WO2020039886A1 - Vaporizer, liquid material vaporization device, and vaporization method - Google Patents

Vaporizer, liquid material vaporization device, and vaporization method Download PDF

Info

Publication number
WO2020039886A1
WO2020039886A1 PCT/JP2019/030370 JP2019030370W WO2020039886A1 WO 2020039886 A1 WO2020039886 A1 WO 2020039886A1 JP 2019030370 W JP2019030370 W JP 2019030370W WO 2020039886 A1 WO2020039886 A1 WO 2020039886A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
temperature
liquid material
flow path
vaporizer
Prior art date
Application number
PCT/JP2019/030370
Other languages
French (fr)
Japanese (ja)
Inventor
一朗 西川
宮本 英顕
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to JP2020538272A priority Critical patent/JP7402801B2/en
Priority to CN201980049167.8A priority patent/CN112469498B/en
Publication of WO2020039886A1 publication Critical patent/WO2020039886A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a vaporizer, a liquid material vaporizer provided with the vaporizer, and a vaporization method.
  • a liquid material is sprayed from a nozzle and guided to a heating flow path while reducing the pressure to form a liquid.
  • Some materials vaporize a material to generate a vaporized gas.
  • the heat transfer efficiency to the sprayed liquid material is improved by providing, for example, a stirrer called a stick mixer or a filler having excellent heat transfer properties in the heating flow path.
  • the present invention has been made to solve the above problems at once, and its main object is to suppress the occurrence of local cold spots without increasing the risk of nozzle blockage. .
  • the vaporizer according to the present invention is a vaporizer that vaporizes a liquid material or a gas-liquid mixture obtained by mixing a liquid material and a carrier gas, and a nozzle through which the liquid material or the gas-liquid mixture is guided. And a heating flow path through which the liquid material or the gas-liquid mixture sprayed by the nozzle is guided, and a high-temperature gas supply path that supplies a high-temperature gas to the heating flow path.
  • the hot gas supply path supplies the hot gas to the heating flow path, so that the liquid material is not heated upstream of the nozzle, but is locally cooled downstream of the nozzle. A portion where a spot can occur can be heated. This makes it possible to suppress the occurrence of cold spots without increasing the risk of nozzle blockage.
  • a stirrer provided in the heating channel is further provided, and the high-temperature gas supply path supplies the high-temperature gas toward a tip end of the stirrer.
  • the heating channel has a tubular shape, and a supply direction of the high-temperature gas supply channel is a direction toward a central axis of the heating channel.
  • the temperature of the central portion of the heating channel is likely to be lower, so that the generation of the cold spot can be suppressed more reliably.
  • the heating channel has a tubular shape, and a supply direction of the high-temperature gas supply channel is a tangential direction of the heating channel.
  • the high-temperature gas supplied to the heating channel can be swirled in the heating channel, and the heating efficiency by the high-temperature gas can be improved.
  • a temperature control mechanism for controlling the temperature of the heating channel to a predetermined set temperature is further provided, and the temperature of the high-temperature gas may be lower than the set temperature. preferable.
  • a liquid material vaporizer according to the present invention includes a gas-liquid mixing unit that mixes the liquid material and the carrier gas to generate the gas-liquid mixture, and the vaporizer described above. Is what you do.
  • the liquid material or a gas-liquid mixture formed by mixing the liquid material and the carrier gas is introduced into a nozzle, and the liquid material or the gas-liquid mixture sprayed by the nozzle is used.
  • FIG. 2 is a cross-sectional view schematically illustrating a configuration of the vaporizer according to the embodiment.
  • FIG. 1 is a perspective view schematically illustrating a configuration of a vaporizer according to an embodiment.
  • FIG. 2 is a cross-sectional view schematically illustrating a configuration of the vaporizer according to the embodiment.
  • Sectional drawing which shows typically the structure of the vaporizer in other embodiment.
  • Sectional drawing which shows typically the structure of the vaporizer in other embodiment.
  • the liquid material vaporizer 100 of the present embodiment is for supplying a gas at a predetermined flow rate to a chamber or the like used in a semiconductor manufacturing process incorporated in a semiconductor manufacturing line or the like, for example, as shown in FIG.
  • the apparatus includes a gas-liquid mixing section 10 for mixing a material and a carrier gas to generate a gas-liquid mixture, and a vaporizer 20 for introducing the gas-liquid mixture and evaporating a liquid material contained in the gas-liquid mixture. ing.
  • the gas-liquid mixing section 10 includes a carrier gas flow path L1 through which a carrier gas flows, a liquid material flow path L2 through which a liquid material flows, and a gas-liquid mixing chamber 10s where the carrier gas flow path L1 and the liquid material flow path L2 join.
  • the carrier gas flow path L1 and the liquid material flow path L2 are formed inside the block body 12, and the valve seat surface 13 formed on one surface (here, the upper surface) of the block body 12 is provided with a carrier. Outlets L1a and L2a of the gas flow path L1 and the liquid material flow path L2 are open.
  • the flow control valve 11 is, for example, a normally closed piezo valve, and is disposed so that the valve body 111 faces the above-described valve seat surface 13.
  • a space surrounded by the valve body 111, the valve seat surface 13, and the block body 12 is formed as the above-described gas-liquid mixing chamber 10s.
  • FIG. 1 shows a state in which the valve body 111 is seated on the valve seat surface 13, which is a state in which fluid does not enter or leave the gas-liquid mixing chamber 10 s.
  • the introduction port L3a is formed in the above-described valve seat surface 13, and the gas-liquid mixture generated in the gas-liquid mixing chamber 10s is introduced to vaporize the gas-liquid mixture.
  • the vessel 20 To the vessel 20.
  • the valve body 111 opens or closes the outlet L1a of the carrier gas passage L1, the outlet L2a of the liquid material passage L2, and the inlet L3a of the gas-liquid mixture passage L3.
  • the gas-liquid mixture can be supplied to the vaporizer 20 or the supply can be stopped.
  • the vaporizer 20 is connected to a pipe member Z1 forming a gas-liquid mixture flow path L3, and is provided with a nozzle L4 for spraying the gas-liquid mixture guided by the gas-liquid mixture flow path L3, and a downstream of the nozzle L4. And a heating channel L5 for heating the atomized (vaporized) liquid material and a temperature control mechanism 21 for controlling the temperature of the heating channel L5.
  • the nozzle L4 connects the gas-liquid mixture flow path L3 and the heating flow path L5.
  • the nozzle L4 has a nozzle shape smaller in diameter and length than these flow paths L3 and L5. It is a decompression channel for decompressing the body.
  • the heating flow path L5 is a substantially straight pipe having a larger diameter than the gas-liquid mixture flow path L3, is formed inside the block body 22, and has an end on the nozzle L4 side of the heating flow path L5. Make a conical shape.
  • a stirrer 3 such as a static mixer for mixing the carrier gas and the atomized liquid material is provided in the heating flow path L5, and the heating is performed while mixing the carrier gas and the liquid material to evaporate. Performance has been improved.
  • the temperature control mechanism 21 includes one or more heaters H for heating the heating flow path L5, a temperature sensor T for detecting the temperature of the heating flow path L5, and a control device (not shown) for controlling the temperature of the heater H.
  • the control device controls the heater H based on, for example, the temperature detected by the temperature sensor T to perform PID control or the like, thereby heating the heating flow path L5 to a predetermined set temperature (for example, about 300 ° C.).
  • the liquid material vaporizer 100 of the present embodiment further includes a high-temperature gas supply path L6 that supplies a high-temperature gas to the heating flow path L5.
  • the high-temperature gas supply path L6 is preferably configured to supply a high-temperature gas to the upstream end of the heating path L5.
  • the “upstream end of the heating flow path 5L” here is a region where the heat of the supplied high-temperature gas is transmitted to the distal end portion 31 of the stirrer 3, and more preferably the heat of the supplied high-temperature gas. Is an area transmitted to the tip end surface 32 of the stirrer 3. More specifically, the upstream end of the heating flow path 5L is a range upstream of half of the heating flow path 5L, and is more preferably a third of the entire upstream side.
  • the distal end portion 31 and the distal end surface 32 of the stirrer 3 are portions where the liquid material sprayed by the nozzle L4 comes into contact and vaporization of the liquid material takes away heat.
  • the high-temperature gas supply passage L6 is arranged so as to supply the high-temperature gas toward the distal end surface 32 of the stirrer 3.
  • This high-temperature gas supply passage L6 is formed in the block body 22 as in the heating passage L5, as shown in FIGS. Specifically, a groove formed by cutting a side peripheral surface 221 of the block body 22 by, for example, a drill is formed as a high-temperature gas supply path L6, and the high-temperature gas supply path L6 extends from the side peripheral surface 221 of the block body 22. It is formed of a main flow path L6a toward the heating flow path L5, and a small flow path L6b formed between the main flow path L6a and the heating flow path L5.
  • the main channel L6a and the small channel L6b have a circular shape, and the small channel L6b has a smaller diameter than the main channel L6a.
  • the supply direction of the high-temperature gas supply path L6, that is, the axis L6c of the high-temperature gas supply path L6 is directed to the central axis L5c of the heating flow path L5 and orthogonal to the central axis L5c of the heating flow path L5.
  • the axis L6c of the high-temperature gas channel L6 does not necessarily need to be orthogonal to the axis L5c of the heating channel L5, and may be inclined with respect to the axis L5c of the heating channel L5.
  • a heater (not shown) is provided in the high-temperature gas supply path L6.
  • a high-temperature carrier gas obtained by heating the above-described carrier gas is supplied.
  • the carrier gas include an inert gas such as a nitrogen gas that does not react with the liquid material, an argon gas, and a helium gas.
  • the temperature of the high-temperature carrier gas is set to a temperature that can suppress a cold spot generated due to the vaporization of the liquid material sprayed from the nozzle L4 in the heating flow path L5.
  • the temperature is higher than the temperature of the distal end surface 32 of the third heat treatment device 3 and lower than the set temperature of the heating channel L5.
  • the temperature is, for example, 100 ° C. or more and 300 ° C. or less, and more preferably 150 ° C. or more and 180 ° C. or less.
  • the high-temperature gas supply path L6 supplies the high-temperature gas to the upstream end of the heating flow path L5. Without heating the material, it is possible to heat the tip 31 of the stirrer 3 where a local cold spot may be generated downstream of the nozzle L4. This makes it possible to suppress the occurrence of cold spots without increasing the risk of closing the nozzle L4.
  • the supply direction of the high-temperature gas supply path L6 is a direction toward the central axis L5c of the heating flow path L5, the high-temperature gas can be supplied to the center of the heating flow path L5 where the temperature tends to be lower, and the cold gas can be supplied. The generation of spots can be suppressed more reliably.
  • the response speed of the temperature control by the temperature control mechanism 21 is unlikely to be lowered, and the heating channel L5 is stably formed. Temperature can be controlled.
  • the high-temperature gas supply path L6 is formed by the main flow path L6a and the small flow path L6b formed between the main flow path L6a and the heating flow path L5, the fluid flowing through the heating flow path L5 Backflow to the high-temperature gas supply path L6 can be prevented.
  • the present invention is not limited to the above embodiment.
  • the high-temperature gas supply path L6 is configured to supply a high-temperature carrier gas obtained by heating a carrier gas, but supplies a high-temperature gas obtained by heating a gas different from the carrier gas. You may.
  • the supply direction of the high-temperature gas supply path L6 does not necessarily need to be set in a direction toward the axis L5c of the heating flow path L5.
  • the tangential direction L of the inner peripheral surface 222 to be formed may be set.
  • the high-temperature gas supply path L6 may be provided so as to supply the high-temperature gas upstream of the stirrer 3 in the heating flow path L5. With such a configuration, it is possible to suppress a cold spot generated when the liquid material sprayed by the nozzle L4 evaporates before reaching the stirrer 3. Further, as shown in FIG. 7B, the high-temperature gas supply passage L6 may be provided so as to supply the high-temperature gas downstream of the distal end face 32 of the stirrer 3 in the heating flow path L5. Further, although not shown, a plurality of high-temperature gas supply paths L6 may be provided.
  • a filler excellent in heat conductivity may be provided instead of the stirrer 3 such as a static mixer, or the stirrer 3 and the filler may not be provided.
  • the flow control valve 11 is of the normally closed type in the above embodiment, but may be of the normally open type, or may be of various types such as an electromagnetic on / off valve.
  • liquid material vaporizer may have a configuration in which the liquid material is directly guided to the vaporizer 20 without using a carrier gas.
  • the occurrence of a local cold spot can be suppressed without increasing the risk of nozzle blockage.

Abstract

A vaporizer for vaporizing a liquid material or a gas-liquid mixture obtained by mixing the liquid material and a carrier gas, the vaporizer being such that the occurrence of local cold spots is suppressed without raising the risk of blocking a nozzle, wherein the vaporizer comprises a nozzle L4 through which the liquid material or gas-liquid mixture is guided, a heating flow path L5 through which the liquid material or gas-liquid mixture sprayed form the nozzle L4 is guided, and a hot gas supply path L6 for supplying a hot gas to the heating flow path L5.

Description

気化器、液体材料気化装置、及び気化方法Vaporizer, liquid material vaporizer, and vaporization method
 本発明は、気化器、この気化器を備える液体材料気化装置、及び気化方法に関するものである。 The present invention relates to a vaporizer, a liquid material vaporizer provided with the vaporizer, and a vaporization method.
 従来、例えば成膜プロセス等の半導体製造プロセスに用いられるガスを生成する気化器として、特許文献1に示すように、液体材料をノズルから噴霧して減圧させつつ加熱流路に導くことで、液体材料を気化させて気化ガスを生成するものがある。 Conventionally, as a vaporizer for generating a gas used in a semiconductor manufacturing process such as a film forming process, for example, as shown in Patent Document 1, a liquid material is sprayed from a nozzle and guided to a heating flow path while reducing the pressure to form a liquid. Some materials vaporize a material to generate a vaporized gas.
 上述した構成において、加熱流路に例えばスティックミキサと称される攪拌子や伝熱性に優れた充填材を設けることで、噴霧された液体材料への伝熱効率の向上が図られている。 In the above-described configuration, the heat transfer efficiency to the sprayed liquid material is improved by providing, for example, a stirrer called a stick mixer or a filler having excellent heat transfer properties in the heating flow path.
 しかしながら、噴霧された液体材料がスタティックミキサや充填材に接触して気化する際、その接触箇所及びその周辺では蒸発熱が奪われて温度が低下し、局所的なコールドスポットが発生する。そうすると、コールドスポットでは液体の蒸気圧が下がるので、気化が起こり難くなり、気化性能が低下してしまう。 However, when the sprayed liquid material comes into contact with the static mixer and the filler and evaporates, the heat of evaporation is deprived at and around the contact point, and the temperature decreases, and a local cold spot is generated. Then, since the vapor pressure of the liquid at the cold spot decreases, vaporization hardly occurs, and the vaporization performance decreases.
 コールドスポットの対策としては、液体材料をノズルへ導くキャリアガスを高温にすることが考えられるが、この場合は、液体材料がノズルに到達する前に熱分解して残渣が生じる恐れがあり、ノズルの閉塞リスクが高まる。 As a countermeasure against the cold spot, it is conceivable to raise the temperature of the carrier gas that guides the liquid material to the nozzle, but in this case, the liquid material may be thermally decomposed before reaching the nozzle and a residue may be generated. The risk of obstruction increases.
特開2012-177193号公報JP 2012-177193 A
 そこで本発明は、上記問題点を一挙に解決すべくなされたものであって、ノズルの閉塞リスクを高めることなく、局所的なコールドスポットの発生を抑制することをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above problems at once, and its main object is to suppress the occurrence of local cold spots without increasing the risk of nozzle blockage. .
 すなわち、本発明に係る気化器は、液体材料又は液体材料とキャリアガスとが混合してなる気液混合体を気化する気化器であって、前記液体材料又は前記気液混合体が導かれるノズルと、前記ノズルにより噴霧された前記液体材料又は前記気液混合体が導かれる加熱流路と、前記加熱流路に高温ガスを供給する高温ガス供給路とを備えることを特徴とするものである。 That is, the vaporizer according to the present invention is a vaporizer that vaporizes a liquid material or a gas-liquid mixture obtained by mixing a liquid material and a carrier gas, and a nozzle through which the liquid material or the gas-liquid mixture is guided. And a heating flow path through which the liquid material or the gas-liquid mixture sprayed by the nozzle is guided, and a high-temperature gas supply path that supplies a high-temperature gas to the heating flow path. .
 このように構成された気化器であれば、高温ガス供給路が加熱流路に高温ガスを供給するので、ノズルの上流側では液体材料を加熱させることなく、ノズルの下流側において局所的なコールドスポットが生じ得る箇所を加熱することができる。これにより、ノズルの閉塞リスクを高めることもなく、コールドスポットの発生を抑制することが可能となる。 With a vaporizer configured in this manner, the hot gas supply path supplies the hot gas to the heating flow path, so that the liquid material is not heated upstream of the nozzle, but is locally cooled downstream of the nozzle. A portion where a spot can occur can be heated. This makes it possible to suppress the occurrence of cold spots without increasing the risk of nozzle blockage.
 前記加熱流路内に設けられた攪拌子をさらに備え、前記高温ガス供給路が、前記高温ガスを前記攪拌子の先端部に向けて供給することが好ましい。
 このような構成であれば、攪拌子により加熱流路内における伝熱性を高めつつ、コールドスポットが生じやすい攪拌子の先端部を加熱することで、コールドスポットの発生を抑制することができる。
It is preferable that a stirrer provided in the heating channel is further provided, and the high-temperature gas supply path supplies the high-temperature gas toward a tip end of the stirrer.
With such a configuration, it is possible to suppress the generation of cold spots by heating the distal end of the stirrer, which tends to generate a cold spot, while increasing the heat conductivity in the heating channel by the stirrer.
 前記加熱流路が管状をなし、前記高温ガス供給路の供給方向が、前記加熱流路の中心軸に向かう方向であることが好ましい。
 これならば、加熱流路の中心部がより低温になりやすいことから、コールドスポットの発生をより確実に抑制することができる。
It is preferable that the heating channel has a tubular shape, and a supply direction of the high-temperature gas supply channel is a direction toward a central axis of the heating channel.
In this case, the temperature of the central portion of the heating channel is likely to be lower, so that the generation of the cold spot can be suppressed more reliably.
 前記加熱流路が管状をなし、前記高温ガス供給路の供給方向が、前記加熱流路の接線方向であることが好ましい。
 これならば、加熱流路に供給した高温ガスを加熱流路内で旋回させることができ、高温ガスによる加熱効率の向上を図れる。
It is preferable that the heating channel has a tubular shape, and a supply direction of the high-temperature gas supply channel is a tangential direction of the heating channel.
In this case, the high-temperature gas supplied to the heating channel can be swirled in the heating channel, and the heating efficiency by the high-temperature gas can be improved.
 ところで、加熱流路を所定の設定温度に温調する場合、仮に高温ガスが加熱流路の設定温度以上であると、温度制御の応答速度が低下して制御が不安定になる。
 そこで、加熱流路を安定して温度制御するためには、前記加熱流路を所定の設定温度に温調する温調機構をさらに備え、前記高温ガスの温度が前記設定温度よりも低いことが好ましい。
By the way, when the temperature of the heating flow path is adjusted to a predetermined set temperature, if the high-temperature gas is higher than or equal to the set temperature of the heating flow path, the response speed of the temperature control is reduced and the control becomes unstable.
Therefore, in order to stably control the temperature of the heating channel, a temperature control mechanism for controlling the temperature of the heating channel to a predetermined set temperature is further provided, and the temperature of the high-temperature gas may be lower than the set temperature. preferable.
 また、本発明に係る液体材料気化装置は、前記液体材料と前記キャリアガスとを混合して前記気液混合体を生成する気液混合部と、上述した気化器とを具備することを特徴とするものである。 Further, a liquid material vaporizer according to the present invention includes a gas-liquid mixing unit that mixes the liquid material and the carrier gas to generate the gas-liquid mixture, and the vaporizer described above. Is what you do.
 さらに、本発明に係る気化方法は、液体材料又は液体材料とキャリアガスとが混合してなる気液混合体が導かれるノズルと、前記ノズルにより噴霧された前記液体材料又は前記気液混合体が導かれる加熱流路とを備える気化器を用いて、前記液体材料又は前記気液混合体を気化する気化方法であって、前記加熱流路に高温ガスを供給することを特徴とする方法である。 Furthermore, in the vaporization method according to the present invention, the liquid material or a gas-liquid mixture formed by mixing the liquid material and the carrier gas is introduced into a nozzle, and the liquid material or the gas-liquid mixture sprayed by the nozzle is used. A vaporization method for vaporizing the liquid material or the gas-liquid mixture using a vaporizer having a guided heating flow path, wherein a high-temperature gas is supplied to the heating flow path. .
 このような液体材料気化装置や気化方法であれば、上述した気化器と同様の作用効果が得られる。 で あ れ ば With such a liquid material vaporizer or vaporization method, the same operation and effect as those of the above-described vaporizer can be obtained.
 このように構成した本発明によれば、ノズルの閉塞リスクを高めることなく、局所的なコールドスポットの発生を抑制することができる。 According to the present invention configured as described above, it is possible to suppress the occurrence of a local cold spot without increasing the risk of clogging the nozzle.
本実施形態の液体材料気化装置の全体構成を模式的に示す図。The figure which shows typically the whole structure of the liquid material vaporization apparatus of this embodiment. 本実施形態の気化器の構成を模式的に示す断面図。FIG. 2 is a cross-sectional view schematically illustrating a configuration of the vaporizer according to the embodiment. 本実施形態の気化器の構成を模式的に示す斜視図。FIG. 1 is a perspective view schematically illustrating a configuration of a vaporizer according to an embodiment. 本実施形態の気化器の構成を模式的に示す断面図。FIG. 2 is a cross-sectional view schematically illustrating a configuration of the vaporizer according to the embodiment. その他の実施形態における気化器の構成を模式的に示す斜視図。The perspective view showing typically the composition of the vaporizer in other embodiments. その他の実施形態における気化器の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the vaporizer in other embodiment. その他の実施形態における気化器の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the vaporizer in other embodiment.
 以下に、本発明に係る液体材料気化装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a liquid material vaporizer according to the present invention will be described with reference to the drawings.
 本実施形態の液体材料気化装置100は、例えば半導体製造ライン等に組み込まれて半導体製造プロセスに用いられるチャンバ等に所定流量のガスを供給するためのものであり、図1に示すように、液体材料とキャリアガスとを混合して気液混合体を生成する気液混合部10と、気液混合体が導入されて気液混合体に含まれる液体材料を気化する気化器20とを具備している。 The liquid material vaporizer 100 of the present embodiment is for supplying a gas at a predetermined flow rate to a chamber or the like used in a semiconductor manufacturing process incorporated in a semiconductor manufacturing line or the like, for example, as shown in FIG. The apparatus includes a gas-liquid mixing section 10 for mixing a material and a carrier gas to generate a gas-liquid mixture, and a vaporizer 20 for introducing the gas-liquid mixture and evaporating a liquid material contained in the gas-liquid mixture. ing.
 気液混合部10は、キャリアガスが流れるキャリアガス流路L1と、液体材料が流れる液体材料流路L2と、キャリアガス流路L1と液体材料流路L2とが合流する気液混合室10sと、気液混合室10sで生成された気液混合体が流れる気液混合体流路L3と、気液混合体の流量を調整する流量調整弁11とを備えている。 The gas-liquid mixing section 10 includes a carrier gas flow path L1 through which a carrier gas flows, a liquid material flow path L2 through which a liquid material flows, and a gas-liquid mixing chamber 10s where the carrier gas flow path L1 and the liquid material flow path L2 join. A gas-liquid mixture flow path L3 through which the gas-liquid mixture generated in the gas-liquid mixing chamber 10s flows;
 本実施形態では、キャリアガス流路L1及び液体材料流路L2がブロック体12の内部に形成されており、このブロック体12の一面(ここでは上面)に形成された弁座面13に、キャリアガス流路L1及び液体材料流路L2それぞれの導出口L1a、L2aが開口している。 In the present embodiment, the carrier gas flow path L1 and the liquid material flow path L2 are formed inside the block body 12, and the valve seat surface 13 formed on one surface (here, the upper surface) of the block body 12 is provided with a carrier. Outlets L1a and L2a of the gas flow path L1 and the liquid material flow path L2 are open.
 流量調整弁11は、例えばノーマルクローズタイプのピエゾバルブであり、弁体111が上述した弁座面13に対向するように配置されている。これにより、弁体111と弁座面13とブロック体12とで囲まれた空間が上述した気液混合室10sとして形成される。なお、図1では弁体111が弁座面13に着座している状態を示しており、気液混合室10sに流体が出入りしない状態である。 The flow control valve 11 is, for example, a normally closed piezo valve, and is disposed so that the valve body 111 faces the above-described valve seat surface 13. Thus, a space surrounded by the valve body 111, the valve seat surface 13, and the block body 12 is formed as the above-described gas-liquid mixing chamber 10s. FIG. 1 shows a state in which the valve body 111 is seated on the valve seat surface 13, which is a state in which fluid does not enter or leave the gas-liquid mixing chamber 10 s.
 気液混合体流路L3は、導入口L3aが上述した弁座面13に形成されており、気液混合室10sで生成された気液混合体が導入して、その気液混合体を気化器20に導くものである。 In the gas-liquid mixture flow path L3, the introduction port L3a is formed in the above-described valve seat surface 13, and the gas-liquid mixture generated in the gas-liquid mixing chamber 10s is introduced to vaporize the gas-liquid mixture. To the vessel 20.
 上述した構成により、弁体111が、キャリアガス流路L1の導出口L1a、液体材料流路L2の導出口L2a、及び気液混合体流路L3の導入口L3aそれぞれを開放又は閉塞することで、気液混合体を気化器20へ供給する又はその供給を停止することができる。 With the above-described configuration, the valve body 111 opens or closes the outlet L1a of the carrier gas passage L1, the outlet L2a of the liquid material passage L2, and the inlet L3a of the gas-liquid mixture passage L3. The gas-liquid mixture can be supplied to the vaporizer 20 or the supply can be stopped.
 気化器20は、気液混合体流路L3を形成する配管部材Z1が接続されており、気液混合体流路L3により導かれた気液混合体を噴霧するノズルL4と、ノズルL4の下流に設けられて霧化(気化)した液体材料を加熱する加熱流路L5と、加熱流路L5を温調する温調機構21とを有している。 The vaporizer 20 is connected to a pipe member Z1 forming a gas-liquid mixture flow path L3, and is provided with a nozzle L4 for spraying the gas-liquid mixture guided by the gas-liquid mixture flow path L3, and a downstream of the nozzle L4. And a heating channel L5 for heating the atomized (vaporized) liquid material and a temperature control mechanism 21 for controlling the temperature of the heating channel L5.
 ノズルL4は、気液混合体流路L3と加熱流路L5とを接続しており、これらの流路L3、L5に比べて直径や長さが小さいノズル状のものであって、気液混合体を減圧する減圧流路である。 The nozzle L4 connects the gas-liquid mixture flow path L3 and the heating flow path L5. The nozzle L4 has a nozzle shape smaller in diameter and length than these flow paths L3 and L5. It is a decompression channel for decompressing the body.
 加熱流路L5は、気液混合体流路L3よりも径寸法の大きい略直管状のものであり、ブロック体22の内部に形成されており、加熱流路L5のノズルL4側の端部は円錐形状をなす。この加熱流路L5内には、キャリアガスと霧化された液体材料とを混ぜ合わせるスタティックミキサ等の攪拌子3が設けられており、キャアリアガスと液体材料とを混ぜ合わせながら加熱することで、気化性能の向上が図られている。 The heating flow path L5 is a substantially straight pipe having a larger diameter than the gas-liquid mixture flow path L3, is formed inside the block body 22, and has an end on the nozzle L4 side of the heating flow path L5. Make a conical shape. A stirrer 3 such as a static mixer for mixing the carrier gas and the atomized liquid material is provided in the heating flow path L5, and the heating is performed while mixing the carrier gas and the liquid material to evaporate. Performance has been improved.
 温調機構21は、加熱流路L5を加熱する1又は複数のヒータHと、加熱流路L5の温度を検出する温度センサTと、ヒータHを温度制御する図示しない制御装置とを備えており、制御装置が例えば温度センサTの検出温度に基づいてヒータHをPID制御等することで、加熱流路L5を所定の設定温度(例えば、300℃程度)に加熱するように構成されている。 The temperature control mechanism 21 includes one or more heaters H for heating the heating flow path L5, a temperature sensor T for detecting the temperature of the heating flow path L5, and a control device (not shown) for controlling the temperature of the heater H. The control device controls the heater H based on, for example, the temperature detected by the temperature sensor T to perform PID control or the like, thereby heating the heating flow path L5 to a predetermined set temperature (for example, about 300 ° C.).
 然して、本実施形態の液体材料気化装置100は、図2に示すように、加熱流路L5に高温ガスを供給する高温ガス供給路L6をさらに備えている。 Therefore, as shown in FIG. 2, the liquid material vaporizer 100 of the present embodiment further includes a high-temperature gas supply path L6 that supplies a high-temperature gas to the heating flow path L5.
 この高温ガス供給路L6は、加熱流路L5の上流側端部に高温ガスを供給するように構成されていることが好ましい。
 なお、ここで言う「加熱流路5Lの上流側端部」とは、供給された高温ガスの熱が攪拌子3の先端部31に伝わる領域であり、より好ましくは供給された高温ガスの熱が攪拌子3の先端面32に伝わる領域である。より具体的に言うと、加熱流路5Lの上流側端部は、加熱流路5Lの半分よりも上流側の範囲であり、より好ましく全体の上流側三分の一の範囲である。
The high-temperature gas supply path L6 is preferably configured to supply a high-temperature gas to the upstream end of the heating path L5.
The “upstream end of the heating flow path 5L” here is a region where the heat of the supplied high-temperature gas is transmitted to the distal end portion 31 of the stirrer 3, and more preferably the heat of the supplied high-temperature gas. Is an area transmitted to the tip end surface 32 of the stirrer 3. More specifically, the upstream end of the heating flow path 5L is a range upstream of half of the heating flow path 5L, and is more preferably a third of the entire upstream side.
 より具体的に説明すると、攪拌子3の先端部31や先端面32は、ノズルL4により噴霧された液体材料が接触して、その液体材料の気化により蒸発熱が奪われる部分であり、ここでの高温ガス供給路L6は、攪拌子3の先端面32に向かって高温ガスを供給するように配置されている。 More specifically, the distal end portion 31 and the distal end surface 32 of the stirrer 3 are portions where the liquid material sprayed by the nozzle L4 comes into contact and vaporization of the liquid material takes away heat. The high-temperature gas supply passage L6 is arranged so as to supply the high-temperature gas toward the distal end surface 32 of the stirrer 3.
 この高温ガス供給路L6は、図3及び図4に示すように、加熱流路L5と同様、ブロック体22に形成されている。具体的には、ブロック体22の側周面221を例えばドリル等により削った溝が高温ガス供給路L6として形成されており、この高温ガス供給路L6は、ブロック体22の側周面221から加熱流路L5に向かう主流路L6aと、主流路L6aと加熱流路L5との間に形成された小流路L6bとから形成されている。ここでは、主流路L6a及び小流路L6bは円形状をなし、小流路L6bは主流路L6aよりも小径である。 高温 This high-temperature gas supply passage L6 is formed in the block body 22 as in the heating passage L5, as shown in FIGS. Specifically, a groove formed by cutting a side peripheral surface 221 of the block body 22 by, for example, a drill is formed as a high-temperature gas supply path L6, and the high-temperature gas supply path L6 extends from the side peripheral surface 221 of the block body 22. It is formed of a main flow path L6a toward the heating flow path L5, and a small flow path L6b formed between the main flow path L6a and the heating flow path L5. Here, the main channel L6a and the small channel L6b have a circular shape, and the small channel L6b has a smaller diameter than the main channel L6a.
 そして、高温ガス供給路L6の供給方向、つまり高温ガス供給路L6の軸L6cは、加熱流路L5の中心軸L5cに向かい、且つ、加熱流路L5の中心軸L5cに対して直交するように設定されている。なお、高温ガス流路L6の軸L6cは、加熱流路L5の軸L5cに対して必ずしも直交している必要はなく、加熱流路L5の軸L5cに対して傾いていても良い。 Then, the supply direction of the high-temperature gas supply path L6, that is, the axis L6c of the high-temperature gas supply path L6 is directed to the central axis L5c of the heating flow path L5 and orthogonal to the central axis L5c of the heating flow path L5. Is set. Note that the axis L6c of the high-temperature gas channel L6 does not necessarily need to be orthogonal to the axis L5c of the heating channel L5, and may be inclined with respect to the axis L5c of the heating channel L5.
 この高温ガス供給路L6には、図示しないヒータが設けられており、本実施形態では上述したキャリアガスを加熱してなる高温キャリアガスを供給するように構成されている。なお、キャリアガスとしては、液体材料と反応しない窒素ガス、アルゴンガスやヘリウムガス等の不活性ガスが挙げられる。また、高温キャリアガスの温度は、ノズルL4から噴霧された液体材料が加熱流路L5内で気化することに起因して生じるコールドスポットを抑制できる程度の温度に設定されており、ここでは攪拌子3の先端面32の温度よりは高く、加熱流路L5の設定温度よりは低い温度である。具体的には、例えば100℃以上300℃以下であり、より好ましくは150℃以上180℃以下である。 高温 A heater (not shown) is provided in the high-temperature gas supply path L6. In the present embodiment, a high-temperature carrier gas obtained by heating the above-described carrier gas is supplied. Note that examples of the carrier gas include an inert gas such as a nitrogen gas that does not react with the liquid material, an argon gas, and a helium gas. Further, the temperature of the high-temperature carrier gas is set to a temperature that can suppress a cold spot generated due to the vaporization of the liquid material sprayed from the nozzle L4 in the heating flow path L5. The temperature is higher than the temperature of the distal end surface 32 of the third heat treatment device 3 and lower than the set temperature of the heating channel L5. Specifically, the temperature is, for example, 100 ° C. or more and 300 ° C. or less, and more preferably 150 ° C. or more and 180 ° C. or less.
 このように構成された本実施形態に係る液体材料気化装置100によれば、高温ガス供給路L6が高温ガスを加熱流路L5の上流側端部に供給するので、ノズルL4の上流側では液体材料を加熱させることなく、ノズルL4の下流において局所的なコールドスポットが生じ得る攪拌子3の先端部31を加熱することができる。これにより、ノズルL4の閉塞リスクを高めることもなく、コールドスポットの発生を抑制することが可能となる。 According to the liquid material vaporizer 100 according to the present embodiment configured as described above, the high-temperature gas supply path L6 supplies the high-temperature gas to the upstream end of the heating flow path L5. Without heating the material, it is possible to heat the tip 31 of the stirrer 3 where a local cold spot may be generated downstream of the nozzle L4. This makes it possible to suppress the occurrence of cold spots without increasing the risk of closing the nozzle L4.
 また、高温ガス供給路L6の供給方向が、加熱流路L5の中心軸L5cに向かう方向であるので、加熱流路L5においてより低温になりやすい中心部に高温ガスを供給することができ、コールドスポットの発生をより確実に抑制することができる。 Further, since the supply direction of the high-temperature gas supply path L6 is a direction toward the central axis L5c of the heating flow path L5, the high-temperature gas can be supplied to the center of the heating flow path L5 where the temperature tends to be lower, and the cold gas can be supplied. The generation of spots can be suppressed more reliably.
 さらに、高温ガスの温度を加熱流路L5の設定温度よりも低温にしているので、温調機構21による温度制御の応答速度が低くなる等といったことが生じ難く、加熱流路L5を安定して温度制御することができる。 Further, since the temperature of the high-temperature gas is lower than the set temperature of the heating channel L5, the response speed of the temperature control by the temperature control mechanism 21 is unlikely to be lowered, and the heating channel L5 is stably formed. Temperature can be controlled.
 加えて、高温ガス供給路L6が、主流路L6aと、主流路L6aと加熱流路L5との間に形成された小流路L6bとから形成されているので、加熱流路L5を流れる流体が高温ガス供給路L6に逆流することを防ぐことができる。 In addition, since the high-temperature gas supply path L6 is formed by the main flow path L6a and the small flow path L6b formed between the main flow path L6a and the heating flow path L5, the fluid flowing through the heating flow path L5 Backflow to the high-temperature gas supply path L6 can be prevented.
 なお、本発明は前記実施形態に限られるものではない。 The present invention is not limited to the above embodiment.
 例えば、高温ガス供給路L6は、前記実施形態ではキャリアガスを加熱してなる高温キャリアガスを供給するように構成されていたが、キャリアガスとは別のガスを加熱してなる高温ガスを供給しても良い。 For example, in the above-described embodiment, the high-temperature gas supply path L6 is configured to supply a high-temperature carrier gas obtained by heating a carrier gas, but supplies a high-temperature gas obtained by heating a gas different from the carrier gas. You may.
 また、高温ガス供給路L6の供給方向は、必ずしも加熱流路L5の軸L5cに向かう方向に設定する必要はなく、例えば図5及び図6に示すように、ブロック体22において加熱流路L5を形成する内周面222の接線方向Lに設定しても良い。
 このような構成であれば、加熱流路L5に供給した高温ガスを加熱流路L5内で旋回させることができ、高温ガスによる加熱効率の向上を図れる可能性がある。
The supply direction of the high-temperature gas supply path L6 does not necessarily need to be set in a direction toward the axis L5c of the heating flow path L5. For example, as shown in FIGS. The tangential direction L of the inner peripheral surface 222 to be formed may be set.
With such a configuration, the high-temperature gas supplied to the heating channel L5 can be swirled in the heating channel L5, and there is a possibility that the heating efficiency by the high-temperature gas can be improved.
 さらに、高温ガス供給路L6は、図7(a)に示すように、加熱流路L5における攪拌子3よりも上流に高温ガスを供給するように設けられていても良い。このような構成であれば、ノズルL4により噴霧された液体材料が攪拌子3に到達する前に気化することで生じるコールドスポットを抑制することができる。
 また、高温ガス供給路L6は、図7(b)に示すように、加熱流路L5における攪拌子3の先端面32よりも下流に高温ガスを供給するように設けられていても良い。
 さらに、図示していないが、高温ガス供給路L6を複数設けても構わない。
Further, as shown in FIG. 7A, the high-temperature gas supply path L6 may be provided so as to supply the high-temperature gas upstream of the stirrer 3 in the heating flow path L5. With such a configuration, it is possible to suppress a cold spot generated when the liquid material sprayed by the nozzle L4 evaporates before reaching the stirrer 3.
Further, as shown in FIG. 7B, the high-temperature gas supply passage L6 may be provided so as to supply the high-temperature gas downstream of the distal end face 32 of the stirrer 3 in the heating flow path L5.
Further, although not shown, a plurality of high-temperature gas supply paths L6 may be provided.
 さらに、加熱流路L5には、スタティックミキサ等の攪拌子3に替えて伝熱性に優れた充填材を設けても良いし、攪拌子3や充填材を設けないようにしても良い。 Furthermore, in the heating channel L5, a filler excellent in heat conductivity may be provided instead of the stirrer 3 such as a static mixer, or the stirrer 3 and the filler may not be provided.
 加えて、流量調整弁11は、前記実施形態ではノーマルクローズタイプのものであったが、ノーマルオープンタイプのものであっても良いし、電磁開閉弁など種々のものを用いて良い。 In addition, the flow control valve 11 is of the normally closed type in the above embodiment, but may be of the normally open type, or may be of various types such as an electromagnetic on / off valve.
 そのうえ、液体材料気化装置としては、キャリアガスを用いることなく、液体材料をそのまま気化器20に導く構成であっても良い。 In addition, the liquid material vaporizer may have a configuration in which the liquid material is directly guided to the vaporizer 20 without using a carrier gas.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 Otherwise, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
100・・・液体材料気化装置
10 ・・・気液混合部
20 ・・・気化器
3  ・・・攪拌子
L4 ・・・ノズル
L5 ・・・加熱流路
L6 ・・・高温ガス供給路
100 liquid material vaporizer 10 gas-liquid mixing unit 20 vaporizer 3 stirrer L4 nozzle L5 heating flow path L6 hot gas supply path
 本発明によれば、ノズルの閉塞リスクを高めることなく、局所的なコールドスポットの発生を抑制することができる。 According to the present invention, the occurrence of a local cold spot can be suppressed without increasing the risk of nozzle blockage.

Claims (7)

  1.  液体材料又は液体材料とキャリアガスとが混合してなる気液混合体を気化する気化器であって、
     前記液体材料又は前記気液混合体が導かれるノズルと、
     前記ノズルにより噴霧された前記液体材料又は前記気液混合体が導かれる加熱流路と、
     前記加熱流路に高温ガスを供給する高温ガス供給路とを備える、気化器。
    A vaporizer that vaporizes a liquid material or a gas-liquid mixture formed by mixing a liquid material and a carrier gas,
    A nozzle from which the liquid material or the gas-liquid mixture is guided,
    A heating flow path through which the liquid material or the gas-liquid mixture sprayed by the nozzle is guided,
    A high-temperature gas supply path for supplying a high-temperature gas to the heating flow path.
  2.  前記加熱流路内に設けられた攪拌子をさらに備え、
     前記高温ガス供給路が、前記高温ガスを前記攪拌子の先端部に向けて供給する、請求項1記載の気化器。
    Further comprising a stirrer provided in the heating channel,
    The vaporizer according to claim 1, wherein the high-temperature gas supply path supplies the high-temperature gas toward a tip of the stirrer.
  3.  前記加熱流路が管状をなし、
     前記高温ガス供給路の供給方向が、前記加熱流路の中心軸に向かう方向である、請求項1記載の気化器。
    The heating channel has a tubular shape,
    The vaporizer according to claim 1, wherein a supply direction of the high-temperature gas supply path is a direction toward a central axis of the heating flow path.
  4.  前記加熱流路が管状をなし、
     前記高温ガス供給路の供給方向が、前記加熱流路の接線方向である、請求項1記載の気化器。
    The heating channel has a tubular shape,
    The vaporizer according to claim 1, wherein a supply direction of the high-temperature gas supply path is a tangential direction of the heating flow path.
  5.  前記加熱流路を所定の設定温度に温調する温調機構をさらに備え、
     前記高温ガスの温度が前記設定温度よりも低い、請求項1記載の気化器。
    Further comprising a temperature control mechanism for controlling the temperature of the heating flow path to a predetermined set temperature,
    The vaporizer according to claim 1, wherein the temperature of the hot gas is lower than the set temperature.
  6.  前記液体材料と前記キャリアガスとを混合して前記気液混合体を生成する気液混合部と、
     請求項1記載の気化器とを具備する、液体材料気化装置。
    A gas-liquid mixing unit that generates the gas-liquid mixture by mixing the liquid material and the carrier gas;
    A liquid material vaporizer comprising the vaporizer according to claim 1.
  7.  液体材料又は液体材料とキャリアガスとが混合してなる気液混合体が導かれるノズルと、前記ノズルにより噴霧された前記液体材料又は前記気液混合体が導かれる加熱流路とを備える気化器を用いて、前記液体材料又は前記気液混合体を気化する気化方法であって、
     前記加熱流路に高温ガスを供給することを特徴とする、気化方法。
    A vaporizer comprising: a nozzle through which a liquid material or a gas-liquid mixture formed by mixing a liquid material and a carrier gas is introduced; and a heating channel through which the liquid material or the gas-liquid mixture sprayed by the nozzle is introduced. Using, a vaporization method for vaporizing the liquid material or the gas-liquid mixture,
    A vaporization method, comprising supplying a high-temperature gas to the heating channel.
PCT/JP2019/030370 2018-08-24 2019-08-01 Vaporizer, liquid material vaporization device, and vaporization method WO2020039886A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020538272A JP7402801B2 (en) 2018-08-24 2019-08-01 Vaporizer, liquid material vaporization device, and vaporization method
CN201980049167.8A CN112469498B (en) 2018-08-24 2019-08-01 Vaporizer, liquid material vaporizing apparatus, and vaporizing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-156985 2018-08-24
JP2018156985 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020039886A1 true WO2020039886A1 (en) 2020-02-27

Family

ID=69592774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030370 WO2020039886A1 (en) 2018-08-24 2019-08-01 Vaporizer, liquid material vaporization device, and vaporization method

Country Status (3)

Country Link
JP (1) JP7402801B2 (en)
CN (1) CN112469498B (en)
WO (1) WO2020039886A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925578A (en) * 1995-04-03 1997-01-28 Novellus Syst Inc Cyclone evaporator, chemical vapor deposition system using the same and method for evaporation treatment of liquid in them
JP2000315686A (en) * 1999-04-30 2000-11-14 Japan Pionics Co Ltd Vaporizer and vaporizing and supplying method
JP2006322047A (en) * 2005-05-19 2006-11-30 Lintec Co Ltd Vaporizer
JP2010028000A (en) * 2008-07-24 2010-02-04 Hitachi Kokusai Electric Inc Vaporizer, substrate processing apparatus, and production method of semiconductor device
JP2010219421A (en) * 2009-03-18 2010-09-30 Hitachi Kokusai Electric Inc Vaporizer, substrate treatment device, and method of manufacturing semiconductor device
JP2011082196A (en) * 2009-10-02 2011-04-21 Hitachi Kokusai Electric Inc Vaporizer, substrate processing apparatus, and method of manufacturing semiconductor device
JP2012177193A (en) * 2006-04-05 2012-09-13 Horiba Stec Co Ltd Liquid material vaporizer
KR20130061803A (en) * 2011-12-02 2013-06-12 주식회사 케이씨텍 Depositing apparatus of the vaporizer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924936A (en) * 1987-08-05 1990-05-15 M&T Chemicals Inc. Multiple, parallel packed column vaporizer
JPH11319537A (en) * 1998-05-13 1999-11-24 Ebara Corp Cartridge heater for vaporizer of liquid raw material
JP2001239151A (en) * 2000-03-01 2001-09-04 Toho Gas Co Ltd Gasification apparatus
US7246796B2 (en) * 2001-01-18 2007-07-24 Masayuki Toda Carburetor, various types of devices using the carburetor, and method of vaporization
CN101523572B (en) * 2006-10-05 2011-10-12 株式会社堀场Stec Liquid material vaporizer
JP2010087169A (en) * 2008-09-30 2010-04-15 Tokyo Electron Ltd Carburetor and film-forming system using the same
JP2012204791A (en) * 2011-03-28 2012-10-22 Tokyo Electron Ltd Evaporating device, gas supply device, and film deposition device using gas supply device
JP6675865B2 (en) * 2015-12-11 2020-04-08 株式会社堀場エステック Liquid material vaporizer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925578A (en) * 1995-04-03 1997-01-28 Novellus Syst Inc Cyclone evaporator, chemical vapor deposition system using the same and method for evaporation treatment of liquid in them
JP2000315686A (en) * 1999-04-30 2000-11-14 Japan Pionics Co Ltd Vaporizer and vaporizing and supplying method
JP2006322047A (en) * 2005-05-19 2006-11-30 Lintec Co Ltd Vaporizer
JP2012177193A (en) * 2006-04-05 2012-09-13 Horiba Stec Co Ltd Liquid material vaporizer
JP2010028000A (en) * 2008-07-24 2010-02-04 Hitachi Kokusai Electric Inc Vaporizer, substrate processing apparatus, and production method of semiconductor device
JP2010219421A (en) * 2009-03-18 2010-09-30 Hitachi Kokusai Electric Inc Vaporizer, substrate treatment device, and method of manufacturing semiconductor device
JP2011082196A (en) * 2009-10-02 2011-04-21 Hitachi Kokusai Electric Inc Vaporizer, substrate processing apparatus, and method of manufacturing semiconductor device
KR20130061803A (en) * 2011-12-02 2013-06-12 주식회사 케이씨텍 Depositing apparatus of the vaporizer

Also Published As

Publication number Publication date
CN112469498A (en) 2021-03-09
JP7402801B2 (en) 2023-12-21
JPWO2020039886A1 (en) 2021-09-24
CN112469498B (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP5732025B2 (en) Material vapor deposition method and apparatus in substrate processing system
US6195504B1 (en) Liquid feed vaporization system and gas injection device
JP5118644B2 (en) Liquid material vaporizer
KR20200042961A (en) Turbulent spiral multi-zone precursor vaporizer
WO2003079422A1 (en) Vaporizer, various devices using the same, and vaporizing method
JPH0620977A (en) Method and apparatus for changing of liquid flow into air current
WO2020039886A1 (en) Vaporizer, liquid material vaporization device, and vaporization method
JPH05228361A (en) Device for vaporizing and supplying liquid material
KR100805354B1 (en) Vaporizer for liquid source
JP2004263230A (en) Liquid material vaporizing and feeding device
JP4511414B2 (en) Vaporizer
JP5016416B2 (en) Vaporizer and vaporization method
JPH1187327A (en) Liquid material gasifying apparatus
JP4251429B2 (en) Liquid material vaporizer
JP4445702B2 (en) Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus
KR100322411B1 (en) Apparatus for vaporizing a liquid source
KR100507961B1 (en) Liquid raw material gasification system and gas injection device
US20230405619A1 (en) Dispersion nozzle for chemical applicator
KR19980043942A (en) Temperature control device of M.O.C.V.D process injection nozzle for semiconductor device manufacturing
KR101721681B1 (en) Vaporizer
KR20070006460A (en) Gas feeding line
KR20130031441A (en) Vaporizer
JPH10147870A (en) Vaporizer for liquid raw material
JP2016143798A (en) Vaporizer
JPH05337357A (en) Vaporizer in liquid material supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852561

Country of ref document: EP

Kind code of ref document: A1