WO2020042017A1 - 一种tdd通信方法及设备 - Google Patents

一种tdd通信方法及设备 Download PDF

Info

Publication number
WO2020042017A1
WO2020042017A1 PCT/CN2018/103009 CN2018103009W WO2020042017A1 WO 2020042017 A1 WO2020042017 A1 WO 2020042017A1 CN 2018103009 W CN2018103009 W CN 2018103009W WO 2020042017 A1 WO2020042017 A1 WO 2020042017A1
Authority
WO
WIPO (PCT)
Prior art keywords
slave device
start time
data frame
master device
window
Prior art date
Application number
PCT/CN2018/103009
Other languages
English (en)
French (fr)
Inventor
尹小俊
黄源良
戴劲
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/103009 priority Critical patent/WO2020042017A1/zh
Priority to CN201880036993.4A priority patent/CN110720184B/zh
Publication of WO2020042017A1 publication Critical patent/WO2020042017A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0063Interference mitigation or co-ordination of multipath interference, e.g. Rake receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0647Synchronisation among TDM nodes
    • H04J3/065Synchronisation among TDM nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a TDD communication method and device.
  • the signal sent by the slave device reaches the master device. If the transmission delay is too long, the signal received by the master device at this time slot and the signal received by the base station will be transmitted. The signals from the other slave devices overlap each other, causing intersymbol interference.
  • the master device needs to reserve a relatively long receiving window in the receiving and sending data frame of the master device to ensure that the data sent by the slave device reaches the master device in the receiving window.
  • the length of the window will be truncated, and a period of time occupied by invalid data will appear in the interface window of the master device, which results in low communication efficiency and low throughput.
  • Embodiments of the present invention provide a TDD communication method and device, which can improve the efficiency of TDD communication and improve the system throughput.
  • an embodiment of the present invention provides a TDD communication method, including:
  • an embodiment of the present invention provides a TDD communication device, including a memory and a processor;
  • the memory is used to store program instructions
  • the processor executes program instructions stored in the memory.
  • the processor executes program instructions stored in the memory.
  • the processor executes program instructions stored in the memory.
  • the processor executes program instructions stored in the memory.
  • the start time of the sending window in the data frame sent and received by the slave device is adjusted forward.
  • an embodiment of the present invention further provides a slave device, including the TDD communication device according to the second aspect.
  • an embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the TDD communication method according to the first aspect is implemented.
  • the TDD communication method and device provided by the embodiments of the present invention can determine a data transmission delay according to the distance between the master and the slave devices, and adjust the start time of the sending window in the data frame sent and received by the slave device according to the data transmission delay.
  • the start time of the sending window in the data frame sent and received by the slave device matches the start time of the receive window of the data transmission of the master device, so that the Under the condition of the sending window in the sending and receiving data frame, the receiving window of the data sent by the slave device in the sending window in the sending and receiving data frame of the master device can reach the master device, thereby improving the system throughput and resource utilization rate.
  • FIG. 1 is a schematic structural diagram of a TDD communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of TDD communication between a slave device and a master device in an ideal case
  • FIG. 3 is a schematic diagram of TDD communication between a slave device and a master device provided in the prior art
  • FIG. 4 is a flowchart of a TDD communication method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a TDD communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a TDD communication device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another TDD communication device according to an embodiment of the present invention.
  • the Time Division Duplexing (TDD) communication method can be applied to a slave device, and the execution body of the TDD communication method may be a TDD communication device included in the slave device.
  • the main device may be a movable platform, where the movable platform may include a device that moves by an external force or a device that moves by a power system configured by itself.
  • the slave device may include a device connected to the master device based on TDD communication.
  • the slave device may be a control terminal of the movable platform.
  • the movable platform may include a drone, a drone, a drone, and the like.
  • the control terminal of the movable platform may include any device capable of controlling with the movable platform, and the control terminal includes a remote controller, a smartphone, a tablet computer, a laptop or desktop computer, and a wearable device (watch, bracelet) ).
  • the master device may be a control terminal of a movable platform
  • the slave device may be a movable platform
  • the master device when the slave device is a mobile terminal (smartphone, tablet computer, intercom device, etc.) or a mobile platform, the master device may be a communication base station.
  • the master device may include a communication base station that provides network access for the slave device, for example, the master device is a cellular network communication base station (2G, 3G, or 5G communication base station).
  • this article will use the control device with the master device as the drone and the slave device as the example for the schematic description. It can be understood that the drones in the later part of this article can be replaced with master devices, and the control terminal can be replaced with slave devices.
  • FIG. 1 is a schematic structural diagram of a TDD communication system according to an embodiment of the present invention.
  • the communication system 100 shown in FIG. 1 includes a drone 101 and a control terminal 102 of the drone.
  • the control terminal 102 may Realize data interaction with UAV 101 based on TDD communication method.
  • the transmit and receive data frame of the master device includes a transmission window TX1, a reception window RX1, and a switching time T T2R of the radio frequency device from transmission to reception.
  • the transmit and receive data frame of the master device may further include a measurement time slot MSR and a switching time T R2R of the radio frequency device from reception to reception.
  • the switching time T T2R of the radio frequency device from transmission to reception is the time required for the radio frequency device to switch from the realization of the transmission function to the realization of the reception function.
  • the measurement time slot MSR is used for communication frequency point allocation, wireless environment measurement (such as measuring the arrival time of a received signal), and so on.
  • the switching time T R2R of the radio frequency device from receiving to receiving is the time required for the radio frequency device to switch from the receiving function to the realization of the receiving function, where the radio frequency device may implement the receiving function under different frequency points and / or bandwidth conditions, Therefore, it takes time for the RF device to switch from the receiving function to the receiving function in some cases.
  • the transmit and receive data frames of the slave device include a receive window RX2 corresponding to the transmit window TX1 of the master device and a transmit window TX2 corresponding to the receive window RX1 of the master device.
  • the time between the end time of the receive window RX2 and the start time of the transmit window TX2 The length of the segment may be the time interval between the start time of the transmit window TX2 and the end time of the receive window RX1 of the slave device is Max (T R2T , T T2R + MSR + T R2R ).
  • the switching time T R2T of the radio frequency device from transmitting to receiving is the time required for the radio frequency device to switch from implementing the receiving function to implementing the transmitting function.
  • the transmit window TX1 of the master device and the receive window RX2 of the slave device are aligned, and the receive window RX1 of the master device and the transmit window of the slave device TX2 is aligned.
  • the slave device can send valid data in the entire transmission window TX2, and the master device can receive the valid data sent by the slave device in the entire reception window RX1. In this way, the data throughput rate and communication efficiency can be effectively improved.
  • FIG. 3 is a schematic diagram of communication between a master device and a slave device in the prior art.
  • the slave device sends and receives data in the data frame.
  • the window will be truncated, that is, the length of the sending window is small.
  • the master device needs to reserve a longer receiving window in the data frame of the master device to ensure that the data sent from the slave device reaches the master device in the receiving window.
  • the interface window of the master device has only a part of the time period (the time period marked with a slash) is receiving valid data sent by the slave device in the transmission window TX1 (the time period marked with a slash).
  • the interface of the master device There will be a period of time I occupied by invalid data in the window, which is the guard interval GP. It can be seen that the length of the transmission window TX2 is smaller than the length of the reception window RX2, and the reception window RX2 has only a part of time to receive valid data. This communication method will result in low communication efficiency, decreased throughput, and wasted communication resources.
  • FIG. 4 is a schematic flowchart of a TDD communication method according to an embodiment of the present invention. As shown in FIG. 4, the TDD communication method may include the following steps:
  • the execution subject of the communication method may be a TDD communication device, wherein the slave device may include the TDD communication device.
  • the TDD communication device Before determining the data transmission delay between the slave device and the master device, the TDD communication device can obtain the distance between the master device and the slave device.
  • the acquiring a distance between the master device and the slave device that are communicatively connected to the slave device includes: obtaining positions of the master device and the slave device, and determining the positions according to the positions of the master device and the slave device.
  • the distance The TDD communication device may obtain respective positions of the master device and the slave device, and then determine the distance between the master device and the slave device according to the respective positions.
  • the acquiring the position of the slave device includes acquiring the position of the slave device using a positioning sensor configured on the slave device.
  • a positioning sensor is configured on the slave device, wherein the positioning sensor includes at least one of a satellite positioning receiver (for example, GPS, Beidou positioning receiver, etc.), an inertial measurement unit, and a visual positioning sensor.
  • the TDD communication device can obtain the positioning data output by the positioning sensor, and determine the position of the slave device according to the positioning data.
  • obtaining the location of the master device includes: obtaining a location sent by the master device, or obtaining identification information of the master device, and sending a request to the server according to the identification information to obtain the location of the master device.
  • a positioning sensor is configured on the master device, wherein the definition of the positioning sensor is as described above.
  • the master device can use the positioning data output by the positioning sensor to determine its own position.
  • the master device may broadcast its own position, or the master device may send its own position through a communication link with the slave device, and the slave device may obtain the position of the master device broadcasted by the master device or transmitted through the communication link.
  • the TDD communication device may obtain identification information of the master device, such as a serial number or an identification number of the master device, and the TDD communication device may send a request to the server to the server, where the request includes the master device After receiving the request, the server queries the location of the master device according to the identity information of the master device in the request and sends the location of the master device to the TDD communication device.
  • identification information of the master device such as a serial number or an identification number of the master device
  • the TDD communication device may send a request to the server to the server, where the request includes the master device
  • the server queries the location of the master device according to the identity information of the master device in the request and sends the location of the master device to the TDD communication device.
  • the TDD communication device may adjust the start time of the sending window in the data frame sent and received by the slave device according to the data transmission delay.
  • the start time of the sending window in the transmit / receive data frame may have a reference start time, where the reference start time is the start time of the receive window in the send / receive data frame of the master device as shown in FIG. 2 or 3.
  • the TDD device may On the basis of the reference start time, the start time of the sending window in the data frame sent and received by the slave device is adjusted forward according to the data transmission delay.
  • the TDD communication method and device provided by the embodiments of the present invention can determine a data transmission delay according to the distance between the master and the slave devices, and adjust the start time of the sending window in the data frame sent and received by the slave device according to the data transmission delay.
  • the start time of the sending window in the data frame sent and received by the slave device matches the start time of the receive window of the data transmission of the master device, so that the Under the condition of the sending window in the sending and receiving data frame, the receiving window of the data sent by the slave device in the sending window in the sending and receiving data frame of the master device can reach the master device, thereby improving the system throughput and resource utilization rate.
  • the start time of the sending window of the slave device adjusting the sending and receiving data frame of the slave device according to the data transmission delay may include:
  • the TDD communication device may obtain the reference start time of the sending window in the data frame of the slave device, where the reference start time is defined as Previously mentioned. As shown in FIG. 5, the TDD communication device may determine the forward adjustment time amount T A according to the data transmission delay, and obtain the transmission window of the slave device ’s transmit and receive data frame according to the forward adjustment time amount T A and the reference start time.
  • target start timing e.g., with reference to the target start time forward adjustment start timing after the start time acquisition T a. After obtaining the target start time, adjust the start time of the sending window in the transmit-receive data frame to the target start time.
  • the forward adjustment time amount T A may be the data transmission delay T S. It can be understood that the amount of forward adjustment time T A may also be determined according to the data transmission delay in other ways. For example, the amount of forward adjustment time T A may be the data transmission delay T S 0.8, 0.9, 1.1 or 1.2 times, etc., are not specifically limited here.
  • the length of the sending window in the data frame of the slave device is the length of the receiving window in the data frame of the master device.
  • the forward adjustment time amount T A may be the data transmission delay T S
  • the data sent by the slave device at the target start time of the sending window is exactly in the transmit and receive data frame of the master device.
  • the start time of the time reaches the device, and the sending timing of the slave device and the receiving timing of the master device are in a corresponding state.
  • the sending window in the data frame of the slave device need not be truncated.
  • the length of the sending window in the data frame of the slave device is the length of the receiving window in the data frame of the master device.
  • the slave device can TX2 sends valid data in the entire transmission window, and the master device can receive valid data sent by the slave device in the entire reception window RX1. In this way, the data throughput rate and communication efficiency can be effectively improved.
  • the TDD communication method provided by the embodiment of the present invention may further include: determining a time difference between a start time of the target and an end time of a receiving window in a data frame of the slave device for sending and receiving.
  • the adjusting the start time of the transmission window in the transmission and reception data frame to the target start time includes: when the time difference is greater than or equal to a switching time of the radio frequency component from reception to transmission, The start time of the sending window in the data frame is adjusted to the target start time.
  • the TDD communication device may determine a time difference between the target start time and the end time of the reception window in the data frame of the slave device.
  • the radio frequency device of the slave device in a time period between the start time of the target and the end time of the receiving window in the data frame of the slave device, the radio frequency device of the slave device must complete at least the switching from the receiving function to the sending function. Therefore, when the time difference is less than the switching time of the radio frequency device from receiving to transmitting, the radio frequency device cannot switch from the receiving function to the transmitting function, and the TDD communication device does not start the transmission window in the transmit and receive data frame. The time is adjusted to the target start time.
  • the radio frequency device When it is greater than or equal to the switching time of the RF component from receiving to transmitting, at least the radio frequency device can be guaranteed to switch from the receiving function to the transmitting function. At this time, the start time of the sending window in the receiving and sending data frame can be adjusted to the target. Start time.
  • the TDD communication method provided in the embodiment of the present invention further includes: determining whether the data transmission delay is greater than or equal to a preset delay threshold; and adjusting the data transmission delay forward according to the data transmission delay.
  • the start time of the sending window in the data frame for sending and receiving of the slave device includes: when the data transmission delay is greater than or equal to a preset delay threshold, adjusting the sending and receiving data of the slave device forward according to the data transmission delay The start time of the sending window in the frame.
  • the TDD communication device can further determine whether the data transmission delay is greater than or equal to a preset delay threshold.
  • a preset delay threshold it can be considered that the current data transmission delay is large, and the communication efficiency and throughput of the current slave device and the master device are not high.
  • the data transmission delay adjusts forward the start time of the sending window in the received and transmitted data frames of the slave device, wherein the specific time of the start time of the transmission window in the sent and received data frames of the slave device is adjusted forward according to the data transmission delay.
  • the method please refer to steps S4031-S4033 and the explanation part of FIG.
  • the TDD communication device When it is confirmed that the data transmission delay is less than a preset delay threshold, it can be considered that the communication efficiency and throughput of the current slave device and the master device are not high, and the TDD communication device will not adjust the data transmission delay according to the data transmission delay.
  • the start time of the sending window in the data frame of the slave device When it is confirmed that the data transmission delay is less than a preset delay threshold, it can be considered that the communication efficiency and throughput of the current slave device and the master device are not high, and the TDD communication device will not adjust the data transmission delay according to the data transmission delay.
  • the start time of the sending window in the data frame of the slave device When it is confirmed that the data transmission delay is less than a preset delay threshold, it can be considered that the communication efficiency and throughput of the current slave device and the master device are not high, and the TDD communication device will not adjust the data transmission delay according to the data transmission delay.
  • the start time of the sending window in the data frame of the slave device When it is confirmed that the data transmission delay
  • the step of adjusting the start time of the sending window in the received and transmitted data frames of the slave device according to the data transmission delay includes: when the slave device starts to establish a communication connection with the master device. And adjusting the start time of the sending window in the data frame of the slave device forward and backward according to the data transmission delay.
  • the master device can measure the arrival time of the signal sent by the slave device in real time, and the master device can determine the forward direction according to the measured arrival time. Adjust the amount of time and periodically send the amount of forward adjustment time to the slave device. The slave device can forwardly adjust the start time of the sending window in the data frame of the slave device according to the amount of forward adjustment time.
  • the master device starts to establish a communication connection with the master device, the master device and the slave device have not yet formed a communication loop, so the master device cannot send a forward adjustment amount of time to the slave device.
  • the TDD communication device may obtain the distance between the master device and the slave device that are communicatively connected with the slave device according to the method described above, and according to the The distance determines the data transmission delay between the slave device and the master device, and adjusts the start time of the sending window in the data frame of the slave device to receive and send forward according to the data transmission delay, wherein, according to the data transmission delay.
  • a specific method of adjusting the start time of the sending window in the data frame of the slave device from time to time please refer to steps S4031-S4033 and the explanation part of FIG. 5.
  • the TDD communication method provided by the embodiment of the present invention further includes: after the slave device establishes a communication connection with the master device, obtaining an amount of forward adjustment time sent by the master device, and forward the amount of forward adjustment time according to the amount of forward adjustment time. And adjusting a start time of a sending window in a data frame of the slave device.
  • the TDD communication device After the TDD communication device determines that the slave device establishes a communication connection with the master device, it can receive the amount of forward adjustment time sent by the master device. In the subsequent communication process between the slave device and the master device, the TDD communication device can The amount of forward adjustment time sent forward adjusts the start time of the transmission window in the received and transmitted data frames of the slave device.
  • the slave device uses the position of the master and slave devices to reduce the length of time that the master device receives invalid data in the window, thereby improving resources. Utilization, which improves system throughput.
  • FIG. 6 is a schematic structural diagram of a TDD communication device according to an embodiment of the present invention.
  • the TDD communication device may include the following units:
  • An obtaining unit 601 configured to obtain a distance between the master device and the slave device that are communicatively connected with the slave device;
  • a determining unit 602 configured to determine a data transmission delay between the slave device and the master device according to the distance
  • An adjusting unit 603 is configured to adjust the start time of the sending window in the data frame of the slave device to transmit and receive according to the data transmission delay.
  • FIG. 7 is a schematic structural diagram of a TDD communication device according to an embodiment of the present invention.
  • the TDD communication device may include a processor 701, a memory 702, and a communication interface 703.
  • the communication interface 703 is configured to communicate with a master device, and the TDD communication device may be set in a slave device.
  • the memory 702 may include a volatile memory (volatile memory); the memory 702 may also include a non-volatile memory (non-volatile memory); and the memory 702 may further include a combination of the foregoing types of memories.
  • the processor 702 may be a central processing unit (CPU).
  • the processor 702 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • the memory 702 is configured to store program instructions.
  • the processor 701 may call program instructions stored in the memory 702 to perform the following steps:
  • the processor 701 forwardly adjusts a start time of a sending window in a data frame sent and received by the slave device according to the data transmission delay, the processor 701 is specifically configured to:
  • the amount of time is determined by the data transmission delay.
  • the amount of forward adjustment time is the data transmission delay.
  • the processor 701 is further configured to determine a time difference between a start time of the target and an end time of a receiving window in a data frame sent and received by the slave device;
  • the processor 701 adjusts a start time of a sending window in the transmit / receive data frame to the target start time
  • the processor 701 is specifically configured to:
  • the processor 701 is further configured to determine whether the data transmission delay is greater than or equal to a preset delay threshold
  • the processor 701 adjusts the start time of the sending window in the data frame of the slave device forward and backward according to the data transmission delay, it is specifically configured to:
  • the start time of the sending window in the data frame for receiving and sending of the slave device is adjusted forward according to the data transmission delay.
  • the processor 701 forwardly adjusts a start time of a sending window in a data frame sent and received by the slave device according to the data transmission delay, the processor 701 is specifically configured to:
  • the start time of the sending window in the data frame of the slave device is forwarded and adjusted according to the data transmission delay.
  • the processor 701 is further configured to: after the slave device establishes a communication connection with the master device, obtain an amount of forward adjustment time sent by the master device, and according to the forward adjustment time The forward adjustment of the start time of the sending window in the data frame of the slave device.
  • a length of a sending window in the sending and receiving data frame is a length of a receiving window in the sending and receiving data frame of the master device.
  • the processor 701 when the processor 701 obtains a distance between the master device and the slave device that are communicatively connected to the slave device, the processor 701 is specifically configured to:
  • the processor 701 when the processor 701 obtains the position of the slave device, the processor 701 is specifically configured to:
  • the position of the slave device is obtained by using a positioning sensor configured on the slave device.
  • the processor 701 when the processor 701 obtains the location of the master device, the processor 701 is specifically configured to:
  • the slave device is a movable platform
  • the master device is a control terminal of the movable platform
  • the slave device is a control terminal of a movable platform
  • the master device is the movable platform
  • the slave device is a mobile terminal or a mobile platform
  • the master device is a communication base station.
  • the communication base station is a cellular network communication base station.
  • the TDD communication device may determine the data transmission delay based on the distance between the master and the slave devices, and adjust the start time of the sending window of the slave device based on the data transmission delay, so as to match the receiving window of the master device Matching can improve communication efficiency and throughput.
  • a computer-readable storage medium is also provided in the embodiment of the present invention.
  • the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the description in the embodiment corresponding to FIG. 4 of the present invention.
  • the TDD communication method is not repeated here.
  • a computer-readable storage medium is also provided in the embodiment of the present invention.
  • the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the description in the embodiment corresponding to FIG. 4 of the present invention.
  • the TDD communication method is not repeated here.
  • the computer-readable storage medium may be an internal storage unit of the device according to any one of the foregoing embodiments, such as a hard disk or a memory of the device.
  • the computer-readable storage medium may also be an external storage device of the device, such as a plug-in hard disk, a Smart Media Card (SMC), and a Secure Digital (SD) card provided on the device. , Flash card (Flash card) and so on.
  • the computer-readable storage medium may also include both an internal storage unit of the device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the terminal.
  • the computer-readable storage medium may also be used to temporarily store data that has been or will be output.
  • An embodiment of the present invention further provides a slave device, which includes the TDD communication device described in FIG. 6 or 7.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the software functional unit is stored in a storage medium and includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device) or a processor to execute the methods described in the embodiments of the present invention Some steps.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种TDD通信方法及设备,其中,方法包括:获取与所述从设备通信连接的主设备与所述从设备之间的距离;根据所述距离确定所述从设备与主设备之间的数据传输延时;根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。通过这种方式,使得在存在数据传输延时的情况下,从设备的收发数据帧中发送窗口的开始时刻与主设备的数据收发的接收窗口的开始时刻匹配,这样在不截短从设备的收发数据帧中的发送窗口的条件下,可以使得在从设备在所述发送窗口发送的数据在主设备的收发数据帧中的接收窗口到达主设备,从而改善了系统的吞吐量和资源利用率。

Description

一种TDD通信方法及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种TDD通信方法及设备。
背景技术
在TDD通信中,由于信号在空间传输存在传输延时,从设备发送的信号到达主设备,传输延时过长会导致主设备收到的从设备在本时隙上的信号与基站接收到的另一个从设备信号相互重叠,引起码间干扰。
为了解决该问题,主设备需要在主设备的收发数据帧中预留比较长的接收窗口以保证从设备发送的数据在所述接收窗口中到达主设备,这样,从设备的收发数据帧中发送窗口的长度会被截短,而且,主设备的接口窗口中会出现一段被无效数据占用的时间段,这样导致通信效率低下,吞吐率不高。
发明内容
本发明实施例提供了一种TDD通信方法及设备,能够提高TDD通信的效率,改善系统吞吐率。
第一方面,本发明实施例提供了一种TDD通信方法,包括:
获取与所述从设备通信连接的主设备与所述从设备之间的距离;
根据所述距离确定所述从设备与主设备之间的数据传输延时;
根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
第二方面,本发明实施例提供了一种TDD通信设备,包括存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,执行所述存储器存储的程序指令,当程序指令被执行时,所述处理器用于执行如下步骤:
获取与所述从设备通信连接的主设备与所述从设备之间的距离;
根据所述距离确定所述从设备与主设备之间的数据传输延时;
根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的 开始时刻。
第三方面,本发明实施例还提供了一种从设备,包括如第二方面所述的TDD通信设备。
第四方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面所述的TDD通信方法。
本发明实施例提供的TDD通信方法及设备,能够根据主从设备之间的距离确定数据传输延时,并根据该数据传输延时向前调节从设备的收发数据帧中发送窗口的开始时刻。通过这种方式,使得在存在数据传输延时的情况下,从设备的收发数据帧中发送窗口的开始时刻与主设备的数据收发的接收窗口的开始时刻匹配,这样在不截短从设备的收发数据帧中的发送窗口的条件下,可以使得在从设备在所述发送窗口发送的数据在主设备的收发数据帧中的接收窗口到达主设备,从而改善了系统的吞吐量和资源利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种TDD通信系统的结构示意图;
图2是理想情况下从设备与主设备的TDD通信的示意图;
图3是现有技术提供的从设备与主设备的TDD通信的示意图;
图4是本发明实施例提供的一种TDD通信方法的流程图;
图5是本发明实施例提供的一种TDD通信方法的示意图;
图6是本发明实施例提供的一种TDD通信设备的结构示意图;
图7是本发明实施例提供的另一种TDD通信设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供的时分双工(Time Division Duplexing,TDD)通信方法可以应用于从设备,其中,所述TDD通信方法的执行主体可以是从设备包括的TDD通信设备。在所述TDD通信方法中,主设备可以为可移动平台,其中,所述可移动平台可以包括依靠外力移动的设备或者通过自身配置的动力系统移动的设备。所述从设备可以包括与主设备基于TDD通信连接的设备,进一地,从设备可以为该可移动平台的控制终端。例如,所述可移动平台可以包括无人机、无人船、无人车等等。所述可移动平台的控制终端可以包括能与可移动平台进行控制的任何设备,所述控制终端包括遥控器、智能手机、平板电脑、膝上型或者台式电脑和穿戴式设备(手表、手环)中的一种或多种。
在一种可选的实施方式中,所述主设备可以为可移动平台的控制终端,所述从设备可以为可移动平台。
在一种可选的实施方式中,从设备为移动终端(智能手机、平板电脑、对讲设备等等)或者可移动平台时,主设备可以为通信基站。具体地,所述主设备可以包括为从设备提供网络接入的通信基站,例如所述主设备为蜂窝网络通信基站(2G、3G、或者5G通信基站)。
为了解释方便,本文将以主设备为无人机、从设备为无人机的控制终端为例来进行示意性说明。可以理解的是,本文后述部分的无人机可以用主设备等同替换,控制终端可以用从设备等同替换。
请参阅图1,图1是本发明实施例提供的一种TDD通信系统的结构示意图,如图1所示的通信系统100包括无人机101和无人机的控制终端102,控制终端102可以与无人机101基于TDD通信方法实现数据交互。
请参阅图2,图2是主设备与从设备在理想情况下的通信示意图。如图所示,主设备的收发数据帧中包括发送窗口TX1、接收窗口RX1和射频器件从发送到接收的切换时间T T2R。在某些实施例中,主设备的收发数据帧中还可以包括测量时隙MSR和射频器件从接收到接收的切换时间T R2R。其中,射频器件从发送到接收的切换时间T T2R是射频器件从实现发送功能切换到实现接收 功能所需的时间。测量时隙MSR是用于通信频点的分配、无线环境测量(例如测量接收到的信号达到时间)等等。射频器件从接收到接收的切换时间T R2R是射频器件从接收功能切换到实现接收功能的所需的时间,其中,由于射频器件可能在不同的频点和/或带宽的条件下实现接收功能,因此射频器件从接收功能切换至接收功能在某些情况下也需要时间。从设备的收发数据帧包括与主设备的发送窗口TX1对应的接收窗口RX2和与主设备的接收窗口RX1对应的发送窗口TX2,接收窗口RX2的结束时刻和发送窗口TX2的开始时刻之间的时间段的长度可以为从设备发送窗口TX2的开始时刻与接收窗口RX1的结束时刻之间的时间间隔为Max(T R2T,T T2R+MSR+T R2R)。其中,射频器件从发送到接收的切换时间T R2T是射频器件从实现接收功能切换到实现发送功能所需的时间。
继续参见图2,理想情况下,在主设备和从设备之间没有传输延时时,主设备的发送窗口TX1和从设备的接收窗口RX2对齐,主设备的接收窗口RX1和从设备的发送窗口TX2对齐。从设备可以在整个发送窗口TX2发送有效数据,主设备可以在整个接收窗口RX1接收从设备发送的有效数据,这样,可以有效地提高数据的吞吐率和通信效率。
请参阅图3,图3是主设备与从设备在现有技术中的通信示意图。现有技中,由于主设备和从设备之间存在数据传输延时,为了保证从设备在发送窗口发送的数据全部在主设备的接收窗口被主设备接收,从设备的收发数据帧中的发送窗口会被截短,即发送窗口的长度较小,主设备需要在主设备的收发数据帧中预留比较长的接收窗口以保证从设备发送的数据在所述接收窗口中到达主设备。如图所示,主设备的接口窗口中只有一部分时间段(打斜线标识的时间段)在接从设备在发送窗口TX1(打斜线标识的时间段)发送的有效数据,主设备的接口窗口中会出现一段被无效数据占用的时间段I,即保护间隔GP。由此可知,发送窗口TX2的长度小于接收窗口RX2的长度,接收窗口RX2只有一部分时间可以用来接收有效数据,这种通信方式会导致通信的效率低,吞吐量下降,浪费通信资源。
为了解决该问题,本发明实施例提供一种TDD通信方法,所述方法应用于从设备。图4是本发明实施例提供的一种TDD通信方法的流程示意图,如图4所示,该TDD通信方法可以包括以下步骤:
401、获取主设备与所述从设备之间的距离;
具体地,所述通信方法的执行主体可以为TDD通信设备,其中,所述从设备可以包括所述TDD通信设备。在确定从设备与主设备之间的数据传输延时之前,所述TDD通信设备可以获取所述主设备与从设备之间的距离。
进一步地,所述获取与所述从设备通信连接的主设备与所述从设备之间的距离包括:获取所述主设备和从设备的位置,并根据所述主设备和从设备的位置确定所述距离。所述TDD通信设备可以获取主设备和从设备各自的位置,进而根据各自的位置确定主设备和从设备之间的距离。
进一步地,所述获取所述从设备的位置包括:利用所述从设备上配置的定位传感器获取所述从设备的位置。具体地,从设备上配置有定位传感器,其中,所述定位传感器包括卫星定位接收机(例如GPS、北斗定位接收机等)、惯性测量单元、视觉定位传感器中的至少一种。TDD通信设备可以获取定位传感器输出的定位数据,根据定位数据确定从设备的位置。
进一步地,所述获取所述主设备的位置包括:获取所述主设备发送的位置,或者,获取主设备的标识信息,根据所述标识信息向服务器发送请求以获取所述主设备的位置。具体地,在一种实施方式中,所述主设备上配置有定位传感器,其中,定位传感器的定义如前所述。主设备可以利用定位传感器输出的定位数据确定自身的位置。主设备可以广播自身的位置,或者主设备可以通过与从设备之间的通信链路发送自身的位置,从设备可以获取主设备广播或者通过所述通信链路发送的主设备的位置。在另一种实施方式中,TDD通信设备可以获取主设备的标识信息,例如主设备的序列号或者标识号,TDD通信设备可以向服务器发送请求以向服务器,其中,所述请求中包括主设备的标识信息,服务器在接收到请求之后,根据请求中的主设备的标识信息查询主设备的位置并将所述主设备的位置发送给所述TDD通信设备。
402、根据该距离确定从设备与主设备之间的数据传输延时;
具体地,TDD通信设备在确定从设备和主设备之间的距离之后,TDD通信设备可以根据所述距离确定从设备与主设备之间的数据传输延时。例如,在确定从设备和主设备之间的距离D之后,根据该距离D计算出数据传输延时T S,例如,T S=D/v,其中v为无线信号的传播速度,通常v为光在真空中的速率v=3*10 8。当该距离D为1Km,则数据传输延时T S=3.33微秒。
403、根据数据传输延时调节从设备的收发数据帧中发送窗口的开始时刻。
具体地,TDD通信设备在获取到数据传输延时之后,可以根据所述数据传输延时来调节从设备的收发数据帧中发送窗口的开始时刻。所述收发数据帧中发送窗口的开始时刻可以存在一个参考开始时刻,其中,所述参考开始时刻为如图2或3所示的主设备的收发数据帧中接收窗口的开始时刻,TDD设备可以在所述参考开始时刻的基础上根据所述数据传输延时向前调节从设备的收发数据帧中发送窗口的开始时刻。
本发明实施例提供的TDD通信方法及设备,能够根据主从设备之间的距离确定数据传输延时,并根据该数据传输延时向前调节从设备的收发数据帧中发送窗口的开始时刻。通过这种方式,使得在存在数据传输延时的情况下,从设备的收发数据帧中发送窗口的开始时刻与主设备的数据收发的接收窗口的开始时刻匹配,这样在不截短从设备的收发数据帧中的发送窗口的条件下,可以使得在从设备在所述发送窗口发送的数据在主设备的收发数据帧中的接收窗口到达主设备,从而改善了系统的吞吐量和资源利用率。
在一种可选实施方式中,所述从设备根据数据传输延时调节从设备的收发数据帧中发送窗口的开始时刻可以包括:
S4031、获取收发数据帧中发送窗口的参考开始时刻,其中,所述参考开始时刻与主设备的收发数据帧中接收窗口的开始时刻相同;
S4032、根据所述数据传输延时将所述参考开始时刻向前调节以获取目标开始时刻;
S4033、将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻,其中,所述向前调节时间量是由所述数据传输延时确定的。
具体地,在调节所述从设备的收发数据帧中发送窗口的开始时刻之前,TDD通信设备可以获取从设备的收发数据帧中发送窗口的参考开始时刻,其中,所述参考开始时刻的定义如前所述。如图5所示,TDD通信设备可以根据数据传输延时确定向前调节时间量T A,并根据向前调节时间量T A和所述参考开始时刻获取从设备的收发数据帧中发送窗口的目标开始时刻,例如,目标开始时刻为将参考开始时刻向前调节T A之后获取的开始时刻。在获取所述目标开始时刻之后,将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻。
在一种可选实施方式中,所述向前调节时间量T A可以为所述数据传输延时T S。可以理解的是,所述向前调节时间量T A还可以采用其他方式根据所述数据传输延时来确定,例如,所述向前调节时间量T A可以为所述数据传输延时T S的0.8、0.9、1.1或者1.2倍等等,在这里不做具体的限定。
在一种可选实施方式中,从设备的收发数据帧中发送窗口的长度为所述主设备的收发数据帧中接收窗口的长度。
具体地,继续参见图5,所述向前调节时间量T A可以为所述数据传输延时T S时,从设备在发送窗口的目标开始时刻发送的数据正好在主设备的收发数据帧中的开始时刻达到设备,从设备的发送时序和主设备的接收时序处于对应状态。在对齐状态下,从设备的收发数据帧中的发送窗口可以不用被截短,从设备的收发数据帧中发送窗口的长度为所述主设备的收发数据帧中接收窗口的长度,从设备可以在整个发送窗口TX2发送有效数据,主设备可以在整个接收窗口RX1接收从设备发送的有效数据,这样,可以有效地提高数据的吞吐率和通信效率。
在一种可选实施方式中,本发明实施例提供的TDD通信方法还可以包括:确定所述目标开始时刻和所述从设备的收发数据帧中接收窗口的结束时刻之间的时间差值。此时,所述将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻包括:当所述时间差值大于或等于射频部件从接收到发送的切换时间时,将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻。
具体地,TDD通信设备在获取到目标开始时刻之后,可以确定所述目标开始时刻和所述从设备的收发数据帧中接收窗口的结束时刻之间的时间差值。其中,在目标开始时刻和所述从设备的收发数据帧中接收窗口的结束时刻之间的时间段内,从设备的射频器件至少要完成从接收功能切换到发送功能。因此,当所述时间差值小于所述射频器件从接收到发送的切换时间时,射频器件不能实现从接收功能到发送功能的切换,TDD通信设备不将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻。当大于或等于射频部件从接收到发送的切换时间时,至少能保证射频器件实现从接收功能到发送功能的切换,此时可以将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻。
在一种可选实施方式中,本发明实施例提供的TDD通信方法还包括:确 定所述数据传输延时是否大于或等于预设延时阈值;所述根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻包括:当所述数据传输延时大于或等于预设延时阈值时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
具体地,TDD通信设备获取了数据传输延时之后,可以进一步地确定所述数据传输延时是否大于或等于预设延时阈值。当所述数据传输延时大于或等于预设延时阈值时,可以认为当前的数据传输延时较大,当前从设备与主设备的通信的效率和吞吐率不高,TDD通信设备根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻,其中,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻的具体方法请参见步骤S4031-S4033和附图5的解释部分。当确认所述数据传输延时小于预设延时阈值时,可以认为当前从设备与主设备的通信的效率和吞吐率不高,TDD通信设备不会根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
在一种可选实施方式中,所述根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻包括:当所述从设备开始与主设备建立通信连接时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
具体地,在现有技术中,在从设备与主设备通信的过程中,主设备可以实时地测量从设备的发送的信号的到达时间,主设备可以根据测到的所述到达时间确定向前调节时间量,并周期性地向从设备发送向前调节时间量,从设备可以根据所述向前调节时间量向前调节从设备的收发数据帧中发送窗口的开始时刻。然而,在从设备开始与主设备建立通信连接时,主设备和从设备还没有构成通信回路,因此主设备不能向从设备发送向前调节时间量。因此,在从设备开始与主设备建立通信连接时,TDD通信设备可以按照如前所述的方法,获取与所述从设备通信连接的主设备与所述从设备之间的距离,根据所述距离确定所述从设备与主设备之间的数据传输延时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻,其中,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻的具体方法请参见步骤S4031-S4033和附图5的解释部分。
进一步地,本发明实施例提供的TDD通信方法还包括:在所述从设备与主设备建立通信连接之后,获取主设备发送的向前调节时间量,并根据所述向前调节时间量向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
具体地,TDD通信设备在确定从设备与主设备建立通信连接之后,即可以接收主设备发送的向前调节时间量,在从设备与主设备的后续通信过程中,TDD通信设备可以根据主设备发送的向前调节时间量向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
可见,基于图4所示的TDD通信方法以及可选的实施方式,可见,该实施例中,从设备利用主从设备的位置来减少主设备接收窗口中的无效数据的时长,从而改善了资源利用率,即提高了系统吞吐量。
请参阅图6,图6是本发明实施例提供的一种TDD通信设备的结构示意图,该TDD通信设备可以包括以下单元:
获取单元601,用于获取与所述从设备通信连接的主设备与所述从设备之间的距离;
确定单元602,用于根据所述距离确定所述从设备与主设备之间的数据传输延时;
调节单元603,用于根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
请参阅图7,图7是本发明实施例提供的一种TDD通信设备的结构示意图,如图7所示,该TDD通信设备可以包括处理器701、存储器702以及通信接口703,其中,所述通信接口703用于与主设备进行通信,该TDD通信设备可以设置在从设备中。
所述存储器702可以包括易失性存储器(volatile memory);存储器702也可以包括非易失性存储器(non-volatile memory);存储器702还可以包括上述种类的存储器的组合。所述处理器702可以是中央处理器(central processing unit,CPU)。所述处理器702还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编 程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
可选地,所述存储器702用于存储程序指令。所述处理器701可以调用存储器702中存储的程序指令,用于执行如下步骤:
获取与所述从设备通信连接的主设备与所述从设备之间的距离;
根据所述距离确定所述从设备与主设备之间的数据传输延时;
根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
在一种可选实施方式中,所述处理器701根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻时,具体用于:
获取所述收发数据帧中发送窗口的参考开始时刻,其中,所述参考开始时刻与主设备的收发数据帧中接收窗口的开始时刻相同;
根据所述数据传输延时将所述参考开始时刻向前调节以获取目标开始时刻,并将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻,其中,所述向前调节时间量是由所述数据传输延时确定的。
在一种可选实施方式中,所述向前调节时间量是所述数据传输延时。
在一种可选实施方式中,所述处理器701还用于确定所述目标开始时刻和所述从设备的收发数据帧中接收窗口的结束时刻之间的时间差值;
所述处理器701将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻时,具体用于:
当所述时间差值大于或等于射频部件从接收到发送的切换时间时,将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻。
在一种可选实施方式中,所述处理器701还用于确定所述数据传输延时是否大于或等于预设延时阈值;
所述处理器701根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻时,具体用于:
当所述数据传输延时大于或等于预设延时阈值时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
在一种可选实施方式中,所述处理器701根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻时,具体用于:
当所述从设备开始与主设备建立通信连接时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
在一种可选实施方式中,所述处理器701还用于:在所述从设备与主设备建立通信连接之后,获取主设备发送的向前调节时间量,并根据所述向前调节时间量向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
在一种可选实施方式中,所述收发数据帧中发送窗口的长度为所述主设备的收发数据帧中接收窗口的长度。
在一种可选实施方式中,所述处理器701获取与所述从设备通信连接的主设备与所述从设备之间的距离时,具体用于:
获取所述主设备和从设备的位置,并根据所述主设备和从设备的位置确定所述距离。
在一种可选实施方式中,所述处理器701获取所述从设备的位置时,具体用于:
利用所述从设备上配置的定位传感器获取所述从设备的位置。
在一种可选实施方式中,所述处理器701获取所述主设备的位置时,具体用于:
获取所述主设备发送的位置,或者
获取主设备的标识信息,根据所述标识信息向服务器发送请求以获取所述主设备的位置。
在一种可选实施方式中,所述从设备为可移动平台,所述主设备为所述可移动平台的控制终端。
在一种可选实施方式中,所述从设备为可移动平台的控制终端,所述主设备为所述可移动平台。
在一种可选实施方式中,所述从设备为移动终端或者可移动平台,所述主设备为通信基站。
在一种可选实施方式中,所述通信基站为蜂窝网络通信基站。
本发明实施例中,该TDD通信设备可以基于主从设备之间的距离来确定数据传输延时,基于该数据传输延时来调节从设备的发送窗口的开始时刻,从而与主设备的接收窗口相匹配,从而可以提高通信效率和吞吐率。
在本发明的实施例中还提供了一种计算机可读存储介质,所述计算机可读 存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明图4所对应实施例中描述的TDD通信方法,在此不再赘述。
在本发明的实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明图4所对应实施例中描述的TDD通信方法,在此不再赘述。
所述计算机可读存储介质可以是前述任一实施例所述的设备的内部存储单元,例如设备的硬盘或内存。所述计算机可读存储介质也可以是所述设备的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本发明实施例还提供一种从设备,包括如图6或7所述的TDD通信设备。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可 读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种TDD通信方法,其特征在于,包括:
    获取与所述从设备通信连接的主设备与所述从设备之间的距离;
    根据所述距离确定所述从设备与主设备之间的数据传输延时;
    根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  2. 根据权利要求1所述的方法,其特征在于,
    所述根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻包括:
    获取所述收发数据帧中发送窗口的参考开始时刻,其中,所述参考开始时刻与主设备的收发数据帧中接收窗口的开始时刻相同;
    根据所述数据传输延时将所述参考开始时刻向前调节以获取目标开始时刻,并将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻,其中,所述向前调节时间量是由所述数据传输延时确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述向前调节时间量是所述数据传输延时。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    确定所述目标开始时刻和所述从设备的收发数据帧中接收窗口的结束时刻之间的时间差值;
    所述将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻包括:
    当所述时间差值大于或等于射频部件从接收到发送的切换时间时,将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:确定所述数据传输延时是否大于或等于预设延时阈值;
    所述根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻包括:
    当所述数据传输延时大于或等于预设延时阈值时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻包括:
    当所述从设备开始与主设备建立通信连接时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述从设备与主设备建立通信连接之后,获取主设备发送的向前调节时间量,并根据所述向前调节时间量向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  8. 根据权利要求3所述的方法,其特征在于,所述收发数据帧中发送窗口的长度为所述主设备的收发数据帧中接收窗口的长度。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述获取与所述从设备通信连接的主设备与所述从设备之间的距离包括:
    获取所述主设备和从设备的位置,并根据所述主设备和从设备的位置确定所述距离。
  10. 根据权利要求9所述的方法,其特征在于,
    所述获取所述从设备的位置包括:
    利用所述从设备上配置的定位传感器获取所述从设备的位置。
  11. 根据权利要求9所述的方法,其特征在于,
    所述获取所述主设备的位置包括:
    获取所述主设备发送的位置,或者
    获取主设备的标识信息,根据所述标识信息向服务器发送请求以获取所述主设备的位置。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述从设备为可移动平台,所述主设备为所述可移动平台的控制终端。
  13. 根据权利要求1-11任一项所述的方法,其特征在于,所述从设备为可移动平台的控制终端,所述主设备为所述可移动平台。
  14. 根据权利要求1-11任一项所述的方法,其特征在于,所述从设备为移动终端或者可移动平台,所述主设备为通信基站。
  15. 根据权利要求14所述的方法,其特征在于,所述通信基站为蜂窝网络通信基站。
  16. 一种TDD通信设备,其特征在于,包括存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,执行所述存储器存储的程序指令,当程序指令被执行时,所述处理器用于执行如下步骤:
    获取与所述从设备通信连接的主设备与所述从设备之间的距离;
    根据所述距离确定所述从设备与主设备之间的数据传输延时;
    根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  17. 根据权利要求16所述的设备,其特征在于,所述处理器根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻时,具体用于:
    获取所述收发数据帧中发送窗口的参考开始时刻,其中,所述参考开始时刻与主设备的收发数据帧中接收窗口的开始时刻相同;
    根据所述数据传输延时将所述参考开始时刻向前调节以获取目标开始时刻,并将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻,其中,所述向前调节时间量是由所述数据传输延时确定的。
  18. 根据权利要求17所述的设备,其特征在于,所述向前调节时间量是所述数据传输延时。
  19. 根据权利要求17或18所述的设备,其特征在于,所述处理器还用于确定所述目标开始时刻和所述从设备的收发数据帧中接收窗口的结束时刻之间的时间差值;
    所述处理器将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻时,具体用于:
    当所述时间差值大于或等于射频部件从接收到发送的切换时间时,将所述收发数据帧中发送窗口的开始时刻调节至所述目标开始时刻。
  20. 根据权利要求16-19任一项所述的设备,其特征在于,所述处理器还用于确定所述数据传输延时是否大于或等于预设延时阈值;
    所述处理器根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻时,具体用于:
    当所述数据传输延时大于或等于预设延时阈值时,根据所述数据传输延时 向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  21. 根据权利要求16-20任一项所述的设备,其特征在于,
    所述处理器根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻时,具体用于:
    当所述从设备开始与主设备建立通信连接时,根据所述数据传输延时向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  22. 根据权利要求21所述的设备,其特征在于,所述处理器还用于:
    在所述从设备与主设备建立通信连接之后,获取主设备发送的向前调节时间量,并根据所述向前调节时间量向前调节所述从设备的收发数据帧中发送窗口的开始时刻。
  23. 根据权利要求18所述的设备,其特征在于,所述收发数据帧中发送窗口的长度为所述主设备的收发数据帧中接收窗口的长度。
  24. 根据权利要求16-23任一项所述的设备,其特征在于,所述处理器获取与所述从设备通信连接的主设备与所述从设备之间的距离时,具体用于:
    获取所述主设备和从设备的位置,并根据所述主设备和从设备的位置确定所述距离。
  25. 根据权利要求24所述的设备,其特征在于,
    所述处理器获取所述从设备的位置时,具体用于:
    利用所述从设备上配置的定位传感器获取所述从设备的位置。
  26. 根据权利要求24所述的设备,其特征在于,
    所述处理器获取所述主设备的位置时,具体用于:
    获取所述主设备发送的位置,或者
    获取主设备的标识信息,根据所述标识信息向服务器发送请求以获取所述主设备的位置。
  27. 根据权利要求16-26任一项所述的设备,其特征在于,所述从设备为可移动平台,所述主设备为所述可移动平台的控制终端。
  28. 根据权利要求16-26任一项所述的设备,其特征在于,所述从设备为可移动平台的控制终端,所述主设备为所述可移动平台。
  29. 根据权利要求16-26任一项所述的设备,其特征在于,所述从设备为移动终端或者可移动平台,所述主设备为通信基站。
  30. 根据权利要求29所述的设备,其特征在于,所述通信基站为蜂窝网络通信基站。
  31. 一种从设备,其特征在于,包括权利要求16-30任一项所述的TDD通信设备。
PCT/CN2018/103009 2018-08-29 2018-08-29 一种tdd通信方法及设备 WO2020042017A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/103009 WO2020042017A1 (zh) 2018-08-29 2018-08-29 一种tdd通信方法及设备
CN201880036993.4A CN110720184B (zh) 2018-08-29 2018-08-29 一种tdd通信方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103009 WO2020042017A1 (zh) 2018-08-29 2018-08-29 一种tdd通信方法及设备

Publications (1)

Publication Number Publication Date
WO2020042017A1 true WO2020042017A1 (zh) 2020-03-05

Family

ID=69208805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103009 WO2020042017A1 (zh) 2018-08-29 2018-08-29 一种tdd通信方法及设备

Country Status (2)

Country Link
CN (1) CN110720184B (zh)
WO (1) WO2020042017A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043254A (zh) * 2006-03-24 2007-09-26 大唐移动通信设备有限公司 一种终端发射上行信号的处理方法
CN101193425A (zh) * 2006-11-30 2008-06-04 北京信威通信技术股份有限公司 Tdd下的cdma系统终端实现远距离切换的切换方法及系统
CN101252385A (zh) * 2008-02-22 2008-08-27 杭州电子科技大学 Tdd数字基带直放站中实现信号同步的方法
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
CN102647783A (zh) * 2012-04-19 2012-08-22 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
CN107690183A (zh) * 2016-08-05 2018-02-13 株式会社Ntt都科摩 上行数据传输方法及装置
WO2018089836A1 (en) * 2016-11-11 2018-05-17 Qualcomm Incorporated Timing advance reporting for latency reduction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288623B2 (en) * 2005-12-15 2016-03-15 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
CN101154984B (zh) * 2006-09-25 2012-10-03 电信科学技术研究院 一种保持上行同步的方法及系统
CN101488798B (zh) * 2008-01-14 2013-05-15 电信科学技术研究院 定时测量方法、系统及装置
CN103840902B (zh) * 2012-11-20 2017-06-27 中兴通讯股份有限公司 检测光纤非对称性的同步系统、方法及主从光模块设备
CN107404749B (zh) * 2017-06-30 2020-05-08 上海华为技术有限公司 一种通信连接方法及基站

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043254A (zh) * 2006-03-24 2007-09-26 大唐移动通信设备有限公司 一种终端发射上行信号的处理方法
CN101193425A (zh) * 2006-11-30 2008-06-04 北京信威通信技术股份有限公司 Tdd下的cdma系统终端实现远距离切换的切换方法及系统
CN101252385A (zh) * 2008-02-22 2008-08-27 杭州电子科技大学 Tdd数字基带直放站中实现信号同步的方法
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
CN102647783A (zh) * 2012-04-19 2012-08-22 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
CN107690183A (zh) * 2016-08-05 2018-02-13 株式会社Ntt都科摩 上行数据传输方法及装置
WO2018089836A1 (en) * 2016-11-11 2018-05-17 Qualcomm Incorporated Timing advance reporting for latency reduction

Also Published As

Publication number Publication date
CN110720184B (zh) 2021-03-26
CN110720184A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
US11825433B2 (en) Synchronizing multiple-input/multiple-output signals in distributed antenna systems
CN110574450B (zh) 确定协作位置的系统和方法
JP7388609B2 (ja) ビーム構成方法および装置
WO2018201926A1 (zh) 上行载波切换的方法、网络设备和终端设备
CN106936560B (zh) 一种帧同步方法、用户设备及基站
KR102462464B1 (ko) 통신 방법 및 장치
CN116438865A (zh) Ue发起的传播延迟补偿机制
EP3664481B1 (en) Data receiving method, related apparatus, and computer readable storage medium and computer program product
KR102298616B1 (ko) 비-트리거-기반 레인징을 위한 절전
WO2023078385A1 (zh) 数据传输方法及相关产品
CN111108783B (zh) 时间提前值的管理
WO2020042017A1 (zh) 一种tdd通信方法及设备
JP7449992B2 (ja) 方法、装置、及びコンピュータプログラム
WO2022073504A1 (zh) 数据传输方法和装置
JP2024504065A (ja) レーダー通信統合化信号の送信方法、受信方法及び機器
JP6002645B2 (ja) 通信制御システム、帯域割当装置、中継装置及び通信制御方法
WO2019205925A1 (zh) 通信方法及通信装置
CN116746198A (zh) 一种通信方法及装置
JP2022538207A (ja) 通信方法
WO2024032310A1 (zh) 通信方法和装置
WO2023035968A1 (zh) 天线探测方法、装置、设备以及存储介质
WO2023207554A1 (zh) 一种定时提前量的获取方法及装置
US11601900B2 (en) Communication method and apparatus for time synchronization of terminal devices
EP4277373A1 (en) Synchronization state processing method, and device and storage medium
WO2022078391A1 (zh) 传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931561

Country of ref document: EP

Kind code of ref document: A1