WO2020040444A1 - 차량용 허브베어링의 엔코더 씰조립체 - Google Patents

차량용 허브베어링의 엔코더 씰조립체 Download PDF

Info

Publication number
WO2020040444A1
WO2020040444A1 PCT/KR2019/009601 KR2019009601W WO2020040444A1 WO 2020040444 A1 WO2020040444 A1 WO 2020040444A1 KR 2019009601 W KR2019009601 W KR 2019009601W WO 2020040444 A1 WO2020040444 A1 WO 2020040444A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal assembly
axial
radially
axial direction
bent
Prior art date
Application number
PCT/KR2019/009601
Other languages
English (en)
French (fr)
Inventor
우종서
한승우
김정호
Original Assignee
(주)진양오일씰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)진양오일씰 filed Critical (주)진양오일씰
Publication of WO2020040444A1 publication Critical patent/WO2020040444A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings

Definitions

  • the present invention relates to an encoder seal assembly for a hub bearing of a vehicle, and more particularly, to an encoder seal assembly for sealing between an outer ring and an inner ring of a vehicle hub bearing to which an encoder for detecting a rotational speed of an axle is coupled.
  • a bearing is a device mounted between a rotating element and a non-rotating element to facilitate the rotation of the rotating element.
  • Various bearings such as roller bearings, tapered bearings and needle bearings are currently used, and a hub bearing of a vehicle is a type of such a bearing, and rotatably connects a wheel, which is a rotating element, to a vehicle body that is not rotating. In this case, as shown in FIG.
  • a hub bearing 10 supporting an axle generally includes a hub 11 connected to an end of the axle, an outer ring 12 connected to a vehicle body, a wheel, and the hub ( 11 is connected to the inner ring 13 and the outer ring 12 and the rolling element 14 interposed between the outer ring 12 and the hub 11 or the inner ring 13 in parallel, wherein the outer ring 12 And an encoder provided between the inner ring 13 and the inner ring 13 to detect the rotational speed of the wheel, wherein the encoder seals the inlet at which the encoder is coupled between the outer ring 12 and the inner ring 13.
  • Encoder seal assembly 1000 is provided, and basically, the encoder seal assembly is mounted on a wheel of a vehicle, and thus is exposed to foreign substances such as dust or moisture.
  • the damaged raceway may generate noise and vibration during operation of the wheel bearing and shorten the life of the hub bearing. Therefore, the sealing performance of the encoder seal assembly to prevent foreign substances from entering the outside at one or both ends of the hub bearing. Is very important for herb bearings.
  • the encoder seal assembly is provided between the outer ring and the inner ring which is connected to the fixed outer ring and the axle to be connected to the vehicle body, the seal seal of rubber material having a plurality of lip (Lip) to seal between the rotating outer ring
  • the friction loss of the seal assembly due to the rotation of the inner ring and the leakage of the contact portion of the lip (Lip) provided in the seal assembly is caused as described above, wherein the friction loss of the seal assembly In order to minimize the leakage of the seal assembly while minimizing the study of the encoder seal assembly has been made.
  • FIG. 2 is a view showing a conventional encoder seal assembly (1), as shown in Figure 2, the conventional encoder seal assembly (1) has a corner at the end of the main lip (1-1) connected to the inner ring It consists of a structure in contact with the inner surface of the reinforcing rod parallel to the rotation, wherein the contact stress (S) generated by contacting the edge at the end of the main lip (1-1) is greatly changed in accordance with the pressure of the foreign matter introduced An error occurs in the measured value measured by the encoder, and the error value is not constant, which causes a problem that the measurement accuracy of the encoder is deteriorated.
  • S contact stress
  • the present invention has been made to solve the above problems, the main lip is formed to reduce the change in contact stress of the sealing member according to the rotation of the outer ring and the inner ring is contacted according to the pressure of the foreign matter flowing into the encoder seal assembly The change in stress is reduced to provide an encoder seal assembly that can maintain a constant measurement quality of the encoder.
  • the structure for canceling the direct pressure of the foreign matter introduced into the encoder seal assembly from the outside and the frictional load of the seal assembly is minimized by offsetting the pressure applied to the lip by the flow of the foreign matter introduced.
  • An encoder seal assembly is provided to prevent foreign matter from leaking inside.
  • the present invention is provided with a main rib formed with a plurality of contact projections and the labyrinth slip to guide the flow direction of the foreign matter flowing in the inflow direction of the foreign matter, according to the pressure of the foreign matter introduced
  • the contact stress in the main lip is kept constant, and the friction loss of the seal assembly is minimized, and at the same time, the foreign matter is prevented from leaking inside to improve the sealing property.
  • the present invention according to the above configuration, the plurality of contact projections of the main lip in contact with the inner surface in the axial direction of the second reinforcement according to the pressure of the foreign matter introduced into the seal assembly, the pressure of the foreign matter introduced Accordingly, the contact stress in the main lip is kept constant, thereby reducing the error value generated by the existing encoder, thereby enabling high quality measurement.
  • FIG. 1 is a cross-sectional view showing a wheel hub having an encoder seal assembly of the present invention
  • Figure 2 is a cross-sectional view showing a conventional encoder seal assembly
  • Figure 3 is a cross-sectional view showing a seal assembly according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing a modification of the seal assembly of the present invention
  • FIG. 6 is a cross-sectional view showing a labyrinth slip according to the first embodiment of the seal assembly of the present invention
  • FIG. 7 is an enlarged partial view of the labyrinth slip according to FIG.
  • FIG. 8 is a cross-sectional view showing a labyrinth slip according to a second embodiment of the seal assembly of the present invention.
  • FIG. 9 is a partially enlarged view of the labyrinth slip according to FIG. 8.
  • the present invention is provided between the inner ring and the outer ring constituting the hub bearing for vehicles in the encoder seal assembly for preventing the intrusion of foreign matter from the outside, extending along the inner surface in the radial direction of the outer ring
  • the first reinforcing bar is formed so that the inner end in the axial direction is bent toward the inner ring, the first reinforcing bar is provided on the outer side in the axial direction, the radial outer end is bent in the axial direction in the radial direction
  • the inner end of the second reinforcing bar and the first reinforcing bar formed to extend along the outer surface in the radial direction of the inner ring is formed so as to surround the axial direction outward from the inner surface in the axial direction It characterized in that it comprises a sealing member including a protruding main lip.
  • the main lip has a plurality of contact protrusions protruding toward the inner surface in the radial direction of the second reinforcing rod is formed on the inner surface in the radial direction, the second in accordance with the pressure of the foreign matter flowing into the seal assembly
  • a plurality of contact projections of the main lip to the inner surface in the axial direction of the reinforcement is characterized in that the multiple contacts.
  • the plurality of contact protrusions are formed to be spaced apart from the other adjacent contact protrusions by a predetermined distance, characterized in that the grease accommodation space is formed between the adjacent contact protrusions.
  • the length L of the radially outer end portion of the second reinforcing rod bent inward in the axial direction is 0.7 of the length L from the axial outer side of the second reinforcing rod to the axial outer side of the sealing member. It is characterized by being 0.8 times.
  • the sealing member further includes a labyrinth strip protruding toward the outer end of the second reinforcing bar bent inwardly in the axial direction, the labyrinth slip of the sealing member adjacent to the radially outer surface
  • the angle ⁇ 1 between the outer surfaces in the axial direction is bent to have an acute angle.
  • the labyrinth slip to one side of the present invention may be formed such that the protruding axial outer surface faces the bent axial inner surface of the radially outer end of the second reinforcement.
  • the labyrinth strip is characterized in that the protruding axial outer surface is formed to face the bent axial inner surface of the radially outer end of the second reinforcement.
  • the projected axial outer surface of the labyrinth slip is positioned radially outwardly from the radially inner corner of the bent axially inner surface of the radially outer end of the second reinforcement. It is characterized in that it is formed to.
  • the distance A between the axially outer surface of the labyrinth slip and the axially inner surface of the bent second reinforcement is -0.5mm ⁇ A ⁇ 0.5mm.
  • the labyrinth slip to the other side of the present invention is formed to protrude toward the radially inner surface of the radially outer end of the second reinforcement, the inner surface and the radius in the axial direction of the protruding leverrin slip
  • the angle ⁇ 2 between the outer surfaces in the direction is double bent to have an acute angle, so that the radially outer tip is formed to face the radially inner surface of the radially outer end of the second reinforcing bar.
  • the depth h of the double bent tip in the radial direction of the labyrinth slip is 0.1 to 0.2 times the distance H between the inner side of the outer end of the second reinforcement and the outer side of the inner end. It features.
  • the length L of the radially outer end portion of the second reinforcing rod bent inward in the axial direction is 0.7 of the length L from the axial outer side of the second reinforcing rod to the axial outer side of the sealing member. It is characterized by being 0.8 times.
  • the up and down direction is referred to as the radial direction, wherein the direction to the upper side to the outer and lower sides of the radial direction
  • the direction of is referred to as the radially inward direction
  • the left and right directions are referred to as the axial direction
  • the direction to the left will be referred to as the axial inward direction and the right to the axial direction.
  • the direction referred to above may be changed in the up, down, left, and right directions according to the direction in which the seal assembly 1000 is shown on the accompanying drawings. Referring to FIG. 1, the axial direction of the hub bearing 10 may be changed.
  • the radial direction means a direction orthogonal to the axial direction.
  • the hub bearing 10 and the seal assembly 1000 are formed in a circular shape surrounding the respective components coupled therein, and thus include the first reinforcing bar 100, the second reinforcing bar 200, and the sealing member 300.
  • the seal assembly 1000 is also provided between the outer ring 12 and the inner ring 13 is made of a circular shape surrounding the encoder unit 400.
  • the encoder seal assembly 1000 of the present invention includes an outer ring 12 constituting a hub bearing 10 for a vehicle. It is provided between the inner ring 13, the first reinforcing bar 100 coupled to the outer ring 12 and the second reinforcing bar 200 and the first reinforcing bar 100 coupled to the inner ring 13 of the axial direction Including an encoder unit 400 coupled to the outer side of the sealing member 300 and the second reinforcing bar 200 provided on the outer surface in the axial direction to detect the rotational speed of the axle according to the rotation of the inner ring (13) Can be configured.
  • the first reinforcing bar 100 is extended along the inner surface in the radial direction of the outer ring 12, the axial body portion 120 is formed to be bent toward the inner ring (13).
  • the first reinforcing bar 100 is in contact with the radially inner surface of the outer ring 12, the outer end 110 is coupled to the inner surface of the outer ring 12 using a means such as pressing or bonding.
  • the outer end portion of the outer end portion 110 in the axial direction is spaced apart in the radially inner side by a sealing member 300 coupled to surround the outer side surface 121 in the axial direction of the first reinforcing bar 100.
  • the outer side in the radial direction of the sealing member 300 can be fixed to the axial outer end 110 of the first reinforcing bar 100 is formed spaced apart, it is pressed into the outer ring 12
  • the seal assembly 1000 may be fixed.
  • the first reinforcing bar 100 includes an inner end 130 formed at an end extending from the body portion 120 in the axial direction bent radially inward, and radially of the inner end 130.
  • a radially inner portion of the sealing member 300 may be coupled to the inside to be firmly coupled to the first reinforcing bar 100.
  • the second reinforcing bar 200 is provided on the outer side in the axial direction to face the first reinforcing bar 100 to form a shape of the seal assembly 1000, spaced apart from the first reinforcing bar 100
  • Body portion 220 disposed on the outer side in the axial direction and the inner end portion 230 integrally formed in the radially inner side of the body portion 220 is formed to extend along the outer surface in the radial direction of the inner ring 13
  • the encoder unit 400 is coupled to the outer side of the body portion 220 of the second reinforcing rod 200 in the axial direction, thereby measuring the rotation of the inner ring 13.
  • the radially outer end portion 210 of the second reinforcing rod 200 is bent inward in the axial direction, thereby forming a moving path of foreign matter introduced into the encoder seal assembly 1000, By reducing the pressure, the rigidity of the sliding surface of the sealing member 300 may be increased.
  • the axial outer surface of the sealing member 300 and the bent outer end 210 of the second reinforcing bar 200 according to the length of the radially outer end 210 of the second reinforcing rod 200.
  • Gap (d) between the inner surface of the axial direction is determined, and if the gap (d) is formed too narrow, the pressure of the foreign matter flowing into the interior may be increased, thereby requiring the sealing member (300) of the According to the shape and the contact area of the lip (Lip), the length (L) of the outer end 210 of the bent second reinforcement 200 should be appropriately designed.
  • the encoder unit 400 provided on the axially outer side of the body portion 220 of the second reinforcing bar 200 may be made of a rubber magnet of a rubber material having magnetic properties, different magnetic field directions Two kinds of magnetic parts having the same or intensity are alternately arranged along the circumferential direction to detect a change in the magnetic field generated when rotated in parallel with the inner ring 13, and measure the rotational speed according to the number of magnetic field changes per unit time. can do.
  • the rubber magnet constituting the encoder unit 400 may be formed by mixing nitro butadiene rubber ferrite (NBR, acrylonitrile-butadiene rubber) resin containing acrylonitrile.
  • the sealing member 300 is provided between the first reinforcing table 100 and the second reinforcing table 200, and is configured to seal between the first reinforcing table 100 and the second reinforcing table 200, flexibly It is preferably made of a soft material that is well bent, and may include a plurality of ribs protruding toward the second reinforcing bar 200. Preferably, the plurality of lips are the seals.
  • a radially inner end of the second reinforcing rod is provided at the radially inner end of the main rib 330 and the silly member 300 protruding from the radially inner portion of the member 300 toward the second reinforcing rod 200. It may include a rear end 340 formed to face the inner surface 231 of the 230. In this case, the main lip 330 and the rear short lip 340 may have various shapes and numbers without departing from the gist of the present invention.
  • the main lip 330 protrudes from the inner side in the axial direction of the sealing member 300 to the outer side in the axial direction, and is configured to seal the axial inner surface of the second reinforcing rod 200.
  • a predetermined length protrudes in the direction of the axial inner end portion 230 of the second reinforcing rod 200 to contact the axial inner surface of the second reinforcing rod 200, and on the radially inner side of the main lip 330.
  • a plurality of contact protrusions 331 protruding toward the axially inner surface of the body portion 220 in the axial direction of the second reinforcement 200 is formed.
  • the main lip 330 is protruded length is in contact with the axial inner surface of the second reinforcement 200 is bent in the radial direction and coupled, the surface formed with the plurality of contact protrusions 331 is
  • the seal assembly 1000 is referred to as a radially inner surface of the main lip 330 on the basis of the coupling, the direction of the surface of the main lip 330 in which the contact protrusion 331 is formed is the present invention. Without departing from the gist of the plurality of contact projections 331 will be interpreted in the direction in contact with the axial inner surface of the second reinforcing bar (200).
  • the plurality of contact protrusions 331 of the main lip 330 are fixed along the radially inner side surface of the other adjacent contact protrusion 331 and the main lip 330. It is formed to be spaced apart from each other, the grease pocket (GP, Grease Pocket) is formed between the adjacent contact projections 331, the main lip by the grease (G, Grease) filled in the grease receiving space (GP) A frictional force between the contact protrusion 331 and the second reinforcing bar 200 of 330 may be reduced to improve lubricity.
  • the plurality of contact projections 331 of the main lip 330 is in contact with the inner surface in the axial direction of the second reinforcing rod 200 in accordance with the pressure of the foreign matter flowing into the seal assembly, the pressure of the foreign matter
  • the main lip 330 according to the dispersion of the contact stress (S) for pressing the axial rim body 220 of the second reinforcement 200 by the plurality of contact protrusions 331, thereby the pressure of the foreign matter Regardless, there is an advantage that can form a constant contact stress.
  • the plurality of contact protrusions 331 are formed to be spaced apart from each other along the outer surface of the main lip 330, the pressure of the foreign matter introduced is increased so that the plurality of contact protrusions 331 of the main lip 330 Even though the second reinforcing bar 200 is in contact with each other, the grease G is filled between the grease receiving spaces GP formed between the plurality of contact protrusions 331, thereby forming the second reinforcing bar 200 and the main body.
  • the plurality of contact protrusions 331 may be formed in a shape capable of forming the grease accommodation space GP more effectively, and at the same time, contact with the axial inner surface of the second reinforcing bar 200. More preferably, the area is formed in a shape that can be minimized.
  • the contact protrusion 331 is preferably formed in a conical shape in which the cross-sectional area is gradually reduced toward the end so that the edge in contact with the axial inner surface of the second reinforcement 200 is in line contact, the contact protrusion ( The outer side surface 331a in the radial direction of the 331 is formed in an elliptical shape which has a predetermined angle toward the outside in the radial direction and is bent, and the radially inner side surface 331b of the contact protrusion 331 is adjacent to the other one.
  • the length (L) of the radially outer end 210 of the second reinforcement 200 is bent inward in the axial direction is the second
  • the foreign material flowing into the main lip 330 extends by 0.7 to 0.8 times the length L from the axially outer surface of the reinforcing table 200 to the axially outer surface of the sealing member 300. Instead of directly flowing toward the axially inner surface of the reinforcing table 200, it is guided to flow into the radially outer surface of the main lip 330, thereby further improving the performance of the main lip 330.
  • the length L of the radially outer end portion 210 of the second reinforcing rod 200 is bent inward in the axial direction is the axis of the sealing member 300 from the axially outer side surface of the second reinforcing rod 200.
  • the foreign matter introduced into the end of the main lip 330 is in direct contact with the main lip 330.
  • the length of the radially outer end 210 of the second reinforcing table 200 is bent inward in the axial direction is the second reinforcing bar ( The distance d from the axial outer side of the 200 to the axial outer side of the sealing member 300 is extended by 0.8 times or more, so that the gap d through which foreign matter flowing into the encoder seal 1000 passes. If formed too small, the flow rate of foreign matter flowing through the gap d increases. Depending can by the pressure inside the seal encoder 1000 increases due to the internal pressure applied to the rib (100, 200) to generate the error in the encoder unit 400.
  • the main lip 330 may be provided in a plurality inside the seal assembly 1000, wherein the plurality of the main lip 330 is reduced in size and length of the protruding radius It may be arranged in a continuous direction, the number of the main lip 330 will be possible to various modifications without departing from the spirit of the present invention.
  • the seal assembly 1000 of the present invention includes a labyrinth slip 320 for guiding the flow direction of the foreign matter introduced in the foreign matter inflow direction, thereby reducing the pressure received by the lip LIp of the seal assembly 1000.
  • the sealing assembly 1000 further improves the sealing property and has a more concise structure.
  • FIG. 6 is a cross-sectional view illustrating a labyrinth slip according to a first embodiment of the seal assembly of the present invention
  • FIG. 7 is a partially enlarged view of the labyrinth slip according to FIG. 6.
  • the sealing member 300 according to the first embodiment of the present invention further includes a labyrinth slip 320 protruding toward the outer end portion 210 of the second reinforcing bar 200 bent inward in the axial direction.
  • the labyrinth slip 320 is bent to have an acute angle between the outer surface 321 and the outer surface 312 of the axial direction of the sealing member 300 in the radial direction acute angle, the labyrinth Lip is formed so that the protruding axial outer surface toward the bent axial inner surface of the radially outer end of the second reinforcement, foreign matter flows between the first reinforcement 100 and the second reinforcement 200 It prevents the flow into the inside, the outer side of the outer surface 321 and the sealing member 300 in the radial direction of the axial direction
  • the angle ⁇ 1 with the surface 312 is formed to have an angle of 70 to 80 degrees, so that the flow of foreign matter introduced is guided along the radially outer surface 321 of the labyrinth slip 320 to be introduced.
  • the labyrinth slip 320 has a radially inner edge of the protruding axial outer surface 323 that is radially larger than the radially inner edge of the bent axial inner surface of the radially outer end of the second reinforcement.
  • the pressure flowing into the seal assembly 1000 may be reduced by using the flow pressure of the foreign matter, which is formed to be located outside of the reverberation.
  • the labyrinth slip 320 is the outer surface 323 of the axial direction is bent at a predetermined angle radially outward from the radially outer surface 321 of the labyrinth slip 320 the labyrinth slip 320 And the flow rate of the foreign matter introduced into the gap A between the axially inner side surfaces of the bent radially outer end portion 210 of the second reinforcing rod 200 may be further reduced.
  • the labyrinth slip 320 is formed to further protrude toward the axial inner surface 212 of the second reinforcement 200, the sealing member 300 according to the rotation of the second reinforcement 200 And the sealing according to the rotation between the second reinforcing rod 200 or the labyrinth slip 320 is formed so as to be spaced apart from the axial inner surface 212 of the second reinforcing rod 200 It is possible to prevent the friction loss caused by the contact between the rinse lip 320 and the axial inner surface 212 of the second reinforcing bar 200.
  • a gap between the axial outer surface 323 of the labyrinth slip 320 and the axial inner surface 212 of the bent second reinforcement 200 ( Most preferably, A) has a spacing of ⁇ 0.5 mm ⁇ A ⁇ 0.5 mm.
  • FIG. 8 is a cross-sectional view illustrating a labyrinth slip according to a second embodiment of the seal assembly of the present invention
  • FIG. 9 is a partially enlarged view of the labyrinth slip according to FIG. 8.
  • the labyrinth slip 320 according to the second embodiment of the present invention protrudes toward the radially inner side 211 of the radially outer end portion 210 of the second reinforcement 200, the protruding lever
  • the angle ⁇ 2 between the inner surface 322 in the axial direction of the rinse lip 210 and the outer surface 321 in the radial direction is double bent to have an acute angle, so that the radially outer end 323 is the second reinforcing bar.
  • the angle ⁇ 2 between the inner surface 322 in the axial direction of the double bent front end 323 of the labyrinth slip 320 and the outer surface 321 in the radial direction of the labyrinth slip 320 Is bent to have an acute angle, wherein the angle ⁇ 2 between the inner surface 322 in the axial direction of the double bent tip 323 and the outer surface 321 in the radial direction of the labyrinth slip 320 ) Is preferably bent in the axial direction to have an angle of 75 to 85 degrees, more preferably may be bent to have an angle of 80 degrees.
  • the angle ⁇ 2 between the inner surface 322 in the axial direction of the double bent tip 323 and the outer surface 321 in the radial direction of the labyrinth slip 320 is less than 75 degrees or more than 85 degrees
  • a tip 323 of the labyrinth slip 320 is formed to face the radially outer end 210 of the second reinforcing bar 200, and an axial inner edge 322 of the tip 323 is axially inward.
  • it is preferably formed so as not to directly hit the front end 323 of the labyrinth slip 320.
  • the depth h of the double bent tip 324 in the radial direction of the labyrinth slip 320 and the inner surface 211 of the radially outer end 210 of the second reinforcing bar 200 It is preferably made of 0.1 to 0.2 times the distance (H) between the outer surface 231 of the radially inner end 230, more preferably the depth (h) is the radially outer side of the second reinforcing table 200 It may be formed to 1.158 times the distance (H) between the inner surface 211 of the end 210 and the outer surface 231 of the radially inner end 230, in this radial direction of the labyrinth strip 320
  • Depth (h) of the double bent tip 324 of the means the depth of the flow space (R) between the labyrinth slip 320 and the radially outer end 210 of the second reinforcement 200 When the depth (h) is formed too deep, there is a problem that the flow path of the incoming inflow does not flow smoothly by the labyrinth slip 320
  • the length L of the radially outer end 210 of the second reinforcing rod 200 is bent inward in the axial direction is the sealing from the outer surface 213 of the second reinforcing rod 200 in the axial direction.
  • the axial direction of the member 300 is preferably formed 0.7 to 0.8 times the length (L) to the outer surface 312, wherein the radially outer end 210 of the second reinforcing rod 200 is
  • the length B bent inwardly means the length from the axial inner side 212 to the outer side 213 of the outer end 210, and the radial outer end 210 of the second reinforcement 200. ) Is bent and extended by the length (L), thereby preventing the foreign substances introduced into the seal assembly 1000 from being introduced into the interior.
  • the length l of the radially outer end 210 of the second reinforcing rod 200 is a flow space between the labyrinth slip 320 and the radially outer end 210 of the second reinforcing rod 200.
  • the length L at which the radially outer end 210 of the second reinforcing rod 200 is bent inward in the axial direction is the sealing member from the outer surface 213 of the second reinforcing rod 200 in the axial direction. It is preferably formed in the axial direction of the 300 to 0.7 to 0.8 times the length (L) to the outer surface 312, more preferably the radially outer end 210 of the second reinforcing rod 200 is the shaft
  • the length L bent inward in the direction is the length L from the outer surface 213 of the second reinforcement 200 in the axial direction to the outer surface 312 in the axial direction of the sealing member 300. 0.75 times.
  • the radially outer end portion 410 of the encoder unit 400 is formed to extend along the outer surface of the radially outer end portion 210 of the second reinforcement 200 to surround the outer end portion 210.
  • the axially inner side surface 412 of the outer end portion 410 of the encoder unit 400 may be coupled to the axial inner side surface 212 of the radially outer end portion 210 of the second reinforcement 200.
  • the length (L) of the radially outer end 210 of the second reinforcement 200 is bent inward in the axial direction is the axis of the radially outer end 410 of the encoder unit 400 It is desirable to consider up to the length of the directional medial face 412.
  • the labyrinth slip 320 is double bent to form a flow space (R) between the labyrinth slip 320 and the radially outer end 210 of the second reinforcing table 200, which is introduced By inducing the flow in a direction opposite to the flow direction of the foreign matter and hit each other to cancel the pressure, the radial end portion 210 of the front end 324 of the labyrinth slip 320 and the second reinforcing bar 200 As the leakage effect between the side surfaces 211 is further increased to increase the sealing effect, an outer edge 322 is formed in the radial direction of the tip 324 protruding in the axial direction of the labyrinth slip 320.
  • R flow space
  • the seal assembly 1000 can be configured.
  • the labyrinth slip 320 according to the second embodiment is formed so that the tip 324 protruding in the axial direction is double bent to face the radially outer side, and the radially outer side of the front end 324.
  • the edge 324 means an inner or outer edge in the axial direction, wherein the outer edge 324 located in the axial direction of the front end 324 has an axial inner surface 212 of the second reinforcing rod 210. It is preferable that it is formed so as not to protrude further inward than).
  • the seal assembly 1000 of the present invention further includes the labyrinth slip 320 in the sealing member 300, which may or may not include the main lip 330 and the rear end 340.
  • the labyrinth slip 320 is formed.
  • the foreign matters are not directly introduced into the main lip 330, and the pressure of the foreign matters introduced into the seal assembly 1000 is reduced, resulting in the rotation of the wheel.
  • By reducing the friction loss caused by the sealing member 300 further improves the measurement quality of the encoder unit 400, and provides a seal assembly 1000 with an increased sealing efficiency for preventing foreign matter from entering the interior. Can.
  • first reinforcing rod 110 radially outer end
  • sealing member 320 labyrinth slip
  • main rib 331 contact projection

Abstract

본 발명은 차축의 회전속도를 검출하는 엔코더가 결합되는 차량용 허브베어링의 외륜과 내륜 사이를 밀봉하기 위한 엔코더 씰조립체에 관한 것으로, 복수의 접촉돌기가 형성된 메인립 및 유입되는 이물질의 유동의 방향을 이물질의 유입방향으로 유도하는 래버린스립을 구비하여, 유입되는 이물질의 압력에 따라 메인립에서의 접촉응력이 일정하게 유지시키고, 씰조립체의 마찰 손실을 최소화 시키는 동시에 내부로 이물질이 누설되는 것을 방지하여 실링성을 향상시키며, 기존의 엔코더에서 발생하는 오차값을 저감시켜 높은 품질의 측정이 가능한 엔코더 씰조립체에 관한 것이다.

Description

차량용 허브베어링의 엔코더 씰조립체
본 발명은, 차량의 허브베어링용 엔코더 씰조립체에 관한 것으로, 더욱 자세하게는 차축의 회전속도를 검출하는 엔코더가 결합되는 차량용 허브베어링의 외륜과 내륜 사이를 밀봉하기 위한 엔코더 씰조립체에 관한 것이다.
일반적으로 베어링은 회전하는 요소와 회전하지 않는 요소 사이에 장착되어 회전하는 요소의 회전을 원활하게 하는 장치이다. 현재 롤러 베어링, 테이퍼 베어링, 니들 베어링 등 다양한 베어링들이 사용되고 있으며, 차량의 허브베어링은 이러한 베어링의 한 종류로서, 회전하지 않는 요소인 차체에 회전하는 요소인 휠을 회전 가능하게 연결한다. 이때, 도 1에 도시된 바와 같이, 일반적으로 차축을 지지하는 허브베어링(10, Hub bearing)은 차축의 단부에 연결되는 허브(11)와 차체와 연결되는 외륜(12) 및 휠과 상기 허브(11)에 연결되어 차축의 회전을 병행하는 내륜(13) 및 상기 외륜(12)과 허브(11) 또는 내륜(13) 사이에 개재되는 전동체(14)를 포함하며, 이때 상기 외륜(12)과 내륜(13)사이에 구비되어 내륜(13)의 회전을 감지함으로써 차륜의 회전속도를 검출하는 엔코더가 설치되고, 이때 상기 외륜(12) 및 내륜(13) 사이에 엔코더가 결합되는 입구를 밀봉하기 위한 엔코더 씰조립체(1000)가 구비되며, 기본적으로 엔코더 씰조립체는 차량의 휠에 장착되기 때문에 먼지나 수분 등의 이물질에 노출되어 있으며, 이러한 이물질이 휠 베어링의 내부, 특히 전동체가 장착된 부위에 침입하는 경우, 연마면인 레이스웨이에 손상을 가할 수 있다. 이렇게 손상된 레이스웨이는 휠 베어링의 작동 시 소음과 진동을 발생시키고 허브베어링의 수명을 단축시킬 수 있으므로, 상기 허브베어링의 일단 또는 양단에는 외부로부터의 이물질의 침입을 방지하기 위한 엔코더 씰조립체의 실링성능은 허브베어링에 매우 중요한 요소이다.
이때, 일반적으로 엔코더 씰조립체는 차체와 연결되어 고정된 외륜과 차축에 연결되어 회전하는 내륜사이에 구비되어 회전하는 외륜과 내륜사이를 밀봉하기 위하여 복수의 립(Lip)을 갖는 고무재질의 패킹씰로 형성되지만, 상술한 바와 같이 내륜의 회전에 따른 씰조립체의 마찰 손실 및 씰조립체에 구비된 립(Lip)의 접촉부에서 누설이 발생하게 되는 문제점이 야기되고, 이때 상술한 씰조립체의 마찰 손실을 최소화 시키는 동시에 상기 씰조립체의 누설을 방지하기 위한 엔코더 씰조립체의 연구가 이루어지고 있다.
도 2는 종래의 엔코더씰 조립체(1)를 도시한 도면으로, 도 2에 도시된 바와 같이, 종래의 엔코더씰 조립체(1)는 메인립(1-1)의 끝단에서의 모서리가 내륜과 연결되어 회전을 병행하는 보강대의 내면에 접하는 구조로 이루어져 있으며, 이때 메인립(1-1)의 끝단에서의 모서리가 접하여 발생하는 접촉응력(S)은 유입되는 이물질의 압력에 따라 그 변화 폭이 크게 가변되어 엔코더에서 측정하는 측정값에 오차가 발생하며, 그 오차값이 일정하지 않아 엔코더의 측정 정확도가 저하된다는 문제가 발생된다.
본 발명은 상기한 문제점을 해결하고자 안출된 것으로, 외륜과 내륜의 회전에 따른 실링부재의 접촉 응력의 변화를 감소시킬 수 있는 메인립이 형성되어 엔코더씰 조립체 내부로 유입되는 이물질의 압력에 따른 접촉 응력의 변화가 저감되어 엔코더의 일정한 측정품질을 유지할 수 있는 엔코더 씰 조립체를 제공한다.
또한, 외부로부터 엔코더 씰 조립체 내부로 유입되는 이물질의 직접적인 압력을 상쇄하기 위한 구조와, 유입되는 이물질의 유동을 이용하여 립(lip)에 부하되는 압력을 상쇄시킴으로써 씰조립체의 마찰 손실을 최소화 시키는 동시에 내부로 이물질이 누설되는 것을 방지하기 위한 엔코더 씰조립체를 제공한다.
상기한 기술적 과제를 해결하기 위하여, 본 발명은 복수의 접촉돌기가 형성된 메인립 및 유입되는 이물질의 유동의 방향을 이물질의 유입방향으로 유도하는 래버린스립을 구비하여, 유입되는 이물질의 압력에 따라 메인립에서의 접촉응력이 일정하게 유지시키고, 씰조립체의 마찰 손실을 최소화 시키는 동시에 내부로 이물질이 누설되는 것을 방지하여 실링성을 향상 시킨다.
상기한 구성에 따른 본 발명은, 상기 씰조립체 내부로 유입되는 이물질의 압력에 따라 상기 제2보강대의 축방향의 내측면에 상기 메인립의 복수의 접촉돌기가 다중 접촉되어, 유입되는 이물질의 압력에 따라 메인립에서의 접촉응력이 일정하게 유지됨으로써 기존의 엔코더에서 발생하는 오차값을 저감시켜 높은 품질의 측정이 가능한 장점이 있다.
또한, 유입되는 이물질의 유동의 방향을 이물질의 유입방향으로 유도하는 래버린스립을 구비하여, 씰조립체의 립이 받는 압력을 상쇄시켜 상기 씰조립체의 실링성을 더욱 향상시키고, 더욱 간결한 구조를 갖는 효과가 있다.
도 1은 본 발명의 엔코더 씰조립체가 구비되는 휠허브를 도시한 단면도
도 2는 종래의 엔코더 씰조립체를 도시한 단면도
도 3은 본 발명의 일실시예에 따른 씰조립체를 도시한 단면도
도 5는 본 발명의 씰조립체의 변형예를 도시한 단면도
도 6는 본 발명의 씰조립체의 제1실시예에 따른 래버린스립을 도시한 단면도
도 7은 도 6에 따른 래버린스립의 부분확대도
도 8은 본 발명의 씰조립체의 제2실시예에 따른 래버린스립을 도시한 단면도
도 9는 도 8에 따른 래버린스립의 부분확대도
상기한 과제를 해결하기 위한, 본 발명은 차량용 허브베어링을 구성하는 내륜과 외륜 사이에 구비되어 외부로부터의 이물질의 침입을 방지하는 엔코더 씰조립체에 있어서, 상기 외륜의 반경방향에 내측면을 따라 연장되며, 축방향의 내측단부가 상기 내륜을 향해 절곡되도록 형성된 제1보강대, 상기 제1보강대와 대향되어 축방향의 외측에 구비되며, 반경방향의 외측단부가 축방향의 내측으로 절곡되고, 반경방향의 내측단부가 상기 내륜의 반경방향에 외측면을 따라 연장되도록 형성된 제2보강대 및 상기 제1보강대의 축방향의 외측면을 감싸도록 형성되며, 축방향의 내측면에서 축방향의 외측을 향하도록 돌출되는 메인립을 포함하는 실링부재를 포함하는 것을 특징으로 한다.
이때, 상기 메인립은 반경방향의 내측면에 상기 제2보강대의 축방향의 내측면을 향하도록 돌출된 복수의 접촉돌기가 형성되어, 상기 씰조립체 내부로 유입되는 이물질의 압력에 따라 상기 제2보강대의 축방향의 내측면에 상기 메인립의 복수의 접촉돌기가 다중 접촉되는 것을 특징으로 한다.
또한, 상기 복수의 접촉돌기는 인접하는 다른 하나의 접촉돌기와 일정거리 이격되도록 형성되어, 인접하는 상기 접촉돌기들 사이에 그리스수용공간이 형성되는 것을 특징으로 한다.
또한, 상기 제2보강대의 반경방향 외측단부가 축방향의 내측으로 절곡된 길이(ℓ)는 상기 제2보강대의 축방향 외측면으로부터 상기 실링부재의 축방향 외측면까지의 길이(L)의 0.7~0.8배인 것을 특징으로 한다.
더하여, 상기 실링부재는 상기 축방향의 내측으로 절곡된 제2보강대의 외측단부를 향하도록 돌출된 래버린스립을 더 포함하며, 상기 래버린스립은 반경방향의 외측면과 인접하는 상기 실링부재의 축방향에 외측면 사이의 각도(θ1)가 예각을 갖도록 절곡되는 것을 특징으로 한다.
이때, 본 발명의 일방면으로의 상기 래버린스립은 돌출된 축방향의 외측면이 상기 제2보강대의 반경방향 외측단부의 절곡된 축방향 내측면을 향하도록 형성될 수 있다.
또한, 상기 래버린스립은 돌출된 축방향의 외측면이 상기 제2보강대의 반경방향 외측단부의 절곡된 축방향 내측면을 향하도록 형성되는 것을 특징으로 한다.
또한, 상기 래버린스립의 돌출된 축방향의 외측면은 반경방향의 내측모서리가 상기 제2보강대의 반경방향 외측단부의 절곡된 축방향 내측면의 반경방향 내측모서리보다 반경반향으로의 외측에 위치하도록 형성되는 것을 특징으로 한다.
또한, 상기 래버린스립의 축방향 외측면과 절곡된 상기 제2보강대의 축방향 내측면 사이의 간격(A)은 -0.5mm ≤ A ≤ 0.5mm 인 것을 특징으로 한다.
이때, 본 발명의 다른 일방면으로의 상기 래버린스립은 상기 제2보강대의 반경방향 외측단부의 반경방향 내측면을 향하도록 돌출형성되되, 상기 돌출된 레버린스립의 축방향에 내측면과 반경방향에 외측면사이의 각도(θ2)가 예각을 갖도록 이중 절곡되어, 반경방향의 외측 선단이 상기 제2보강대의 반경방향 외측단부의 반경방향 내측면과 마주보도록 형성되는 것을 특징으로 한다.
또한, 상기 래버린스립의 반경방향으로의 상기 이중 절곡된 선단의 깊이(h)는 상기 제2보강대의 외측단부의 내측면과 내측단부의 외측면 사이의 거리(H)의 0.1 ~ 0.2 배인 것을 특징으로 한다.
또한, 상기 제2보강대의 반경방향 외측단부가 축방향의 내측으로 절곡된 길이(ℓ)는 상기 제2보강대의 축방향 외측면으로부터 상기 실링부재의 축방향 외측면까지의 길이(L)의 0.7~0.8배인 것을 특징으로 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명을 하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 기술적 사상이 첨부된 도면의 형태에 한정되는 것은 아니다.
본 발명의 씰조립체(1000)를 설명하기에 앞서, 상기 씰조립체(1000)를 설명하기 위한 방향을 지칭하면, 상하 방향을 반경방향으로 지칭하며 이때 상측으로의 방향을 반경방향의 외측 및 하측으로의 방향을 반경방향의 내측으로 지칭하며, 좌우 방향을 축방향으로 지칭하며 이때 좌측으로의 방향을 축방향의 내측방향 및 우측으로의 방향을 축방향의 외측방향으로 지칭하기로 한다. 이때, 상기에서 지칭한 방향은 첨부된 도면상에 상기 씰조립체(1000)가 도시된 방향에 따라 상하좌우의 방향이 바뀔 수 있으며, 도면 1을 참조하면, 상기 축방향은 상기 허브베어링(10)의 허브(11) 내부에 결합된 차축과 나란한 방향을 의미하며, 상기 반경방향은 상기 축방향에 직교하는 방향을 의미한다. 이때, 허브베어링(10) 및 씰조립체(1000)는 각기 내부에 결합된 구성을 감싸는 원형으로 형성됨에 따라, 상기 제1보강대(100), 제2보강대(200) 및 실링부재(300)를 포함하는 상기 씰조립체(1000)또한 상기 외륜(12) 및 내륜(13) 사이에 구비되어 엔코더유닛(400)을 감싸는 원형으로 이루어진다.
도 3은 본 발명의 일실시예에 따른 엔코더 씰조립체를 도시한 단면도로서, 도 3을 참조하면, 본 발명의 엔코더 씰조립체(1000)는 차량용 허브베어링(10)을 구성하는 외륜(12)과 내륜(13) 사이에 구비되며, 상기 외륜(12)과 결합되는 제1보강대(100)와 상기 내륜(13)과 결합되는 제2보강대(200)와 상기 제1보강대(100)의 축방향의 외측면에 구비되는 실링부재(300) 및 상기 제2보강대(200)의 축방향의 외측에 결합되어 상기 내륜(13)의 회전에 따른 차축의 회전속도를 검출하는 엔코더유닛(400)을 포함하여 구성될 수 있다.
상기 제1보강대(100)는 상기 외륜(12)의 반경방향에 내측면을 따라 연장되며, 축방향의 몸체부(120)가 상기 내륜(13)을 향해 절곡되도록 형성된다. 이때, 상기 제1보강대(100)는 상기 외륜(12)의 반경방향의 내측면에 접하는 외측단부(110)는 상기 외륜(12)의 내측면 상에 압입 또는 접착 등의 수단을 이용하여 결합될 수 있으며, 상기 제1보강대(100)의 축방향의 외측면(121)을 감싸도록 결합되는 실링부재(300)에 의해 상기 외측단부(110)의 축방향의 외측단부가 상기 반경방향 내측으로 이격되도록 형성되어, 상기 실링부재(300)의 반경방향의 외측부가 상기 이격 형성된 상기 제1보강대(100)의 축방향 외측단부(110)에 결합되어 고정될 수 있으며, 상기 외륜(12)에 압입되어 상기 씰조립체(1000)를 고정할 수 있다.
또한, 상기 제1보강대(100)는 상기 축방향의 몸체부(120)가 반경방향 내측으로 절곡되어 연장된 끝단에 형성된 내측단부(130)를 포함하며, 상기 내측단부(130)의 반경방향의 내측으로 상기 실링부재(300)의 반경방향 내측부가 결합되어 상기 제1보강대(100)에 견고하게 결합될 수 있다.
상기 제2보강대(200)는 상기 제1보강대(100)와 대향되어 축방향의 외측에 구비됨으로써, 상기 씰조립체(1000)의 형태를 형성하는 구성으로, 상기 제1보강대(100)로부터 이격되어 축방향의 외측에 배치되는 몸체부(220)와 상기 몸체부(220)의 반경방향의 내측에 일체로 형성된 내측단부(230)가 상기 내륜(13)의 반경방향에 외측면을 따라 연장되도록 형성되며, 상기 제2보강대(200)의 몸체부(220)의 축방향의 외측에 상기 엔코더유닛(400)이 결합되어, 상기 내륜(13)의 회전을 측정할 수 있다.
이때, 상기 제2보강대(200)의 반경방향 외측단부(210)가 상기 축방향의 내측으로 절곡되어, 상기 엔코더 씰조립체(1000) 내부로 유입되는 이물질의 이동경로를 형성함으로써, 유입되는 이물질의 압력을 저감시켜 실링부재(300)의 습동부(slide surface)에서의 강성을 증대시킬 수 있다. 이때, 상기 제2보강대(200)의 절곡된 상기 반경방향 외측단부(210)의 길이에 따라 상기 실링부재(300)의 축방향 외측면과 상기 제2보강대(200)의 절곡된 외측단부(210)의 축방향 내측면사이의 간격(d)이 결정되고, 이때 상기 간격(d)이 너무 좁게 형성 될 경우 내부로 유입되는 이물질의 압력을 증가시키게 될 수 있어, 요구하는 실링부재(300)의 립(Lip)의 형상 및 접촉면적에 따라 상기 절곡된 제2보강대(200)의 외측단부(210)의 길이(ℓ)를 적절하게 설계하여야 한다.
더하여, 상기 제2보강대(200)의 몸체부(220)의 축방향 외측에 구비되는 상기 엔코더유닛(400)은 자성을 띄는 고무재질의 고무자석(Rubber magnet)으로 이루어질 수 있으며, 서로 다른 자기장 방향이나 세기를 가지는 2 종류의 자성부가 원주방향을 따라 교대로 배치되어 상기 내륜(13)에 병행하여 회전될 시에 발생되는 자계의 변화를 감지하고, 단위시간당 자계 변화 발생 횟수에 따라 회전속도를 측정할 수 있다. 또한 상기 엔코더유닛(400)을 이루는 고무자석은 아크릴로니트릴이 함유된 니트로 부타디엔 고무 페라이트(NBR, acrylonitrile-butadiene rubber)수지를 혼합하여 성형될 수 있다.
상기 실링부재(300)는 상기 제1보강대(100)와 제2보강대(200)사이게 구비되어, 상기 제1보강대(100)와 제2보강대(200) 사이를 밀봉하기 위한 구성으로, 유연하게 잘 구부러지는 연질소재로 이루어지는 것이 바람직하며, 상기 제2보강대(200)를 향하여 돌출된 복수의 립(Lip)을 포함하여 구성될 수 있으며, 바람직하게는, 상기 복수의 립(Lip)은 상기 실링부재(300)의 반경방향 내측부에서 상기 제2보강대(200)를 향하여 돌출 형성된 메인립(330)과 상기 실리부재(300)의 반경방향 내측단에 구비되어 상기 제2보강대의 반경방향 내측단부(230)의 내측면(231)을 향하도록 형성된 후단립(340)를 포함하여 이루어질 수 있다. 이때, 상기 메인립(330) 및 후단립(340)은 본 발명의 요지에 벗어남이 없이 다양한 형상 및 개수를 갖으며 이루어질 수 있다.
상기 메인립(330)은 상기 실링부재(300)의 축방향에 내측면에서 축방향에 외측을 향하도록 돌출되어, 상기 제2보강대(200)의 축방향 내측면을 실링하기 위한 구성으로써, 상기 제2보강대(200)의 축방향 내측면에 접하도록, 상기 제2보강대(200)의 축방향 내측단부(230) 방향으로 일정길이 돌출되며, 상기 메인립(330)의 반경방향의 내측면에 상기 제2보강대(200)의 축방향의 몸체부(220)의 축방향 내측면을 향하도록 돌출된 복수의 접촉돌기(331)가 형성된다. 이때, 상기 메인립(330)은 돌출되는 길이가 상기 제2보강대(200)의 축방향 내측면에 접하여 반경방향으로 절곡되어 결합됨에 따라, 상기 복수의 접촉돌기(331)가 형성되는 면은 상기 씰조립체(1000)가 결합될 시를 기준으로 상기 메인립(330)의 반경방향의 내측면으로 지칭한 것이며, 이때 상기 접촉돌기(331)가 형성되는 메인립(330)의 면의 방향은 본 발명의 요지에 벗어남이 없이 상기 복수의 접촉돌기(331)가 상기 제2보강대(200)의 축방향 내측면에 접촉되는 방향으로 해석하여야 할 것이다.
또한 도 4에 도시된 바와 같이, 상기 메인립(330)의 복수의 접촉돌기(331)는 인접하는 다른 하나의 접촉돌기(331)와 상기 메인립(330)의 반경방향의 내측면을 따라 일정거리 이격되도록 형성되어, 인접하는 상기 접촉돌기(331)들 사이에 그리스수용공간(GP, Grease Pocket)이 형성되며, 상기 그리스수용공간(GP)에 채워진 그리스(G, Grease)에 의해 상기 메인립(330)의 접촉돌기(331)와 상기 제2보강대(200)간의 마찰력을 감쇄시켜 윤활성을 개선시킬 수 있다.
이때, 상기 씰조립체 내부로 유입되는 이물질의 압력에 따라 상기 제2보강대(200)의 축방향의 내측면에 상기 메인립(330)의 복수의 접촉돌기(331)가 다중 접촉됨으로써, 이물질의 압력에 따른 상기 메인립(330)이 상기 제2보강대(200)의 축방향 뭄체부(220)를 가압하는 접촉응력(S)을 상기 복수의 접촉돌기(331)들에 의해 분산됨으로써, 이물질의 압력과 무관하게 일정한 접촉응력을 형성할 수 있는 장점이 있다. 더하여, 상기 복수의 접촉돌기(331)가 상기 메인립(330)의 외면을 따라 서로 이격되어 형성됨으로써, 유입되는 이물질의 압력이 강해져 상기 메인립(330)의 복수의 접촉돌기(331)들이 상기 제2보강대(200)에 접촉되더라고, 상기 복수의 접촉돌기(331)들 사이에 형성된 그리스수용공간(GP) 사이에 그리스(G)가 채워지도록 형성되어, 상기 제2보강대(200)와 메인립(330) 간의 윤활성을 향상시켜 차륜의 회전에 따른 반발토크를 저감시킬 수 있는 효과가 있으며, 접촉되는 면의 개수가 증가함에 따라 더욱 향상된 실링성능을 갖는다는 장점이 있다.
아울러, 상기 복수의 접촉돌기(331)는 상기 그리스수용공간(GP)을 더욱 효과적으로 형성할 수 있는 형상으로 형성되는 것이 바람직하며, 이와 동시에 상기 제2보강대(200)의 축방향 내측면과의 접촉면적이 최소화될 수 있는 형상으로 형성되는 것이 더욱 바람직하다. 따라서, 상기 접촉돌기(331)는 상기 제2보강대(200)의 축방향 내측면과 접하는 모서리가 선접촉되도록 끝단을 향하여 단면적이 점차적으로 감소하는 원뿔형으로 형성되는 것이 바람직하며, 이때 상기 접촉돌기(331)의 반경방향에 외측면(331a)은 반경방향에 외측을 향하여 일정각도를 갖으며 꺾이는 타원 형상으로 형성되고, 상기 접촉돌기(331)의 반경방향 내측면(331b)은 인접하는 다른 하나의 접촉돌기(331)의 반경방향 외측면(331a)과 연결되되, 상기 반경방향 외측면(331a)보다 더욱 깊에 형성되어, 상기 메인립(330)에 인가되는 이물질의 압력이 증가하여 상기 메인립(330)이 상기 제2보강대(200)의 축방향 내측면으로 더욱 압축될 시에, 반경방향 내측에 구비된 그리스(G)를 반경방향 외측으로 끌어 올리며 압축됨으로써 상기 그리스수용공간(GP) 내부로 그리스(G)를 밀어 올림으로써, 상기 그리스수용공간(GP) 내부를 가득 충전시켜 윤활성이 저하되지 않도록 하는 효과가 있다.
또한, 상기 실링부재(300)에 메인립(330)만 형성될 경우, 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)는 상기 제2보강대(200)의 축방향 외측면으로부터 상기 실링부재(300)의 축방향 외측면까지의 길이(L)의 0.7~0.8배 만큼 연장되어, 상기 메인립(330)으로 유입되는 이물질이 상기 제2보강대(200)의 축방향 내측면을 향하여 직접적으로 유입되지 않고, 상기 메인립(330)의 반경방향 외측면으로 유입되도록 유도하여, 상기 메인립(330)의 성능을 더욱 향상시킬 수 있다. 이때 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)가 상기 제2보강대(200)의 축방향 외측면으로부터 상기 실링부재(300)의 축방향 외측면까지의 길이(L)보다 0.7배 보다 적은 길이를 갖을 경우, 유입되는 이물질이 상기 메인립(330)의 끝단으로 유입되는 이물질이 직접적으로 접촉되어 상기 메인립(330)이 상기 제2보강대(200)의 축방향 내측면에서 이격되는 문제가 발생하고, 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)가 상기 제2보강대(200)의 축방향 외측면으로부터 상기 실링부재(300)의 축방향 외측면까지의 길이(L)보다 0.8 배 이상 연장되어, 상기 엔코더씰(1000) 내부로 유입되는 이물질이 지나는 간격(d)이 너무 작게 형성되면 상기 간격(d)을 지나 유입되는 이물질의 유량이 증가함에 따라 상기 엔코더씰(1000) 내부의 압력이 증가하여 상기 보강대(100, 200)에 인가되는 내압으로 인해 상기 엔코더 유닛(400)에서의 오차를 발생시킬 수 있다.
또한 도 5에 도시된 바와 같이, 상기 메인립(330)은 씰조립체(1000) 내부에 복수개가 구비될 수 있으며, 이때 상기 복수의 메인립(330)은 그 크기 및 돌출되는 길이가 축소되어 반경방향으로 연속되게 배치될 수 있으며, 상기 메인립(330)의 개수는 본 발명의 요지에 벗어남이 없이 다양한 변형실시가 가능할 것이다.
더하여, 본 발명의 씰조립체(1000)는 유입되는 이물질의 유동방향을 이물질 유입방향으로 유도하는 래버린스립(320)을 구비하여, 씰조립체(1000)의 립(LIp)이 받는 압력을 저감시켜 상기 씰조립체(1000)의 실링성을 더욱 향상시키고, 더욱 간결한 구조를 갖는 효과가 있으며, 상기 래버린스립(320)의 각각의 실시예들은 하기에서 도면을 참고하여 더욱 자세하게 설명하기로 한다.
< 제1실시예 >
도 6은 본 발명의 씰조립체의 제1실시예에 따른 래버린스립을 도시한 단면도이며, 도 7은 도 6에 따른 래버린스립의 부분확대도로서, 도 6 및 도 7를 참조하면, 본 발명의 제1실시예에 따른 상기 실링부재(300)는 상기 축방향의 내측으로 절곡된 제2보강대(200)의 외측단부(210)를 향하도록 돌출된 래버린스립(320)을 더 포함하며, 이때 상기 래버린스립(320)은 반경방향에 외측면(321)과 상기 실링부재(300)의 축방향의 외측면(312)과의 각도(θ1)가 예각을 갖도록 절곡되고, 상기 래버린스립은 돌출된 축방향의 외측면이 상기 제2보강대의 반경방향 외측단부의 절곡된 축방향 내측면을 향하도록 형성되어, 상기 제1보강대(100)와 제2보강대(200) 사이로 유입되는 이물질이 내부로 유입되는 것을 방지하고, 상기 반경방향에 외측면(321)과 상기 실링부재(300)의 축방향의 외측면(312)과의 각도(θ1)는 70 ~ 80도의 각도를 갖도록 형성되어, 유입되는 이물질의 유동이 상기 래버린스립(320)의 반경방향 외측면(321)을 따라 유도되어 유입되는 방향에 대향되는 방향으로 되돌아감으로써 유입되는 이물질의 압력을 감소시켜 상기 래버린스립(320)에 부가되는 압력을 감소시키는 효과가 있다. 이때, 상기 반경방향에 외측면(321)과 상기 실링부재(300)의 축방향의 외측면(312)과의 각도(θ1)가 70도보다 작게 형성되거나 80도 보다 크게 형성 될 경우, 상기 래버린스립(320)과 제2보강대(200)의 반경방향 외측단부(210)의 축방향 내측에 유입되는 이물질의 유동이 유입되는 방향에 대향되는 방향으로 유도되는 효율이 감소하여 상기 래버린스(320)립을 반경방향 내측으로 가압하여, 상기 래버린스립(320)과 상기 제2보강대(200)의 반경방향 외측단부(210)사이의 간격을 넓히게 됨으로 상기 래버린스립(320)의 실링효율이 감소하게 된다. 따라서, 상기 래버린스립(320)과 상기 제2보강대(200)의 반경방향 외측단부(210)사이의 유동공간(R)에서의 이물질의 침입 유동을 유도시키기 위한 각도, 깊이, 길이 등의 수치에 따라 상기 래버린스립(320)의 효율이 민감하게 달라질 수 있다.
더하여, 상기 래버린스립(320)은 돌출된 축방향의 외측면(323)의 반경방향의 내측모서리가 상기 제2보강대의 반경방향 외측단부의 절곡된 축방향 내측면의 반경방향 내측모서리보다 반경반향으로의 외측에 위치하도록 형성되어 유입되는 이물질의 유동 압력을 이용하여 씰조립체(1000)내부로 유입되는 압력을 저감시킬 수 있는 효과가 있다. 이때, 상기 래버린스립(320)은 축방향의 외측면(323)이 상기 래버린스립(320)의 반경방향 외측면(321)으로부터 반경방향 외측으로 일정각도 절곡되어 상기 래버린스립(320)과 제2보강대(200)의 절곡된 반경방향 외측단부(210)의 축방향 내측면 사이의 간격(A)으로 유입되는 이물질의 유량을 더욱 저감시킬 수 있다.
이때, 상기 래버린스립(320)이 상기 제2보강대(200)의 축방향 내측면(212)을 향하여 더 돌출되도록 형성되어, 상기 제2보강대(200)의 회전에 따른 상기 실링부재(300)와 상기 제2보강대(200) 사이의 회전에 따른 실링을 더욱 증대시키거나, 상기 래버린스립(320)이 상기 제2보강대(200)의 축방향 내측면(212)으로부터 이격되도록 형성되어 상기 래버린스립(320)과 상기 제2보강대(200)의 축방향 내측면(212)이 접하여 발생하는 마찰손실이 발생하지 않도록 할 수 있다.
그러나, 차륜이 회전함에 따라 상기 래버린스립(320)의 축방향 외측면(323)과 절곡된 상기 제2보강대(200)의 축방향 내측면(212) 사이의 간격(A)으로 유입되는 이물질에 의해 보강대(100, 200)간의 회전에 간섭하는 외력이 발생하게 되고, 상기 래버린스립(320)의 축방향 외측면(323)과 절곡된 상기 제2보강대(200)의 축방향 내측면(212) 사이의 간격(A)이 -0.5mm 보다 적게 형성될 경우 상기 래버린스립(320)이 상기 제2보강대(200)에 너무 큰 간섭을 가하게 되며, 반대로 상기 래버린스립(320)의 축방향 외측면(323)과 절곡된 상기 제2보강대(200)의 축방향 내측면(212) 사이의 간격(A)이 0.5mm 보다 크게 형성될 경우, 유입되는 이물질의 유동을 효율적으로 억제할 수 없으므로, 상기 래버린스립(320)의 축방향 외측면(323)과 절곡된 상기 제2보강대(200)의 축방향 내측면(212) 사이의 간격(A)은 -0.5mm ≤ A ≤ 0.5mm의 간격을 갖는 것이 가장 바람직하다.
< 제2실시예 >
도 8은 본 발명의 씰조립체의 제2실시예에 따른 래버린스립을 도시한 단면도이며, 도 9는 도 8에 따른 래버린스립의 부분확대도로서, 도 8 및 도 9를 참조하면, 본 발명의 제2실시예에 따른 상기 래버린스립(320)은 상기 제2보강대(200)의 반경방향 외측단부(210)의 반경방향 내측면(211)을 향하도록 돌출형성되되, 상기 돌출된 레버린스립(210)의 축방향에 내측면(322)과 반경방향에 외측면(321)사이의 각도(θ2)가 예각을 갖도록 이중 절곡되어, 반경방향의 외측 선단(323)이 상기 제2보강대(200)의 반경방향 외측단부(210)의 반경방향 내측면(211)과 마주보도록 형성되어, 상기 래버린스립(320)과 상기 제2보강대(200)의 반경방향 외측단부(210)사이의 유동공간(R)으로 유입되는 이물질의 유동이 상기 래버린스립(320)의 반경방향 외측면(321) 및 축방향 내측면(322)을 따라 유동하여, 상기 유동공간(R)으로 유입되는 유동과 부딪힘으로써, 유입되는 유동의 유동압력을 저하시켜, 유입되는 이물질의 유동으로인한 상기 래버린스립(320)이 받는 압력을 감소시킬 수 있는 장점이 있으며, 이중 절곡됨으로써, 상기 래버린스립(320)이 받는 압력을 반경방향의 내측과 축방향의 외측으로 분산시킴으로써 더욱 높은 실링효과를 갖는 장점이 있다.
이때, 상기 래버린스립(320)의 상기 이중 절곡된 선단(323)의 축방향에 내측면(322)과 상기 래버린스립(320)의 반경방향에 외측면(321)사이의 각도(θ2)가 예각을 갖도록 절곡되는 것이 바람직하며, 이때 상기 이중 절곡된 선단(323)의 축방향에 내측면(322)과 상기 래버린스립(320)의 반경방향에 외측면(321)사이의 각도(θ2)는 75 ~ 85도의 각도를 갖도록 축방향 내측으로 절곡되는 것이 바람직하며, 더욱 바람직하게는 80도의 각도를 갖도록 절곡될 수 있다. 이때, 상기 이중 절곡된 선단(323)의 축방향에 내측면(322)과 상기 래버린스립(320)의 반경방향에 외측면(321)사이의 각도(θ2)가 75도 미만 또는 85도 이상으로 절곡될 경우, 상기 래버린스립(320)과 상기 제2보강대(200)의 반경방향 외측단부(210)사이의 유동공간(R)으로 유입되는 이물질의 유동이 적절하게 유도될 수 없으며, 상기 래버린스립(320)의 선단(323)이 상기 제2보강대(200)의 반경방향 외측단부(210)에 마주보도록 형성되고, 상기 선단(323)의 축방향 내측모서리(322)가 축방향 내측으로 상기 제2보강대(200)의 외측단부(210)보다 돌출되지 않도록 형성되어 유입되는 이물질의 유동이 직접적으로 상기 래버린스립(320)의 선단(323)에 부딪히지 않도록 형성되는 것이 바람직하다.
또한, 상기 래버린스립(320)의 반경방향으로의 상기 이중 절곡된 선단(324)의 깊이(h)는 상기 제2보강대(200)의 반경방향 외측단부(210)의 내측면(211)과 반경방향 내측단부(230)의 외측면(231)사이의 거리(H)의 0.1 ~ 0.2 배로 이루어지는 것이 바람직하며, 더욱 바람직하게는 상기 깊이(h)는 상기 제2보강대(200)의 반경방향 외측단부(210)의 내측면(211)과 반경방향 내측단부(230)의 외측면(231)사이의 거리(H)의 1.158배로 형성될 수 있고, 이때 상기 래버린스립(320)의 반경방향으로의 상기 이중 절곡된 선단(324)의 깊이(h)는 상기 래버린스립(320)과 상기 제2보강대(200)의 반경방향 외측단부(210)사이의 유동공간(R)의 깊이를 의미하며, 상기 깊이(h)가 너무 깊게 형성될 경우, 유입되는 유입물의 유동경로가 상기 래버린스립(320)에 의해 원활하게 유동되지 않는 문제점이 발생하여, 상기 래버린스립(320)에 의한 이물질의 유입유동 방향에 대향되는 방향으로의 유동의 변화량이 감소되며, 상기 깊이(h)가 너무 짧게 형성될 경우, 유입되는 이물질의 유동압력이 상기 래버린스립(320)의 반경방향 외측면(321)에 너무 높은 압력을 가하여 상기 래버린스립(320)이 반경방향 내측으로 휘어지는 현상을 유발하여 실링효율을 저하시키게 된다.
또한, 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)는 축방향으로의 상기 제2보강대(200)의 외측면(213)으로부터 상기 실링부재(300)의 축방향에 외측면(312)까지의 길이(L)의 0.7~0.8배로 형성되는 것이 바람직하며, 이때 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)는 상기 외측단부(210)의 축방향 내측면(212)로부터 외측면(213)까지의 길이를 의미하고, 상기 제2보강대(200)의 반경방향 외측단부(210)가 상기 길이(ℓ)만큼 절곡되어 연장됨으로써 상기 씰조립체(1000)로 유입되는 이물질이 내부로 유입되는 억제하는 효과가 있다. 이때 상기 제2보강대(200)의 반경방향 외측단부(210)의 길이(ℓ)는 상기 래버린스립(320)과 상기 제2보강대(200)의 반경방향 외측단부(210)사이의 유동공간(R)의 축방향의 높이(d)를 결정하게 되고, 이때 상기 유동공간(R)의 축방향의 높이(d)가 너무 작을 경우, 유입되는 이물질의 유동이 유도되지 못하는 문제가 발생하고, 상기 유동공간(R)의 축방향의 높이(d)가 너무 클 경우, 유입되는 이물질의 유동이 유도되어 유입방향과 대향되는 방향으로 유도되는 유동과의 부딪히는 현상이 감소하여 상기 래버린스립(320)에 인가되는 압력이 증가하여 상기 래버린스립(320)의 실링효율이 저감되게 된다. 따라서 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)는 축방향으로의 상기 제2보강대(200)의 외측면(213)으로부터 상기 실링부재(300)의 축방향에 외측면(312)까지의 길이(L)의 0.7~0.8배로 형성되는 것이 바람직하며, 더욱 바람직하게는 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)는 축방향으로의 상기 제2보강대(200)의 외측면(213)으로부터 상기 실링부재(300)의 축방향에 외측면(312)까지의 길이(L)의 0.75배로 형성될 수 있다.
이때, 상기 엔코더유닛(400)의 반경방향 외측단부(410)가 상기 제2보강대(200)의 반경방향 외측단부(210)의 외측면을 따라 연장되어 상기 외측단부(210)를 감싸도록 형성되어 결합될 수 있으며, 상기 엔코더유닛(400)의 외측단부(410)의 축방향 내측면(412)가 상기 제2보강대(200)의 반경방향 외측단부(210)의 축방향 내측면(212)을 감싸도록 형성될 경우, 상기 제2보강대(200)의 반경방향 외측단부(210)가 축방향의 내측으로 절곡된 길이(ℓ)는 상기 엔코더유닛(400)의 반경방향 외측단부(410)의 축방향 내측면(412)의 길이까지를 고려하는 것이 바람직하다.
또한, 상기 래버린스립(320)은 이중 절곡되어, 상기 래버린스립(320)과 상기 제2보강대(200)의 반경방향 외측단부(210)사이의 유동공간(R)을 형성하여, 유입되는 이물질의 유동방향에 대향되는 방향으로 유동을 유도하여 서로 부딪혀 그 압력을 상쇄시킴으로써, 상기 래버린스립(320)의 선단(324)과 상기 제2보강대(200)의 반경방향 외측단부(210) 내측면(211) 사이로의 누수를 억제하여 실링효과를 더욱 증가시킴에 따라, 상기 래버린스립(320)의 축방향으로 돌출된 선단(324)의 반경방향에 외측모서리(322)가 상기 제2보강대(200)의 반경방향으로의 외측단부(210)의 내측면(211)으로부터 일정간격(t) 이격되도록 형성되어, 상기 래버린스립(320)에 의한 마찰손실을 방지함과 동시에 높은 실링효율을 갖는 씰조립체(1000)를 구성할 수 있다. 이때, 상술한 제2실시예에 따른 래버린스립(320)은 상기 축방향으로 돌출된 선단(324)이 이중절곡되어 반경방향의 외측을 바라보도록 형성되고, 상기 선단(324)의 반경방향 외측모서리(324)는 축방향의 내측 또는 외측의 모서리를 의미하며, 이때 상기 선단(324)의 축방향 내측에 위치하는 외측모서리(324)가 상기 제2보강대(210)의 축방향 내측면(212)보다 내측으로 더 돌출되지 않도록 형성되는 것이 바람직하다.
상기한 구성에 따른 본 발명의 씰조립체(1000)는 상기 메인립(330) 및 후단립(340)를 포함하거나 또는 포함하지 않는 실링부재(300)에 상기 래버린스립(320)를 더 포함하여 이루어질 수 있으나, 상술한 바와 같이 상기 복수의 접촉돌기(333)가 형성된 메인립(330)을 갖는 실링부재(300)의 유입되는 이물질의 유동압력을 저감시키기 위하여, 상기 래버린스립(320)을 이물질이 유입되는 이동경로에 구비함으로써, 유입되는 이물질이 상기 메인립(330)으로 직접적으로 유입되지 않게 하고, 상기 씰조립체(1000)의 내부로 유입되는 이물질의 압력을 저감시켜 차륜의 회전에 따른 상기 실링부재(300)에 의한 마찰손실을 저감시킴으로써, 상기 엔코더유닛(400)의 측정품질을 더욱 향상시키며, 이물질이 내부로 유입되지 않도록 방지하는 실링효율이 증대된 씰조립체(1000)를 제공할 수 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
** 부호의 설명 **
10 : 허브베어링 11 : 허브
12 : 외륜 13 : 내륜
1000 : 엔코더 씰조립체
100 : 제1보강대 110 : 반경방향 외측단부
120 : 축방향 몸체부 130 : 반경방향 내측단부
200 : 제2보강대 210 : 반경방향 외측단부
220 : 축방향 몸체부 230 : 반경방향 내측단부
300 : 실링부재 320 : 래버린스립
330 : 메인립 331 : 접촉돌기
340 : 후단립부
400 : 엔코더유닛
S : 접촉응력 GP : 그리스수용공간

Claims (11)

  1. 차량용 허브베어링을 구성하는 내륜과 외륜 사이에 구비되어 외부로부터의 이물질의 침입을 방지하는 엔코더 씰조립체에 있어서,
    상기 외륜의 반경방향에 내측면을 따라 연장되며, 축방향의 내측단부가 상기 내륜을 향해 절곡되도록 형성된 제1보강대;
    상기 제1보강대와 대향되어 축방향의 외측에 구비되며, 반경방향의 외측단부가 축방향의 내측으로 절곡되고, 반경방향의 내측단부가 상기 내륜의 반경방향에 외측면을 따라 연장되도록 형성된 제2보강대; 및
    상기 제1보강대의 축방향의 외측면을 감싸도록 형성되며, 축방향의 내측면에서 축방향의 외측을 향하도록 돌출되는 메인립을 포함하는 실링부재;
    를 포함하는 것을 특징으로 하는 엔코더 씰조립체.
  2. 제1항에 있어서,
    상기 메인립은 반경방향의 내측면에 상기 제2보강대의 축방향의 내측면을 향하도록 돌출된 복수의 접촉돌기가 형성되어,
    상기 씰조립체 내부로 유입되는 유체의 압력에 따라 상기 제2보강대의 축방향의 내측면에 상기 메인립의 복수의 접촉돌기가 다중 접촉되는 것을 특징으로 하는 엔코더 씰조립체.
  3. 제2항에 있어서,
    상기 복수의 접촉돌기는 인접하는 다른 하나의 접촉돌기와 일정거리 이격되도록 형성되어, 인접하는 상기 접촉돌기들 사이에 그리스수용공간이 형성되는 것을 특징으로 하는 엔코더 씰조립체.
  4. 제3항에 있어서,
    상기 제2보강대의 반경방향 외측단부가 축방향의 내측으로 절곡된 길이(ℓ)는 상기 제2보강대의 축방향 외측면으로부터 상기 실링부재의 축방향 외측면까지의 길이(L)의 0.7~0.8배인 것을 특징으로 하는 엔코더 씰조립체.
  5. 제1항에 있어서,
    상기 실링부재는 상기 축방향의 내측으로 절곡된 제2보강대의 외측단부를 향하도록 돌출된 래버린스립을 더 포함하며,
    상기 래버린스립은 반경방향의 외측면과 인접하는 상기 실링부재의 축방향에 외측면 사이의 각도(θ1)가 예각을 갖도록 절곡되는 것을 특징으로 하는 엔코더씰 조립체.
  6. 제5항에 있어서,
    상기 래버린스립은 돌출된 축방향의 외측면이 상기 제2보강대의 반경방향 외측단부의 절곡된 축방향 내측면을 향하도록 형성되는 것을 특징으로 하는 엔코더 씰조립체.
  7. 제6항에 있어서,
    상기 래버린스립의 돌출된 축방향의 외측면은 반경방향의 내측모서리가 상기 제2보강대의 반경방향 외측단부의 절곡된 축방향 내측면의 반경방향 내측모서리보다 반경반향으로의 외측에 위치하도록 형성되는 것을 특징으로 하는 엔코더 씰조립체.
  8. 제7항에 있어서,
    상기 래버린스립의 축방향 외측면과 절곡된 상기 제2보강대의 축방향 내측면 사이의 간격(A)은 -0.5mm ≤ A ≤ 0.5mm 인 것을 특징으로 하는 엔코더 씰조립체.
  9. 제5항에 있어서,
    상기 래버린스립은 상기 제2보강대의 반경방향 외측단부의 반경방향 내측면을 향하도록 돌출형성되되,
    상기 돌출된 레버린스립의 축방향에 내측면과 반경방향에 외측면사이의 각도(θ2)가 예각을 갖도록 이중 절곡되어, 반경방향의 외측 선단이 상기 제2보강대의 반경방향 외측단부의 반경방향 내측면과 마주보도록 형성되는 것을 특징으로 하는 엔코더 씰조립체.
  10. 제7항에 있어서,
    상기 래버린스립의 반경방향으로의 상기 이중 절곡된 선단의 깊이(h)는 상기 제2보강대의 외측단부의 내측면과 내측단부의 외측면 사이의 거리(H)의 0.1 ~ 0.2 배인 것을 특징으로 하는 엔코더 씰조립체.
  11. 제10항에 있어서,
    상기 제2보강대의 반경방향 외측단부가 축방향의 내측으로 절곡된 길이(ℓ)는 상기 제2보강대의 축방향 외측면으로부터 상기 실링부재의 축방향 외측면까지의 길이(L)의 0.7~0.8배인 것을 특징으로 하는 엔코더 씰조립체.
PCT/KR2019/009601 2018-08-21 2019-08-01 차량용 허브베어링의 엔코더 씰조립체 WO2020040444A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180097104A KR102119633B1 (ko) 2018-08-21 2018-08-21 차량용 허브베어링의 엔코더 씰조립체
KR10-2018-0097104 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020040444A1 true WO2020040444A1 (ko) 2020-02-27

Family

ID=69592466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009601 WO2020040444A1 (ko) 2018-08-21 2019-08-01 차량용 허브베어링의 엔코더 씰조립체

Country Status (2)

Country Link
KR (1) KR102119633B1 (ko)
WO (1) WO2020040444A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213834B1 (ko) * 2020-03-12 2021-02-08 박태범 회전축용 ptfe 립 씰
KR20230007879A (ko) 2021-07-06 2023-01-13 한국에스케이에프씰 주식회사 씰링 조립체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280616B1 (ko) * 2011-04-08 2013-07-02 주식회사 일진글로벌 베어링의 씰링 장치 및 이를 포함하는 휠 베어링
KR101595560B1 (ko) * 2014-06-25 2016-02-26 주식회사 일진글로벌 엔코더 씰 어셈블리와 이를 이용한 차량용 휠 베어링
JP2016080145A (ja) * 2014-10-22 2016-05-16 内山工業株式会社 密封装置
JP2016186319A (ja) * 2015-03-27 2016-10-27 Ntn株式会社 密封装置およびこれを備えた車輪用軸受装置
KR101857192B1 (ko) * 2016-08-17 2018-05-11 주식회사 일진글로벌 휠 베어링의 씰링장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185491A (ja) * 2009-02-10 2010-08-26 Uchiyama Manufacturing Corp 軸受密封装置
KR101301075B1 (ko) 2010-11-02 2013-08-28 주식회사 일진글로벌 휠 베어링용 실링 캡
KR101385762B1 (ko) * 2012-01-30 2014-04-17 주식회사 일진글로벌 베어링의 씰링 장치 및 이를 포함하는 휠 베어링
KR101779787B1 (ko) * 2015-10-14 2017-09-19 주식회사 일진글로벌 휠 베어링

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280616B1 (ko) * 2011-04-08 2013-07-02 주식회사 일진글로벌 베어링의 씰링 장치 및 이를 포함하는 휠 베어링
KR101595560B1 (ko) * 2014-06-25 2016-02-26 주식회사 일진글로벌 엔코더 씰 어셈블리와 이를 이용한 차량용 휠 베어링
JP2016080145A (ja) * 2014-10-22 2016-05-16 内山工業株式会社 密封装置
JP2016186319A (ja) * 2015-03-27 2016-10-27 Ntn株式会社 密封装置およびこれを備えた車輪用軸受装置
KR101857192B1 (ko) * 2016-08-17 2018-05-11 주식회사 일진글로벌 휠 베어링의 씰링장치

Also Published As

Publication number Publication date
KR102119633B1 (ko) 2020-06-08
KR20200021592A (ko) 2020-03-02

Similar Documents

Publication Publication Date Title
WO2020040444A1 (ko) 차량용 허브베어링의 엔코더 씰조립체
WO2021010733A1 (ko) 허브 일체형 등속조인트 장치
KR20130129233A (ko) 테이퍼식 롤러 베어링
US20040056427A1 (en) Lip seal
WO2018021655A1 (ko) 휠 베어링의 씰링장치 및 그 제조방법
US8230739B2 (en) Rotational speed sensor assembly
EP1666777A1 (en) Sealing device
JP2009204142A (ja) 転がり軸受
CN103912580A (zh) 用于车轮的轴承单元
WO2012141414A1 (en) Rotor of motor
JPH0828709A (ja) シールリング
US11953058B2 (en) Sealing device for a bearing unit
WO2024039062A1 (ko) 휠 베어링의 실링장치
JP2015064088A (ja) シール付転がり軸受ユニット
WO2020204673A1 (ko) 씰링성이 향상된 구름 베어링
WO2020204672A1 (ko) 톤휠 및 톤휠 장착부 구조가 개선된 휠베어링
WO2020166778A1 (ko) 씰링 기능이 향상된 차량용 휠베어링
WO2012015175A2 (ko) 하우징 일체형 다중 베어링 유닛
KR101595560B1 (ko) 엔코더 씰 어셈블리와 이를 이용한 차량용 휠 베어링
WO2019004525A1 (ko) 휠 베어링 밀봉 장치
KR20000048010A (ko) 로울러 베어링을 위한 인코더 휠
CN215890780U (zh) 一种双列磁环abs编码器
WO2017115997A1 (ko) 슬립 링, 모터 및 이를 구비하는 차량
JP2007315459A (ja) 軸受装置
WO2021172716A1 (ko) 횡류팬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853205

Country of ref document: EP

Kind code of ref document: A1