WO2020040269A1 - 金属空気電池、及びその使用方法 - Google Patents

金属空気電池、及びその使用方法 Download PDF

Info

Publication number
WO2020040269A1
WO2020040269A1 PCT/JP2019/032924 JP2019032924W WO2020040269A1 WO 2020040269 A1 WO2020040269 A1 WO 2020040269A1 JP 2019032924 W JP2019032924 W JP 2019032924W WO 2020040269 A1 WO2020040269 A1 WO 2020040269A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
air battery
electrode
cell unit
air
Prior art date
Application number
PCT/JP2019/032924
Other languages
English (en)
French (fr)
Inventor
高橋 昌樹
Original Assignee
藤倉コンポジット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤倉コンポジット株式会社 filed Critical 藤倉コンポジット株式会社
Priority to KR1020217004417A priority Critical patent/KR20210044785A/ko
Priority to US17/270,265 priority patent/US11973240B2/en
Priority to JP2020538471A priority patent/JP7404244B2/ja
Priority to CN201980054446.3A priority patent/CN112585804B/zh
Publication of WO2020040269A1 publication Critical patent/WO2020040269A1/ja
Priority to US18/297,295 priority patent/US20230246280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5011Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature for several cells simultaneously or successively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/256Carrying devices, e.g. belts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/024Insertable electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal-air battery having a cell unit provided with a plurality of metal-air battery cells, and a method for using the same.
  • a metal-air battery oxygen in the atmosphere is used as a positive electrode active material at an air electrode serving as a positive electrode, and an oxidation-reduction reaction of the oxygen is performed.
  • the metal electrode which is the negative electrode, a redox reaction of the metal is performed.
  • the energy density of the metal-air battery is high, and it is expected to play a role as an emergency power supply in a disaster or the like. Power generation is started by supplying the electrolytic solution to the metal-air battery.
  • Patent Document 1 proposes a structure of a metal-air battery in which a metal electrode can be taken out and replaced.
  • a high output can be obtained by configuring a cell unit in which a plurality of metal-air battery cells are arranged in parallel.
  • Patent Literature 1 does not disclose a replacement operation for a cell unit for maintaining high output.
  • an object of the present invention is to provide a metal-air battery that can facilitate replacement work and effectively maintain high output, and a method of using the same. I do.
  • a metal-air battery includes a metal electrode, an air electrode disposed to face the metal electrode, and a housing that supports the metal electrode and the air electrode.
  • a plurality of cells constitute a cell unit in which a plurality of cells are juxtaposed, and a first exchanging means for exchanging the cell units is provided.
  • the metal-air battery of the present invention is a metal configured to include a metal electrode, an air electrode arranged to face the metal electrode, and a housing supporting the metal electrode and the air electrode.
  • a plurality of air battery cells constitute a cell unit in which a plurality of metal electrodes are arranged side by side, and the plurality of metal poles are exchangeably supported by the housing, so that the plurality of metal poles can be exchanged simultaneously. It is characterized by comprising second exchange means.
  • a first replacement unit that enables replacement of each cell unit can be further provided.
  • the replacement unit is provided at a position higher than the liquid level of the electrolyte with respect to the cell unit.
  • the exchange unit includes a finger-holding portion for putting a finger.
  • the present invention also relates to the method of using the metal-air battery described above, wherein power generation is continued while replacing each of the cell units or a plurality of the metal electrodes simultaneously.
  • FIG. 2 is a perspective view of a cell unit constituting the metal-air battery in the present embodiment.
  • FIG. 2A is a perspective view of the metal-air battery showing a state in which the cell unit according to the present embodiment is immersed in an electrolytic solution
  • FIG. 2B is a perspective view for explaining a replacement operation of the cell unit.
  • 3A and 3B are perspective views of a cell unit partially different from FIG.
  • FIG. 3 is a perspective view of the metal-air battery cell in the present embodiment.
  • FIG. 5A is a front view of the metal-air battery cell shown in FIG. 4, and FIG. 5B is a cross-sectional view of the metal-air battery cell shown in FIG.
  • FIG. 5C is a plan view of the metal-air battery cell, and FIG.
  • FIG. 5D is a rear view of the metal-air battery cell. It is sectional drawing of the metal air battery which shows the state which immersed the cell unit of this Embodiment in electrolyte solution.
  • FIG. 7A is a perspective view of the metal-air battery showing a state in which the cell unit according to the present embodiment is immersed in the electrolytic solution, and
  • FIG. 7B is a perspective view for explaining a metal plate replacement operation.
  • the present inventor has proposed a metal-air battery having a cell unit (metal-air battery unit) in which a plurality of metal-air battery cells are arranged side by side, in order to enable continuous power generation while being a primary battery, for each cell unit or In this way, it was possible to replace a plurality of metal electrodes at the same time, and to develop a configuration that improved the work efficiency of the replacement.
  • a cell unit metal-air battery unit
  • the metal-air battery of the present embodiment will be described in detail with reference to the drawings, but the ⁇ metal-air battery '' may refer to a cell unit itself in which a plurality of metal-air battery cells are arranged in parallel, It may also refer to a combination of a unit and a power generation tank containing an electrolyte.
  • FIG. 1 is a perspective view of a cell unit constituting a metal-air battery according to the present embodiment.
  • the cell unit 1 is configured by, for example, five metal-air battery cells 2 arranged in parallel.
  • the number of the metal-air battery cells 2 is not limited.
  • the cell unit 1 in the present embodiment is a combination of a plurality of metal-air battery cells 2 having the same structure.
  • the plurality of metal-air battery cells 2 are integrally combined.
  • the metal-air battery cells 2 may be joined to each other by adhesion or the like, or may be integrated by uneven fitting.
  • a handle 20 is provided as a “first replacement unit”.
  • the handle 20 includes a gripping portion (finger holding portion) 20a that can be gripped by a finger, and an arm portion 20b that connects the gripping portion 20a and both side surfaces 1b and 1c of the cell unit 1.
  • the cell unit 1 shown in FIG. 1 is immersed in a power generation tank 11 containing an electrolytic solution 10.
  • the electrolytic solution 10 is injected into a liquid chamber (described later) provided between the air electrode provided in each metal-air battery cell 2 and the metal electrode.
  • a product (Mg (OH) 2 ) is generated during the oxidation-reduction reaction between the metal electrode and the air electrode. Due to the discharge, magnesium is gradually reduced, and the output is reduced. Therefore, in the present embodiment, in order to enable continuous power generation while being a primary battery, as shown in FIG. 2B, the old cell unit 1 with reduced magnesium is electrolyzed using the handle 20 as shown in FIG. 2B. The liquid 10 is pulled upward. Then, instead, the new cell unit 1 is immersed in the electrolyte 10. Thereby, continuous power generation becomes possible. After replacement of the cell unit 1, the electrolyte 10 in the power generation tank 11 can be used as it is.
  • products generated during the oxidation-reduction reaction between the metal electrode and the air electrode are discharged into the electrolyte 10 in the power generation tank 11.
  • the reflux of the electrolytic solution 10 may be promoted by providing a mechanism for refluxing the electrolytic solution 10 or the like.
  • the replacement of each cell unit is possible, the replacement work can be facilitated, and the high output can be maintained for a long time.
  • the handle 20 is provided on each of the side surfaces 1b and 1c of the cell unit 1.
  • a handle 21 is provided so as to connect the side surfaces 1b and 1c over the cell unit 1.
  • concave portions (finger portions) 22 that are recessed inward may be provided on the side surfaces 1b and 1c of the cell unit 1, respectively.
  • the cell unit 1 can be easily replaced by, for example, putting a finger on the concave portion 22.
  • the metal-air battery cell 2 includes a metal electrode 3, an air electrode 4, and a housing 5 that supports the metal electrode 3 and the air electrode 4.
  • the air electrode 4 is arranged on both sides of the metal electrode 3 with a space therebetween, and is exposed on both outer surfaces of the housing 5.
  • the housing 5 includes an upper portion 5a, a lower portion 5b, a front portion 5c connecting the upper portion 5a and the lower portion 5b, a rear portion 5d, and side portions 5e and 5f.
  • the housing 5 may be formed integrally, or the housing 5 may be configured by combining a plurality of molded bodies.
  • a slit 5g is provided in the upper part 5a of the housing 5, and the metal pole 3 is fixed and supported in the slit 5g. As shown in FIG. 5C, the width of the slit 5g formed in the upper portion 5a of the housing 5 of the metal-air battery cell 2 is wider than the width of the metal pole 3. Between the metal pole 3 and the slit 5g, a communication hole 5k connected to the liquid chamber 6 is formed.
  • a window 5h is provided on each of the side portions 5e and 5f of the housing 5 (see FIG. 5B). Further, a fixing portion 5i is formed which surrounds the entire periphery of the upper, lower, left and right sides of each window 5h.
  • FIG. 5B shows the fixing portions 5i located above and below the window 5h, but actually, the fixing portions 5i also exist on the left and right sides of the window 5h, and the entire periphery of the window 5h is formed.
  • a fixing portion 5i is formed by the fixing portions 5i located above and below the window 5h, but actually, the fixing portions 5i also exist on the left and right sides of the window 5h, and the entire periphery of the window 5h is formed.
  • each air electrode 4 is fixed to a fixing portion 5i of each side 5e, 5f with an adhesive or the like, and covers each window 5h.
  • the liquid chamber 6 is formed between the air electrodes 4 fixed to the side portions 5e and 5f because the windows 5h provided on the side portions 5e and 5f of the housing 5 are closed.
  • the liquid chamber 6 is surrounded except for the through holes 8 and 14 as supply ports for the electrolyte 10.
  • a frame portion 5j is formed on the outer periphery of the fixed portion 5i except for the upper side. That is, the frame portion 5j is formed so as to surround the lower side, the left side, and the right side of the fixing portion 5i. In addition, the frame portion 5j protrudes outward from the fixed portion 5i. For this reason, a step is formed between the frame portion 5j and the fixing portion 5i. As shown in FIG. 4, FIG. 5B and FIG. 5C, the air electrode 4 is disposed at a position (rearward) deeper than the surface of the frame 5j.
  • a space is formed between the air electrode 4 and the frame portion 5j, with a space open above and in front of the air electrode 4.
  • a plurality of metal air battery cells 2 are juxtaposed to form an air chamber 7 whose upper part is open only (see FIG. 6).
  • a through hole 8 communicating with the liquid chamber 6 is formed in the lower portion 5 b of the housing 5.
  • the width dimension T of the through hole 8 is larger than the thickness of the metal pole 3.
  • the “width dimension” refers to a dimension in a direction from one side 5e of the housing 5 to the other side 5f.
  • the through hole 8 is formed at a position facing the lower end 3 a of the metal pole 3. Therefore, as shown in FIG. 5D, the lower end 3a of the metal electrode 3 can be seen through the through hole 8.
  • the metal electrode 3 is preferably arranged so as to be located at the center of the width dimension T of the through hole 8.
  • the positional relationship between the lower end 3a of the metal electrode 3 and the upper end 8a of the through hole 8 is not limited, but as shown in FIG. It is preferable to be arranged at the position of the upper end 8a or more.
  • “the position above the upper end 8a” includes the position of the upper end 8a and the position above the upper end 8a.
  • the product generated by the reaction between the metal electrode 3 and the air electrode 4 can be effectively discharged to the outside from the through hole 8.
  • the air electrodes 4 are provided on the left and right sides of the metal electrode 3, products are generated on both the left and right sides of the metal electrode 3. For this reason, as described above, by arranging the metal pole 3 at the center of the width dimension T of the through-hole 8, the products generated from both left and right sides of the metal pole 3 can be appropriately externally passed through the through-hole 8. It becomes possible to discharge.
  • the lower end 3a of the metal pole 3 is a free end. Thereby, the lower end 3a of the metal pole 3 can be swung. For this reason, when a product accumulates between the air electrode 4 and the metal electrode 3, the metal electrode 3 can be bent, the pressing force by the product can be reduced, and the metal electrode 3 and the air electrode 4 Damage can be suppressed.
  • the shape of the through hole 8 is rectangular, but is not limited to a rectangular shape, and may be other shapes.
  • the number of the through holes 8 is three, but the number of the through holes 8 is not limited.
  • the through hole 8 has a function as a supply port for supplying the electrolytic solution to the liquid chamber 6, and has a function of discharging a product generated by a reaction between the metal electrode 3 and the air electrode 4 to the outside of the cell unit 1.
  • the formation position of the through hole 8 is not limited to the lower portion 5 b of the housing 5.
  • a through hole 14 is also provided in the front part 5 c of the housing 5.
  • a plurality of through holes 14 are formed at intervals in the height direction of the front part 5c. These through holes 14 communicate with the liquid chamber 6 like the through holes 8.
  • a through hole 14 can also be provided in the rear portion 5d of the housing 5. It is preferable that at least a part of the through hole 14 provided in the front part 5c or the rear part 5d of the housing 5 is disposed below the front part 5c or the rear part 5d.
  • “Lower” means a lower half of the height of the front part 5c and the rear part 5d, preferably a lower part of 1/2 or less of the height, more preferably 1/3 or less of the height. The lower part. Thus, even if the through-hole 14 is provided in the front part 5c or the rear part 5d of the housing 5, it is possible to supply the electrolytic solution 10 and discharge the product.
  • through hole 8 in the lower portion 5b of the housing 5 because the discharge of the product can be effectively promoted.
  • through holes 8 and 14 are provided in the lower portion 5b, the front portion 5c, and the rear portion 5d of the housing 5, respectively.
  • a plurality of through holes 8 provided in the lower portion 5b of the housing 5 are formed at equal intervals in the width direction of the metal pole 3 (the direction from the front portion 5c to the rear portion 5d of the housing 5).
  • a long slit-shaped through hole 8 communicating from the left through hole 8 to the right through hole 8 shown in FIG. 5D may be formed.
  • the through-hole 8 has a long slit shape, the product generated by the reaction between the metal electrode 3 and the air electrode 4 once passes through the through-hole 8 to the outside, but again depending on the water flow and the like. This makes it easier for the product to return into the liquid chamber 6 through the through hole 8. Therefore, as shown in FIG.
  • the through-hole 8 it is preferable to form the through-hole 8 in a plurality of parts, since the through-hole 8 is excellent in the product discharging effect.
  • a long slit shape communicating each through hole 8 may be used.
  • a plurality of metal air battery cells 2 described in detail above are juxtaposed and integrated.
  • the plate members 9 constituting the both side surfaces 1b and 1c of the cell unit 1 are bonded together to cover both side surfaces.
  • a handle 20 shown in FIG. 1 is attached to the plate 9.
  • a cell unit 1 having a plurality of metal-air battery cells 2 and, for example, a handle 20 as first replacement means is completed.
  • FIG. 6 when the cell unit 1 shown in FIG. 1 is immersed in the power generation tank 11 containing the electrolyte 10, the electrolyte 10 is injected into the liquid chamber 6 through the through holes 8 and the through holes 14. You. FIG. 6 does not show the through hole 14. Further, as described with reference to FIG. 5C, since the communication hole 5 k connected to the liquid chamber 6 is formed between the metal electrode 3 and the slit 5 g of the upper part 5 a of the housing 5, the electrolyte 10 When the liquid is injected into the liquid chamber 6, the air in the liquid chamber 6 escapes from the communication hole 5k, and the electrolyte 10 can be smoothly introduced into the liquid chamber 6 through the through holes 8 and 14.
  • a projection 12 is provided between the bottom surface 11a of the power generation tank 11 and the bottom surface 1a of the cell unit 1. Therefore, a gap 13 having a predetermined height is formed between the bottom surface 11a of the power generation tank 11 and the bottom surface 1a of the cell unit 1. Therefore, the lower surface 1a of the cell unit 1 does not contact the bottom surface 11a of the power generation tank 11.
  • the handle 20 as the first exchange means is provided at a position higher than the liquid level of the electrolytic solution 10.
  • the cell unit 1 can be easily pulled up from the electrolytic solution 10 while holding the handle 20 in a hand.
  • a connection portion 30 as a second replacement unit that allows a plurality of metal electrodes 3 to be replaced simultaneously, which will be described later, is also provided at a position higher than the liquid level of the electrolyte 10.
  • hydrogen generated by the side reaction of the battery reaction can be discharged to the outside from the communication hole 5k (see FIG. 5C) communicating with the liquid chamber 6. Hydrogen can be discharged to the outside also from the through hole 14 located above the electrolyte surface.
  • the product (Mg (OH) 2 ) generated during the oxidation-reduction reaction between the metal electrode 3 and the air electrode 4 is supplied to the through-hole 8 provided at the lower part of each metal-air battery cell 2 and to the side part. It can be discharged to the bottom surface 11 a side of the power generation tank 11 through the through hole 14. Further, in the present embodiment, since the gap 13 is formed between the bottom surface 11a of the power generation tank 11 and the lower surface 1a of the cell unit 1, the product is transferred from the liquid chamber 6 of the cell unit 1 to the bottom surface of the power generation tank 11. It can be appropriately released toward the 11a side. As described above, the accumulation of the product in the liquid chamber 6 of each metal-air battery cell 2 can be suppressed, the damage of the electrodes and the deterioration of the electric characteristics can be suppressed, and the service life can be extended. Can be done.
  • the cell unit 1 can be newly replaced based on a reduction in output due to a reduction in the metal electrode 3 due to the oxidation-reduction reaction between the metal electrode 3 and the air electrode 4.
  • the cell unit 1 is provided with, for example, the handle 20 as the first exchange means, the entire cell unit 1 can be easily exchanged.
  • a configuration can be employed in which a plurality of metal electrodes 3 can be replaced simultaneously.
  • a connecting portion 30 as a “second replacement unit” is provided, which connects the upper ends of the metal poles 3 to each other.
  • the connecting portion 30 is a framed structure formed by combining a vertical bar 30a and a horizontal bar 30b. Thereby, a finger can be put on a part of the connecting portion 30.
  • the cell unit 1 shown in FIG. 1 has, for example, a handle 20 and a second exchange means for simultaneously exchanging a plurality of metal poles 3 as first exchange means for exchanging the entire cell unit.
  • the connection part 30 is provided, at least one of them is sufficient. However, if both are provided, it is possible to select whether to replace each cell unit or only the metal electrode 3 depending on the situation. For example, after the first replacement operation is performed by replacing only the metal electrode 3, if a considerable amount of product is accumulated in the cell unit 1, the second replacement operation is performed by replacing only the metal electrode 3. Instead, high output can be sustained effectively by replacing each cell unit.
  • the cell unit 1 is provided with through holes 8 and 14 in each of the metal-air battery cells 2 to enable the product to be discharged, and the connecting unit 30 as a second replacement means, for example, is essentially provided. It is preferable that the plurality of metal poles 3 be configured to be exchangeable at the same time. As a result, the metal electrode 3 can be easily replaced while the product is discharged from the cell unit 1, and high output can be effectively maintained by a simple method. Further, the parts other than the metal poles 3 of the cell unit 1 can be applied as they are, which is economical.
  • the cell unit 1 when it is desired to terminate the power generation, the cell unit 1 is pulled up from the state shown in FIG. 2A or FIG. 7A, or the power generation tank 11 is pulled down, and the liquid chamber 6 of each metal-air battery cell 2 is removed. Power generation can be easily stopped by extracting the electrolytic solution 10 through the through hole 8. Alternatively, power generation may be stopped by removing the electrolyte 10 from the power generation tank 11 in which the cell unit 1 is arranged. Further, even if the metal electrode 3 as the negative electrode is removed, the battery reaction can be stopped.
  • the configuration of the first replacement unit that enables replacement for each cell unit and the configuration of the second replacement unit that enables simultaneous replacement of a plurality of metal poles are described in FIGS.
  • the first exchange unit and the second exchange unit are provided with a handle unit for putting a finger, since the exchange can be easily performed.
  • a hole or the like that can simultaneously connect the cell unit 1 and the plurality of metal electrodes 3 to a tool or the like may be provided. Replacement is possible by hooking a tool on this hole and suspending the cell unit 1 and the plurality of metal poles 3.
  • the cell unit 1 A configuration in which the side of the cell unit 1 that is lifted up from the inside of the cell unit 10 and exposed to the outside of the electrolyte solution 10 is held by hand and replaced may be adopted.
  • Such a mechanism for lifting the cell unit 1 upward can be provided, for example, in a gap 13 formed between the bottom surface 11a of the power generation tank 11 and the lower surface 1a of the cell unit 1 shown in FIG.
  • the configuration of the metal-air battery cell 2 shown in FIG. 5 is an example, and is not limited to this configuration.
  • the air electrode 4 is arranged on both sides of the metal electrode 3, but the metal electrode 3 and the air electrode 4 may be one each. Alternatively, a plurality of metal electrodes 3 and a plurality of air electrodes 4 may be provided respectively.
  • a ceiling (not shown) may be provided on the upper surface of the cell unit 1 shown in FIG.
  • An opening communicating with each air chamber 7 is provided in the ceiling, and air may flow into each air chamber 7 through the opening in the ceiling.
  • an external connection terminal for supplying a battery output to the outside may be provided on the ceiling.
  • the external connection terminal is a connector, a USB terminal, or the like, and is not particularly limited.
  • a plurality of external connection terminals can be provided.
  • the portable device can be directly connected to an external connection terminal provided in the cell unit 1 to supply power.
  • a connection board such as a USB hub is connected to an external connection terminal of the cell unit 1 and power is supplied to a plurality of portable devices via the connection board can also be adopted.
  • the electrodes of each metal-air battery cell 2 may be connected in series or in parallel, and the wiring method is not particularly limited.
  • power generation can be continued while replacing each cell unit or a plurality of metal electrodes at the same time.
  • continuous of power generation means that power generation can be extended as compared with a normal primary battery, and even if power generation is stopped at the time of replacement, “power generation is continued” before and after that. Is defined as
  • the metal-air battery in the present embodiment can be applied to a magnesium-air battery or another metal-air battery.
  • the metal-air battery of the present invention replacement work can be facilitated, and the battery can be used as an emergency power supply that can effectively maintain high output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

交換作業を容易化できると共に、高出力を効果的に維持することができる金属空気電池、及びその使用方法を提供することを目的とする。本発明の金属空気電池は、金属極と、金属極に対向して配置される空気極と、金属極及び前記空気極を支持する筐体と、を有して構成される金属空気電池セル(2)が複数個、並設されたセルユニット(1)を構成しており、セルユニットごとの交換を可能とする第1の交換手段としての、例えば取っ手(20)を備える、ことを特徴とする。これにより、交換作業を容易化できると共に、高出力を効果的に維持することができる。

Description

金属空気電池、及びその使用方法
 本発明は、複数の金属空気電池セルを備えたセルユニットを有する金属空気電池、及びその使用方法に関する。
 金属空気電池では、正極である空気極において、大気中の酸素を正極活物質として利用し、当該酸素の酸化還元反応が行われる。一方、負極である金属極において、金属の酸化還元反応が行われる。金属空気電池のエネルギー密度は高く、災害時等における非常用電源等の役割として期待されている。電解液を金属空気電池に給水する事で発電が開始される。
 従来、このような金属空気電池にあっては、使い切りの一次電池であったが、特許文献1では、金属極を取り出して交換できる金属空気電池の構造が提案されている。
特開2004-362869号公報
 ところで、複数の金属空気電池セルを並設したセルユニットを構成すると高出力を得ることができる。
 しかしながら、特許文献1には、高出力を維持するためのセルユニットに関する交換作業については記載されていない。
 そこで、本発明はかかる点に鑑みてなされたものであり、交換作業を容易化できると共に、高出力を効果的に維持することができる金属空気電池、及びその使用方法を提供することを目的とする。
 本発明の金属空気電池は、金属極と、前記金属極に対向して配置される空気極と、前記金属極及び前記空気極を支持する筐体と、を有して構成される金属空気電池セルが複数個、並設されたセルユニットを構成しており、前記セルユニットごとの交換を可能とする第1の交換手段を備える、ことを特徴とする。
 また、本発明の金属空気電池は、金属極と、前記金属極に対向して配置される空気極と、前記金属極及び前記空気極を支持する筐体と、を有して構成される金属空気電池セルが複数個、並設されたセルユニットを構成しており、複数の前記金属極は、前記筐体に対し交換可能に支持されており、複数の前記金属極を同時に交換可能とする第2の交換手段を備える、ことを特徴とする。
 上記の金属空気電池において、更に、前記セルユニットごとの交換を可能とする第1の交換手段を備えることができる。
 また、本発明では、前記交換手段は、前記セルユニットに対する電解液の液面高さよりも高い位置に設けられることが好ましい。
 また、本発明では、前記交換手段には、手指をかけるための指掛け部を備えることが好ましい。
 また、本発明は、上記に記載の金属空気電池の使用方法であって、前記セルユニットごと、或いは、複数の前記金属極を同時に、交換しながら、発電を継続することを特徴とする。
 本発明の金属空気電池によれば、交換作業を容易化できると共に、高出力を効果的に維持することができる。
本実施の形態における、金属空気電池を構成するセルユニットの斜視図である。 図2Aは、本実施の形態におけるセルユニットを電解液に浸漬させた状態を示す金属空気電池の斜視図であり、図2Bは、セルユニットの交換作業を説明するための斜視図である。 図3A及び図3Bは、図1と一部異なるセルユニットの斜視図である。 本実施の形態における、金属空気電池セルの斜視図である。 図5Aは、図4に示す金属空気電池セルの正面図であり、図5Bは、図5Aに示す金属空気電池セルをA―A線に沿って切断し矢印方向から見た断面図であり、図5Cは、金属空気電池セルの平面図であり、図5Dは、金属空気電池セルの裏面図である。 本実施の形態のセルユニットを電解液に浸漬させた状態を示す金属空気電池の断面図である。 図7Aは、本実施の形態におけるセルユニットを電解液に浸漬させた状態を示す金属空気電池の斜視図であり、図7Bは、金属板の交換作業を説明するための斜視図である。
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本発明者は、金属空気電池セルを複数並設したセルユニット(金属空気電池ユニット)を有する金属空気電池において、一次電池でありながら、連続的な発電を可能とすべく、セルユニットごと、あるいは、複数の金属極を同時に交換でき、交換の作業効率を向上させた構成を開発するに至った。
 以下、図面を用いながら本実施の形態の金属空気電池を詳細に説明するが、「金属空気電池」とは、複数の金属空気電池セルを並設したセルユニット自体を指すこともあるし、セルユニットと、電解液を収容した発電槽との組み合わせを指すこともある。
 図1は、本実施の形態における、金属空気電池を構成するセルユニットの斜視図である。図1に示すように、セルユニット1は、例えば、5つの金属空気電池セル2を並設して構成される。ただし、金属空気電池セル2の数を限定するものでない。
 本実施の形態におけるセルユニット1は、同じ構造の金属空気電池セル2を複数組み合わせたものである。本実施の形態では、複数の金属空気電池セル2が、一体的に組み合わされている。一体的な組み合わせ方としては、各金属空気電池セル2同士を接着等で接合したり、或いは、凹凸嵌合等で一体化してもよい。
 図1に示すように、セルユニット1の両側面1b、1cには、「第1の交換手段」としての例えば、取っ手20が設けられている。取っ手20は、手指で把持できる把持部(指掛け部)20aと、把持部20aとセルユニット1の両側面1b、1cとの間を繋ぐ腕部20bと、を有して構成される。
 図2Aに示すように、図1に示すセルユニット1を、電解液10を収容した発電槽11内に浸す。このとき、電解液10は、各金属空気電池セル2に設けられた空気極と金属極との間に設けられた液室(後述)内に注入される。
 例えば、金属極が、マグネシウムであるとき、金属極の近傍においては、下記(1)で示す酸化反応が生じる。また、空気極においては、下記(2)で示す還元反応が生じる。マグネシウム空気電池全体としては、下記(3)に示す反応が起こり、放電が行われる。
(1)2Mg       →2Mg2++4e
(2)O+2HO+4e →4OH
(3)2Mg+O+2HO →2Mg(OH)
 なお、金属極と空気極の酸化還元反応の際に、生成物(Mg(OH))が生じる。放電により、マグネシウムが徐々に減少し、出力が低下する。そこで、本実施の形態では、一次電池でありながら、連続的な発電を可能とするために、図2Bに示すように、取っ手20を利用して、マグネシウムが減少した古いセルユニット1を、電解液10中から上方に引き上げる。そして、代わりに、新しいセルユニット1を、電解液10中に浸漬させる。これにより、連続的な発電が可能となる。セルユニット1の交換後も、発電槽11内の電解液10をそのまま使用することができる。なお、後述する金属空気電池セル2の構成では、金属極と空気極の酸化還元反応の際に生じる生成物が、発電槽11内の電解液10中に排出されるため、発電槽11には、例えば、電解液10を還流させる機構を設ける等して、電解液10の還流を促進させてもよい。
 このように、図1に示す構成のセルユニット1を用いることで、セルユニットごとの交換が可能であり、交換作業を容易化でき、長期にわたって高出力を持続することができる。
 図1では、セルユニット1の側面1b、1cに夫々、取っ手20が設けられていたが、図3Aに示すように、側面1b、1c間をセルユニット1の上方にわたって繋ぐように取っ手21が設けられていてもよいし、図3Bに示すように、セルユニット1の側面1b、1cに夫々内側に凹む凹部(指掛け部)22が設けられていてもよい。凹部22に手指をかける等して、セルユニット1を容易に交換することができる。
 次に、金属空気電池セル2の構造について、図4及び図5を用いて詳述する。図4に示すように、金属空気電池セル2は、金属極3と、空気極4と、金属極3及び空気極4を支持する筐体5と、を有して構成される。
 図5B及び図5Cに示すように、空気極4は、金属極3の両側に間隔を空けて配置されると共に、筐体5の両側外面に露出している。
 図4及び図5A~図5Dに示すように、筐体5は、上部5aと、下部5bと、上部5aと下部5bとを繋ぐ前部5c、後部5d、及び側部5e、5fと、を有する。筐体5は、一体的に成形されたものであってもよいし、複数に分割された各成形体を組み合わせて筐体5が構成されてもよい。
 筐体5の上部5aには、スリット5gが設けられ、金属極3が、このスリット5g内に固定支持されている。図5Cに示すように、金属空気電池セル2の筐体5の上部5aに形成されたスリット5gの幅のほうが、金属極3の幅よりも広くされている。金属極3とスリット5gとの間には、液室6に繋がる連通孔5kが形成されている。
 筐体5の側部5e、5fには、夫々、窓5hが設けられている(図5Bを参照)。また、各窓5hの上側、下側、左側及び右側の全周を囲む固定部5iが形成されている。図5Bには、窓5hの上側及び下側に位置する固定部5iが図示されているが、実際には、窓5hの左側及び右側にも固定部5iは存在し、窓5hの全周囲が、固定部5iで取り囲まれている。
 図5Bに示すように、各空気極4は、各側部5e、5fの固定部5iに接着剤等で固定されており、各窓5hを塞いでいる。筐体5の側部5e、5fに夫々設けられた窓5hが塞がれたことで、側部5e、5fに固定された空気極4の間には、液室6が形成されている。液室6は、電解液10の供給口としての貫通孔8、14を除いて囲まれている。
 図4、図5A、図5B及び図5Cに示すように、固定部5iの外周には、上側を除いて、枠部5jが形成されている。すなわち、枠部5jは、固定部5iの下側、左側及び右側を囲むように形成されている。また、枠部5jは、固定部5iよりも外方に突き出している。このため、枠部5jと固定部5iとの間には、段差が形成されている。図4、図5B及び図5Cに示すように、空気極4は、枠部5jの表面よりも奥まった位置(後方)に配置されている。よって、空気極4と枠部5jとの間には、上方及び空気極4の前方が開放された空間が形成されている。この空間は、複数の金属空気電池セル2を並設させることで、上方のみが開放した空気室7を構成する(図6を参照されたい)。
 図5B及び図5Dに示すように、筐体5の下部5bには、液室6に通じる貫通孔8が形成されている。貫通孔8の幅寸法Tは、金属極3の厚みより大きい。ここで、「幅寸法」とは、筐体5の一方の側部5eから他方の側部5fに向かう方向の寸法を指す。図5B及び図5Dに示すように、貫通孔8は、金属極3の下端3aと対向する位置に形成される。したがって、図5Dに示すように、貫通孔8を通して金属極3の下端3aを見ることが出来る。図5B及び図5Dに示すように、金属極3は、貫通孔8の幅寸法Tの中心に位置するように配置されることが好ましい。
 本実施の形態では、金属極3の下端3aと貫通孔8の上端8aとの位置関係を限定するものではないが、図5Bに示すように、金属極3の下端3aは、貫通孔8の上端8a以上の位置に配置されることが好ましい。ここで、「上端8a以上の位置」とは、上端8aの位置、及び上端8aの上方の位置を含む。これによって、金属極3と空気極4との反応により生じた生成物を、貫通孔8から外部に効果的に排出することが出来る。また、本実施の形態では、金属極3の左右両側に空気極4が設けられているので、金属極3の左右両側にて生成物が生成される。このため、上記したように、貫通孔8の幅寸法Tの中心に、金属極3を配置することで、金属極3の左右両側から生成される生成物を、適切に貫通孔8を通して外部に排出することが可能になる。
 また、図5Bに示すように、金属極3の下端3aは自由端とされている。これにより、金属極3の下端3aを揺動させることができる。このため、空気極4と金属極3との間に生成物が堆積したときに、金属極3を撓らせることができ、生成物による押圧力を緩和でき、金属極3及び空気極4の破損を抑制することが出来る。
 図5Dでは、貫通孔8の形状は矩形状であるが、矩形状に限定するものでなく、その他の形状であってもよい。また、図5Dでは、貫通孔8の数が3つであるが、貫通孔8の数を限定するものではない。
 貫通孔8は、電解液を液室6まで供給する供給口としての機能を有すると共に、金属極3と空気極4との反応により生じた生成物を、セルユニット1の外部へ排出させる機能を有している。
 このように、電解液の供給と、生成物の排出とが可能であれば、貫通孔8の形成位置を、筐体5の下部5bに限定するものではない。図4では、筐体5の前部5cにも貫通孔14を設けている。図4では、複数の貫通孔14が、前部5cの高さ方向に間隔を空けて形成されている。これら貫通孔14は、貫通孔8と同様に、液室6に通じている。また、図示しないが、筐体5の後部5dにも貫通孔14を設けることができる。筐体5の前部5cや後部5dに設ける貫通孔14の少なくとも一部は、前部5cや後部5dの下側に配置されることが好ましい。「下側」とは、前部5c及び後部5dの高さ寸法の下半分、好ましくは、高さ寸法の1/2以下の下側部分、より好ましくは、高さ寸法の1/3以下の下側部分である。このように、貫通孔14を、筐体5の前部5cや後部5dに設けても、電解液10の供給と、生成物の排出とが可能である。
 ただし、生成物は、自重により、液室6内を降下するため、貫通孔8を、筐体5の下部5bに形成することが、生成物の排出を効果的に促進することができて好ましい。本実施の形態では、筐体5の下部5b、及び前部5c、後部5dに夫々、貫通孔8、14を設けている。
 また、図5Dでは、筐体5の下部5bに設けられた貫通孔8は、金属極3の横幅方向(筐体5の前部5cから後部5dに向かう方向)に等間隔にて複数形成されているが、図5Dに示す、左側の貫通孔8から右側の貫通孔8にかけて連通する長いスリット状の貫通孔8が形成されていてもよい。ただし、貫通孔8が長いスリット状であると、金属極3と空気極4との反応により生じた生成物が、一旦、貫通孔8を介して外部に抜けても、水流などによっては、再び、生成物が貫通孔8を介して液室6内に戻りやすくなる。よって、貫通孔8は、図5Dに示すように、複数に分けて形成することが、生成物の排出効果に優れており好ましい。なお、水流が生じない構成では、各貫通孔8を連通する長いスリット状であってもよい。
 本実施の形態では、上記にて詳述した金属空気電池セル2を複数個、並設させ一体化する。この並設状態では、両側に位置する金属空気電池セル2の外側が開放された状態にあるため、両側面を塞ぐために、セルユニット1の両側面1b、1cを構成する板材9を貼り合わせる。なお、板材9には、図1に示す例えば、取っ手20が取り付けられている。これにより、図1に示すように、複数の金属空気電池セル2と、第1の交換手段としての例えば、取っ手20を有するセルユニット1が完成する。
 図6に示すように、図1に示すセルユニット1を、電解液10を収容した発電槽11内に浸すと、電解液10は、貫通孔8や貫通孔14を通して液室6内に注入される。なお、図6には貫通孔14を図示していない。また、図5Cを用いて説明したように、金属極3と、筐体5の上部5aのスリット5gとの間には、液室6に繋がる連通孔5kが形成されているので、電解液10の液室6内への注入の際、液室6の空気は連通孔5kから外部に抜け、電解液10を、貫通孔8、14を通してスムースに液室6内部に導くことが出来る。
 また、図6では、発電槽11の底面11aとセルユニット1の下面1aとの間に、突起部12が設けられている。このため、発電槽11の底面11aとセルユニット1の下面1aとの間には、所定高さの隙間13が形成される。したがって、セルユニット1の下面1aが、発電槽11の底面11aに接触することはない。
 このとき、図6に示すように、第1の交換手段としての、例えば取っ手20は、電解液10の液面高さよりも高い位置に設けられている。これにより、取っ手20を手に持って、セルユニット1を電解液10から容易に引き上げることができる。また、後述する、複数の金属極3を同時に交換可能とする第2の交換手段としての、例えば連結部30も、電解液10の液面高さよりも高い位置に設けられている。
 図6に示すように、電解液10が液室6に注入されることで、例えば、金属極3がマグネシウムであるとき、上記した記載した酸化還元反応が金属極3と空気極4との間で生じ、放電が行われる。
 このとき、電池反応の副反応にて発生した水素を、液室6に通じる連通孔5k(図5Cを参照)から外部に排出することが出来る。電解液面以上に位置する貫通孔14からも外部に水素を排出する事が出来る。
 また、金属極3と空気極4の酸化還元反応の際に生じる生成物(Mg(OH))を、各金属空気電池セル2の下部に設けられた貫通孔8や、側部に設けられた貫通孔14を介して、発電槽11の底面11a側に排出することが出来る。また、本実施の形態では、発電槽11の底面11aとセルユニット1の下面1aとの間に隙間13が形成されているため、生成物をセルユニット1の液室6から発電槽11の底面11a側に向けて適切に放出することが出来る。以上により、各金属空気電池セル2の液室6内部に生成物が溜まるのを抑制することができ、電極の破損や電気特性の劣化を抑制することが可能であり、長寿命化を図ることが出来る。
 本実施の形態では、上記の金属極3と空気極4の酸化還元反応により、金属極3が減少したことに伴う出力低下等に基づいて、セルユニット1ごと、新たに交換することができる。このとき、セルユニット1には、第1の交換手段としての、例えば取っ手20が設けられているため、容易にセルユニット1ごと交換することが可能である。
 或いは、本実施の形態では、複数の金属極3を同時に交換可能な構成とすることができる。例えば、図1や図6に示すように、各金属極3の上端同士を接続した、「第2の交換手段」としての連結部30が設けられている。連結部30は、縦棒30a及び横棒30bを組み合わせて成る骨組み構造である。これにより、連結部30の一部に手指をかけることができる。
 図7Aに示すように、セルユニット1を、電解液10を収容した発電槽11内に浸した後、金属極3の交換時期に、図7Bのように、連結部30を利用して、複数の金属極3を同時に、セルユニット1の筐体5から引き出し、複数の金属極3を同時に交換することができる。このとき、例えば、複数の金属極3を、金属空気電池セル2の外側から内部に向けてスライドさせて挿入でき、所定位置まで挿入したらそれ以上挿入できないように構成されている。このように、複数の金属極3を交換可能な構成では、セルユニット1の金属極以外の部分は、そのまま、金属極3の交換後も使用することができ、経済的である。
 図1に示すセルユニット1には、セルユニットごと交換可能とする第1の交換手段としての、例えば取っ手20と、複数の金属極3を同時に交換可能とする第2の交換手段としての、例えば連結部30とが設けられているが、少なくともどちらか一方でよい。ただし、両方設けられているほうが、状況に応じて、セルユニットごとの交換とするか、金属極3のみの交換とするか、選択することができる。例えば、1回目の交換作業は、金属極3のみの交換とした後、生成物が、セルユニット1内に相当量溜まった場合には、2回目の交換作業は、金属極3のみの交換とせず、セルユニットごとの交換としたほうが、高出力を効果的に持続することができる。
 なお、セルユニット1には、各金属空気電池セル2に貫通孔8、14を設けて、生成物の排出を可能とすると共に、第2の交換手段としての、例えば連結部30を必須として設け、複数の金属極3を同時に交換可能な構成とすることが好ましい。これにより、生成物のセルユニット1からの排出と共に、簡単に金属極3の交換が可能になり、高出力を簡単な手法で効果的に持続することができる。また、セルユニット1の金属極3以外はそのまま適用できるため経済的である。
 なお、本実施の形態において、発電を終了させたいときは、図2Aや図7Aの状態からセルユニット1を引き上げ、或いは、発電槽11を引き下げて、各金属空気電池セル2の液室6から電解液10を、貫通孔8を介して抜くことで、発電を簡単に止めることができる。或いは、セルユニット1が配置された状態の発電槽11から電解液10を抜くことで、発電を止めてもよい。また、負極としての金属極3を抜いても、電池反応を停止することが出来る。
 また、本実施の形態では、セルユニットごとの交換を可能とする第1の交換手段の構成や、複数の金属極を同時に交換可能とする第2の交換手段の構成は、図1や図3に示した構成以外であってもよい。例えば、第1の交換手段及び第2の交換手段には、手指をかける手掛け部が設けられていることが、簡単に交換が可能になるため好ましいが、手掛け部がない形態であってもよい。例えば、セルユニット1や、複数の金属極3を同時に、工具等に接続可能な穴などが空いていてもよい。この穴に工具を引っ掛けて、セルユニット1や、複数の金属極3を吊るすことで、交換が可能になる。
 或いは、図6に示すように、セルユニット1を発電槽11内の電解液10中に浸漬させた状態で、例えば、発電槽11に設けられたスイッチを押圧すると、セルユニット1が、電解液10中から上方に持ち上がり、電解液10の外に露出したセルユニット1の側面を手で持って交換する形態としてもよい。このような、セルユニット1を上方に持ち上げる機構は、例えば、図6に示す発電槽11の底面11aとセルユニット1の下面1aとの間に形成された隙間13に設けることができる。
 なお、図5に示す金属空気電池セル2の構成は、一例であり、この構成に限定されるものでない。例えば、図5では、金属極3の両側に空気極4が配置されるが、金属極3と空気極4は一つずつでもよい。或いは、金属極3と空気極4は夫々複数ずつ設けられていてもよい。
 また、図1に示すセルユニット1の上面には、図示しない天井部が設けられていてもよい。天井部には、各空気室7に通じる開口が設けられており、天井部の開口を介して各空気室7に空気が流れるようにしてもよい。
 また、上記した天井部には、電池出力を外部へ供給する外部接続用端子が設置されていてもよい。外部接続用端子は、コネクタであったり、USB端子等であり、特に限定するものではない。外部接続用端子は複数個、設けることができる。例えば、携帯機器を、直接、セルユニット1に設けられた外部接続用端子に接続して電力供給することができる。或いは、例えば、USBハブ等の接続基板をセルユニット1の外部接続用端子に接続し、接続基板を介して複数の携帯機器に電力供給する構成とすることも出来る。
 本実施の形態では、各金属空気電池セル2の各電極を直列接続しても並列接続してもよく、配線方法を特に限定するものではない。
 また、本実施の形態における金属空気電池の使用方法では、セルユニットごと、あるいは、複数の金属極を同時に交換しながら、発電を継続することができる。なお、ここでいう「発電の継続」とは、通常の一次電池に比べて発電を延ばすことができることを意味し、交換の際に発電を停止しても、その前後において「発電が継続」されていると定義される。
 また、本実施の形態における金属空気電池は、マグネシウム空気電池であっても他の金属空気電池であっても適用可能である。
 本発明の金属空気電池によれば、交換作業を容易化できると共に、高出力を効果的に維持することが可能な非常用電源として使用することが出来る。
 本出願は、2018年8月24日出願の特願2018-157020に基づく。この内容は全てここに含めておく。
 
 

Claims (6)

  1.  金属極と、
     前記金属極に対向して配置される空気極と、
     前記金属極及び前記空気極を支持する筐体と、を有して構成される金属空気電池セルが複数個、並設されたセルユニットを構成しており、
     前記セルユニットごとの交換を可能とする第1の交換手段を備える、ことを特徴とする金属空気電池。
  2.  金属極と、
     前記金属極に対向して配置される空気極と、
     前記金属極及び前記空気極を支持する筐体と、を有して構成される金属空気電池セルが複数個、並設されたセルユニットを構成しており、
     複数の前記金属極は、前記筐体に対し交換可能に支持されており、
     複数の前記金属極を同時に交換可能とする第2の交換手段を備える、ことを特徴とする金属空気電池。
  3.  更に、前記セルユニットごとの交換を可能とする第1の交換手段を備える、ことを特徴とする請求項2に記載の金属空気電池。
  4.  前記交換手段は、前記セルユニットに対する電解液の液面高さよりも高い位置に設けられることを特徴とする請求項1から請求項3のいずれかに記載の金属空気電池。
  5.  前記交換手段には、手指をかけるための指掛け部を備えることを特徴とする請求項1から請求項4のいずれかに記載の金属空気電池。
  6.  請求項1から請求項5のいずれかに記載の金属空気電池の使用方法であって、
     前記セルユニットごと、或いは、複数の前記金属極を同時に、交換しながら、発電を継続することを特徴とする金属空気電池の使用方法。
PCT/JP2019/032924 2018-08-24 2019-08-22 金属空気電池、及びその使用方法 WO2020040269A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217004417A KR20210044785A (ko) 2018-08-24 2019-08-22 금속 공기 전지 및 그 사용 방법
US17/270,265 US11973240B2 (en) 2018-08-24 2019-08-22 Metal-air battery and method of using the same
JP2020538471A JP7404244B2 (ja) 2018-08-24 2019-08-22 金属空気電池、及びその使用方法
CN201980054446.3A CN112585804B (zh) 2018-08-24 2019-08-22 金属空气电池及其使用方法
US18/297,295 US20230246280A1 (en) 2018-08-24 2023-04-07 Metal-air battery and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157020 2018-08-24
JP2018157020 2018-08-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/270,265 A-371-Of-International US11973240B2 (en) 2018-08-24 2019-08-22 Metal-air battery and method of using the same
US18/297,295 Division US20230246280A1 (en) 2018-08-24 2023-04-07 Metal-air battery and method of using the same

Publications (1)

Publication Number Publication Date
WO2020040269A1 true WO2020040269A1 (ja) 2020-02-27

Family

ID=69592053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032924 WO2020040269A1 (ja) 2018-08-24 2019-08-22 金属空気電池、及びその使用方法

Country Status (6)

Country Link
US (2) US11973240B2 (ja)
JP (1) JP7404244B2 (ja)
KR (1) KR20210044785A (ja)
CN (1) CN112585804B (ja)
TW (1) TWI819074B (ja)
WO (1) WO2020040269A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068317A1 (ja) * 2021-10-22 2023-04-27 日本協能電子株式会社 金属空気発電機及びそのユニット
JP7548737B2 (ja) 2020-07-09 2024-09-10 シャープ株式会社 金属空気電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403778B (zh) * 2020-03-27 2021-06-11 北京理工大学 一种开放式可不间断供电的金属空气燃料电池系统
WO2024015540A1 (en) * 2022-07-13 2024-01-18 Form Energy, Inc. Gas management for metal-air batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130406A (ja) * 1993-10-29 1995-05-19 Koa Oil Co Ltd 空気電池
US20050014062A1 (en) * 2001-05-14 2005-01-20 Faris Sadeg M. Metal air cell incorporating ionic isolation systems
CN101814643A (zh) * 2009-02-25 2010-08-25 中国科学院大连化学物理研究所 一种金属空气电池系统
JP2015176698A (ja) * 2014-03-14 2015-10-05 日産自動車株式会社 空気電池セル及び組電池
WO2018110444A1 (ja) * 2016-12-13 2018-06-21 株式会社シーアイピーソフト 長時間給電可能なマグネシウム空気電池および電子機器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554810A (en) * 1967-04-12 1971-01-12 Solomon Zaromb Metal-oxygen power source
US3682705A (en) * 1970-06-11 1972-08-08 Edward Petix Replaceable electrochemical cell module
US3682706A (en) * 1970-06-18 1972-08-08 Michel N Yardney Gas depolarized cell
US4640874A (en) * 1985-07-29 1987-02-03 Duracell Inc. Metal/air cell
CA1276972C (en) * 1986-10-22 1990-11-27 David S. Strong Multi-cell metal/air battery
US4842963A (en) * 1988-06-21 1989-06-27 The United States Of America As Represented By The United States Department Of Energy Zinc electrode and rechargeable zinc-air battery
US4950561A (en) * 1989-06-29 1990-08-21 Eltech Systems Corporation Metal-air battery with easily removable anodes
JP2005509262A (ja) * 2001-09-26 2005-04-07 エビオニクス、インク. 再充電及び燃料補給可能な金属空気型の電気化学セル
JP2004362869A (ja) 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd 金属−空気電池用ケース、金属−空気電池、および、金属−空気電池を用いる携帯用電子機器
JP5050065B2 (ja) * 2010-02-05 2012-10-17 株式会社日立製作所 金属空気二次電池
EP2710655B1 (en) * 2011-05-16 2019-11-06 Phinergy Ltd. Zinc-air battery
US9711830B2 (en) * 2011-09-02 2017-07-18 Panisolar Inc. Electrochemically rechargeable metal-air cell with a replaceable metal anode
JP5841466B2 (ja) * 2012-03-15 2016-01-13 古河電池株式会社 金属極、金属極の製造方法、及び、マグネシウム電池
WO2014156433A1 (ja) * 2013-03-25 2014-10-02 シャープ株式会社 金属空気電池
JP5930998B2 (ja) * 2013-04-02 2016-06-08 冨士色素株式会社 金属空気電池
WO2015076172A1 (ja) * 2013-11-19 2015-05-28 古河電池株式会社 金属空気電池、および金属空気電池ユニット
WO2015076299A1 (ja) * 2013-11-20 2015-05-28 シャープ株式会社 金属電極カートリッジ、金属空気電池および金属電極カートリッジの充電方法
US10411226B2 (en) 2016-03-01 2019-09-10 Fujikura Rubber Ltd. Metal-air battery
CN107482281B (zh) * 2017-07-28 2018-09-14 北京碳阳科技有限公司 金属空气电池
KR20210037669A (ko) * 2018-08-06 2021-04-06 후지쿠라 컴퍼지트 가부시키가이샤 금속 공기 전지 및 그 사용 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130406A (ja) * 1993-10-29 1995-05-19 Koa Oil Co Ltd 空気電池
US20050014062A1 (en) * 2001-05-14 2005-01-20 Faris Sadeg M. Metal air cell incorporating ionic isolation systems
CN101814643A (zh) * 2009-02-25 2010-08-25 中国科学院大连化学物理研究所 一种金属空气电池系统
JP2015176698A (ja) * 2014-03-14 2015-10-05 日産自動車株式会社 空気電池セル及び組電池
WO2018110444A1 (ja) * 2016-12-13 2018-06-21 株式会社シーアイピーソフト 長時間給電可能なマグネシウム空気電池および電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7548737B2 (ja) 2020-07-09 2024-09-10 シャープ株式会社 金属空気電池
WO2023068317A1 (ja) * 2021-10-22 2023-04-27 日本協能電子株式会社 金属空気発電機及びそのユニット

Also Published As

Publication number Publication date
US20230246280A1 (en) 2023-08-03
US11973240B2 (en) 2024-04-30
CN112585804A (zh) 2021-03-30
KR20210044785A (ko) 2021-04-23
CN112585804B (zh) 2024-04-02
TWI819074B (zh) 2023-10-21
JPWO2020040269A1 (ja) 2021-08-10
JP7404244B2 (ja) 2023-12-25
US20210320369A1 (en) 2021-10-14
TW202013803A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2020040269A1 (ja) 金属空気電池、及びその使用方法
US3682706A (en) Gas depolarized cell
US6794069B1 (en) Fuel cell support and electrical interconnector
HK1118129A1 (en) Case for high-power rechargeable lithium battery
EP2099085A3 (en) Battery pack
JP7354486B2 (ja) 金属空気電池、及びその使用方法
CN106450091B (zh) 动力电池
JP2007305339A (ja) 電解液循環型電池用セル
JP2016152133A (ja) 金属空気電池ユニットおよび金属空気電池
JP2014216268A (ja) 燃料電池スタック
JP6715354B2 (ja) 金属空気電池、及びその使用方法
US8568933B2 (en) Metal-air fuel cell module
JP2014107133A (ja) 空気二次電池
CN219085496U (zh) 一种环境监控装置
US11245143B2 (en) Electrochemical cell having orthogonal arrangement of electrodes
WO2016065976A1 (zh) 燃料电池组、燃料电池及壳体
CN213483855U (zh) 一种组合式电池
CN112670674B (zh) 一种单体金属燃料电池及其构成电堆的结构
JP2018163739A (ja) ジャバラタンク付き金属空気電池
CN214848894U (zh) 一种通用型电池盒
CN216819470U (zh) 一种移动储能电源
CN213584008U (zh) 一种支持任意串联使用锂电池包
CN218677246U (zh) 一种锂电池自动充电断电保护装置
WO2024077656A1 (zh) 一种游泳池机器人电池安装结构及游泳池机器人
CS236770B2 (cs) Elektrochemický článek s plynem depolarizovatelnými katodami a rozpustnými kovovými anodami

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852589

Country of ref document: EP

Kind code of ref document: A1