WO2020042252A1 - 光发射组件以及光模块 - Google Patents

光发射组件以及光模块 Download PDF

Info

Publication number
WO2020042252A1
WO2020042252A1 PCT/CN2018/106990 CN2018106990W WO2020042252A1 WO 2020042252 A1 WO2020042252 A1 WO 2020042252A1 CN 2018106990 W CN2018106990 W CN 2018106990W WO 2020042252 A1 WO2020042252 A1 WO 2020042252A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
shell
packaging
light emitting
chip
Prior art date
Application number
PCT/CN2018/106990
Other languages
English (en)
French (fr)
Inventor
李林科
林雪枫
吴天书
杨现文
张健
Original Assignee
武汉联特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉联特科技有限公司 filed Critical 武汉联特科技有限公司
Publication of WO2020042252A1 publication Critical patent/WO2020042252A1/zh
Priority to US17/163,056 priority Critical patent/US11320609B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4279Radio frequency signal propagation aspects of the electrical connection, high frequency adaptations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4285Optical modules characterised by a connectorised pigtail
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Definitions

  • the invention relates to the field of optical communication technology, and in particular to a light emitting component and an optical module.
  • high-speed optical modules generally use integrated multi-channel wavelength division multiplexing optical components to achieve the purpose of reducing the size of the optical module.
  • Traditional light-emitting components usually consist of a package housing, an adapter component, a light-emitting chip LD, Optical wavelength division multiplexer (MUX), lens, isolator and flexible circuit board (FPC).
  • the package housing is mainly used to fix optical components and adapter components. Optical precision coupling has been achieved.
  • Optical modules are fixed by optical adapters.
  • the component is used to fix the light emitting component.
  • the FPC is used for electrical connection of high-speed signals to the PCB by soldering, and the flexibility of the FPC is used to compensate for assembly tolerances between the component and the module housing. As the rate becomes higher and higher, the application of the traditional packaging method in the next-generation optical module becomes difficult.
  • FPC generally has a longer length to adapt to assembly, this length will generate more signal loss, on the other hand, FPC will introduce multiple impedance discontinuities such as solder pads, these discontinuities The point also significantly increases the loss of high-frequency signals, and as the rate becomes higher and higher, the effect of this loss becomes greater.
  • the object of the present invention is to provide a light emitting component and an optical module.
  • the LD chip component and the optical wavelength division multiplexer are separated from each other, and the processing of the optical signal is divided into two steps. Yield is also conducive to the implementation of the installation process.
  • an embodiment of the present invention provides the following technical solution: an optical transmitting component including an LD chip component, an optical wavelength division multiplexer, a first packaging shell, and a second packaging shell;
  • the LD chip component is used for transmitting light signals and processing
  • the first packaging shell is used for packaging the LD chip component
  • the optical wavelength division multiplexer is configured to receive and combine the optical signals processed by the LD chip components into a beam of light;
  • the second packaging shell is used for packaging the optical wavelength division multiplexer
  • the first package shell is fixedly connected to the second package shell to form a first cavity for packaging the LD chip component and a second cavity for packaging the optical wavelength division multiplexer.
  • a first cavity is located in the first packaging shell, and a second cavity is located in the second packaging shell.
  • the second chamber has an opening blocked by the first packaging shell, and the optical signal emitted by the LD chip component enters the second chamber from the first packaging shell corresponding to the opening.
  • the LD chip component includes an LD chipset, an LD emission collimating lens group, and an isolator group;
  • the LD chipset is used for transmitting optical signals
  • the LD exiting collimating lens group is used to shape the optical signal
  • the isolator group matches the wavelength of the optical signal and is used to isolate the reflected light from entering the LD chipset;
  • the LD chip group, the LD exiting collimating lens group, and the isolator group are sequentially arranged along the optical path of the optical signal transmission.
  • a glass plate light window is installed on a side wall of the first package shell far from the LD chip component, and the optical signal emitted by the LD chip component is transmitted by the glass plate light window and transmitted to the light wave.
  • Sub-multiplexer is installed on a side wall of the first package shell far from the LD chip component, and the optical signal emitted by the LD chip component is transmitted by the glass plate light window and transmitted to the light wave.
  • the glass plate light window is disposed obliquely and has an included angle with a side wall of the LD chip component, and the included angle ranges from 2 to 10 degrees.
  • a coupling lens is provided on a side of the second package shell remote from the first package shell.
  • an optical fiber adapter group is further installed on the second packaging shell, and the optical fiber adapter group includes an optical fiber, a coupling ferrule, and an adapter, and two ends of the optical fiber are in communication with the coupling ferrule and the adapter, respectively.
  • the coupling ferrule is in communication with the coupling lens, and the adapter is used for transmitting an optical signal to another optical module.
  • a sealing cover is mounted on the first package shell and the second package shell.
  • a side of the first package shell remote from the second package shell has a groove, the groove penetrates into the first package shell, a PCB board is installed in the groove, and the PCB board It is welded to the LD chip component by a gold wire bonding wire.
  • An optical module includes a housing, and further includes a light receiving component and one of the foregoing light emitting components.
  • the light receiving component and the light emitting component are both disposed on the On the shell.
  • the LD chip component and the optical wavelength division multiplexer are separated, and the processing of the optical signal is divided into two steps, which not only improves the yield, but also facilitates the implementation of the installation process.
  • the PCB board and the light-emitting component are welded by gold wire bonding wires.
  • the length of the gold wire bonding wires can be shortened according to actual needs.
  • the impedance discontinuity of the signal transmission line is reduced.
  • the gold wire pads are much smaller than the solder pads of the FPC board, which greatly saves PCB board layout space and makes it possible to increase the number of channels in the same volume.
  • the flexibility of the optical fiber can be used to effectively compensate for assembly tolerances, eliminate stress, and avoid the problem of component light loss.
  • FIG. 1 is a schematic structural diagram of a light emitting component according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a first package shell, a sealing cover plate, and a PCB board of a light emitting component according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an optical fiber adapter group of a light emitting component according to an embodiment of the present invention
  • 1-LD chip component 10-LD chipset; 100-LD chip; 11-LD output collimating lens group; 110-LD output collimating lens; 12-isolator group; 120-isolator; 2-optical wavelength division multiplexer; 3-first package shell; 30-first chamber; 31-glass plate light window; 32-groove; 4-second package shell; 40-second chamber; 41- Coupling lens; 5-fiber adapter set; 50-fiber; 51-coupling ferrule; 52-adapter; 6-sealing cover; 7-PCB board.
  • an embodiment of the present invention provides a light emitting component including an LD chip component 1, an optical wavelength division multiplexer 2, a first packaging shell 3, and a second packaging shell 4.
  • the LD chip component 1 is used for transmitting optical signals and optimized optical signals
  • the first packaging shell 3 is used for packaging the LD chip component 1
  • the optical wavelength division multiplexer 2 is used for receiving the The light signals emitted by the LD chip component 1 are combined and combined into a beam of light
  • the second package shell 4 is used to package the optical wavelength division multiplexer 2
  • the first package shell 3 and the second package shell 4 Fixedly connected to form a first cavity 30 for packaging the LD chip component 1 and a second cavity 40 for packaging the optical wavelength division multiplexer 2; the first cavity 30 is located in the first cavity 30 In a packaging shell 3, the second cavity 40 is located in the second packaging shell 4.
  • the number of light wave multiplexing needs to be increased, and considering the miniaturization of the package, only more LD chips that can generate light waves and other matching LD chips can be used.
  • the parts are integrated in a shell, and the yield will decrease when there are more parts. For example, when there is only one light wave, the yield may reach 98%. However, if there are more light waves, the formula for calculating the yield is multiple. Multiplying by 98%, it is clear that the yield has been reduced a lot, not to mention that there are other cooperating components integrated in one case for processing, which undoubtedly greatly affects the yield.
  • the first package shell 3 separately packages the LD chip component 1 and the second package shell 4 separately packages the optical wavelength division multiplexer 2, and the LD chip component 1 and the optical wavelength division multiplexer 2 are independently opened.
  • the optical signal processing is divided into two steps, which not only improves the yield, but also facilitates the implementation of the installation process.
  • the second cavity 40 has an opening blocked by the first packaging shell 3, and the optical signal emitted by the LD chip component 1 is transmitted by the first A packaging shell 3 enters the second cavity 40 corresponding to the opening.
  • the side of the second package shell 4 near the first package shell 3 has no sidewall, and here is an opening.
  • the first package shell 3 and the second package shell 4 shares one side wall. This design eliminates the need for a side wall compared to the use of two first packaging shells 3 to form two cavities, on the one hand, it reduces the processing requirements of the second packaging shell, on the other hand, it saves space and enables components Shorter length.
  • the LD chip component 1 includes an LD chip group 10, an LD emission collimating lens group 11, and an isolator group 12.
  • the LD chipset 10 is used for transmitting optical signals; the LD exiting collimating lens group 11 is used for shaping the optical signals; and the isolator group 12 is used to match the wavelength of the optical signals And used to isolate the reflected light from entering the LD chipset 10; the LD chipset 10, the LD exit collimating lens group 11 and the isolator group 12 are sequentially arranged along the optical path of the optical signal transmission.
  • the function of the LD chipset 10 is to emit optical signals of different wavelengths.
  • LD chips are used to transmit optical signals of four wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively, and then LD is used to emit and collimate.
  • the lens group 11 shapes the above-mentioned optical signals, and then transmits them to the optical wavelength division multiplexer 2 through the isolator group 12 to combine them into a beam of light, but in the process, the phenomenon of reflected light will occur.
  • the chip uses the isolator group 12 to isolate and treat these reflected light, thereby avoiding the degradation of high-speed optical signals.
  • the LD chip group 10, the LD emission collimating lens group 11 and the isolator group 12 are all disposed in the first packaging shell 3, and a better quality optical signal can be obtained through their cooperative processing.
  • the LD chipset 10 includes a plurality of LD chips
  • the LD emission collimating lens group 11 includes a plurality of LD emission collimating lenses 110 corresponding to the LD chips 100 one-to-one.
  • the isolator group 12 includes a plurality of isolator 120 corresponding to a plurality of the LD output collimating lenses, and each of the LD chips 100 emits a light signal through the LD output collimating lens 110 corresponding thereto. After shaping, it passes through the corresponding isolator 120 and enters the optical wavelength division multiplexer 2.
  • the numbers of the LD chip 100, the LD emission collimating lens 110, and the isolator 120 are all the same, so that one-to-one corresponding processing of optical signals can be guaranteed.
  • the number of LD exit collimating lenses 110 is also two, and the number of isolator 120 is also two.
  • the LD output collimating lens in this embodiment may use an LD coupling lens 41.
  • a side wall of the first package shell 3 far from the LD chip component 1 is installed with a glass plate light window 31.
  • the optical signal is transmitted through the glass plate light window 31 and transmitted to the optical wavelength division multiplexer 2.
  • the glass plate light window 31 is disposed obliquely, and has an included angle with the side wall, and the included angle ranges from 2 to 10 degrees. Through the inclined state, the glass light window can be reduced. When the included angle of 8 ° is used, the light reflection can be greatly reduced.
  • a coupling lens 41 is provided on a side of the second package shell 4 remote from the first package shell 3, and the coupling lens 41 is configured to receive the light wave.
  • the optical signals synthesized by the multiplexer 2 are divided and coupled.
  • the coupling lens 41 may perform beam shaping on the optical signal processed by the optical wavelength division multiplexer 2 again, so as to be transmitted to a light receiving component of another optical module.
  • the second package shell 4 is further installed with an optical fiber adapter group 5.
  • the optical fiber adapter group 5 includes an optical fiber 50, a coupling ferrule 51, and an adapter 52. Both ends of 50 are in communication with the coupling ferrule 51 and the adapter 52, the coupling ferrule 51 is in communication with the coupling lens 41, and the adapter 52 is used for transmitting optical signals to another optical module.
  • the purpose of the optical fiber adapter group 5 is to transmit optical signals to another optical module.
  • this transmission method By adopting this transmission method, on the one hand, it can solve the problem of small packaging in the existing module that causes difficult packaging, because the flexible characteristics of the optical fiber 50 can be used to couple the light after combining waves in a narrow space according to a special bending method.
  • the signal is transmitted to another optical module.
  • it can also solve the hard connection between the existing optical component and the PCB board 7.
  • By using the flexibility of the optical fiber 50 it is effective Compensating assembly tolerances, eliminating stress, and avoiding the problem of component light loss.
  • a sealing cover plate 6 is installed on the first packaging shell 3 and the second packaging shell 4, and one of the sealing cover plates 6 is used for The LD chip component 1 is packaged in the first package shell 3, and the other sealing cap is used to package the optical wavelength division multiplexer 2 in the second package shell 4.
  • installing the sealing cover plate 6 can protect against dust and water vapor, and improve reliability.
  • a side of the first package shell 3 remote from the second package shell 4 has a groove 32, and a PCB board is installed in the groove 32. 7.
  • the PCB board 7 and the groove 32 are welded by gold wire bonding wires.
  • the groove 32 is used to insert the optical module PCB board 7, and the groove thickness of the groove 32 is slightly larger than the thickness of the PCB board 7, so that a gold wire bonding connection can be performed between the PCB and the LD chip, so that the bonding
  • the wire is short enough to reduce the impedance discontinuity of the signal transmission line, and also avoids the problem of insufficient space on the PCB 7 caused by the oversized pads caused by the FPC (flexible circuit board) connection in the prior art, making the same volume It becomes possible to increase the number of channels within.
  • glue is used for filling and sealing at the places to be connected.
  • the first packaging shell 3, the glass window, the PCB board 7, and the sealing cover 6 are filled and sealed with glue.
  • An embodiment of the present invention provides a light module, which includes a housing, a light receiving component, and the above-mentioned light emitting component.
  • the light receiving component and the light emitting component are both disposed on the housing.
  • the above-mentioned light emitting component can be used in a conventional optical module, so that the yield of the optical module is improved, and the installation process is facilitated in real time.
  • the wire is welded by a gold wire, according to actual needs Shortening the length of the gold wire bonding wire, on the one hand, reduces the impedance discontinuity of the signal transmission line, on the other hand, the gold wire pads on the PCB board 7 are much smaller than the solder pads of the FPC board, which greatly saves the PCB board 7
  • the layout space makes it possible to increase the number of channels in the same volume, and by using the optical fiber adapter group 5, the flexibility of the optical fiber 50 can effectively compensate for assembly tolerances, eliminate stress, and avoid the problem of component light loss.
  • the above-mentioned light emitting component and light receiving component may have two groups to achieve dual transmission and double receiving, that is, two light emitting components are arranged side by side, two light receiving components are also arranged side by side, two There is a certain distance between the light emitting component and the two light receiving components to ensure that the optical fiber 50 of the light receiving component can be extended.
  • two light emitting components and the two light receiving components are placed one behind the other, which can effectively solve the small space requirement. Puzzle.
  • the optical fibers in the two sets of the light emitting components are defined as the first optical fiber and the second optical fiber, and the bending manners of the first optical fiber and the second optical fiber are optimized.
  • the first optical fiber and the second optical fiber are both bent into a ring shape, and both are located above the two second packaging shells 4 and are located in an installation area of the housing.
  • the first optical fiber is emitted outward from the end of the second encapsulation case 4 and is bent in the direction of the second encapsulation case 4 adjacent to it, and then continues to be bent back to form a ring shape, and then Into another optical module; similarly, the second optical fiber is emitted outward from the end of the second encapsulation case 4 and is bent toward the second encapsulation case 4 adjacent to it, and then continues to be bent back to form One ring and connected to another optical module.
  • bending try to bend around a large circle as long as it does not exceed the range of the shell. Through this bending method, the ends of the fiber can be ensured to the greatest extent that they will not be damaged during bending, and the purpose of transmitting optical signals is also achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及光通信技术领域,提供了一种光发射组件,包括LD芯片构件、光波分复用器、第一封装壳以及第二封装壳;第一封装壳与第二封装壳固定连接,以形成用于封装LD芯片构件的第一腔室和用于封装光波分复用器的第二腔室,第一腔室位于所述第一封装壳内,第二腔室位于所述第二封装壳内。还提供一种光模块,包括壳体,还包括光接收组件以及上述的一种光发射组件,所述光接收组件以及所述光发射组件均设于所述壳体上。本发明通过采用两段式结构,将LD芯片构件和光波分复用器独立开来,将光信号的处理分为两步进行,既提高了良率,还利于安装工艺实施;通过采用光纤适配器组,利用光纤的柔韧性可以有效补偿装配公差,消除应力,避免组件应力掉光问题。

Description

光发射组件以及光模块 技术领域
本发明涉及光通信技术领域,具体为一种光发射组件以及光模块。
背景技术
更高速率、更高集成、更小封装一直是高速光模块的发展方向,目前小封装尺寸的100G QSFP28光收发模块已经在数据中心和以太网获得大批量的应用,下一代的光模块在未来几年将是200G、400G,随后向800G发展,为了达到光交换机光接口高密度需求,200G、400G甚至是800G光模块的封装要保持和QSFP28相当的外形尺寸,这对光模块的封装设计提出了很高的挑战。而光模块的四个主要构成部分光发射组件、光接收组件、PCB、封装外壳中,光发射组件的封装一直最具难度的部分。
目前,高速光模块中一般采用集成的多路波分复用光组件,用以达到减小光模块外形尺寸的目的,传统的光发射组件通常由封装壳体、适配器组件、光发射芯片LD、光学波分复用器(MUX)、透镜、隔离器和柔性电路板(FPC)等组成,其中封装壳体主要用于固定各光学元件和适配器组件已达到光学精密耦合,光模块通过固定光适配器组件用以固定光发射组件,FPC通过焊接与PCB进行高速信号的电连接,并通过FPC的柔性来补偿组件与模块外壳的装配公差。随着速率越来越高,传统的封装方式在下一代的光模块中的应用变得困难。
从信号良率考虑,考虑到随着时代的进步,需要的速率越来越高,就必然会需要增加光波复用的数量,如此在小型化的尺寸内就需要集成更多的LD芯片,那么势必会造成壳体内的器件过多,而本领域技术人员知晓,器件越多,那么处理后的光信号的良率就会越低,而且如此密集的安装还会影响到安装工艺的实施,影响模块的批量制作。
从信号质量考虑,一方面,FPC一般具有较长的长度来适应组装,这个长 度会产生更多的信号损失,另一方面,FPC会引入多个阻抗不连续点如焊接焊盘,这些不连续点也显著的增加了高频信号损失,而且伴随着速率越来越高,这种损耗的影响越来越大。
从结构方面考虑,为适应焊接FPC焊盘设计不能过小,导致PCB上预留的焊盘占据了大量的布板空间,同样随着模块速率越来越高,模块的通道数量会增加,这种空间占用会愈发严重,使模块的小型化封装变得困难。
发明内容
本发明的目的在于提供一种光发射组件以及光模块,通过采用两段式结构,将LD芯片构件和光波分复用器独立开来,将光信号的处理分为两步进行,既提高了良率,还利于安装工艺实施。
为实现上述目的,本发明实施例提供如下技术方案:一种光发射组件,包括LD芯片构件、光波分复用器、第一封装壳以及第二封装壳;
所述LD芯片构件,用于发射光信号并处理;
所述第一封装壳,用于封装所述LD芯片构件;
所述光波分复用器,用于接收所述LD芯片构件处理后的光信号并合波成一束光;
所述第二封装壳,用于封装所述光波分复用器;
所述第一封装壳与所述第二封装壳固定连接,以形成用于封装所述LD芯片构件的第一腔室和用于封装所述光波分复用器的第二腔室,所述第一腔室位于所述第一封装壳内,所述第二腔室位于所述第二封装壳内。
进一步,所述第二腔室具有由所述第一封装壳封堵的开口,且所述LD芯片构件发出的光信号由所述第一封装壳对应所述开口处进入所述第二腔室内。
进一步,所述LD芯片构件包括LD芯片组、LD出射准直透镜组、以及隔离器组;
所述LD芯片组,用于发射光信号;
所述LD出射准直透镜组,用于将所述光信号进行整形处理;
所述隔离器组,匹配所述光信号的波长,且用于隔离反射光进入所述LD芯片组;
所述LD芯片组、所述LD出射准直透镜组以及所述隔离器组沿所述光信号传输的光路依次设置。
进一步,所述第一封装壳远离所述LD芯片构件的侧壁安装有玻璃板光窗,所述LD芯片构件发射的所述光信号由所述玻璃板光窗透过并传送至所述光波分复用器。
进一步,所述玻璃板光窗倾斜设置,且与所述LD芯片构件的侧壁之间具有夹角,该夹角的范围在2~10度之间。
进一步,所述第二封装壳远离所述第一封装壳的一侧设有耦合透镜。
进一步,所述第二封装壳上还安装有光纤适配器组,所述光纤适配器组包括光纤、耦合插芯以及适配器,所述光纤的两端分别与所述耦合插芯以及所述适配器连通,所述耦合插芯与所述耦合透镜连通,所述适配器用于将光信号传递到另一个光模块中。
进一步,所述第一封装壳以及所述第二封装壳上均安装有密封盖板。
进一步,所述第一封装壳远离所述第二封装壳的一侧具有凹槽,所述凹槽与所述第一封装壳内贯通,所述凹槽内安装有PCB板,所述PCB板与所述LD芯片构件之间通过金丝焊线焊接。
本发明实施例提供另一种技术方案:一种光模块,包括壳体,还包括光接收组件以及上述的一种光发射组件,所述光接收组件以及所述光发射组件均设于所述壳体上。
与现有技术相比,本发明的有益效果是:
1、通过采用两段式结构,将LD芯片构件和光波分复用器独立开来,将 光信号的处理分为两步进行,既提高了良率,还利于安装工艺实施。
2、PCB板与光发射组件之间通过金丝焊线焊接,可根据实际需要缩短金丝焊线的长度,一方面,降低了信号传输线路的阻抗不连续性,另一方面,PCB板上的金线焊盘远小于FPC板的焊接焊盘,大大节约了PCB板的布板空间,使得相同体积内增加通道数量成为可能。
3、通过采用光纤适配器组,利用光纤的柔韧性可以有效补偿装配公差,消除应力,避免组件应力掉光问题。
附图说明
图1为本发明实施例提供的一种光发射组件的结构示意图;
图2为本发明实施例提供的一种光发射组件的第一封装壳、密封盖板以及PCB板安装的结构示意图;
图3为本发明实施例提供的一种光发射组件的光纤适配器组的结构示意图;
附图标记中:1-LD芯片构件;10-LD芯片组;100-LD芯片;11-LD出射准直透镜组;110-LD出射准直透镜;12-隔离器组;120-隔离器;2-光波分复用器;3-第一封装壳;30-第一腔室;31-玻璃板光窗;32-凹槽;4-第二封装壳;40-第二腔室;41-耦合透镜;5-光纤适配器组;50-光纤;51-耦合插芯;52-适配器;6-密封盖板;7-PCB板。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例提供一种光发射组件,包括LD芯片构件1、光波分复用器2、第一封装壳3以及第二封装壳4。其中,所述LD芯片构件1 用于发射光信号和优化光信号;所述第一封装壳3,用于封装所述LD芯片构件1;所述光波分复用器2,用于接收所述LD芯片构件1发射的光信号并合波成一束光;所述第二封装壳4,用于封装所述光波分复用器2;所述第一封装壳3与所述第二封装壳4固定连接,以形成用于封装所述LD芯片构件1的第一腔室30和用于封装所述光波分复用器2的第二腔室40,所述第一腔室30位于所述第一封装壳3内,所述第二腔室40位于所述第二封装壳4内。为了符合时代的要求,即速率越来越高,就需要增加光波复用的数量,而又要考虑到小型化的封装,就只能将更多的能够产生光波的LD芯片以及其他配合其的零件都集成在一个壳体内,零件多了势必会造成良率下降,例如,当只有一条光波时,其良率或许可以达到98%,但如果光波多了,其良率的计算公式即多个98%相乘,很显然良率降低了很多,更何况还有其他配合的器件,集成在一个壳体里面处理,无疑极大地影响了良率。因此,在本实施例中,设第一封装壳3单独封装LD芯片构件1,设第二封装壳4单独封装光波分复用器2,将LD芯片构件1和光波分复用器2独立开来,将光信号的处理分为两步进行,既提高了良率,还利于安装工艺的实施。
作为本发明实施例的优化方案,请参阅图1,所述第二腔室40具有由所述第一封装壳3封堵的开口,且所述LD芯片构件1发出的光信号由所述第一封装壳3对应所述开口处进入所述第二腔室40内。在本实施例中,如图1所示,第二封装壳4靠近第一封装壳3的一侧是没有侧壁的,此处为一开口,如此,第一封装壳3和第二封装壳4共用一个侧壁。如此设计,比起采用如两个第一封装壳3来形成两个腔室要省去了一个侧壁,一方面降低了第二封装壳的加工要求,另一方面,节约了空间,使组件长度更短。
作为本发明实施例的优化方案,请参阅图1,所述LD芯片构件1包括LD芯片组10、LD出射准直透镜组11、以及隔离器组12。其中,所述LD芯片组10,用于发射光信号;所述LD出射准直透镜组11,用于将所述光信号进行整 形处理;所述隔离器组12,匹配所述光信号的波长,且用于隔离反射光进入所述LD芯片组10;所述LD芯片组10、所述LD出射准直透镜组11以及所述隔离器组12沿所述光信号传输的光路依次设置。在本实施例中,LD芯片组10的作用是发射出不同波长的光信号,例如采用四个LD芯片,分别发射λ1、λ2、λ3、λ4四个波长的光信号,然后采用LD出射准直透镜组11对上述光信号进行整形处理,然后透过隔离器组12传至光波分复用器2中合波成一束光,但在此过程中会出现反射光的现象,为了防止其进入LD芯片,因此采用隔离器组12将这些反射光隔离处理掉,从而避免引起高速光信号的劣化。LD芯片组10、LD出射准直透镜组11以及隔离器组12均设于第一封装壳3内,通过它们的配合处理可以得到更为优质的光信号。
进一步优化上述方案,请参阅图1,所述LD芯片组10包括多个LD芯片,LD出射准直透镜组11包括与多个所述LD芯片100一一对应的多个LD出射准直透镜110,所述隔离器组12包括与多个所述LD出射准直透镜一一对应的多个隔离器120,每一所述LD芯片100发射光信号经过与其对应的所述LD出射准直透镜110整形后,接着经过与其对应的隔离器120后进入到所述光波分复用器2中。在本实施例中,LD芯片100、LD出射准直透镜110以及隔离器120的数量均相同,如此才能保证光信号一一对应处理。例如采用两个LD芯片100,那么对应的,LD出射准直透镜110的数量也有两个,同时隔离器120的数量也有两个。优选的,本实施例中的LD出射准直透镜可采用LD耦合透镜41。
作为本发明实施例的优化方案,请参阅图1和图2,所述第一封装壳3远离所述LD芯片构件1的侧壁安装有玻璃板光窗31,所述LD芯片构件1发射的所述光信号由所述玻璃板光窗31透过并传送至所述光波分复用器2。在本实施例中,通过该玻璃板光窗31,可以便于光信号从第一封装壳3内穿出并发射至光波分复用器2中。作为本实施例的一个优选的方案,该玻璃板光窗 31倾斜设置,它与侧壁具有夹角,该夹角的范围在2~10度,通过该倾斜状态,可以减小玻璃光窗引起的光反射,当采用8°的夹角时,可以极大地减小光反射。
作为本发明实施例的优化方案,请参阅图1,所述第二封装壳4远离所述第一封装壳3的一侧设有耦合透镜41,所述耦合透镜41,用于接收所述光波分复用器2合成的光信号并进行耦合。在本实施例中,该耦合透镜41可以再次对光波分复用器2处理后的光信号进行光束整形,以便于传递到另外一个光模块的光接收组件中。
进一步优化上述方案,请参阅图1以及图3,所述第二封装壳4上还安装有光纤适配器组5,所述光纤适配器组5包括光纤50、耦合插芯51以及适配器52,所述光纤50的两端分别与所述耦合插芯51以及所述适配器52连通,所述耦合插芯51与所述耦合透镜41连通,所述适配器52用于将光信号传递到另一个光模块中。在本实施例中,光纤适配器组5的目的是将光信号传递至另一个光模块中。采用这一传输方式,一方面可以解决现有模块内空间小而导致封装困难的缺陷,因为可以利用光纤50的柔性的特点,在狭小的空间内根据特殊的弯曲方法将合波后耦合的光信号传递至另外的光模块中,另一方面还可以解决现有光组件与PCB板7之间采用硬连接,装配必然存在装配公差,而存在应力的缺陷,通过利用光纤50的柔韧性,有效补偿装配公差,消除应力,避免组件应力掉光问题。
作为本发明实施例的优化方案,请参阅图2,所述第一封装壳3以及所述第二封装壳4上均安装有密封盖板6,其中一个所述密封盖板6用于将所述LD芯片构件1封装在所述第一封装壳3内,另一个所述密封盖用于将光波分复用器2封装在所述第二封装壳4内。在本实施例中,安装此密封盖板6可以起到防尘和隔绝水汽作用,提高可靠性。
作为本发明实施例的优化方案,请参阅图1和图2,所述第一封装壳3远 离所述第二封装壳4的一侧具有凹槽32,所述凹槽32内安装有PCB板7,所述PCB板7与所述凹槽32之间通过金丝焊线焊接。在本实施例中,凹槽32用于插入光模块PCB板7,该凹槽32的槽厚略大于PCB板7的厚度,从而能够在PCB和LD芯片间进行金丝焊线连接,使得焊线足够短,降低了信号传输线路的阻抗不连续性,还避免了现有技术中需要通过FPC(柔性电路板)连接导致的焊盘过大而导致PCB板7空间不足的问题,使得相同体积内增加通道的数量成为可能。
作为本发明实施例的优化方案,需要连接的地方均采用胶水进行填充密封,如第一封装壳3、玻璃光窗、PCB板7以及密封盖板6处均采用胶水进行填充密封,可以起到防尘和隔绝水汽作用,提高可靠性。
本发明实施例提供一种光模块,包括壳体,光接收组件,以及上述的一种光发射组件,所述光接收组件以及所述光发射组件均设于所述壳体上。在本实施例中,上述的光发射组件可以用到常规的光模块中,以使该光模块的良率得到提升,且便于安装工艺的实时,同时通过金丝焊线焊接,可根据实际需要缩短金丝焊线的长度,一方面,降低了信号传输线路的阻抗不连续性,另一方面,PCB板7上的金线焊盘远小于FPC板的焊接焊盘,大大节约了PCB板7的布板空间,使得相同体积内增加通道数量成为可能,而且通过采用光纤适配器组5,利用光纤50的柔韧性可以有效补偿装配公差,消除应力,避免组件应力掉光问题。
作为本发明实施例的优化方案,上述的光发射组件以及光接收组件均可以有两组,实现双发双收,即两个光发射组件并排设置,两个光接收组件也并排设置,两个光发射组件与两个光接收组件之间具有一定的距离,以保证光接收组件的光纤50能够延展开。通过采用双发双收的方式,不仅可以使所需波长数量减少,还有利于芯片的设计制造,而且两个光发射组件和两个光接收组件一前一后的错位放置可以有效解决空间小的难题。
作为本发明实施例的优化方案,将上述两组光发射组件中的光纤定义为第一光纤和第二光纤,优化第一光纤和第二光纤的弯曲方式。所述第一光纤以及所述第二光纤均弯曲为环形,且均位于两个所述第二封装壳4的上方,并位于所述壳体的安装区域内。在本实施例中,第一光纤从其第二封装壳4的端部向外发出,朝其临近的第二封装壳4的方向弯曲,然后再继续向回弯曲,最终形成一个环形,并接入到另一个光模块中;同样的,第二光纤从其第二封装壳4的端部向外发出,朝其临近的第二封装壳4的方向弯曲,然后再继续向回弯曲,最终形成一个环形,并连入到另一个光模块中。在弯曲时尽量绕大圈来弯曲,只要不超过壳体的范围即可。通过这种弯曲的方式,能够最大限度地保证光纤的首尾两端在弯曲时不至于被损坏,同时也达到了传输光信号的目的。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种光发射组件,其特征在于:包括LD芯片构件、光波分复用器、第一封装壳以及第二封装壳;
    所述LD芯片构件,用于发射光信号并处理;
    所述第一封装壳,用于封装所述LD芯片构件;
    所述光波分复用器,用于接收所述LD芯片构件处理后的光信号并合波成一束光;
    所述第二封装壳,用于封装所述光波分复用器;
    所述第一封装壳与所述第二封装壳固定连接,以形成用于封装所述LD芯片构件的第一腔室和用于封装所述光波分复用器的第二腔室,所述第一腔室位于所述第一封装壳内,所述第二腔室位于所述第二封装壳内。
  2. 如权利要求1所述的一种光发射组件,其特征在于:所述第二腔室具有由所述第一封装壳封堵的开口,且所述LD芯片构件发出的光信号由所述第一封装壳对应所述开口处进入所述第二腔室内。
  3. 如权利要求1所述的一种光发射组件,其特征在于:所述LD芯片构件包括LD芯片组、LD出射准直透镜组、以及隔离器组;
    所述LD芯片组,用于发射光信号;
    所述LD出射准直透镜组,用于将所述光信号进行整形处理;
    所述隔离器组,匹配所述光信号的波长,且用于隔离反射光进入所述LD芯片组;
    所述LD芯片组、所述LD出射准直透镜组以及所述隔离器组沿所述光信号传输的光路依次设置。
  4. 如权利要求1所述的一种光发射组件,其特征在于:所述第一封装壳远离所述LD芯片构件的侧壁安装有玻璃板光窗,所述LD芯片构件发射的所述光信号由所述玻璃板光窗透过并传送至所述光波分复用器。
  5. 如权利要求1所述的一种光发射组件,其特征在于:所述玻璃板光窗 倾斜设置,且与所述LD芯片构件的侧壁之间具有夹角,该夹角的范围在2~10度之间。
  6. 如权利要求1所述的一种光发射组件,其特征在于:所述第二封装壳远离所述第一封装壳的一侧设有耦合透镜。
  7. 如权利要求6所述的一种光发射组件,其特征在于:所述第二封装壳上还安装有光纤适配器组,所述光纤适配器组包括光纤、耦合插芯以及适配器,所述光纤的两端分别与所述耦合插芯以及所述适配器连通,所述耦合插芯与所述耦合透镜连通,所述适配器用于将光信号传递到另一个光模块中。
  8. 如权利要求1所述的一种光发射组件,其特征在于:所述第一封装壳以及所述第二封装壳上均安装有密封盖板。
  9. 如权利要求1所述的一种光发射组件,其特征在于:所述第一封装壳远离所述第二封装壳的一侧具有凹槽,所述凹槽与所述第一封装壳内贯通,所述凹槽内安装有PCB板,所述PCB板与所述LD芯片构件之间通过金丝焊线焊接。
  10. 一种光模块,包括壳体,其特征在于:还包括光接收组件以及如权利要求1-9任一所述的一种光发射组件,所述光接收组件以及所述光发射组件均设于所述壳体上。
PCT/CN2018/106990 2018-08-31 2018-09-21 光发射组件以及光模块 WO2020042252A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/163,056 US11320609B2 (en) 2018-08-31 2021-01-29 Light emitting assembly and optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811006706.3 2018-08-31
CN201811006706.3A CN109031549B (zh) 2018-08-31 2018-08-31 光发射组件以及光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/163,056 Continuation US11320609B2 (en) 2018-08-31 2021-01-29 Light emitting assembly and optical module

Publications (1)

Publication Number Publication Date
WO2020042252A1 true WO2020042252A1 (zh) 2020-03-05

Family

ID=64626536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106990 WO2020042252A1 (zh) 2018-08-31 2018-09-21 光发射组件以及光模块

Country Status (3)

Country Link
US (1) US11320609B2 (zh)
CN (1) CN109031549B (zh)
WO (1) WO2020042252A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031549B (zh) * 2018-08-31 2019-11-19 武汉联特科技有限公司 光发射组件以及光模块
CN110954999B (zh) * 2019-12-27 2021-08-10 长飞光纤光缆股份有限公司 一种光收发器件
CN213342769U (zh) * 2019-12-31 2021-06-01 华为机器有限公司 光发射组件、半导体光电子器件和设备
CN115004071B (zh) * 2020-03-05 2023-08-01 青岛海信宽带多媒体技术有限公司 一种光模块
CN113126219A (zh) * 2021-06-17 2021-07-16 武汉乾希科技有限公司 光发射器组件、光发射装置以及光学装置
WO2023082783A1 (zh) * 2021-11-11 2023-05-19 青岛海信宽带多媒体技术有限公司 光模块
CN114325968B (zh) * 2022-01-04 2023-04-14 武汉光迅科技股份有限公司 一种应用于光模块中的气密结构
CN114371537B (zh) * 2022-02-17 2024-06-25 Nano科技(北京)有限公司 一种分体式集成封装光模块
US11809001B2 (en) * 2022-04-07 2023-11-07 Mellanox Technologies Ltd. Network interface device with external optical connector
WO2024037080A1 (zh) * 2022-08-18 2024-02-22 青岛海信宽带多媒体技术有限公司 光模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011221A2 (en) * 1998-12-18 2000-06-21 Fujitsu Limited An apparatus and method for making transmission characteristics uniform in a wavelength division multiplexing optical communications system
CN206946027U (zh) * 2017-07-21 2018-01-30 成都聚芯光科通信设备有限责任公司 一种多芯片封装的空间合波光学模块
CN207135106U (zh) * 2017-08-24 2018-03-23 四川新易盛通信技术有限公司 一种八通道高速率光发送器件

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201908B1 (en) * 1999-07-02 2001-03-13 Blaze Network Products, Inc. Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
US6978062B2 (en) * 2001-02-21 2005-12-20 Ibsen Photonics A/S Wavelength division multiplexed device
US20030215240A1 (en) * 2002-04-03 2003-11-20 Grann Eric B. Optical WDM with single mode tolerance and low profile
EP2287644B1 (en) * 2009-08-18 2014-04-09 Mitsubishi Electric Corporation Light source device and method of producing the same
JP2013145356A (ja) * 2011-12-13 2013-07-25 Sumitomo Electric Ind Ltd 光通信モジュール
US9323013B2 (en) * 2013-04-19 2016-04-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Bidirectional optical communications module having an optics system that reduces optical losses and increases tolerance to optical misalignment
CN103744145B (zh) * 2013-12-31 2016-08-31 武汉电信器件有限公司 单光口波分复用/解复用光电收发器件
US10386579B2 (en) * 2014-10-31 2019-08-20 Sumitomo Electric Industries, Ltd. Optical transmitting module and multi-lane transmitter optical module
CN106405753B (zh) * 2015-08-03 2020-05-08 住友电气工业株式会社 制作光学组件的方法及光学组件
CN205067810U (zh) * 2015-10-14 2016-03-02 武汉华工正源光子技术有限公司 一种对扣密封多通道波分复用器件
US9880366B2 (en) * 2015-10-23 2018-01-30 Nanoprecision Products, Inc. Hermetic optical subassembly
US10090934B2 (en) * 2015-11-10 2018-10-02 Sumitomo Electric Industries, Ltd. Optical receiver module that receives wavelength-multiplexed signal
KR101978913B1 (ko) * 2015-11-16 2019-05-16 한국전자통신연구원 다채널 광 수신기 및 그의 제조 방법
US20170315313A1 (en) * 2016-04-28 2017-11-02 Futurewei Technologies, Inc. Transistor Outline (TO) Can Optical Transceiver
US10746933B2 (en) * 2016-09-22 2020-08-18 Lumentum Operations Llc Fiber coupled laser source pump with wavelength division multiplexer, isolator, tap filter, and photodetector
CN109212680B (zh) * 2017-06-30 2021-09-24 住友电气工业株式会社 应用光衰减器的接收器光学组件
JP6958098B2 (ja) * 2017-08-10 2021-11-02 住友電気工業株式会社 光モジュール
CN207457557U (zh) * 2017-11-10 2018-06-05 深圳市飞思卓科技有限公司 一种基于单纤双向的光收发组件和光模块
US10365448B2 (en) * 2017-12-15 2019-07-30 Sumitomo Electric Industries, Ltd. Optical module having two lens system and monitor photodiode between two lenses
EP3749995A1 (en) * 2018-02-05 2020-12-16 Inneos, Llc Multi-channel optical coupler
US10897122B2 (en) * 2018-04-20 2021-01-19 Hewlett Packard Enterprise Development Lp Optical apparatus for optical transceivers
KR102559098B1 (ko) * 2018-07-11 2023-07-25 한국전자통신연구원 광송신 모듈
JP6824474B2 (ja) * 2018-07-17 2021-02-03 三菱電機株式会社 集積光モジュールの製造方法
CN108873195B (zh) * 2018-08-01 2020-10-13 青岛海信宽带多媒体技术有限公司 光模块及其光发射器件
CN109188614B (zh) * 2018-08-28 2020-02-14 武汉电信器件有限公司 双载波集成光器件及光电模块
CN109031549B (zh) * 2018-08-31 2019-11-19 武汉联特科技有限公司 光发射组件以及光模块
TWM573438U (zh) * 2018-10-25 2019-01-21 聯鈞光電股份有限公司 波長分波多工模組
US10852494B2 (en) * 2018-12-11 2020-12-01 The Boeing Company Avionics pluggable active optical connector
JP7332090B2 (ja) * 2019-04-16 2023-08-23 住友電工デバイス・イノベーション株式会社 光変調器キャリア組立体及び光モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011221A2 (en) * 1998-12-18 2000-06-21 Fujitsu Limited An apparatus and method for making transmission characteristics uniform in a wavelength division multiplexing optical communications system
CN206946027U (zh) * 2017-07-21 2018-01-30 成都聚芯光科通信设备有限责任公司 一种多芯片封装的空间合波光学模块
CN207135106U (zh) * 2017-08-24 2018-03-23 四川新易盛通信技术有限公司 一种八通道高速率光发送器件

Also Published As

Publication number Publication date
CN109031549A (zh) 2018-12-18
CN109031549B (zh) 2019-11-19
US20210149132A1 (en) 2021-05-20
US11320609B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2020042252A1 (zh) 光发射组件以及光模块
US10171170B2 (en) Multi-channel parallel optical transceiver module
WO2020029389A1 (zh) 双发双收光模块
WO2019105113A1 (zh) 光收发器件
US20120082168A1 (en) Communication module and communication apparatus
CN110954999B (zh) 一种光收发器件
WO2020155426A1 (zh) 多路波分复用光接收组件以及光模块
US11378761B2 (en) Optical module
US8644712B2 (en) Opto-electronic transceiver module with housing having thermally conductive protrusion
CN111913258A (zh) 一种光模块
WO2022127059A1 (zh) 一种光模块
CN111239935B (zh) 光模块
CN219039427U (zh) 多通道光收发组件及光模块
TWI498619B (zh) 雙向光傳輸次組件
CN113625399A (zh) 一种光模块
CN114879324B (zh) 光模块
CN114994839B (zh) 光模块
CN216248437U (zh) 一种基于tff波分的新型光发射、接收装置
CN115016074B (zh) 一种光模块
CN213122369U (zh) 一种光模块
JP3818107B2 (ja) 光通信デバイスの製造方法
CN210605098U (zh) 一种小型化的多路波分解复用光接收组件
JP3867535B2 (ja) 基板装着用デバイス
CN210431438U (zh) 光发射组件及具该光发射组件的小型封装可热插拔光模块
WO2023245966A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931995

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18931995

Country of ref document: EP

Kind code of ref document: A1