed hole diameter of the separator 130, and even makes the closed hole pore size smaller than the average freedom of air molecules. Process, thereby avoiding convective heat transfer by the air; at the same time, the pore density of the closed holes in the partition plate 130 is increased, which greatly prolongs the solid conduction path of heat and prevents solid heat conduction; and also greatly reduces heat radiation; thus greatly improving The heat insulation effect of the partition plate 130 is improved.
  • the closed-cell ratio of the separator 130 is 60% to 98%. More preferably, the closed-cell ratio of the separator 130 is 80% to 95%.
  • the separator 130 includes a functional layer 133, and the functional layer 133 is exposed at least from the first surface 131.
  • the functional layer 133 may be exposed at least from the second surface 132.
  • the functional layer 133 may be exposed from the first surface 131 and the second surface 132.
  • the functional layer 133 is made of a compressible polymer material, and the above-mentioned characteristics of the separator 130 may be mainly contributed by the functional layer 133.
  • the aforementioned polymer materials are, for example, melamine-based polymer materials, polyamide (PA, commonly known as nylon), polyparaphenylene terephthalamide (PPTA, commonly known as aramid), polyimide (PI), polyparaphenylene Polyethylene dicarboxylate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polypropylene (PPE), acrylonitrile-butadiene-styrene copolymer (ABS), polyvinyl alcohol (PVA), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTEE), sodium polystyrene s
  • the functional layer 133 is carbonized at 400 ° C. to 650 ° C. to form a carbon protective layer.
  • the carbon protective layer can prevent further pyrolysis of the polymer material and prevent the thermal decomposition products inside it from diffusing out to participate in the combustion process, ensuring the function of the partition plate 130 and improving its reliability.
  • the heat from the battery's thermal failure will cause the aluminum metal to melt, and because the melting point of carbon is much higher than the melting point of aluminum metal, and the structure is compact, the carbon protective layer can prevent liquid aluminum from penetrating to the heating surface of adjacent single cells.
  • a small amount of liquid aluminum can also form a carbon-aluminum composite layer with the surface carbon of the carbon protective layer, which not only reduces the amount of liquid aluminum, but also blocks the penetration of liquid aluminum, and the carbon protective layer can protect the aluminum of adjacent single cells.
  • the functional layer 133 may also undergo cross-linking at 400 ° C. to 650 ° C. to generate a cross-linked solid substance to form a cross-linking protective layer, and may also have the effect of the carbon protective layer described above.
  • the above polymer material is preferably a nitrogen-containing polymer material, such as a melamine-based polymer material, polyamide (PA, commonly known as nylon), polyparaphenylene terephthalamide (PPTA, commonly known as aramid), and polyimide (PI).
  • a nitrogen-containing polymer material such as a melamine-based polymer material, polyamide (PA, commonly known as nylon), polyparaphenylene terephthalamide (PPTA, commonly known as aramid), and polyimide (PI).
  • PA polyamide
  • PPTA polyparaphenylene terephthalamide
  • PI polyimide
  • non-combustible gases such as nitrogen
  • nitrogen not only dilute the concentration of flammable gases generated by thermal decomposition of oxygen and polymer materials inside the battery module 100, but also react with oxygen and flammable gases to convert oxygen and flammability.
  • the gas is converted into non-combustible gases such as nitrogen, nitrogen oxides, and water vapor.
  • the combustion-supporting materials and combustibles required to maintain combustion are blocked and consumed, so that the flame density in the combustion area is reduced, and finally the combustion reaction speed is reduced and the combustion is ended, thereby achieving a good flame retardant effect.
  • the nitrogen-containing polymer material is preferably a melamine-based polymer material, such as a melamine formaldehyde resin and a derivative thereof.
  • Melamine-based polymer materials can generate more nitrogen, nitrogen oxides, water vapor and other non-combustible gases when thermally decomposed, and can form glassy or stable foam coatings at high temperatures (usually 400 ° C to 600 ° C). It plays a role of blocking out the escape of oxygen and flammable gas.
  • This type of nitrogen-containing polymer material is more likely to form a cross-linked protective layer or a carbon protective layer when heated to protect adjacent single cells.
  • the melamine formaldehyde resin can be formed by the addition reaction of melamine and formaldehyde to produce unsaturated monomers, and then through a formaldehyde cross-linking treatment to form a melamine formaldehyde resin.
  • the melamine formaldehyde resin may be further subjected to a foaming treatment by a pentane-based foaming agent to increase its closed cell ratio.
  • the partition plate 130 may have a single-layer structure.
  • the partition 130 of the single-layer structure includes a middle region and a peripheral region, and the peripheral region is provided around the periphery of the middle region.
  • a functional layer 133 is provided at least in a middle region of the partition plate 130, and a functional layer 133 or a support layer 136 may be provided in the peripheral region. This is because, as described above, in general, the swelling phenomenon in the middle region of the large surface of the battery is relatively serious, and the swelling in the peripheral region is relatively small. Therefore, the functional layer 133 may be provided only in the middle region of the separator 130.
  • the area of the middle region accounts for 40% to 100% of the total area of the partition plate 130, and more preferably, the area of the middle region accounts for 40% to 65% of the total area of the partition plate 130, such as 40% to 50%.
  • More than one hole 135 may be provided in a peripheral area of the partition plate 130.
  • the hole 135 may be one or more of a through hole and a blind hole.
  • the total area of the holes 135 in the peripheral area accounts for less than 40% of the total area of the partition plate 130, such as 25% to 35%, to ensure the support strength of the peripheral area.
  • the shape of the hole 135 is not specifically limited, and may be a shape such as a square, a rhombus, a polygon, a circle, an oval, and a special shape.
  • the blind hole when a blind hole is provided on the peripheral area, the blind hole may be provided on one or both of the first surface 131 and the second surface 132 of the partition plate 130.
  • a functional layer 133 is provided in a middle region and a peripheral region of the partition plate 130, that is, the partition plate 130 is a single-layer structure composed of the functional layer 133.
  • the middle region of the partition 130 is a functional layer 133 and the peripheral region is a support layer 136.
  • the support layer 136 is disposed around the periphery of the functional layer 133, that is, the partition 130 is formed by the functional layers 133 and
  • the support layer 136 is a single-layer composite structure. This helps reduce functional materials and saves costs.
  • the area of the functional layer 133 accounts for 40% to 100% of the total area of the separator 130, and more preferably, the area of the functional layer 133 accounts for 40% to 65% of the total area of the separator 130, such as 40% to 50%. .
  • the supporting layer 136 may be made of a hard polymer material, such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), One or more of polycarbonate (PC), polyethylene (PE), polypropylene (PP), and polypropylene (PPE), but is not limited thereto.
  • the aforementioned rigid polymer material refers to that the compression ratio of the support layer 136 is much smaller than the functional layer 133 under the same pressure. For example, the compression ratio of the support layer 136 is from 0 to 0.6 at a pressure of 0.06 MPa to 2 MPa. 10%, such as 0.1% to 5%.
  • the separator 130 may also have a multilayer structure.
  • the partition plate 130 is a multilayer composite structure formed by the support layer 136 and the functional layer 133.
  • the supporting layer 136 and the functional layer 133 are stacked to enable the supporting layer 136 to support the functional layer 133.
  • the supporting layer 136 has two opposite surfaces, and the functional layer 133 may be disposed on any one of the two surfaces of the supporting layer 136, or the functional layer 133 may be disposed on both surfaces of the supporting layer 136. .
  • the support layer 136 and the functional layer 133 may be adhered by the squeezing force of the single cell, or may be composited by adhesive bonding or external film encapsulation, which is not limited in this application.
  • the support layer 136 may use the aforementioned hard polymer material, but is not limited thereto.
  • the functional layer 133 may be provided only in the middle region of the partition plate 130. Therefore, in some embodiments, a groove is formed in the middle region of the support layer 136, and the functional layer 133 is disposed in the groove.
  • the supporting layer 136 has two opposite surfaces, and a groove may be formed by a central region of any one of the two surfaces of the supporting layer 136 being recessed inward to accommodate the functional layer 133.
  • the middle regions of the two surfaces of the support layer 136 may also be recessed inward to form grooves, and respectively accommodate the functional layers 133.
  • the shape of the groove is not specifically limited, and may be a square, a polygon, a circle, an ellipse or a special shape.
  • the exposed surface of the functional layer 133 is flush with the surface of the support layer 136.
  • a middle region of one of the two surfaces of the support layer 136 is recessed inwardly to form a groove for receiving the functional layer 133, and both ends of the groove respectively extend to the outer edge of the support layer 136. That is, the groove is a U-shaped groove.
  • the functional layer 133 is disposed in the groove.
  • a middle region of one of the two surfaces of the support layer 136 is recessed inwardly to form a groove for receiving the functional layer 133, and one end of the groove extends to an outer edge of the support layer 136 to form Side opening.
  • the functional layer 133 is disposed in the groove.
  • a middle region of one of the two surfaces of the support layer 136 is recessed inwardly to form a groove for receiving the functional layer 133, and the side of the groove is closed.
  • the functional layer 133 is disposed in the groove.
  • the area of the grooves accounts for 40% to 100% of the total area of the partition plate 130, that is, the area of the functional layer 133 accounts for 40% to 100% of the total area of the partition plate 130. More preferably, the area of the grooves accounts for 40% to 65% of the total area of the partition plate 130, that is, the area of the functional layer 133 accounts for 40% to 65% of the total area of the partition plate 130.
  • the partition plate 130 has a side surface, which is connected to the edges of the first surface 131 and the second surface 132 respectively. Further, at least one protrusion 134 is provided on the side surface.
  • one protrusion 134 may be provided corresponding to the positive electrode pole or the negative electrode pole of the unit battery, or two of the two protrusions 134 may be provided correspondingly to the positive pole electrode and the negative pole pole of the unit battery, respectively.
  • the one or two protrusions 134 can play a positioning role, so that the spacer 130 can be conveniently aligned with the single battery.
  • Two or more protrusions 134 may also be provided on the bottom side of the partition plate 130 to play a supporting role.
  • At least one protrusion 134 may be provided on the side of the partition plate 130 corresponding to the side plate 111 of the frame 110 and corresponding to the side plate 111. At least one protrusion may be provided on the side of the partition plate 130 corresponding to the top plate of the frame 110 134 is provided corresponding to the top plate, and at least one protrusion 134 is provided on the side of the bottom plate corresponding to the bottom plate of the frame 110 corresponding to the bottom plate.
  • the protrusions 134 can serve as a buffer. When the separator 130 is subjected to a compressive force, the expansion of the material to the surroundings may cause the material to exceed the outer edge of the cell and contact or even squeeze the frame 110.
  • the spacer 110 squeezes the frame 110, which may cause one or more of the side plates 111, the top plate, and the bottom plate of the frame 110 to have an excessively large assembly deviation. It is difficult to fit the end plate 112, resulting in that one or more of the side plate 111, the top plate, and the bottom plate and the welding area of the end plate 112 are too wide or cannot be welded normally.
  • the buffering effect of the protrusions 134 can effectively avoid the problems described above.
  • an embodiment of the present application further provides a battery pack, which includes any one or more of the battery modules 100 described above.
  • the number of the battery modules 100 is two or more, and the two or more battery modules 100 may be connected in series, in parallel, or in series and parallel. Since the battery pack of the embodiment of the present application uses the battery module 100 of the embodiment of the present application, it also has excellent cycle performance and safety performance.
  • PVDF polyvinylidene fluoride
  • the negative electrode slurry is uniformly obtained; the negative electrode slurry is evenly coated on the negative electrode current collector copper foil; after drying, cold pressing, slitting, and cutting, the negative electrode sheet is obtained.
  • ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were mixed uniformly in a volume ratio of 1: 1: 1 to obtain an organic solvent.
  • 1 mol / L LiPF 6 was dissolved in the organic solvent to obtain an electrolytic solution.
  • the positive electrode sheet, the separator film and the negative electrode sheet are stacked in order.
  • the separator film is made of PP / PE / PP composite film, which acts as a separator between the positive electrode sheet and the negative electrode sheet, and then is wound into a battery cell and assembled. After being put into an aluminum case, after being sealed at the top side and injecting an electrolyte, the single cell is manufactured.
  • Example 1 The difference from Example 1 is that the relevant parameters of the separator are adjusted. See Table 1 for details.
  • Embodiment 2 The difference from Embodiment 2 is that a separator is provided between every two adjacent battery cells, and each battery cell includes two single cells, and the related parameters of the separator are adjusted. See Table 1 for details.
  • the positive electrode active material is LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
  • Embodiment 1 The difference from Embodiment 1 is that there is no separator between the single cells in the battery module, and the width of the gap between each two adjacent single cells is 2.6 mm by fixtures.
  • Embodiment 1 The difference from Embodiment 1 is that there is no separator between the unit cells in the battery module, and the width of the gap between each two adjacent unit cells is 3.6 mm by fixture fixing.
  • the current discharge capacity is recorded as the discharge capacity of the first cycle of the lithium ion secondary battery. Perform 1000 cycles of charge and discharge tests according to the method described above, and record the discharge capacity for each cycle.
  • Lithium-ion secondary battery capacity retention rate after 1000 cycles (%) discharge capacity at 1000th cycle / discharge capacity at 1st cycle ⁇ 100%.
  • the capacity retention rate of the battery module in the embodiment of the present application can still reach more than 80% of its initial capacity, such as 90%.
  • its DC internal resistance DCR is still below 1.10m ⁇ , such as below 1.00m ⁇ , and then below 0.85m ⁇ , such as 0.80m ⁇ ; the battery module of the embodiment of this application Has excellent cycling performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本申请公开了一种电池模组,属于储能技术领域。电池模组包括:框架,所述框架具有容纳空间;多个电池单元,多个所述电池单元沿电池单元的厚度方向依次排列设置于框架的容纳空间;其中,相邻电池单元之间设置有隔板,所述隔板具有可压缩性、且隔板在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.2,C 0为隔板的初始厚度,A 0为电池单元的初始厚度。本申请提供的电池模组具有优异的循环性能。

Description

电池模组
相关申请的交叉引用
本申请要求享有于2018年08月31日提交的名称为“电池模组”的中国专利申请201811013207.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于储能技术领域,尤其涉及一种电池模组。
背景技术
电池能够将化学能转变为电能,具有稳定的电压和电流,性能可靠,环境友好,并且结构简单、携带方便,已成为电动车辆的主力电源。为满足大功率和长时续航的要求,通常是多个单体电池组成电池模组,或者进一步由多个电池模组组成电池包。
电池模组的单体电池在充放电过程中,电极极片会因活性物质不同的脱锂或嵌锂状态而发生体积膨胀,电极极片的体积膨胀不可避免地导致单体电池内产生应力,这些应力因不能得到有效释放而导致电芯发生扭曲变形,从而影响电池的循环性能。此外,电芯在充放电过程中发生的体积膨胀及扭曲变形导致其内部层间间隙锁死,这会造成电解液的浸润性变差,使电池的循环性能恶化。这显然不能满足近年来市场对电池模组的循环性能提出的越来越高的要求。
发明内容
鉴于背景技术中存在的问题,本申请的目的在于提供一种电池模组,旨在使电池模组具有优异的循环性能。
为了达到上述目的,本申请提供一种电池模组,包括:框架,该框架 具有容纳空间;多个电池单元,该多个电池单元沿电池单元的厚度方向依次排列设置于框架的容纳空间;其中,相邻电池单元之间设置有隔板,隔板具有可压缩性、且隔板在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.2,C 0为隔板的初始厚度,A 0为电池单元的初始厚度。
相对于现有技术,本申请至少具有以下有益效果:
本申请提供的电池模组,由于相邻电池单元之间设置有隔板,隔板具有可压缩性,能够在满足电池单元膨胀需求的同时,起到缓冲作用,降低膨胀速率、并有效释放电芯内部因电极极片的膨胀产生的应力,并且隔板在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.2,能够有效控制电池单元的膨胀,从而有效控制电芯内部应力及防止电芯过度膨胀,因此,本申请能够有效地防止电芯发生扭曲变形以及控制电芯的体积膨胀,保证电芯中电解液的充分浸润,从而使得电池模组具有优异的循环性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一个实施例的电池模组的分解结构示意图。
图2为本申请一个实施例的电池单元排布示意图。
图3为本申请一个实施例的隔板的结构示意图。
图4为本申请另一个实施例的隔板的结构示意图。
图5为本申请另一个实施例的隔板的结构示意图。
图6为本申请另一个实施例的隔板的结构示意图。
图7为本申请另一个实施例的隔板的结构示意图。
图8为本申请另一个实施例的隔板的结构示意图。
附图标记说明:
100、电池模组;110、框架;111、侧板;112、端板;113、容纳空间;120、电池单元;121、间隙;130、隔板;131、第一表面;132、第 二表面;133、功能层;134、凸起;135、孔;136、支撑层。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例对本申请进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;“以上”、“以下”为包括本数;术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本文的限制。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
首先说明根据本申请第一方面的电池模组。为了更好地理解本申请, 下面结合图1至图8对本申请实施例所提供的电池模组进行详细说明。
图1示意性地示出了本申请一个实施例提供的电池模组的分解结构图。如图1所示,本申请一个实施例提供的电池模组100包括框架110、电池单元120及隔板130。
其中,框架110包括沿第一方向相对且间隔设置的两个侧板111,以及沿第二方向相对且间隔设置的两个端板112,前述第一方向与第二方向相交,优选地,第一方向与第二方向相垂直。相邻的侧板111与端板112相连接,即由两个侧板111和两个端板112围成一容纳空间113。多个电池单元120沿第二方向依次排列设置于容纳空间113内,它们之间可以是串联连接、并联连接或者串并联混合连接。前述第二方向例如是电池单元120的厚度方向。请一并参照图2,相邻的电池单元120之间相间隔,即在相邻的电池单元120之间具有间隙121,以容纳电池单元120在实际使用过程中的膨胀形变。间隙121的宽度B通常为1mm~4mm,例如1.3mm~3.6mm,再例如1.5mm~2.7mm。
进一步地,在间隙121中设置有隔板130,该隔板130具有可压缩性、且隔板130在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.2,其中C 0为隔板130的初始厚度,A 0为电池单元120的初始厚度。请一并参照图3至图8,隔板130沿自身厚度方向具有相对的第一表面131和第二表面132,第一表面131与两个相邻电池单元120中的一者相对设置,第二表面132与两个相邻电池单元120中的另一者相对设置。作为优选地,隔板130的第一表面131和第二表面132分别与两个相邻电池单元120相接触。
可以理解的是,第一表面131和第二表面132仅仅是为了方便区分隔板130沿自身厚度方向的两个表面,并不形成限制,即第一表面131也可以是第二表面132,第二表面132也可以是第一表面131。
还可以理解的是,框架110并不限于是上述的结构,例如还可以是包括沿第二方向相对且间隔设置的两个固定件,多个电池单元120和隔板130依次排列设置于两个固定件之间,两个固定件之间通过连接件连接,以将电池单元120和隔板130固定在两个固定件之间。本申请对框架110的结构不做具体的限制,只要能够用于容纳并固定电池单元120和隔板130即 可。
在本文中,隔板130的压缩率指的是隔板130的厚度变化量ΔC与隔板130的初始厚度C 0之比。隔板130的初始厚度C 0指的是成组后的新鲜电池模组100内部隔板130的厚度。电池单元120的初始厚度A 0指的是成组后的新鲜电池模组100内部电池单元120的厚度。
而对于充放电循环后的电池模组100,由于一般地,电池单元120大面的中部区域膨胀现象较严重,外围区域所发生的膨胀较小,特别是边缘区域几乎不发生膨胀,则该电池模组100中,电池单元120大面的边缘区域的厚度可以被认为是等于电池单元120的初始厚度A 0,而隔板130的与电池单元120的该厚度相对应的区域因为几乎没有被压缩,可以被认为是等于隔板130的初始厚度C 0;电池单元120大面的中部区域的最大厚度即可以被认为是电池单元120经充放电循环发生膨胀后的厚度,隔板130的与电池单元120的该最大厚度相对应的区域则可以被认为是隔板130经电池单元120充放电循环被压缩后的厚度C 10,隔板130的厚度变化量ΔC即为ΔC=C 0-C 10
本申请实施例的电池模组100,由于在相邻的电池单元120之间设置有隔板130,当电池单元120内部产生膨胀力时,隔板130因具有可压缩性从而满足电池单元120的膨胀需求,并起到缓冲作用,降低电池膨胀速率、并有效释放电芯内部因电极极片的膨胀产生的应力;并且,隔板130在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.2,因此能够阻止电池单元120进一步膨胀,从而有效控制电芯内部应力及防止电芯过度膨胀;因此本申请能够有效地防止电芯发生扭曲变形以及控制电芯的体积膨胀,使电芯的正极极片与负极极片之间、正极极片与隔离膜之间、以及负极极片与隔离膜之间的间隙在适当的范围内,保证电芯内部电解液的充分浸润,从而使得电池模组100具有优异的循环性能,同时还能够避免因电芯扭曲变形和电极极片的挤压而造成的电池内短路,提高电池模组100的安全性能。
可以理解的是,尽管如图1和图2所示的电池单元120中仅包括一个单体电池,但电池单元120中还可以是两个以上的单体电池,两个以上的 单体电池之间可以是串联连接、并联连接或者串并联混合连接。也就是说,电池模组100内可以是每隔两个以上的单体电池设置有一个隔板130,这样可以在提高电池模组100的安全性能及循环性能的同时,使电池模组100具有较小的长度和体积。
上述单体电池包括正极极片、负极极片、隔离膜和电解质。正极极片和负极极片能够产生并传导电流,其中正极极片包括正极集流体以及设置于正极集流体至少一个表面上的正极活性材料层,负极极片可以是金属锂片,也可以是包括负极集流体以及设置于负极集流体上的负极活性材料层。隔离膜处于正极极片与负极极片之间起到隔离的作用。电解质在正极极片与负极极片之间提供并传导离子。
本申请尤其适用于含具有膨胀效益的单体电池的电池模组。作为示例,前述具有膨胀效益的单体电池的正极活性材料为Li 1+xNi aMe 1-aO 2- yX y,其中-0.1≤x≤0.2,0<a≤1,0≤y<0.2,Me为Mn、Co、Fe、Cr、Ti、Zn、V、Al、Zr及Ce中的一种或多种,X为S、N、F、Cl、Br及I中的一种或多种,特别是0.5≤a≤1,如LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 0.6Co 0.2Mn 0.2O 2及LiNi 0.8Co 0.1Mn 0.1O 2等。
作为优选地,隔板130在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.1。这有利于进一步改善高镍体系的电池的循环性能和安全性能,其中高镍体系的电池尤其指正极活性材料为Li 1+xNi aMe 1-aO 2-yX y,其中-0.1≤x≤0.2,0.7≤a≤1,0≤y<0.2,Me为Mn、Co、Fe、Cr、Ti、Zn、V、Al、Zr及Ce中的一种或多种,X为S、N、F、Cl、Br及I中的一种或多种,如LiNi 0.8Co 0.1Mn 0.1O 2等。
在一些实施例中,通过对母板施加0.06MPa~0.35MPa的压力得到上述的隔板130,能够使隔板130满足将隔板130装配于相邻两个电池单元120之间的间隙121中的装配力要求,并且还更加有利于发挥隔板130的效果。作为一个具体的示例,将电池单元120与母板交替并排设置于两个端板112之间,形成装配组,并对该装配组沿第二方向施加0.06MPa~0.35MPa的压力进行预紧,此时母板被压缩预定程度以形成隔板130,将该处于预紧状态的装配组设置在框架110的两个侧板111之间,最 后将端板112与侧板111焊接以组成新鲜电池模组100。
其中母板的厚度为C 1,且作为优选地,0<C 1-C 0,这样可以使隔板130与单体电池之间具有一定的剪切力,以使得成组的新鲜电池模组100结构稳定,避免电池单元120与隔板130之间的晃动;更优选地,0<C 1-C 0≤1mm,通过控制较小的母板转变为隔板130的厚度变化量,一方面有利于发挥隔板130的效果,另一方面可以提高间隙121的空间利用率。
在一些实施例中,隔板130在大于2MPa压力下的厚度C a与隔板130在2MPa压力下的厚度C b满足:(C b-C a)/C b×100%≤0.15%。这使得电池单元120的膨胀力超过2MPa时,隔板130的厚度基本不再变化,阻止电池单元120发生进一步膨胀,从而使单体电池内部的正极极片与负极极片之间、正极极片与隔离膜之间、以及负极极片与隔离膜之间的间隙保持在适当的范围内,保证电解液充分浸润,还更加使正极活性材料层及负极活性材料层保持稳定。
进一步地,隔板130还具有隔热的功能,并且隔板130在2MPa压力下的厚度C b为0.015mm以上,如0.1mm以上。当某个单体电池由于过热、内短路、过充等情况发生热失效时,电池内部的膨胀力急剧增大,隔板130在膨胀力作用下被压缩至最低厚度,此时使隔板130仍然具有0.015mm以上的厚度,有利于隔板130起到隔热的效果,阻止热失效单体电池的大量热量向相邻的单体电池传递,防止单体电池热失效蔓延造成电池模组100热失效,使电池模组100具有优异的安全性能。
在一些可选的实施例中,在满足隔热和模组装配要求的条件下,隔板130在2MPa压力下的厚度C b为0.015mm~4mm,如0.1mm~2mm。
作为优选地,隔板130在25℃时的导热系数为0.04W·m -1·K -1以下,能够更好地起到隔热作用。在高温情况下,可以使得隔板130的第一表面131与第二表面132之间的温度差为100℃~150℃及以上,显著延缓甚至是阻止相邻单体电池热失效的蔓延。
在一些实施例中,隔板130内部具有闭孔,闭孔的孔径为10nm~120μm,如15μm~120μm。隔板130内的闭孔结构抑制了空气分子的运动,从而降低了空气对流传热;同时又由于闭孔结构的存在,延长了热 量的固体传导路径,限制了固体热传导;并且还减弱了热辐射;因此大大提高了隔板130的隔热效果。
另外,由于隔板130的可压缩性,在电池膨胀力的压缩作用下,隔板130被压缩,使隔板130内部闭孔的孔径减小,甚至使闭孔孔径尺寸小于空气分子的平均自由程,从而避免了空气对流传热;同时使隔板130内部闭孔的孔密度增加,极大地延长了热量的固体传导路径,阻止了固体热传导;并且还大大减弱了热辐射;因此极大地提高了隔板130的隔热效果。
作为优选地,隔板130的闭孔率为60%~98%。更优选地,隔板130的闭孔率为80%~95%。
请一并参照图3至图8,作为上述的隔板130,其包括功能层133,该功能层133至少由第一表面131露出。当然,如前文所述,该功能层133也可以是至少由第二表面132露出。另外,功能层133也可以是由第一表面131和第二表面132露出。
功能层133采用具有可压缩性的高分子材料,隔板130上述特性可以主要是功能层133的贡献。前述高分子材料例如为三聚氰胺类高分子材料、聚酰胺(PA,俗称尼龙)、聚对苯二甲酰对苯二胺(PPTA,俗称芳纶)、聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚乙烯(PE)、聚丙烯(PP)、聚丙乙烯(PPE)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚乙烯醇(PVA)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTEE)、聚苯乙烯磺酸钠(PSS)、硅橡胶(Silicone rubber)、聚甲醛(POM)、聚苯醚(PPO)、聚乙二醇(PEG)、气凝胶、纤维素、环氧树脂、酚醛树脂、它们的衍生物、它们的交联物及它们的共聚物中的一种或多种。
优选地,功能层133在400℃~650℃下发生碳化作用,以形成碳保护层。碳保护层能够阻止高分子材料进一步热解,并阻止其内部的热分解产物扩散出来参与燃烧过程,保证隔板130功能的发挥,提高其可靠性。并且,电池热失效时的热量会使铝金属发生熔解,而由于碳的熔点远高于铝金属的熔点、并且结构致密,碳保护层能够阻隔液态铝渗透到相邻单体电 池的受热面,同时少量液态铝还可以与该碳保护层的表面碳形成碳铝复合层,不但减少了液态铝的量,还更加阻隔了液态铝的渗透,进而碳保护层能够保护相邻单体电池的铝金属,防止相邻单体电池因热失效单体电池的液态铝的高温而导致热失效。
功能层133还可以是在400℃~650℃下发生交联作用,生成交联状固体物质,以形成交联保护层,同样可以具有上述碳保护层的效果。
上述高分子材料优选为含氮高分子材料,如三聚氰胺类高分子材料、聚酰胺(PA,俗称尼龙)、聚对苯二甲酰对苯二胺(PPTA,俗称芳纶)及聚酰亚胺(PI)中的一种或多种。含氮高分子材料在高温下受热分解后,容易放出氮气、氮氧化物及水蒸气等不燃性气体,含氮高分子材料的分解吸热与不燃性气体的生成消耗大量的热量,能够极大地降低功能层133的表面温度。并且不燃性气体,如氮气等,不仅起到了稀释电池模组100内部氧气及高分子材料受热分解产生可燃性气体的浓度的作用,还能够与氧气及可燃性气体发生反应,将氧气及可燃性气体转化成氮气、氮氧化物及水蒸气等不燃性气体。根据燃烧的链反应理论,维持燃烧所需要的助燃物和可燃物被阻隔和消耗,使得燃烧区域的火焰密度下降,最终使得燃烧反应速度下降并结束燃烧,从而达到良好的阻燃作用。
上述含氮高分子材料优选为三聚氰胺类高分子材料,如三聚氰胺甲醛树脂及其衍生物等。三聚氰胺类高分子材料受热分解时能够产生较多的氮气、氮氧化物及水蒸气等不燃性气体,并在高温(通常是400℃~600℃)下还能够形成玻璃状或稳定的泡沫覆盖层,起到隔绝氧气和可燃性气体向外逸出的作用。该类含氮高分子材料在受热时候更容易形成交联保护层或碳保护层,以保护相邻的单体电池。
例如,三聚氰胺甲醛树脂可以是采取三聚氰胺和甲醛加成反应生成含有不饱和健的单体,接着再通过甲醛交联处理,生成三聚氰胺甲醛树脂。还可以进一步将三聚氰胺甲醛树脂经过戊烷类等发泡剂进行发泡处理,增加其闭孔率。
请参照图3和图4,隔板130可以是单层结构。作为示例,单层结构的隔板130包括中部区域和外围区域,外围区域围绕中部区域的外周设置。 至少在隔板130的中部区域设置有功能层133,外围区域可以设置功能层133、也可以设置支撑层136。这是因为如前文所述,一般地,电池大面的中部区域膨胀现象较严重,外围区域所发生的膨胀较小,因此可以仅在隔板130的中部区域设置功能层133。
作为优选地,中部区域的面积占隔板130总面积的40%~100%,更优选地,中部区域的面积占隔板130总面积的40%~65%,如40%~50%。
可以在该隔板130的外围区域上设置有一个以上的孔135,前述孔135可以为通孔及盲孔中的一种或多种。一方面有利于使电池的外围区域进行适当的膨胀,分担电池中部区域的膨胀力;另一方面有利于减少材料,节约成本。
外围区域上的孔135的总面积占隔板130总面积的40%以下,如25%~35%,以保证外围区域的支撑强度。
对孔135的形状不做具体限制,可以是方形、菱形、多边形、圆形、椭圆形及异形等形状。
可以理解的是,当外围区域上设置有盲孔时,盲孔可以是设置于隔板130的第一表面131和第二表面132中的一者或两者上。
作为一个示例,如图3所示,隔板130的中部区域和外围区域均设置功能层133,即隔板130是由功能层133构成的单层结构。
作为另一个示例,如图4所示,隔板130的中部区域为功能层133,外围区域为支撑层136,支撑层136围绕功能层133的外周设置,即隔板130是由功能层133和支撑层136构成的单层复合结构。这有利于减少功能材料,节约成本。
作为优选地,功能层133的面积占隔板130总面积的40%~100%,更优选地,功能层133的面积占隔板130总面积的40%~65%,如40%~50%。
支撑层136可以采用硬质高分子材料,如聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚乙烯(PE)、聚丙烯(PP)及聚丙乙烯(PPE)中的一种或多种,但并不限于此。前述硬质高分子材料,指的是相对于功能层133,在同样的压力下支撑层136的压缩率要小得多,如在 0.06MPa~2MPa压力下,支撑层136的压缩率为0~10%,如0.1%~5%。
隔板130还可以是多层结构。
在一些实施例中,请参照图5至图7,隔板130是由支撑层136与功能层133形成的多层复合结构。支撑层136与功能层133层叠设置,使支撑层136对功能层133起支撑作用。具体地,支撑层136具有相对的两个表面,可以是功能层133设置于支撑层136的两个表面中的任意一者上,还可以是功能层133设置于支撑层136的两个表面上。
支撑层136与功能层133之间可以通过单体电池的挤压力贴合,也可以是通过粘接复合或外部薄膜包封复合,本申请不做限制。
支撑层136可以采用上述的硬质高分子材料,但并不限于此。
如上所述,可以仅在隔板130的中部区域设置功能层133。因此在一些实施例中,支撑层136的中部区域形成有凹槽,功能层133设置于凹槽内。
支撑层136具有相对的两个表面,可以是由支撑层136的两个表面中的任意一者的中部区域向内凹陷形成凹槽,以容纳功能层133。当然,也可以是支撑层136的两个表面的中部区域均向内凹陷形成凹槽,并分别容纳功能层133。凹槽的形状不做具体限制,可以是方形、多边形、圆形、椭圆形及异形等形状。
作为优选地,功能层133露出的表面与支撑层136的表面齐平。
作为一个示例,如图5所示,支撑层136的两个表面中的一者的中部区域向内凹陷形成容纳功能层133的凹槽,凹槽的两端分别延伸至支撑层136的外沿,即该凹槽为U型槽。功能层133设置于该凹槽内。
作为另一个示例,如图6所示,支撑层136的两个表面中的一者的中部区域向内凹陷形成容纳功能层133的凹槽,凹槽的一端延伸至支撑层136的外沿形成侧面开口。功能层133设置于该凹槽内。
作为再一个示例,如图7所示,支撑层136的两个表面中的一者的中部区域向内凹陷形成容纳功能层133的凹槽,该凹槽的侧面封闭。功能层133设置于该凹槽内。
作为优选地,凹槽的面积占隔板130总面积的40%~100%,即使得功 能层133的面积占隔板130总面积的40%~100%。更优选地,凹槽的面积占隔板130总面积的40%~65%,即使得功能层133的面积占隔板130总面积的40%~65%。
隔板130具有侧面,侧面分别与第一表面131和第二表面132的边缘相连接,进一步地,在侧面上设置有至少一个凸起134。
其中,可以有一个凸起134与单体电池的正极极柱或负极极柱对应设置,也可以是两个凸起134中的两者分别与单体电池的正极极柱和负极极柱对应设置。该一个或两个凸起134可以起到定位作用,从而能够方便地实现隔板130与单体电池对准设置。
还可以在隔板130的底部侧面设置两个以上的凸起134,以起到支撑作用。
在一些实施例中,隔板130对应框架110的侧板111的侧面上可以有至少一个凸起134与侧板111对应设置,隔板130对应框架110的顶板的侧面上可以有至少一个凸起134与顶板对应设置,以及隔板130对应框架110的底板的侧面上可以有至少一个凸起134与底板对应设置。该些凸起134可以起到缓冲作用。当隔板130受到压缩力时,材料向四周扩展可能会导致材料超出单体电池的外缘而接触甚至是挤压框架110,一方面会使过多的材料积聚在间隙121之外,使其位置偏差过大,不能发挥对电池单元120的保护作用;另一方面由于隔板130挤压框架110,会使得框架110的侧板111、顶板及底板中的一个或多个的装配偏差过大,难以贴合端板112,导致侧板111、顶板及底板中的一个或多个与端板112的焊接区焊缝过宽甚至不能正常焊接。通过该些凸起134的缓冲作用,能够有效避免上述问题的发生。
另外,本申请实施例还提供一种电池包,包括上述任意一种或几种电池模组100。电池模组100的数量为两个以上,该两个以上的电池模组100之间可以是串联连接、并联连接或者串并联混合连接。本申请实施例的电池包由于采用了本申请实施例的电池模组100,因此也具有优异的循环性能及安全性能。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,以下实施例中所报道的所有份、百分比、和比值都是基于重量计,而且实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
正极极片的制备
将正极活性材料LiNi 0.8Co 0.1Mn 0.1O 2、导电炭黑及粘结剂聚偏二氟乙烯(PVDF)按照重量比为8:1:1分散至溶剂N-甲基吡咯烷酮(NMP)中,搅拌均匀,获得正极浆料;将正极浆料均匀涂布于正极集流体铝箔上,经烘干、冷压、分条、裁片后,得到正极极片。
负极极片的制备
将负极活性材料人造石墨、导电炭黑、增稠剂羧甲基纤维素(CMC)及粘结剂丁苯橡胶(SBR)按照重量比89:6:3:2分散于溶剂去离子水中,搅拌均匀,获得负极浆料;将负极浆料均匀涂布于负极集流体铜箔上;经烘干、冷压、分条、裁片后,得到负极极片。
电解液的制备
将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)及碳酸二乙酯(DEC)按照体积比1:1:1混合均匀,得到有机溶剂。将1mol/L的LiPF 6溶解于上述有机溶剂中,得到电解液。
单体电池的制备
将正极极片、隔离膜及负极极片依次层叠设置,隔离膜采用PP/PE/PP复合薄膜,其处于正极极片和负极极片之间起到隔离作用,然后卷绕成电芯并装入铝外壳中,经顶侧封、注入电解液等工序后,制成单体电池。
电池模组的制备
将6个上述制备的单体电池并排设置,并在每两个相邻单体电池之间 设置母板;对单体电池、母板和两个端板形成的装配组施加0.2MPa的压力,此时母板被压缩预定程度形成隔板,隔板为如图8所示的结构;然后将装配组设置在两个侧板之间,并进行端板与侧板的组装焊接;之后将该6个单体电池串联连接以形成电池模组。具体参数详见表1。
实施例2~10
与实施例1不同的是,调整隔板的相关参数,详见表1。
实施例11
与实施例2不同的是,每两个相邻电池单元之间设置隔板,每个电池单元包括两个单体电池,并调整隔板的相关参数,详见表1。
实施例12
与实施例2不同的是,正极活性材料为LiNi 0.5Co 0.2Mn 0.3O 2
对比例1
与实施例1不同的是,电池模组内单体电池之间没有设置隔板,通过夹具固定使每两个相邻单体电池之间的间隙的宽度为2.6mm。
对比例2
与实施例1不同的是,电池模组内单体电池之间没有设置隔板,通过夹具固定使每两个相邻单体电池之间的间隙的宽度为3.6mm。
测试部分
(1)电池模组的热扩展测试
将新鲜电池模组进行充放电循环足够次数,使电池模组内部隔板承受的压缩力达到2MPa;在25±3℃、101KPa大气压下对电池模组进行充电,使其中的单体电池以1C恒流充电至4.2V,再恒压充电至电流小于等于0.05C,之后将电池模组放置在针刺测试设备平台上,保证测试环境为25±3℃、101KPa大气压,使用直径为3.0mm的耐火钢针,钢针锥角为30°~60°,以0.1mm/s的速度沿着电池模组第一个单体电池中间位置穿刺,其中从总负端到总正端顺序计算单体电池顺序,穿针深度为5mm~10mm,使该第一个单体电池发生热失效即停止穿针,检测电池模组中热扩展行为,记录第二个至第六个单体电池的热失效时间。其中第二个至第六个单体电池的热失效时间的计算起始点是第一个单体电池热失效的时刻。
(2)电池模组的循环性能测试
在25±3℃、101KPa大气压下对新鲜电池模组进行充电,使其中的单体电池以1C恒流充电至4.2V,再恒压充电至电流小于等于0.05C,之后以1C恒流放电至3.0V,此为一个循环充放电过程,此次的放电容量记为锂离子二次电池第1次循环的放电容量。按照上述方法进行1000次循环充放电测试,记录每一次循环的放电容量。
锂离子二次电池循环1000次后的容量保持率(%)=第1000次循环的放电容量/第1次循环的放电容量×100%。
(3)电池模组的直流阻抗(DCR)测试
在25±3℃、101KPa大气压下对新鲜电池模组进行充电,使其中的单体电池以1C恒流充电至4.2V,再恒压充电至电流小于等于0.05C,之后以1C恒流放电,将锂离子二次电池的荷电状态(SOC)调整至满充容量的20%,静置60min,然后以4C恒流放电30s,进行DCR测试,采点间隔为0.1s,得到电池模组的初始DCR。按照上述方法进行1000次充放电循环,记录1000次循环后的DCR。
实施例1~12和对比例1~2的测试结果示于表2。
表1
Figure PCTCN2018119125-appb-000001
Figure PCTCN2018119125-appb-000002
表2
Figure PCTCN2018119125-appb-000003
对比分析实施例2、10、11与对比例2,以及实施例3、4、5、9与对比例1,可以看出,在电池单元之间设置隔板后,使得电池模组循环1000次后的容量保持率显著提高,并使得电池模组循环1000次后的DCR显著降低,可见本申请的电池模组的循环性能得到显著提高。
由实施例1至实施例12的测试结果可以看出,在1C倍率进行1000个循环之后,本申请实施例的电池模组的容量保持率仍可达到其初始容量的80%以上,如90%以上;并且该电池模组在1C倍率进行1000个循环之后,其直流内阻DCR仍然为1.10mΩ以下,如1.00mΩ以下,再如0.85mΩ以下,例如0.80mΩ;本申请实施例的电池模组具有优异的循环性能。
对比分析实施例1-3、6、8-12与对比例1-2,可以看出,设置具有隔热性能的隔板后,使电池模组具有优异的循环性能的同时,还使得电池模 组的热失效蔓延时间显著增加,大大延缓了热失效的蔓延,使得电池模组具有优异的安全性能。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种电池模组,其中,包括:
    框架,所述框架具有容纳空间;
    多个电池单元,多个所述电池单元沿所述电池单元的厚度方向依次排列设置于所述容纳空间;
    其中,相邻所述电池单元之间设置有隔板,所述隔板具有可压缩性、且所述隔板在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.2,C 0为所述隔板的初始厚度,A 0为所述电池单元的初始厚度。
  2. 根据权利要求1所述的电池模组,其中,所述隔板在小于等于2MPa压力下的压缩率δ 1满足C 0×δ 1≤A 0×0.1。
  3. 根据权利要求1所述的电池模组,其中,所述隔板在大于2MPa压力下的厚度C a与所述隔板在2MPa压力下的厚度C b满足:
    (C b-C a)/C b×100%≤0.15%。
  4. 根据权利要求3所述的电池模组,其中,所述隔板在2MPa压力下的厚度C b为0.015mm以上。
  5. 根据权利要求1所述的电池模组,其中,所述隔板在25℃时的导热系数为0.04W·m -1·K -1以下。
  6. 根据权利要求5所述的电池模组,其中,所述隔板内具有闭孔,所述闭孔的孔径为10nm~120μm;
    所述隔板的闭孔率为60%~98%,优选为80%~95%。
  7. 根据权利要求1所述的电池模组,其中,所述隔板沿自身厚度方向具有相对的第一表面和第二表面,所述第一表面与两个相邻所述电池单元中的一者相接触,所述第二表面与两个相邻所述电池单元中的另一者相接触;
    所述隔板包括功能层,所述功能层至少由所述第一表面露出;
    所述功能层采用高分子材料,优选含氮高分子材料,进一步优选三聚氰胺类高分子材料。
  8. 根据权利要求7所述的电池模组,其中,所述功能层位于所述隔板 的中部区域,且所述功能层的面积占所述隔板的面积的40%~100%,优选为40%~65%。
  9. 根据权利要求8所述的电池模组,其中,所述隔板进一步包括支撑层,所述隔板为所述支撑层与所述功能层形成的复合结构。
  10. 根据权利要求7所述的电池模组,其中,所述隔板具有侧面,所述侧面分别与所述第一表面和所述第二表面的边缘相连接,所述侧面上设置有至少一个凸起;其中,
    至少一个所述凸起中的一者与所述单体电池的正极极柱或负极极柱对应设置;或者,
    至少一个所述凸起中的两者分别与所述单体电池的正极极柱和负极极柱对应设置;和/或,
    至少一个所述凸起中至少有一者与所述框架的侧板对应设置。
PCT/CN2018/119125 2018-08-31 2018-12-04 电池模组 WO2020042411A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/468,946 US11223063B2 (en) 2018-08-31 2018-12-04 Battery module
EP18884851.9A EP3641006B1 (en) 2018-08-31 2018-12-04 Battery module
US17/539,225 US11616251B2 (en) 2018-08-31 2021-12-01 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811013207.7 2018-08-31
CN201811013207.7A CN110265591B (zh) 2018-08-31 2018-08-31 电池模组

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/468,946 A-371-Of-International US11223063B2 (en) 2018-08-31 2018-12-04 Battery module
US17/539,225 Continuation US11616251B2 (en) 2018-08-31 2021-12-01 Battery module

Publications (1)

Publication Number Publication Date
WO2020042411A1 true WO2020042411A1 (zh) 2020-03-05

Family

ID=67437381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119125 WO2020042411A1 (zh) 2018-08-31 2018-12-04 电池模组

Country Status (4)

Country Link
US (2) US11223063B2 (zh)
EP (1) EP3641006B1 (zh)
CN (1) CN110265591B (zh)
WO (1) WO2020042411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218100A1 (en) * 2019-09-29 2021-07-15 Dongguan Amperex Technology Limited Battery module

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791511B2 (en) * 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11978917B2 (en) 2019-11-19 2024-05-07 Sion Power Corporation Batteries with components including carbon fiber, and associated systems and methods
US11984575B2 (en) 2019-11-19 2024-05-14 Sion Power Corporation Battery alignment, and associated systems and methods
WO2021102071A1 (en) 2019-11-19 2021-05-27 Sion Power Corporation Batteries, and associated systems and methods
CN113381098A (zh) * 2020-02-21 2021-09-10 比亚迪股份有限公司 电池序列、电池包及电动车
CN111446392A (zh) * 2020-03-17 2020-07-24 爱驰汽车有限公司 电池模组及电池包
CN111354900B (zh) * 2020-05-25 2020-10-23 比亚迪股份有限公司 电池包、电池模组、车辆以及储能装置
CN111354899B (zh) * 2020-05-25 2020-10-23 比亚迪股份有限公司 电池包、电池模组、车辆以及储能装置
WO2022021135A1 (zh) * 2020-07-29 2022-02-03 宁德时代新能源科技股份有限公司 电池模组、电池包、装置以及电池模组的制造方法和制造设备
CN115699406A (zh) 2020-11-17 2023-02-03 宁德时代新能源科技股份有限公司 电池、使用电池的装置、电池的制备方法和制备设备
KR20220075711A (ko) * 2020-11-30 2022-06-08 에스케이온 주식회사 배터리 모듈
KR20220075710A (ko) * 2020-11-30 2022-06-08 에스케이온 주식회사 배터리 모듈
KR20220075712A (ko) * 2020-11-30 2022-06-08 에스케이온 주식회사 배터리 서브 패킹유닛
EP4152479A4 (en) 2021-07-30 2023-09-13 Contemporary Amperex Technology Co., Limited BATTERY GROUP, BATTERY PACK AND ELECTRICAL DEVICE
CN113764796A (zh) * 2021-09-07 2021-12-07 深圳市富兰瓦时技术有限公司 一种电池模组
DE102021132072A1 (de) * 2021-12-06 2023-06-07 Carl Freudenberg Kg Energiespeichersystem
WO2024049166A1 (ko) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 전지 팩 및 이를 포함하는 디바이스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171883A (zh) * 2009-01-16 2011-08-31 丰田自动车株式会社 蓄电装置
CN105977429A (zh) * 2015-03-11 2016-09-28 丰田自动车株式会社 电池组间隔件和电池组
CN107210394A (zh) * 2014-09-30 2017-09-26 江森自控科技公司 电池模块压缩单元组件
WO2017197233A1 (en) * 2016-05-13 2017-11-16 Enovix Corporation Dimensional constraints for three-dimensional batteries
CN108305967A (zh) * 2018-01-18 2018-07-20 北京集研科技有限公司 软包电池模组的制作方法、软包电池模组及动力电池系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326480B2 (ja) * 2008-10-14 2013-10-30 トヨタ自動車株式会社 蓄電装置
DE102010002000A1 (de) * 2010-02-16 2011-09-08 Sgl Carbon Se Wärmeableiter und elektrischer Energiespeicher
JP6065906B2 (ja) * 2012-03-27 2017-01-25 ソニー株式会社 電池モジュール、蓄電システム、電子機器、電力システムおよび電動車両
WO2014103007A1 (ja) * 2012-12-28 2014-07-03 日立ビークルエナジー株式会社 組電池
CN206059484U (zh) 2016-10-14 2017-03-29 宁德时代新能源科技股份有限公司 电池模组
CN107968168B (zh) * 2016-10-19 2020-09-11 宁德时代新能源科技股份有限公司 电池模组
CN206657824U (zh) 2017-03-17 2017-11-21 宁德时代新能源科技股份有限公司 电池模组
CN207082578U (zh) 2017-07-24 2018-03-09 山东高佳新能源有限公司 一种隔热防火防爆电池组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171883A (zh) * 2009-01-16 2011-08-31 丰田自动车株式会社 蓄电装置
CN107210394A (zh) * 2014-09-30 2017-09-26 江森自控科技公司 电池模块压缩单元组件
CN105977429A (zh) * 2015-03-11 2016-09-28 丰田自动车株式会社 电池组间隔件和电池组
WO2017197233A1 (en) * 2016-05-13 2017-11-16 Enovix Corporation Dimensional constraints for three-dimensional batteries
CN108305967A (zh) * 2018-01-18 2018-07-20 北京集研科技有限公司 软包电池模组的制作方法、软包电池模组及动力电池系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3641006A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218100A1 (en) * 2019-09-29 2021-07-15 Dongguan Amperex Technology Limited Battery module

Also Published As

Publication number Publication date
CN110265591B (zh) 2020-01-24
US20210328251A1 (en) 2021-10-21
US11223063B2 (en) 2022-01-11
CN110265591A (zh) 2019-09-20
EP3641006B1 (en) 2022-09-28
US11616251B2 (en) 2023-03-28
EP3641006A4 (en) 2020-04-22
US20220246975A1 (en) 2022-08-04
EP3641006A1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2020042411A1 (zh) 电池模组
Wang et al. 10 μm‐thick high‐strength solid polymer electrolytes with excellent Interface compatibility for flexible all‐solid‐state lithium‐metal batteries
KR20150106808A (ko) 이차 전지 및 이의 제조 방법
KR20130031147A (ko) 배터리 셀용 방열판 및 이를 갖는 배터리 모듈
JP2006286218A (ja) 非水系リチウム型蓄電素子およびその製造方法
CN101527367A (zh) 密封型电池
CN106169617A (zh) 一种空间用安全高功率锂离子蓄电池
WO2021023136A1 (zh) 电化学储能装置和设备
WO2023040862A1 (zh) 一种电极组件及其应用
CN112259796A (zh) 一种叠片电芯和锂离子电池
US9240257B2 (en) Solid, lithium-salt-doped, thermoset polyimide polymer electrolyte and electrochemical cell employing same
TWI398030B (zh) 鋰離子儲能電池
JP2021144888A (ja) 電池の製造方法および電池
WO2022000309A1 (zh) 一种集流体、包含该集流体的电化学装置及电子装置
CN110600285B (zh) 一种锂离子电化学储能器件负极的无析锂预嵌锂方法
WO2023130910A1 (zh) 电池极片的制备方法、电池极片和二次电池
CN102931369A (zh) 一种高安全性凝胶聚合物膜及制备方法
KR100898670B1 (ko) 리튬 이차 전지용 세퍼레이터 및 이를 채용한 리튬 이차전지
WO2023088078A1 (zh) 金属锂负极、二次电池、电池模块、电池包及用电装置
CN116169366A (zh) 固态锂电池及其制备方法和用电设备
WO2023142024A1 (zh) 一种长寿命二次电池及电池模块、电池包和用电装置
JP7446459B2 (ja) セパレータ、その製造方法およびそれに関連する二次電池、電池モジュール、電池パックならびに装置
JP7451745B2 (ja) セパレータ、それを含む二次電池および装置
WO2022000329A1 (zh) 一种电化学装置及电子装置
CN114171849A (zh) 一种核壳结构复合隔膜及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018884851

Country of ref document: EP

Effective date: 20190614

NENP Non-entry into the national phase

Ref country code: DE