WO2020042353A1 - Sofc微管电堆 - Google Patents
Sofc微管电堆 Download PDFInfo
- Publication number
- WO2020042353A1 WO2020042353A1 PCT/CN2018/114037 CN2018114037W WO2020042353A1 WO 2020042353 A1 WO2020042353 A1 WO 2020042353A1 CN 2018114037 W CN2018114037 W CN 2018114037W WO 2020042353 A1 WO2020042353 A1 WO 2020042353A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- air
- module
- chamber
- fuel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0263—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04708—Temperature of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- SOFC solid oxide fuel cell
- gas gas, natural gas, and biomass gas
- SOFC has higher power generation efficiency.
- the primary power generation efficiency of SOFC is about 45% to 60%, and the total efficiency of combined heat and power is 90%.
- SOFC has a full solid-state structure, long operating life, and SOFC. The current service life is about 80,000 hours.
- the tube type can be understood as The flat plate is rolled into a tube shape, and the plate tube type can be understood as a plurality of tubes side by side.
- the invention is a technical innovation of the SOFC battery combination technology proposed for the tubular technology form.
- the sealing problem the fuel preheating problem, the heat dissipation problem, and the temperature adjustment are the technical difficulties of the tubular technology.
- the purpose of the present invention is to overcome the shortcomings of the prior art and provide a combustion chamber and a cathode working chamber to facilitate temperature control; the cathode working chamber forms a positive air pressure relative to the combustion chamber, and the residual gas in the cathode working chamber is provided to the combustion chamber.
- Assist combustion to avoid harmful exhaust gas from inadequate combustion in the combustion chamber; use corundum tubes with a smaller diameter than tube-type single-cell tubes as intake air preheating tubes to naturally preheat the fuel by using temperature gradients; Residual fuel is discharged into the combustion chamber through the exhaust gas combustion tube and burned in the combustion chamber to avoid direct exhaustion of the residual fuel; the first and second annular heat-insulating flow channels provide heat insulation and air temperature.
- the adjusted heat exchange layer improves the space utilization of the stack, and the SOFC microtube stack with compact stack structure.
- a cathode working chamber is formed therebetween, the cathode working chamber communicates with the combustion chamber through a third through hole, the battery assembly is located in the cathode working chamber, and more than one first vent hole is provided on a side wall of the cathode working chamber;
- a thermal insulation shell the thermal insulation inner shell is provided in the thermal insulation shell with a clearance fit, and an annular boss is arranged in the middle of the thermal insulation shell; the annular boss abuts against the outer shell of the thermal insulation shell to form a first annular air heat insulation flow;
- the second annular air-insulated flow channel the first annular air-insulated flow channel is surrounded by the cathode working chamber, and the first vent hole makes the cathode working chamber communicate with the first annular air-insulated flow channel;
- a second annular air-insulated flow channel surrounds the combustion chamber, and the second vent hole communicates the combustion chamber with the second annular air-insulated flow channel; an air inlet and an exhaust outlet are provided on the heat insulation shell, so The air inlet is in communication with the first annular air-insulated flow channel, and the exhaust air outlet is in communication with the second annular air-insulated flow channel;
- Electronic pulse igniter the ignition end of the electronic pulse igniter is located in the combustion chamber to ignite the fuel in the combustion chamber.
- the battery module includes two or more single-cell modules; a fuel input end of each of the single-cell modules is embedded in a first heat insulation module, and an exhaust output of each single-cell module is embedded in In the second insulation module, the fuel input end of each single-cell module is in communication with the air outlet of the fuel distribution module; all the single-cell modules are arranged in a rectangular array, and the distance between two adjacent horizontal single-cell modules is 1.5 to 2 mm. The distance between two adjacent vertical single battery modules is 5-6mm.
- each of the single-cell components includes a tubular single cell, an intake air preheating tube, and an exhaust gas combustion tube;
- the intake air preheating tube is provided in an air inlet of the tube-type single cell, and the air
- the socket part of the preheating tube and the tubular single cell is located in the first thermal insulation module, and the air inlet of the intake preheating tube is the fuel input end of the single cell assembly;
- the exhaust gas combustion tube is provided at the outlet of the tubular single cell
- the socket of the exhaust gas combustion tube and the tube-type single battery is located in the second insulation module, and the outlet of the exhaust gas combustion tube is the exhaust gas output end of the single battery component.
- the lateral distance between the inlet of the preheating tube and the tube-type single battery from the left end of the first insulation module is 10mm ⁇ 1mm.
- the outlet of the exhaust combustion tube and the tube-type single battery The lateral distance from the right end face of the second thermal insulation module is 10 mm ⁇ 1 mm.
- the cathode air heat exchanger is a stainless steel spiral tube
- the outer diameter of the stainless steel tube is 60mm ⁇ 1mm
- the wall thickness of the stainless steel tube is 0.6mm ⁇ 0.5mm
- the air inlet of the stainless steel spiral tube The lateral distance of the end surface from the left end surface of the thermal insulation shell is 15mm ⁇ 1mm.
- the first heat insulation module and the second heat insulation module are both composed of aluminum silicate fiber heat insulation material.
- the fuel distribution assembly includes a fuel distribution chamber, a lining plate, and a pressure equalizing net; wherein the fuel distribution chamber is hermetically sleeved on the first heat insulation module, and the lining plate is provided on the fuel The distribution chamber is in contact with the right end face of the first thermal insulation module, and there is a gap between the lining plate and the right wall of the fuel distribution chamber. There are more than one "slot" through groove on the lining plate.
- the air intake end of the battery assembly passes through the corresponding “slot” through slot and the “slot” through slot is sealingly fitted to the outer wall of the inlet end of each battery assembly;
- the pressure equalizing net is provided in the fuel distribution chamber It is located on the right side of the lining plate, on the right side of the pressure distribution network in the fuel distribution chamber is the fuel buffer chamber, on the left side of the pressure distribution network in the fuel distribution chamber is the pressure equalization chamber, and on the side of the fuel buffer chamber
- a fuel conversion interface is provided on the wall, and the fuel input end of each battery component is in communication with the pressure equalization chamber.
- the invention has the advantages that the combustion chamber and the cathode working chamber are convenient for temperature control; the cathode working chamber forms a positive air pressure relative to the combustion chamber, and the residual gas in the cathode working chamber provides combustion support to the combustion chamber to avoid Insufficient combustion in the combustion chamber produces harmful exhaust gas; Corundum tube, which is smaller than the diameter of the tube-type single-cell tube, is used as an intake preheating tube, and the fuel is naturally preheated by using a temperature gradient; the residual fuel after the single-tube cell works passes The exhaust gas combustion pipe is discharged into the combustion chamber and burned in the combustion chamber to avoid the direct discharge of residual fuel.
- the first and second annular heat-insulating runners provide thermal insulation and air temperature adjustment. The heat layer improves the space utilization of the stack, and the stack has a compact structure.
- FIG. 1 is a schematic structural diagram of the present invention
- Figure 2 is a top view of the present invention
- Figure 3 is a sectional view taken along A-A of Figure 2;
- Fig. 4 is a B-B sectional view of Fig. 2;
- FIG. 5 is a sectional view taken along the line C-C of FIG. 2;
- FIG. 7 is a sectional view taken along the line D-D of FIG. 6;
- Fig. 8 is an exploded view of the present invention.
- SOFC microtube stack including:
- the battery assembly thermal insulation inner shell 3, first thermal insulation module 6 and second thermal insulation module 8; the fuel input end of the battery assembly is embedded in the first thermal insulation module 6, and the exhaust output end of the battery assembly is embedded in the second thermal insulation module 8; the second heat insulation module 8 is fixed in the heat insulation inner shell 3 and sealedly cooperates, and the left end surface of the second heat insulation module 8 and the inner wall of the heat insulation inner shell 3 surround a combustion chamber 31 on the side of the combustion chamber 31
- the wall is provided with more than one second through hole 34, and the second heat insulation module 8 is provided with more than one third through hole 81; the first heat insulation module 6 is fixed at the opening of the heat insulation inner shell 3 and tightly cooperates,
- the inner wall of the thermal insulation inner shell 3 and the left end surface of the first thermal insulation module 6 and the right end surface of the second thermal insulation module 8 form a cathode working chamber 32.
- the cathode working chamber 32 communicates with the combustion chamber 31 through the third through hole 81, and the battery assembly is located at the cathode.
- one or more first vent holes 33 are provided on a side wall of the cathode working chamber 32;
- Thermal insulation shell 1 The thermal insulation shell 3 is provided in the thermal insulation shell 1 with a clearance fit.
- a circular boss 11 is provided in the middle of the thermal insulation shell 1, and the annular boss 11 abuts against the outer shell of the thermal insulation shell 3 to form A first annular air-insulated flow channel 12 and a second annular air-insulated flow channel 13;
- the first annular air-insulated flow channel 12 is surrounded on the outer wall of the cathode working chamber 32, and the first vent hole 33 enables the cathode
- the working chamber 32 is in communication with the first annular air-insulated flow passage 12;
- the second annular air-insulated flow passage 13 surrounds the outer wall of the combustion chamber 31, and the second vent hole 34 makes the combustion chamber 31 and the second annular air
- the heat insulation flow channel 13 communicates; an air inlet 14 and an exhaust gas outlet 15 are provided on the heat insulation shell 1, and the air inlet 14 communicates with the first annular air heat insulation flow channel 12, and the exhaust gas exits
- the air port 15 is in communication with the second
- a fuel distribution assembly an air inlet of the fuel distribution assembly is in communication with external fuel, and an air outlet of the fuel distribution assembly is in communication with a fuel input end of the battery assembly so that fuel enters the battery assembly;
- Cathode air heat exchanger 9 the cathode air heat exchanger 9 is provided in the combustion chamber 31, and the air inlet 91 of the cathode air heat exchanger 9 passes through the heat insulation inner shell 3 and the heat insulation shell 1 in order and communicates with the outside world, the cathode The air outlet 92 of the air heat exchanger 9 passes through the second insulation module 8 and communicates with the cathode working chamber 32; and
- Electronic pulse igniter 10 the ignition end of the electronic pulse igniter 10 is located in the combustion chamber 31 through the heat insulation shell 1, the second annular air heat insulation flow channel 13 and the heat insulation inner shell 3, and is inserted into the combustion chamber.
- the fuel enters the fuel buffer chamber 2. After the fuel is equalized in the fuel buffer chamber 2, the fuel enters the battery assembly and reacts. The residual fuel after the reaction of the battery assembly enters the combustion chamber 31, and the electronic pulse igniter 10 ignites the combustion chamber. 31 residual fuel; the air in the cathode air heat exchanger 9 is heated in the combustion chamber, and the heated hot air enters the cathode working chamber 32 to raise the temperature of the cathode working chamber 32, and the gas in the cathode working chamber 32 passes The third through hole 81 enters the combustion chamber 31 to assist combustion, and circulates therethrough. When the operating temperature of the battery module is above 550 degrees, the SOFC microtubule stack starts to work and generates a heat release effect.
- the battery module continues to heat up to 680 degrees, and the air enters the first annular insulating flow channel 12 from the first air inlet 14 And preheating here, the preheated air enters the cathode working chamber 32 through the first vent hole 33 and at the same time reduces the air output in the cathode air heat exchanger 9 to reduce the working temperature of the battery module.
- the air in the combustion chamber 31 is sequentially discharged through the second vent hole 34 and the exhaust gas outlet 15.
- the battery module includes one single battery module 7; the fuel input end of each single battery module 7 is embedded in the first thermal insulation module 6, and the exhaust gas output of each single battery module 7 The end is embedded in the second thermal insulation module 8, and the fuel input end of each single-cell module 7 is in communication with the air outlet of the fuel distribution module; all the single-cell modules 7 are arranged in a rectangular array, and two horizontal single-cell modules 7 adjacent to each other The distance between them can be 1.5mm or 1.75mm or 2mm, and the distance between two adjacent vertical single battery modules 7 is 5mm or 5.5mm or 6mm.
- the length of the preheating tube 72 inserted in the tubular single cell 71 is 9mm or 10mm or 11mm; each of the exhaust gas combustion tubes 73 is a corundum tube, and the outer diameter of the exhaust preheating tube 73 is smaller than that of the tubular single cell 71
- the inner diameter of the tube is 0.15mm or 0.2mm or 0.25mm smaller.
- the wall thickness of the outlet preheating tube 73 is 0.5mm or 1mm or 1.5mm.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
一种SOFC微管电堆,包括保温外壳(1)、电池组件、保温内壳(3)、燃料分配组件、阴极空气换热器(9)、电子脉冲点火器(10)、第一保温模块(6)及第二保温模块(8);第二保温模块(8)与保温内壳(3)配合形成燃烧室(31);第一保温模块(6)与第二保温模块(8)之间形成阴极工作室(32),电池组件位于阴极工作室(32)中,阴极工作室(32)上设有第一通气孔(33);保温内壳(3)与保温外壳(1)配合形成第一环形空气隔热流道(12)及第二环形空气隔热流道(13);保温外壳(1)上设有空气进气口(14)及尾气出气口(15),燃料分配组件的出气口与电池组件的燃料输入端连通;阴极空气换热器(9)设在燃烧室(31)中,阴极空气换热器(9)的出气口(92)与阴极工作室(32)连通;电子脉冲点火器(10)的点火端位于燃烧室(31)中。其具有便于温度控制、燃烧完全,减少废气排放及电堆结构紧凑等优点。
Description
本发明涉及一种SOFC微管电堆。
目前,燃料电池是一种无需经过燃烧过程直接将燃料的化学能转化为电能的高效、清洁发电技术。在多种燃料电池技术中最前沿的是固体氧化物燃料电池(SOFC),除了使用氢气燃料外,它还可以直接使用煤气、天然气、生物质气等各种多组分燃料,燃料适应性广,很容易与现有能源供应系统兼容;同时SOFC具有更高的发电效率,SOFC一次发电效率约45%~60%,热电联供总效率90%;SOFC具有全固态结构,运行寿命长,SOFC目前的使用寿命约8万小时左右。SOFC单电池存在三种不同的技术形态:平板式、管式及板管式,这三种技术形态其工作原理基本相同,但由于其物理结构的变化导致性能差异化;管式可以理解为是将平板卷成筒状,而板管式可以理解为多个管并排在一起。本发明是针对管式技术形态提出的SOFC电池组合技术创新;当今管式技术存在几大难题,其中密封问题、燃料预热问题、热量散失问题及温度调节等是管式技术存在的技术难点。
发明内容
本发明的目的是克服现有技术的不足而提供一种燃烧室与阴极工作室,便于温度控制;阴极工作室形成相对燃烧室的的正向气压,阴极工作室中的余气向燃烧室提供助燃从而避免燃烧室燃烧不足产生有害废气;利用较比管式单电池管的管径更小的刚玉管作为进气预热管,利用温度降温梯度自然预热燃料;单式管电池工作后的残余燃料通过尾气燃烧管排出至燃烧室中并在燃烧室中燃烧,避免残余燃料直接排出;第一环形隔热流道及第二环形隔热流道起到隔热保温的同时又是空气温度调节的换热层,提高了电堆的空间利用率,电堆结构紧凑的SOFC微管电堆。
为了达到上述目的,本发明是这样实现的,其是一种SOFC微管电堆,包括:
电池组件、保温内壳、第一保温模块及第二保温模块;所述电池组件的燃料输入端部嵌于第一保温模块中,电池组件的尾气输出端嵌于第二保温模块中;所述第二保温模块固定在保温内壳中并密封配合,第二保温模块的左端面与保温内壳的内壁围合形成燃烧室,在所述燃烧室的侧壁上设有一个以上的第二通孔,在第二保温模块上设有一个以上第三通孔;所述第一保温模块固定在保温内壳的开口处并密封配合,在保温内壳内位于第一保温模块与第二保温模块之间形成阴极工作室,所述阴极工作室通过第三通孔与燃烧室连通,电池组件位于阴极 工作室中,在阴极工作室的侧壁上设有一个以上的第一通气孔;
保温外壳;所述保温内壳设在保温外壳中且间隙配合,在所述保温外壳的中部设有环形凸台,环形凸台与保温内壳的外壳相抵靠从而形成第一环形空气隔热流道及第二环形空气隔热流道;所述第一环形空气隔热流道环抱在阴极工作室,所述第一通气孔使阴极工作室与第一环形空气隔热流道连通;所述第二环形空气隔热流道环抱燃烧室,所述第二通气孔使燃烧室与第二环形空气隔热流道连通;在所述保温外壳上设有空气进气口及尾气出气口,所述空气进气口与第一环形空气隔热流道连通,所述尾气出气口与第二环形空气隔热流道连通;
燃料分配组件;所述燃料分配组件的进气口与外界燃料连通,燃料分配组件的出气口与电池组件的燃料输入端连通从而使燃料进入电池组件中;
阴极空气换热器;所述阴极空气换热器设在燃烧室中,阴极空气换热器的进气口与外界连通,阴极空气换热器的出气口与阴极工作室连通;以及
电子脉冲点火器;所述电子脉冲点火器的点火端位于燃烧室中从而点燃燃烧室中的燃料。
在本技术方案中,所述电池组件包括二根以上的单电池组件;每根所述单电池组件的燃料输入端部嵌于第一保温模块中,每根单电池组件的尾气输出端嵌于第二保温模块中,每根单电池组件的燃料输入端与燃料分配组件的出气口连通;所有单电池组件呈矩形阵列排布,相邻两根水平的单电池组件之间间距1.5~2mm,相邻两根垂直的单电池组件之间的间距5~6mm。
在本技术方案中,每根所述单电池组件均包括管式单电池、进气预热管及尾气燃烧管;所述进气预热管设在管式单电池的进气口中且进气预热管与管式单电池的插口部位于第一保温模块中,进气预热管的进气口即为单电池组件的燃料输入端;所述尾气燃烧管设在管式单电池的出气口中且尾气燃烧管与管式单电池的插口部位于第二保温模块中,尾气燃烧管的出气口即为单电池组件的尾气输出端。
在本技术方案中,每根所述进气预管是刚玉管,所述进气预热管的管外径比管式单电池的管内径小0.2mm±0.05mm,进气预热管的管壁厚是0.4mm±0.05mm,进气预热管的进气端离第一保温模块的右端面的距离是5mm±1mm,进气预热管位于管式单电池中的长度是10mm±1mm;每根所述尾气燃烧管是刚玉管,所述出气预热管的管外径比管式单电池的管内径小0.2mm±0.05mm,出气预热管的管壁厚是1mm±0.5mm,出气预热管的出气端离第二保温模块的左端面的距离是5mm±1mm,尾气燃烧管位于管式单电池中的长度是10mm±1mm;所述第一保温模块的厚度比第二保温模块的厚度厚10mm±1mm,进气预热管与管式单电池的插口部离第一保温模块的左端面的横向距离是10mm±1mm,尾气燃烧管 与管式单电池的插口部位离第二保温模块的右端面的横向距离是10mm±1mm。
在本技术方案中,所述阴极空气换热器是不锈钢螺管,所述不锈钢管的外径是60mm±1mm,不锈钢管的壁厚0.6mm±0.5mm,所述不锈钢螺管的进气口的端面距保温外壳的左端面的横向距离是15mm±1mm。
在本技术方案中,所述第一保温模块及第二保温模块均是由硅酸铝纤维保温材料组成。
在本技术方案中,所述燃料分配组件包括燃料分配腔室、衬板、均压网;其中,所述燃料分配腔室密封的套设在第一保温模块上,所述衬板设在燃料分配腔室中且与第一保温模块的右端面相贴,在衬板与燃料分配腔室的右壁有间隙,在衬板上设有一个以上的“一字形”通槽,每根所述单电池组件的进气端穿过对应的“一字形”通槽且“一字形”通槽与每根电池组件的进气端处的外壁密封配合;所述均压网设在燃料分配腔室中且位于衬板的右侧,在燃料分配腔室内位于均压网的右侧是燃料缓冲室,在燃料分配腔室内位于均压网的左侧是均压室,在所述燃料缓冲室的侧壁上设有燃料转接口,每根电池组件的燃料输入端与均压室连通。
本发明与现有技术相比的优点为:燃烧室与阴极工作室,便于温度控制;阴极工作室形成相对燃烧室的的正向气压,阴极工作室中的余气向燃烧室提供助燃从而避免燃烧室燃烧不足产生有害废气;利用较比管式单电池管的管径更小的刚玉管作为进气预热管,利用温度降温梯度自然预热燃料;单式管电池工作后的残余燃料通过尾气燃烧管排出至燃烧室中并在燃烧室中燃烧,避免残余燃料直接排出;第一环形隔热流道及第二环形隔热流道起到隔热保温的同时又是空气温度调节的换热层,提高了电堆的空间利用率,电堆结构紧凑。
图1是本发明的结构示意图;
图2是本发明的俯视图;
图3是图2的A-A剖视图;
图4是图2的B-B剖视图;
图5是图2的C-C剖视图;
图6是本发明的主视图;
图7是图6的D-D剖视图;
图8是本发明的分解图。
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
在本发明描述中,术语“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,术语“第一”至“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
如图1及图8所示,其是一种SOFC微管电堆,包括:
电池组件、保温内壳3、第一保温模块6及第二保温模块8;所述电池组件的燃料输入端部嵌于第一保温模块6中,电池组件的尾气输出端嵌于第二保温模块8中;所述第二保温模块8固定在保温内壳3中并密封配合,第二保温模块8的左端面与保温内壳3的内壁围合成燃烧室31,在所述燃烧室31的侧壁上设有一个以上的第二通孔34,在第二保温模块8上设有一个以上第三通孔81;所述第一保温模块6固定在保温内壳3的开口处并密封配合,保温内壳3内壁与第一保温模块6左端面及第二保温模块8右端面围合成阴极工作室32,所述阴极工作室32通过第三通孔81与燃烧室31连通,电池组件位于阴极工作室32中,在阴极工作室32的侧壁上设有一个以上的第一通气孔33;
保温外壳1;所述保温内壳3设在保温外壳1中且间隙配合,在所述保温外壳1的中部设有环形凸台11,环形凸台11与保温内壳3的外壳相抵靠从而形成第一环形空气隔热流道12及第二环形空气隔热流道13;所述第一环形空气隔热流道12环抱在阴极工作室32的外壁上,所述第一通气孔33使阴极工作室32与第一环形空气隔热流道12连通;所述第二环形空气隔热流道13环抱燃烧室31的外壁上,所述第二通气孔34使燃烧室31与第二环形空气隔热流道13连通;在所述保温外壳1上设有空气进气口14及尾气出气口15,所述空气进气口14与第一环形空气隔热流道12连通,所述尾气出气口15与第二环形空气隔热流道13连通;
燃料分配组件;所述燃料分配组件的进气口与外界燃料连通,燃料分配组件的出气口与电池组件的燃料输入端连通从而使燃料进入电池组件中;
阴极空气换热器9;所述阴极空气换热器9设在燃烧室31中,阴极空气换热器9的进气口91依次穿过保温内壳3及保温外壳1后与外界连通,阴极空气换热器9的出气口92穿过第二保温模块8后与阴极工作室32连通;以及
电子脉冲点火器10;所述电子脉冲点火器10的点火端位于燃烧室31依次穿过为保温外壳1、第二环形空气隔热流道13及保温内壳3插入燃烧室。
工作时,燃料进入燃料缓冲室2中,燃料在燃料缓冲室2中均压后进入电池组件中并进行反应,电池组件反应后的残余燃料进入燃烧室31中,电子脉冲点火器10点燃燃烧室31的残余燃料;阴极空气换热器9中的空气在在燃烧室中进行加热,加热后的炽热空气进入阴极工作室32中使阴极工作室32的温度上升,阴极工作室32中的气体通过第三通孔81进入燃烧室31中助燃,以此循环。当电池组件的工作温度在550度以上,SOFC微管电堆开始工作并产生放热效应,电池组件持续升温至680度,空气从第一空气进气口14进入第一环形隔热流道12中并在此预热,预热后的空气经第一通气孔33进入阴极工作室32并同时减少阴极空气换热器9中的空气输出从而降低电池组件的工作温度。燃烧室31中的空气依次经过第二通气孔34及尾气出气口15排出。
在本实施例中,所述电池组件包括一根的单电池组件7;每根所述单电池组件7的燃料输入端部嵌于第一保温模块6中,每根单电池组件7的尾气输出端嵌于第二保温模块8中,每根单电池组件7的燃料输入端与燃料分配组件的出气口连通;所有单电池组件7呈矩形阵列排布,相邻两根水平的单电池组件7之间间距可以是1.5mm或1.75mm或2mm,相邻两根垂直的单电池组件7之间的间距5mm或5.5mm或6mm。
在本实施例中,每根所述单电池组件7均包括管式单电池71、进气预热管72及尾气燃烧管73,所述进气预热管72插设在管式单电池71的进气口中且进气预热管72与管式单电池71的插口部位于第一保温模块6中,进气预热管72的进气口即为单电池组件7的燃料输入端,所述尾气燃烧管73插设在管式单电池71的出气口中且尾气燃烧管73与管式单电池71的插口部位于第二保温模块8中,尾气燃烧管73的出气口即为单电池组件7的尾气输出端。
在本实施例中,每根所述进气预管72是刚玉管,所述进气预热管72的管外径比管式单电池71的管内径少0.15mm或0.2mm或0.25mm,进气预热管72的管壁厚是0.35mm或0.4mm或0.45mm,进气预热管72的进气端离第一保温模块6的右端面的距离是4mm或5mm或6mm,进气预热管72插在管式单电池71中的长度是9mm或10mm或11mm;每根所述尾气燃烧管73是刚玉管,所述出气预热管73的管外径比管式单电池71的管内径小0.15mm或0.2mm或0.25mm,出气预热管73的管壁厚是0.5mm或1mm或1.5mm,出气预热管73的出气端离第二保温模块8的左端面的距离是4mm或5mm或6mm,尾气燃烧管73插在管式单电池71中的长度是9mm或10mm或11mm;所述第一保温模块6的厚度比第 二保温模块8的厚度厚9mm或10mm或11mm,进气预热管72与管式单电池71的插口部离第一保温模块6的左端面的横向距离是9mm或10mm或11mm,尾气燃烧管73与管式单电池71的插口部位离第二保温模块8的右端面的横向距离是9mm或10mm或11mm。
在本实施例中,所述阴极空气换热器9是不锈钢螺管,所述不锈钢管的外径是59mm或60mm或61mm,不锈钢管的壁厚0.1mm或0.6mm或1.1mm,所述不锈钢螺管的进气口92的端面距保温外壳1的左端面的横向距离是14mm或15mm或16mm。
在本实施例中,所述第一保温模块6及第二保温模块8均是由硅酸铝纤维保温材料组成。
在本实施例中,所述燃料分配组件包括:燃料分配腔室2、衬板5、均压网4;其中,所述衬板5设在燃料分配腔室2的左部,衬板5的左端面与燃料分配腔室2的内壁配合密封罩装在第一保温模块6的右部,在衬板5上设有一个以上的“一字形”通槽51,每根所述单电池组件7的进气端穿过对应的“一字形”通槽51且“一字形”通槽51与每根电池组件7的进气端处的外壁密封配合;所述均压网4设在燃料分配腔室2中且位于衬板5的右侧,所述燃料分配腔室2内壁与均压网4的右侧面围合形成燃料缓冲室211,在所述燃料缓冲室211的侧壁上设有燃料转接口23;均压网4的左侧面、燃料分配器腔室2的内壁及与衬板5右侧面围合形成均压室212,每根电池组件7的燃料输入端与均压室212连通。
以上结合附图对本发明的实施方式作出详细说明,但本发明不局限于所描述的实施方式。对于本领域的普通技术人员而言,在不脱离本发明的原理和宗旨的情况下对这些实施方式进行多种变化、修改、替换及变形仍落入在本发明的保护范围内。
Claims (7)
- 一种SOFC微管电堆,其特征在于包括:电池组件、保温内壳(3)、第一保温模块(6)及第二保温模块(8);所述电池组件的燃料输入端部嵌于第一保温模块(6)中,电池组件的尾气输出端嵌于第二保温模块(8)中;所述第二保温模块(8)固定在保温内壳(3)中并密封配合,第二保温模块(8)的左端面与保温内壳(3)的内壁围合形成燃烧室(31),在所述燃烧室(31)的侧壁上设有一个以上的第二通孔(34),在第二保温模块(8)上设有一个以上第三通孔(81);所述第一保温模块(6)固定在保温内壳(3)的开口处并密封配合,在保温内壳(3)内位于第一保温模块(6)与第二保温模块(8)之间形成阴极工作室(32),所述阴极工作室(32)通过第三通孔(81)与燃烧室(31)连通,电池组件位于阴极工作室(32)中,在阴极工作室(32)的侧壁上设有一个以上的第一通气孔(33);保温外壳(1);所述保温内壳(3)设在保温外壳(1)中且间隙配合,在所述保温外壳(1)的中部设有环形凸台(11),环形凸台(11)与保温内壳(3)的外壳相抵靠从而形成第一环形空气隔热流道(12)及第二环形空气隔热流道(13);所述第一环形空气隔热流道(12)环抱在阴极工作室(32),所述第一通气孔(33)使阴极工作室(32)与第一环形空气隔热流道(12)连通;所述第二环形空气隔热流道(13)环抱燃烧室(31),所述第二通气孔(34)使燃烧室(31)与第二环形空气隔热流道(13)连通;在所述保温外壳(1)上设有空气进气口(14)及尾气出气口(15),所述空气进气口(14)与第一环形空气隔热流道(12)连通,所述尾气出气口(15)与第二环形空气隔热流道(13)连通;燃料分配组件;所述燃料分配组件的进气口与外界燃料连通,燃料分配组件的出气口与电池组件的燃料输入端连通从而使燃料进入电池组件中;阴极空气换热器(9);所述阴极空气换热器(9)设在燃烧室(31)中,阴极空气换热器(9)的进气口(91)与外界连通,阴极空气换热器(9)的出气口(92)与阴极工作室(32)连通;以及电子脉冲点火器(10);所述电子脉冲点火器(10)的点火端位于燃烧室(31)中从而点燃燃烧室(31)中的燃料。
- 根据权利要求1所述的SOFC微管电堆,其特征在于所述电池组件包括二根以上的单电池组件(7);每根所述单电池组件(7)的燃料输入端部嵌于第一保温模块(6)中,每根单电池组件(7)的尾气输出端嵌于第二保温模块(8)中,每根单电池组件(7)的燃料输入端与燃料分配组件的出气口连通;所有单电池组件(7)呈矩形阵列排布,相邻两根水平的单电池组件(7)之间间距1.5~2mm,相邻两根垂直的单电池组件(7)之间的间距5~ 6mm。
- 根据权利要求2所述的SOFC微管电堆,其特征在于每根所述单电池组件(7)均包括管式单电池(71)、进气预热管(72)及尾气燃烧管(73);所述进气预热管(72)设在管式单电池(71)的进气口中且进气预热管(72)与管式单电池(71)的插口部位于第一保温模块(6)中,进气预热管(72)的进气口即为单电池组件(7)的燃料输入端;所述尾气燃烧管(73)设在管式单电池(71)的出气口中且尾气燃烧管(73)与管式单电池(71)的插口部位于第二保温模块(8)中,尾气燃烧管(73)的出气口即为单电池组件(7)的尾气输出端。
- 根据权利要求3所述的SOFC微管电堆,其特征在于每根所述进气预管(72)是刚玉管,所述进气预热管(72)的管外径比管式单电池(71)的管内径小0.2mm±0.05mm,进气预热管(72)的管壁厚是0.4mm±0.05mm,进气顶热管(72)的进气端离第一保温模块(6)的右端面的距离是5mm±1mm,进气预热管(72)位于管式单电池(71)中的长度是10mm±1mm;每根所述尾气燃烧管(73)是刚玉管,所述出气预热管(73)的管外径比管式单电池(71)的管内径小0.2mm±0.05mm,出气预热管(73)的管壁厚是1mm±0.5mm,出气预热管(73)的出气端离第二保温模块(8)的左端面的距离是5mm±1mm,尾气燃烧管(73)位于管式单电池(71)中的长度是10mm±1mm;所述第一保温模块(6)的厚度比第二保温模块(8)的厚度厚10mm±1mm,进气预热管(72)与管式单电池(71)的插口部离第一保温模块(6)的左端面的横向距离是10mm±1mm,尾气燃烧管(73)与管式单电池(71)的插口部位离第二保温模块(8)的右端面的横向距离是10mm±1mm。
- 根据权利要求1所述的SOFC微管电堆,其特征在于所述阴极空气换热器(9)是不锈钢螺管,所述不锈钢管的外径是60mm±1mm,不锈钢管的壁厚0.6mm±0.5mm,所述不锈钢螺管的进气口(92)的端面距保温外壳(1)的左端面的横向距离是15mm±1mm。
- 根据权利要求1所述的SOFC微管电堆,其特征在于所述第一保温模块(6)及第二保温模块(8)均是由硅酸铝纤维保温材料组成。
- 根据权利要求2所述的SOFC微管电堆,其特征在于所述燃料分配组件包括燃料分配腔室(2)、衬板(5)、均压网(4);其中,所述燃料分配腔室(2)密封的套设在第一保温模块(6)上,所述衬板(5)设在燃料分配腔室(2)中且与第一保温模块(6)的右端面相贴,在衬板(5)与燃料分配腔室(2)的右壁有间隙,在衬板(5)上设有一个以上的“一字形”通槽(51),每根所述单电池组件(7)的进气端穿过对应的“一字形”通槽(51)且 “一字形”通槽(51)与每根电池组件(7)的进气端处的外壁密封配合;所述均压网(4)设在燃料分配腔室(2)中且位于衬板(5)的右侧,在燃料分配腔室(2)内位于均压网(4)的右侧是燃料缓冲室(211),在燃料分配腔室(2)内位于均压网(4)的左侧是均压室(212),在所述燃料缓冲室(211)的侧壁上设有燃料转接口(23),每根电池组件(7)的燃料输入端与均压室(212)连通。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811007454.6 | 2018-08-31 | ||
CN201811007454.6A CN109326801B (zh) | 2018-08-31 | 2018-08-31 | Sofc微管电堆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020042353A1 true WO2020042353A1 (zh) | 2020-03-05 |
Family
ID=65264242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/114037 WO2020042353A1 (zh) | 2018-08-31 | 2018-11-06 | Sofc微管电堆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109326801B (zh) |
WO (1) | WO2020042353A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114551926B (zh) * | 2020-11-25 | 2024-03-26 | 浙江臻泰能源科技有限公司 | 一种高温燃料电池电堆 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1411571A2 (en) * | 2002-06-24 | 2004-04-21 | Delphi Technologies, Inc. | Solid-oxide fuel cell assembly having a thermal enclosure within a structural enclosure |
CN102306818A (zh) * | 2011-08-23 | 2012-01-04 | 西安交通大学 | 管状固体氧化物燃料电池堆结构及其预热方法 |
CN106816618A (zh) * | 2017-02-11 | 2017-06-09 | 佛山索弗克氢能源有限公司 | 管式燃料电池 |
CN106887617A (zh) * | 2017-02-11 | 2017-06-23 | 佛山索弗克氢能源有限公司 | 燃料电池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100592562C (zh) * | 2005-07-27 | 2010-02-24 | 京瓷株式会社 | 燃料电池模块 |
-
2018
- 2018-08-31 CN CN201811007454.6A patent/CN109326801B/zh active Active
- 2018-11-06 WO PCT/CN2018/114037 patent/WO2020042353A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1411571A2 (en) * | 2002-06-24 | 2004-04-21 | Delphi Technologies, Inc. | Solid-oxide fuel cell assembly having a thermal enclosure within a structural enclosure |
CN102306818A (zh) * | 2011-08-23 | 2012-01-04 | 西安交通大学 | 管状固体氧化物燃料电池堆结构及其预热方法 |
CN106816618A (zh) * | 2017-02-11 | 2017-06-09 | 佛山索弗克氢能源有限公司 | 管式燃料电池 |
CN106887617A (zh) * | 2017-02-11 | 2017-06-23 | 佛山索弗克氢能源有限公司 | 燃料电池 |
Also Published As
Publication number | Publication date |
---|---|
CN109326801A (zh) | 2019-02-12 |
CN109326801B (zh) | 2019-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2624713C (en) | Solid oxide fuel cell system | |
CN106816618B (zh) | 管式燃料电池 | |
US20040043267A1 (en) | Fuel cell battery with an integrated heat exchanger | |
CN111326766B (zh) | 一种燃料电池系统阴极预热装置 | |
WO2014129656A1 (ja) | 燃料電池モジュール | |
CN112072146B (zh) | 一种高温燃料电池发电系统用换热、燃烧、重整器组件及方法 | |
JP2004063355A (ja) | 燃料電池 | |
JP2011522375A (ja) | 固体酸化物燃料電池システム | |
CN112864416B (zh) | 电堆堆塔和电堆塔模块 | |
US6756144B2 (en) | Integrated recuperation loop in fuel cell stack | |
WO2020042353A1 (zh) | Sofc微管电堆 | |
JP2003282132A (ja) | 燃料電池 | |
JP5203598B2 (ja) | 固体電解質燃料電池モジュール及び固体電解質燃料電池の空気供給方法 | |
JP3796182B2 (ja) | 燃料電池 | |
EP3811447B1 (en) | Electrochemical assembly including heat exchanger | |
JP3268197B2 (ja) | 固体電解質燃料電池モジュール | |
JP2005005074A (ja) | 燃料電池 | |
CN111326762A (zh) | 燃料电池双极板、电堆及燃料电池系统 | |
CN212342669U (zh) | 高温燃料电池发电系统用换热、燃烧、重整器组件 | |
WO2017222265A1 (ko) | 온도 조절용 열교환 수단을 구비한 연료전지 | |
CN108871013A (zh) | 一种固体氧化物燃料电池高温气体换热器 | |
JPS63128559A (ja) | 固体電解質燃料電池モジユ−ル | |
JP5216197B2 (ja) | 燃料電池発電システム | |
JP2008251493A (ja) | 燃料電池モジュール | |
CN211146553U (zh) | 一种插管式空气预热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18931655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18931655 Country of ref document: EP Kind code of ref document: A1 |