JP4445702B2 - Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus - Google Patents

Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus Download PDF

Info

Publication number
JP4445702B2
JP4445702B2 JP2002364741A JP2002364741A JP4445702B2 JP 4445702 B2 JP4445702 B2 JP 4445702B2 JP 2002364741 A JP2002364741 A JP 2002364741A JP 2002364741 A JP2002364741 A JP 2002364741A JP 4445702 B2 JP4445702 B2 JP 4445702B2
Authority
JP
Japan
Prior art keywords
liquid material
liquid
thin film
under reduced
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002364741A
Other languages
Japanese (ja)
Other versions
JP2004197135A (en
Inventor
二郎 千田
耕三 石田
耕一郎 松田
哲夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Horiba Stec Co Ltd
Original Assignee
Horiba Ltd
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Horiba Stec Co Ltd filed Critical Horiba Ltd
Priority to JP2002364741A priority Critical patent/JP4445702B2/en
Publication of JP2004197135A publication Critical patent/JP2004197135A/en
Application granted granted Critical
Publication of JP4445702B2 publication Critical patent/JP4445702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、液体材料気化供給装置、薄膜堆積装置および薄膜堆積装置への液体材料気化供給方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
一般的に、化学気相成長法(CVD法:Chemical Vapour Deposition)のプロセス(以下、CVDプロセスという)において液体材料を気化する場合には、主に加熱により液体材料を気化させて減圧下で供給することにより、加工対象である対象基板上に薄膜を堆積していた。図3は従来の液体材料気化供給装置および薄膜堆積装置への液体材料気化供給方法を説明する図である。
【0003】
図3において、21は例えばヒータ21aによる加熱によって例えばTEOS(テトラエトキシシラン:Tetra Ethoxy Silane)などの液体材料LMを気化する気化器、22は気化された液体材料LM(以下、気化材料LMGという)を用いてシリコン基板などの対象基板上に薄膜を堆積する反応室、23は液体材料LMを気化器21に供給する配管、24は気化材料LMGを反応室22に供給する供給配管、25は反応室22の下流側に設けた真空ポンプである。
【0004】
前記反応室22は例えば前記供給配管24によって供給された気化材料LMGを充満させるシャワーヘッド26と、シャワーヘッド26の直下において加工対象の基板27を配置して内部を真空に近い状態に吸引するチャンバ28とを有し、シャワーヘッド26とチャンバ28の間は多数の小孔を形成したシャワーパネル29によって隔てられている。また、30は前記供給配管24およびシャワーヘッド26の部分を加熱するヒータ、31は気化器21に供給される液体材料LMの流量が一定流量になるように調整する定流量供給装置である。
【0005】
前記ヒータ21aは液体材料LMを気化するのに十分な熱量を供給するものであり、例えば100℃に加熱されると液体材料LMが気化し、気化材料LMGが供給配管24およびシャワーヘッド26を介して基板27上に均等に噴射されることにより、基板27を加工することができる。このとき、ヒータ30は供給配管24およびシャワーヘッド26内で結露が生じないように、前記ヒータ21aの温度より幾らか高温(本例の場合例えば110℃)になるように設定する必要がある。
【0006】
ところが、上述のようにヒータ21aを主体とする気化を行う場合には、液体材料LMの気化に伴って十分に高温になるまで加熱する熱が必要となり、これが液体材料LMの熱分解温度より高くなる可能性があった。また、気化器21内で材料の熱分解が発生することも考えられ、反応生成物が生じることにより、基板27の加工不良が生じることも懸念される。加えて、一旦気化した気化材料LMGが再び結露することがないようにヒータ30からの熱を加えているので、この熱によって供給配管24内で気化材料LMGから反応生成物が生じることも考えられる。つまり、気化材料LMGの最適蒸発条件を制御することが極めて困難であった。
【0007】
一方、液体材料LMの気化のために供給する熱を気化に最低限必要な程度に抑えるとすると、液体材料LMの熱分解温度より低く抑えることも可能ではあるが、ヒータ21aから供給される熱量が少ないので、液体材料LMの気化流量に限界が生じることがあった。また液体材料LMの気化を速やかに行うために供給する熱量を増やすと、気化器21から反応室28までの供給配管24の部分で、分解、再液化を生じることも考えられるので、膜質の低下や、供給配管24,シャワーヘッド26,シャワーパネル29などの定期的な保守点検が必要となることもあった。
【0008】
これらに加えて、ヒータ21aによって供給される熱量によって液体材料LMを気化して供給する場合には、反応室28に供給した液体材料LMの量を正確に求めるためには、複雑な定流量供給装置31などを組み合わせる必要があり、流量の測定が複雑である。加えて、気化器21内の開閉弁(図外)などによって流量を制御しても気化材料LMGの流量はこの制御に遅れて追従するので、この流量制御が困難であり、必ずしも液体材料LMの使用量を最適化することができなかった。
【0009】
本発明は上述の事柄を考慮に入れて成されたものであって、その目的は、CVDプロセスにおいて液体材料を最低限の加熱により気化供給することができ、多くの材料を速やかに所定量だけ正確に気化することができる液体材料気化供給装置、薄膜堆積装置および液体材料気化供給方法を提供することである。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の液体材料気化供給装置は、反応室内に気化した液体材料を減圧下で供給することで加工対象上に薄膜を堆積する薄膜堆積装置に用いられ、前記液体材料に圧力をかける加圧手段と、この加圧手段によって加圧され、沸点を下げるために二相領域を形成できる添加液を混合した液体材料を充填するインジェクタ本体と、このインジェクタ本体の先端に形成された噴射口と、この噴射口を開閉する開閉弁とを有し、前記開閉弁を開放することで、前記加圧手段によって加圧され、沸点を下げるために二相領域を形成できる添加液を混合した液体材料を減圧下に噴霧して圧力差を生じさせることで起こる減圧沸騰によって液体材料を気化可能としたことを特徴としている。(請求項1)
また、本発明の液体材料気化供給装置が、反応室内に気化した液体材料を減圧下で供給することで加工対象上に薄膜を堆積する薄膜堆積装置に用いられ、前記液体材料に圧力をかける加圧手段と、前記液体材料に対して二相領域を形成できる添加液を混合することで液体材料の沸点を引き下げる沸点調節部と、前記加圧手段によって加圧され前記添加液と混合された液体材料を充填するインジェクタ本体と、このインジェクタ本体の先端に形成された噴射口と、この噴射口を開閉する開閉弁とを有し、前記開閉弁を開放することで、前記加圧手段によって加圧され前記添加液と混合された液体材料を減圧下に噴霧して圧力差を生じさせることで起こる減圧沸騰によって液体材料を気化可能としたことを特徴としていてもよい(請求項2)。
【0011】
本明細書における減圧沸騰または減圧沸騰現象とは、開放された液体の外圧がその蒸気圧よりも小さくなるときに液体が沸騰して気化する現象を指しており、本発明の液体材料気化供給装置は、この減圧沸騰現象を利用して、加圧状態の液体材料を真空吸引によって減圧した反応室内(減圧下)に噴霧することにより、必要最小限の熱量で所定量の液体材料を瞬間的に気化するものである。
【0012】
とりわけ、高圧に加圧した液体材料を減圧下に供給することで圧力差を大きくして、減圧気化を容易としている。これによって、液体材料を高温に加熱することなく、必要最小限の熱量でこれを気化できるので、液体材料の加熱に伴う反応生成物の発生を防止できる。つまり、最適蒸発条件を的確に制御することが可能である。
【0013】
また、気化して供給する液体材料の量は、液体材料にかける圧力と前記開閉弁の開放時間、噴射口の断面積と液体材料の粘度、または、インジェクタ本体の動作回数などから容易かつ正確に求めることができ、従来のように複雑な定流量供給装置などを組み合わせる必要がない。つまり、液体材料の使用量を最適化できる。
【0014】
前記液体材料を加熱する加熱手段を有する場合(請求項3)には、減圧沸騰現象を促進し、気化を容易とすることができる。なお、この加熱手段によって加熱される液体材料の温度は、この液体材料から反応生成物が発生しない程度にする。また、気化効率が向上するので、より多くの液体材料を短時間で気化することができる。
【0015】
前記開閉弁が前記噴射口の先端をせき止めるピストンと、電磁誘導によって噴射口の開閉制御を可能とする電磁コイルとからなる場合(請求項4)には、開閉弁の開閉を高速に制御できるので、気化して供給する液体材料の量を的確に制御できる。
【0016】
また、前記液体材料に対して二相領域を形成できる添加液を所定割合混合することでその沸点を引き下げる沸点調節部を有することで、液体材料の沸点を引き下げることで、減圧沸騰現象を容易に起こすことができ、それだけ、熱エネルギの供給を抑えることも可能である。
【0017】
なお、二相領域を形成できる添加液としては、液体材料と添加液が互いに極性のない溶液であり、相互に溶解可能なものである。また、添加液は臨界共溶温度、臨界共溶温度が低いことも必要である。すなわち、液体材料がTEOSの場合、二相領域を形成できる添加液として、n−Pentaneやジエチルエーテルなどを用いることができる。
【0018】
本発明の薄膜堆積装置は、前記液体材料気化供給装置を備え、前記噴射口が前記反応室内に設けられたことを特徴としている。(請求項5)
【0019】
液体材料気化供給装置の噴射口を反応室内に設けたことで、配管などを流通させることによる液体材料の分解や再液化の発生を防止できる。つまり、一旦気化した液体材料が気化した状態を保ち続けることができるように、外部から熱を加える必要がなく、それだけ省エネルギに貢献し、最適蒸発条件の制御を確実に行うことができる。
【0020】
本発明の液体材料気化供給方法は、薄膜堆積装置の反応室内に液体材料を気化し供給する方法であって、前記液体材料に圧力をかけると共に、この加圧された液体材料を減圧下の反応室に噴射することで、液体材料を供給すると同時に圧力差を生じさせることで起こる減圧沸騰によって気化し、また、この気化前の液体材料に、当該液体材料とで二相領域を形成できる添加液を混合して沸点を下げることを特徴としている(請求項6)。
【0021】
前記反応室に液体材料を噴射することで、減圧沸騰によって気化した液体材料を加工対象上に無駄なく噴射できる。なお、一般的に加工対象の直上において気化した液体材料を噴霧することで加工対象の表面を加工できるが、加工対象の直下において気化した液体材料を噴霧する場合には、加工対象の下面を加工できる。また、加圧された液体材料を減圧下の反応室に噴霧することで圧力差を大きく取ることができて気化効率が向上するので、より多くの液体材料を短時間で気化することができる。
【0022】
前記加圧された液体材料を加熱した後に噴射する場合(請求項7)には、液体材料の気化をより確実に行うことができ、それだけ信頼性が向上する。
【0023】
前記液体材料の噴射時間を制御して反応室内の反応を制御する場合(請求項8)には、気化した液体材料の量を確実かつ容易に制御できる。つまり、反応室における化学反応を適正に行うことができる。
【0024】
さらに、前記液体材料に対して二相領域を形成できる添加液を所定割合混合することにより、沸点の高い液体材料も確実に減圧気化することも可能である。
【0025】
【発明の実施の形態】
図1は、本発明の液体材料気化供給装置を用いたCVD法による薄膜堆積装置1の全体的な構成を示しており、図2はこの薄膜堆積装置1の要部を構成する液体材料気化供給装置2の構成を示す図である。
【0026】
図1において、3は液体材料LMを収容した液体材料タンク、4は液体材料LMに添加される添加液LAを収容した添加液タンク、5は切換弁(例えば、電磁弁)、6は液体材料LMを供給する供給配管、7は前記添加液LAを供給する供給配管、8は各供給配管6,7に接続されて両液LM,LAを所定の割合で混合する混合器、9は混合液(以下、説明を簡略化するために、この混合液を液体材料LM+LAと表現する)を供給する供給配管、10は液体材料タンク3および添加液タンク4内にそれぞれ高圧の不活性ガスGasを送り込むことにより液体材料LMおよび添加液LAを加圧状態で送り出すための加圧手段である。
【0027】
なお、本例では液体材料LMに添加液LAを混合する例を示しており、それゆえに、以下の説明では液体材料LM+LAとして説明するが、本発明は液体材料LMに添加液LAを混合して二相領域を形成することに限定されるものではない。また、この場合に前記薄膜堆積装置1の構成から添加液タンク4,供給配管7,混合器8を省略可能であることはいうまでもない。
【0028】
11は加工対象であるシリコン基板などの対象基板12上に薄膜を堆積する反応室(チャンバ)、13はこの反応室11内を真空引きする吸引ポンプである。本発明の液体材料気化供給装置2は前記反応室11の上面部に取り付けられて、反応室11内の対象基板12の直上(直近)に配置されるものである。
【0029】
本例の液体材料LMは、例えば半導体製造プロセスに一般的に使用されているTEOSであり、添加液LAはn−Pentane(ノルマルペンタン)である。両液LM,LAは二相領域を形成する液体であるから、両液LM,LAを混合することにより、液体材料LMの沸点を引き下げることができる。例えば、本例の場合、混合器8によって液体材料LM(TEOS)に対して60%のn−Pentaneを添加液LAとして混合させることにより、その沸点を100℃低下させることができる。
【0030】
図2に示す液体材料気化供給装置2は例えばほゞ円筒状のインジェクタ本体14と、開閉弁15と、この開閉弁15を電気的に摺動するソレノイド16と、ソレノイド16を用いて開閉弁15を操作する制御回路17とを有している。また、本例の場合、インジェクタ本体14に供給される液体材料LM+LAの圧力Pを測定する圧力計18と、加熱手段としての電熱を用いたヒータ19を設けている。
【0031】
前記開閉弁15はインジェクタ本体14の内部空間14aに位置し、スプリング15sの押圧によって噴射口14bの先端をせき止めるピストンであって、その先端部15aに傘状のフランジ15bと環状溝15cとを形成している。なお、先端部15aの構成は噴射口14bから噴射する液体材料LM+LAが所定の角度α(図1参照)を形成しながら均等に噴霧できるように、液体材料LM+LAの粘度および圧力Pに合わせてその形状を調整してある。
【0032】
前記制御回路17は、圧力計18を用いて液体材料LM+LAの圧力Pを監視しながら所定量の液体材料LMを噴霧するために必要な時間だけソレノイド16を駆動することで噴射口14bを開放するように制御すると共に、ヒータ19を用いてインジェクタ本体14の噴射口14bの近傍を例えば数十℃程度(室温よりも幾らか高温)に加熱する。つまり、液体材料LM+LAの沸点または液体材料LM+LAが化学反応を起こすよりも低い温度となる程度に加熱することで、液体材料LM+LAに熱エネルギを供給する。
【0033】
なお、上述したインジェクタ本体14の構成は、単なる一例を示すものであり、本発明を限定するものではない。すなわち、加圧手段10は液体材料タンク3および添加液タンク4内に不活性ガスGasを圧送することに限定されるものではなく、図1に仮想線で示すように、供給配管9上に液体材料LM+LAの加圧手段としての加圧ポンプ10’を設けてもよい。また、インジェクタ本体14にポンプが内蔵されており、インジェクタ本体14に内蔵されたポンプの駆動回数によって液体材料LM+LAの噴射量を調整可能とすることも可能である。さらに、加圧手段10,10’(インジェクタ本体内に内蔵されるポンプも含む)を適宜に組み合わせることにより、段階的な加圧を行なうことも可能である。
【0034】
図1,2に示した本例の液体材料気化供給装置1の動作について説明すると、反応室11内が真空ポンプ13によってほゞ真空状態に減圧され、加圧手段10によって圧力Pに加圧した状態の液体材料LM+LAが供給される。ここで、制御回路17がヒータ19を用いて噴射口14bの近傍を加熱すると共に、ソレノイド16を用いて噴射口14bを開放すると、液体材料LM+LAはヒータ19からの熱で昇温した後に、反応室11内に角度αを形成しながら均等に噴霧される。
【0035】
このとき、液体材料LM+LAは加圧手段10による加圧状態から一気に減圧状態に発散するので、噴霧された液体材料LM+LAには減圧沸騰現象が起きて、言わば減圧沸騰噴霧によってその全量が一気に気化する。特に本例では、液体材料LMに添加液LAを混合することで二相領域を形成しているので、二相領域を形成した液体材料LM+LAの沸点を引き下げて減圧沸騰に適するものとすると共に、液体材料LM+LAを予めヒータ19によって加熱しているので更に気化が促進され、液体材料LM+LAは瞬時に気化することができるので、液体材料LM+LAの流量を多くしても間違いなくその全量を気化して対象基板12を加工できる。
【0036】
つまり、より多くの液体材料LMを短時間で気化して、液体材料LMの気化にかかる時間を飛躍的に短くできるので、CVDプロセスにかかる時間を短くすることができる。なお、液体材料LMの種類によってはヒータ19による加熱を行わなくても、室温で気化発生を行なうことができることはいうまでもない。また、ヒータ(加熱手段)19は電熱ヒータであっても高周波の電磁誘導によるヒータであってもよい。
【0037】
上述のように、本例の場合は前記二相領域を形成するように液体材料LMに添加液LAを混合しているので、液体材料LMの沸点が高い場合にも低い場合にも、二相状態を形成できるような適当な添加液LAを選択し、この添加液LA(有機物)を添加することで、液体材料LM+LAの蒸発制御を的確に行うことができ、前記液体材料LMの最適蒸発条件の制御が可能としている。しかしながら本発明は二相領域を形成することが必ずしも必要ではなく、液体材料LMの種類によっては添加液LAを混合する必要はない。
【0038】
つまり、添加液タンク4、供給配管7、混合器8からなる沸点調節部を省略することが可能である。また、本例のように沸点調節部4,7,8を設けることで液体材料LMと添加液LAを分けて収容することができ、それだけ両液LM,LAの管理が容易となるが、液体材料LMと添加液LAを混合した状態で液体材料タンク3に収容してもよい。この場合も前記沸点調節部4,7,8を省略することができる。
【0039】
加えて、本発明の液体材料気化供給装置1を用いることでCVDプロセスに供給する気化した液体材料LMの量は前記圧力Pと噴射口14bの開放時間によって正確に制御することが可能であり、制御回路17がこの制御を行なう。さらに、液体材料LMの気化は反応室11内で瞬時に生じ、これが対象基板12の直上(直近)であるから直接的に対象基板12に供給され、従来のように、気化材料LMGを反応室28に供給する経路中に存在する供給配管24やシャワーヘッド26などによる液体材料LMの損失が一切生じない。なお、前記インジェクタ本体14を対象基板12の直下(直近)に設けた場合は、対象基板12の下面を加工することができる。
【0040】
したがって、対象基板12に供給する液体材料LMの量を正確に制御して、その加工をより正確なプロセスの管理を確実に行うことが可能である。また、液体材料LMの気化供給の開始と終了を時間的にも的確に制御可能であり、時間的な遅れを可及的に無くすことができる。
【0041】
すなわち、従来の薄膜堆積装置に生じていたような液体材料LMの無駄や熱エネルギの無駄をなくして最適化を達成できる。また、不用意に熱を加えることによる液体材料LMの変質などを確実に無くすことで、プロセスをさらに正確に管理できる。
【0042】
【発明の効果】
以上説明したように本発明では、CVDプロセスにおいて液体材料を必要最低限の加熱によって気化供給でき、短い時間内で多くの材料を速やかに気化できるだけでなく、気化する液体材料の量および加工時間を正確に制御できる。
【図面の簡単な説明】
【図1】 本発明の薄膜堆積装置の一例を示す全体図である。
【図2】 上記薄膜堆積装置に用いられる液体材料気化供給装置の構成を示す図である。
【図3】 従来の薄膜堆積装置の構成を示す図である。
【符号の説明】
1…薄膜堆積装置、2…液体材料気化供給装置、4,7,8…沸点調節部、10…加圧手段、11…反応室、12…加工対象、14…インジェクタ本体、14b…噴射口、15…開閉弁(ピストン)、16…電磁コイル、19…加熱手段、LA…添加液、LM…液体材料。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid material vaporization supply apparatus, a thin film deposition apparatus, and a liquid material vaporization supply method to a thin film deposition apparatus.
[0002]
[Background Art and Problems to be Solved by the Invention]
In general, when a liquid material is vaporized in a chemical vapor deposition (CVD) process (hereinafter referred to as a CVD process), the liquid material is mainly vaporized by heating and supplied under reduced pressure. As a result, a thin film was deposited on the target substrate which is the processing target. FIG. 3 is a diagram for explaining a conventional liquid material vaporization supply apparatus and a liquid material vaporization supply method to a thin film deposition apparatus.
[0003]
In FIG. 3, reference numeral 21 denotes a vaporizer that vaporizes a liquid material LM such as TEOS (Tetra Ethoxysilane) by heating with a heater 21a, for example, and 22 denotes a vaporized liquid material LM (hereinafter referred to as vaporized material LMG). , A reaction chamber for depositing a thin film on a target substrate such as a silicon substrate, 23 is a pipe for supplying the liquid material LM to the vaporizer 21, 24 is a supply pipe for supplying the vaporized material LMG to the reaction chamber 22, and 25 is a reaction. This is a vacuum pump provided on the downstream side of the chamber 22.
[0004]
The reaction chamber 22 is a chamber in which, for example, a shower head 26 filled with the vaporized material LMG supplied by the supply pipe 24 and a substrate 27 to be processed are disposed immediately below the shower head 26 and the inside is sucked to a state close to a vacuum. 28. The shower head 26 and the chamber 28 are separated from each other by a shower panel 29 having a large number of small holes. Further, 30 is a heater for heating the supply pipe 24 and the shower head 26, and 31 is a constant flow rate supply device for adjusting the flow rate of the liquid material LM supplied to the vaporizer 21 to a constant flow rate.
[0005]
The heater 21 a supplies a sufficient amount of heat to vaporize the liquid material LM. For example, when heated to 100 ° C., the liquid material LM vaporizes, and the vaporized material LMG passes through the supply pipe 24 and the shower head 26. Then, the substrate 27 can be processed by being sprayed evenly onto the substrate 27. At this time, the heater 30 needs to be set to be somewhat higher than the temperature of the heater 21a (eg, 110 ° C. in this example) so that no condensation occurs in the supply pipe 24 and the shower head 26.
[0006]
However, when vaporization is performed mainly using the heater 21a as described above, heat for heating to a sufficiently high temperature is required as the liquid material LM is vaporized, which is higher than the thermal decomposition temperature of the liquid material LM. There was a possibility. Further, it is conceivable that the material is thermally decomposed in the vaporizer 21, and there is a concern that the processing product of the substrate 27 may be generated due to the reaction product. In addition, since the heat from the heater 30 is applied so that the vaporized material LMG that has once vaporized does not condense again, a reaction product may be generated from the vaporized material LMG in the supply pipe 24 due to this heat. . That is, it has been extremely difficult to control the optimum evaporation conditions for the vaporized material LMG.
[0007]
On the other hand, if the heat supplied for vaporization of the liquid material LM is suppressed to the minimum necessary level for vaporization, it is possible to suppress the temperature below the thermal decomposition temperature of the liquid material LM, but the amount of heat supplied from the heater 21a. Therefore, the vaporization flow rate of the liquid material LM may be limited. In addition, when the amount of heat supplied to quickly vaporize the liquid material LM is increased, decomposition and reliquefaction may occur in the portion of the supply pipe 24 from the vaporizer 21 to the reaction chamber 28. In addition, periodic maintenance and inspection of the supply pipe 24, the shower head 26, the shower panel 29, and the like may be necessary.
[0008]
In addition to these, when the liquid material LM is vaporized and supplied by the amount of heat supplied by the heater 21a, a complicated constant flow rate supply is required in order to accurately determine the amount of the liquid material LM supplied to the reaction chamber 28. It is necessary to combine the device 31 and the like, and the measurement of the flow rate is complicated. In addition, even if the flow rate is controlled by an open / close valve (not shown) in the vaporizer 21, the flow rate of the vaporized material LMG follows the control with a delay, so this flow rate control is difficult, and the liquid material LM is not necessarily controlled. The amount used could not be optimized.
[0009]
The present invention has been made in consideration of the above-mentioned matters, and its purpose is to be able to vaporize and supply a liquid material with a minimum amount of heating in a CVD process, and to quickly supply a predetermined amount of many materials. To provide a liquid material vaporization supply device, a thin film deposition device, and a liquid material vaporization supply method that can be vaporized accurately.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a liquid material vaporization supply apparatus of the present invention is used in a thin film deposition apparatus for depositing a thin film on a workpiece by supplying the vaporized liquid material into a reaction chamber under reduced pressure. A pressure unit that applies pressure to the material, an injector body that is pressurized by the pressure unit and filled with a liquid material mixed with an additive solution that can form a two-phase region in order to lower the boiling point, and a tip of the injector body. Addition that has a formed injection port and an on-off valve that opens and closes the injection port, and that can be pressurized by the pressurizing means by opening the on-off valve to form a two-phase region to lower the boiling point It is characterized in that the liquid material can be vaporized by reduced-pressure boiling caused by spraying the liquid material mixed with the liquid under reduced pressure to generate a pressure difference . (Claim 1)
The liquid material vaporization supply apparatus of the present invention is used in a thin film deposition apparatus that deposits a thin film on a workpiece by supplying the vaporized liquid material into a reaction chamber under reduced pressure, and applies pressure to the liquid material. A pressure unit, a boiling point adjusting unit that lowers the boiling point of the liquid material by mixing an additive liquid that can form a two-phase region with the liquid material, and a liquid that is pressurized by the pressure unit and mixed with the additive liquid It has an injector body filled with a material, an injection port formed at the tip of the injector body, and an on-off valve that opens and closes the injection port. By opening the on-off valve , pressurization is performed by the pressurizing means. It may be characterized in that the vaporizable liquid material by boiling under reduced pressure occurring in the liquid material mixed with the additive solution to cause a pressure differential by spraying under vacuum is (claim 2).
[0011]
The reduced-pressure boiling or reduced-pressure boiling phenomenon in the present specification refers to a phenomenon in which the liquid boils and vaporizes when the external pressure of the opened liquid becomes smaller than its vapor pressure. Uses this vacuum boiling phenomenon to spray a predetermined amount of liquid material with the minimum amount of heat instantaneously by spraying the pressurized liquid material into the reaction chamber (under reduced pressure) reduced by vacuum suction. It is something that vaporizes.
[0012]
In particular, by supplying a liquid material pressurized to a high pressure under reduced pressure, the pressure difference is increased to facilitate vaporization under reduced pressure. Accordingly, since the liquid material can be vaporized with a minimum amount of heat without heating the liquid material to a high temperature, generation of a reaction product accompanying the heating of the liquid material can be prevented. That is, it is possible to accurately control the optimum evaporation conditions.
[0013]
Also, the amount of liquid material that is vaporized and supplied is easily and accurately determined from the pressure applied to the liquid material and the opening time of the on-off valve, the cross-sectional area of the injection port and the viscosity of the liquid material, or the number of operations of the injector body. There is no need to combine a complicated constant flow rate supply device or the like as in the prior art. That is, the amount of liquid material used can be optimized.
[0014]
When a heating means for heating the liquid material is provided (Claim 3), the reduced-pressure boiling phenomenon can be promoted and vaporization can be facilitated. Note that the temperature of the liquid material heated by the heating means is set so that no reaction product is generated from the liquid material. Moreover, since the vaporization efficiency is improved, more liquid material can be vaporized in a short time.
[0015]
When the opening / closing valve is composed of a piston that blocks the tip of the injection port and an electromagnetic coil that enables the opening / closing control of the injection port by electromagnetic induction (Claim 4), the opening / closing of the opening / closing valve can be controlled at high speed. The amount of liquid material that is vaporized and supplied can be controlled accurately.
[0016]
In addition, by having a boiling point adjustment unit that lowers the boiling point of the liquid material by mixing a predetermined ratio of an additive liquid that can form a two-phase region with the liquid material, the boiling point of the liquid material is lowered, thereby facilitating the reduced-pressure boiling phenomenon. Therefore, it is possible to suppress the supply of heat energy.
[0017]
The additive liquid that can form a two-phase region is a solution in which the liquid material and the additive liquid are not polar to each other and can be dissolved in each other. In addition, the additive solution needs to have a low critical solution temperature and a low critical solution temperature. That is, when the liquid material is TEOS, n-Pentane, diethyl ether, or the like can be used as an additive liquid that can form a two-phase region.
[0018]
The thin film deposition apparatus of the present invention includes the liquid material vaporization supply apparatus, and the injection port is provided in the reaction chamber. (Claim 5)
[0019]
By providing the injection port of the liquid material vaporization supply device in the reaction chamber, it is possible to prevent the liquid material from being decomposed or reliquefied due to the circulation of piping or the like. That is, it is not necessary to apply heat from the outside so that the vaporized liquid material can be kept in a vaporized state, contributing to energy saving and controlling the optimum evaporation conditions reliably.
[0020]
The liquid material vaporization supply method of the present invention is a method of vaporizing and supplying a liquid material into a reaction chamber of a thin film deposition apparatus, and applies pressure to the liquid material and reacts the pressurized liquid material under reduced pressure. An additive liquid that can be vaporized by boiling under reduced pressure caused by generating a pressure difference at the same time as the liquid material is supplied by being injected into the chamber, and can form a two-phase region with the liquid material before the vaporization To lower the boiling point (claim 6).
[0021]
By injecting the liquid material into the reaction chamber, the liquid material evaporated by boiling under reduced pressure can be injected onto the object to be processed without waste. In general, the surface of the object to be processed can be processed by spraying the vaporized liquid material immediately above the object to be processed. However, when the liquid material evaporated immediately below the object to be processed is sprayed, the lower surface of the object to be processed is processed. it can. Further, by spraying the pressurized liquid material into the reaction chamber under reduced pressure, a large pressure difference can be obtained and the vaporization efficiency is improved, so that more liquid material can be vaporized in a short time.
[0022]
When the pressurized liquid material is heated and then sprayed (Claim 7), the liquid material can be vaporized more reliably, and the reliability is improved accordingly.
[0023]
When the reaction time in the reaction chamber is controlled by controlling the jetting time of the liquid material (claim 8), the amount of the vaporized liquid material can be reliably and easily controlled. That is, the chemical reaction in the reaction chamber can be appropriately performed.
[0024]
Furthermore, it is possible to reliably vaporize a liquid material having a high boiling point by mixing a predetermined ratio of an additive liquid capable of forming a two-phase region with the liquid material.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an overall configuration of a thin film deposition apparatus 1 by a CVD method using the liquid material vaporization supply apparatus of the present invention, and FIG. 2 shows a liquid material vaporization supply constituting the main part of the thin film deposition apparatus 1 2 is a diagram showing a configuration of the device 2. FIG.
[0026]
In FIG. 1, 3 is a liquid material tank containing a liquid material LM, 4 is an additive liquid tank containing an additive liquid LA added to the liquid material LM, 5 is a switching valve (for example, an electromagnetic valve), and 6 is a liquid material. A supply pipe that supplies LM, 7 is a supply pipe that supplies the additive liquid LA, 8 is a mixer that is connected to the supply pipes 6 and 7 and mixes both liquids LM and LA at a predetermined ratio, and 9 is a mixed liquid (Hereinafter, in order to simplify the description, this mixed liquid is expressed as a liquid material LM + LA) and supply piping 10 feeds a high-pressure inert gas Gas into the liquid material tank 3 and the additive liquid tank 4, respectively. This is a pressurizing means for sending out the liquid material LM and the additive liquid LA in a pressurized state.
[0027]
In this example, an example in which the additive liquid LA is mixed with the liquid material LM is shown. Therefore, in the following description, the liquid material LM + LA will be described. However, the present invention mixes the additive liquid LA with the liquid material LM. It is not limited to forming a two-phase region. In this case, it goes without saying that the additive liquid tank 4, the supply pipe 7, and the mixer 8 can be omitted from the configuration of the thin film deposition apparatus 1.
[0028]
11 is a reaction chamber (chamber) for depositing a thin film on a target substrate 12 such as a silicon substrate to be processed, and 13 is a suction pump for evacuating the inside of the reaction chamber 11. The liquid material vaporization supply device 2 of the present invention is attached to the upper surface of the reaction chamber 11 and is disposed immediately above (closest to) the target substrate 12 in the reaction chamber 11.
[0029]
The liquid material LM of this example is TEOS generally used in a semiconductor manufacturing process, for example, and the additive liquid LA is n-Pentane (normal pentane). Since both the liquids LM and LA are liquids that form a two-phase region, the boiling point of the liquid material LM can be lowered by mixing the two liquids LM and LA. For example, in the case of this example, the boiling point can be lowered by 100 ° C. by mixing 60% of n-Pentane as the additive liquid LA with respect to the liquid material LM (TEOS) by the mixer 8.
[0030]
The liquid material vaporization supply device 2 shown in FIG. 2 is, for example, a substantially cylindrical injector body 14, an on-off valve 15, a solenoid 16 that electrically slides on the on-off valve 15, and an on-off valve 15 using the solenoid 16. And a control circuit 17 for operating. In the case of this example, a pressure gauge 18 for measuring the pressure P of the liquid material LM + LA supplied to the injector body 14 and a heater 19 using electric heat as a heating means are provided.
[0031]
The on-off valve 15 is a piston that is located in the internal space 14a of the injector body 14 and blocks the tip of the injection port 14b by pressing the spring 15s, and an umbrella-shaped flange 15b and an annular groove 15c are formed at the tip 15a. is doing. The configuration of the tip portion 15a is adjusted according to the viscosity and pressure P of the liquid material LM + LA so that the liquid material LM + LA ejected from the ejection port 14b can be sprayed evenly while forming a predetermined angle α (see FIG. 1). The shape has been adjusted.
[0032]
The control circuit 17 opens the injection port 14b by driving the solenoid 16 for a time required to spray a predetermined amount of the liquid material LM while monitoring the pressure P of the liquid material LM + LA using the pressure gauge 18. In addition, the heater 19 is used to heat the vicinity of the injection port 14b of the injector body 14 to, for example, about several tens of degrees Celsius (slightly higher than room temperature). That is, heat energy is supplied to the liquid material LM + LA by heating to a temperature at which the boiling point of the liquid material LM + LA or the temperature of the liquid material LM + LA is lower than that causing a chemical reaction.
[0033]
In addition, the structure of the injector main body 14 mentioned above shows a mere example, and does not limit this invention. That is, the pressurizing means 10 is not limited to pumping the inert gas Gas into the liquid material tank 3 and the additive liquid tank 4, and as shown by a phantom line in FIG. A pressurizing pump 10 ′ as a pressurizing unit for the material LM + LA may be provided. In addition, a pump is built in the injector body 14, and the injection amount of the liquid material LM + LA can be adjusted by the number of times of driving of the pump built in the injector body 14. Furthermore, stepwise pressurization can be performed by appropriately combining pressurizing means 10 and 10 '(including a pump built in the injector body).
[0034]
The operation of the liquid material vaporization and supply apparatus 1 of the present example shown in FIGS. 1 and 2 will be described. The liquid material LM + LA in a state is supplied. Here, when the control circuit 17 heats the vicinity of the injection port 14 b using the heater 19 and opens the injection port 14 b using the solenoid 16, the liquid material LM + LA reacts after the temperature is increased by the heat from the heater 19. Spraying is performed uniformly while forming an angle α in the chamber 11.
[0035]
At this time, since the liquid material LM + LA diverges from the pressurized state by the pressurizing means 10 to the reduced pressure state at once, a reduced pressure boiling phenomenon occurs in the sprayed liquid material LM + LA, and the whole amount is vaporized at once by the reduced pressure boiling spray. . In particular, in this example, since the two-phase region is formed by mixing the additive liquid LA with the liquid material LM, the boiling point of the liquid material LM + LA forming the two-phase region is lowered to be suitable for boiling under reduced pressure, Since the liquid material LM + LA is heated by the heater 19 in advance, vaporization is further promoted, and the liquid material LM + LA can be vaporized instantaneously. Even if the flow rate of the liquid material LM + LA is increased, the entire amount is definitely vaporized. The target substrate 12 can be processed.
[0036]
That is, more liquid material LM can be vaporized in a short time, and the time taken for vaporization of liquid material LM can be drastically shortened, so the time taken for the CVD process can be shortened. Needless to say, depending on the type of the liquid material LM, vaporization can be performed at room temperature without heating by the heater 19. The heater (heating means) 19 may be an electric heater or a high frequency electromagnetic induction heater.
[0037]
As described above, in this example, since the additive liquid LA is mixed with the liquid material LM so as to form the two-phase region, the two-phase can be obtained regardless of whether the boiling point of the liquid material LM is high or low. By selecting an appropriate additive liquid LA that can form a state and adding this additive liquid LA (organic substance), the evaporation control of the liquid material LM + LA can be performed accurately, and the optimal evaporation condition of the liquid material LM Can be controlled. However, in the present invention, it is not always necessary to form a two-phase region, and it is not necessary to mix the additive liquid LA depending on the type of the liquid material LM.
[0038]
In other words, it is possible to omit the boiling point adjusting unit including the additive liquid tank 4, the supply pipe 7, and the mixer 8. Further, by providing the boiling point adjusting portions 4, 7, and 8 as in this example, the liquid material LM and the additive liquid LA can be stored separately, and management of both the liquids LM and LA is facilitated accordingly. The material LM and the additive liquid LA may be mixed and stored in the liquid material tank 3. Also in this case, the boiling point adjusting portions 4, 7, and 8 can be omitted.
[0039]
In addition, by using the liquid material vaporization supply apparatus 1 of the present invention, the amount of vaporized liquid material LM supplied to the CVD process can be accurately controlled by the pressure P and the opening time of the injection port 14b. The control circuit 17 performs this control. Further, the vaporization of the liquid material LM occurs instantaneously in the reaction chamber 11 and is directly supplied to the target substrate 12 because it is directly above (closest to) the target substrate 12, and the vaporized material LMG is supplied to the reaction chamber as in the conventional case. There is no loss of the liquid material LM due to the supply pipe 24, the shower head 26, and the like existing in the supply path 28. When the injector main body 14 is provided immediately below (closest to) the target substrate 12, the lower surface of the target substrate 12 can be processed.
[0040]
Therefore, it is possible to accurately control the amount of the liquid material LM supplied to the target substrate 12 and reliably manage the process more accurately. Further, the start and end of the vaporization supply of the liquid material LM can be accurately controlled in terms of time, and the time delay can be eliminated as much as possible.
[0041]
That is, the optimization can be achieved without waste of the liquid material LM and waste of heat energy as occurred in the conventional thin film deposition apparatus. In addition, the process can be managed more accurately by reliably eliminating the alteration of the liquid material LM caused by inadvertent application of heat.
[0042]
【The invention's effect】
As described above, in the present invention, the liquid material can be vaporized and supplied by the minimum necessary heating in the CVD process, and not only can a large number of materials be vaporized quickly within a short time, but also the amount of liquid material to vaporize and the processing time can be reduced. It can be controlled accurately.
[Brief description of the drawings]
FIG. 1 is an overall view showing an example of a thin film deposition apparatus of the present invention.
FIG. 2 is a diagram showing a configuration of a liquid material vaporization supply apparatus used in the thin film deposition apparatus.
FIG. 3 is a diagram showing a configuration of a conventional thin film deposition apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Thin film deposition apparatus, 2 ... Liquid material vaporization supply apparatus, 4, 7, 8 ... Boiling point control part, 10 ... Pressurization means, 11 ... Reaction chamber, 12 ... Processing object, 14 ... Injector main body, 14b ... Injection port, DESCRIPTION OF SYMBOLS 15 ... On-off valve (piston), 16 ... Electromagnetic coil, 19 ... Heating means, LA ... Additive liquid, LM ... Liquid material.

Claims (8)

反応室内に気化した液体材料を減圧下で供給することで加工対象上に薄膜を堆積する薄膜堆積装置に用いられ、
前記液体材料に圧力をかける加圧手段と、
この加圧手段によって加圧され、沸点を下げるために二相領域を形成できる添加液を混合した液体材料を充填するインジェクタ本体と、
このインジェクタ本体の先端に形成された噴射口と、
この噴射口を開閉する開閉弁とを有し、
前記開閉弁を開放することで、前記加圧手段によって加圧され、沸点を下げるために二相領域を形成できる添加液を混合した液体材料を減圧下に噴霧して圧力差を生じさせることで起こる減圧沸騰によって液体材料を気化可能としたことを特徴とする液体材料気化供給装置。
Used in thin film deposition equipment that deposits a thin film on the workpiece by supplying the vaporized liquid material into the reaction chamber under reduced pressure.
Pressurizing means for applying pressure to the liquid material;
An injector body filled with a liquid material mixed with an additive liquid that is pressurized by this pressurizing means and can form a two-phase region in order to lower the boiling point;
An injection port formed at the tip of the injector body;
An opening and closing valve for opening and closing the injection port,
By opening the on-off valve, a pressure difference is generated by spraying under reduced pressure a liquid material mixed with an additive liquid that is pressurized by the pressurizing means and can form a two-phase region in order to lower the boiling point. liquid material vaporizing supply apparatus being characterized in that the vaporizable liquid material by boiling under reduced pressure to occur.
反応室内に気化した液体材料を減圧下で供給することで加工対象上に薄膜を堆積する薄膜堆積装置に用いられ、
前記液体材料に圧力をかける加圧手段と、
前記液体材料に対して二相領域を形成できる添加液を混合することで液体材料の沸点を引き下げる沸点調節部と、
前記加圧手段によって加圧され前記添加液と混合された液体材料を充填するインジェクタ本体と、
このインジェクタ本体の先端に形成された噴射口と、
この噴射口を開閉する開閉弁とを有し、
前記開閉弁を開放することで、前記加圧手段によって加圧され前記添加液と混合された液体材料を減圧下に噴霧して圧力差を生じさせることで起こる減圧沸騰によって液体材料を気化可能としたことを特徴とする液体材料気化供給装置。
Used in thin film deposition equipment that deposits a thin film on the workpiece by supplying the vaporized liquid material into the reaction chamber under reduced pressure.
Pressurizing means for applying pressure to the liquid material;
A boiling point adjusting unit that lowers the boiling point of the liquid material by mixing an additive solution capable of forming a two-phase region with the liquid material;
An injector body filled with a liquid material pressurized by the pressurizing means and mixed with the additive liquid;
An injection port formed at the tip of the injector body;
An opening and closing valve for opening and closing the injection port,
By opening the on-off valve, the liquid material can be vaporized by boiling under reduced pressure caused by spraying the liquid material pressurized by the pressurizing means and mixed with the additive liquid under reduced pressure to generate a pressure difference. An apparatus for vaporizing and supplying a liquid material, wherein:
前記液体材料を加熱する加熱手段を有する請求項1または2に記載の液体材料気化供給装置。  The liquid material vaporization supply apparatus according to claim 1, further comprising a heating unit configured to heat the liquid material. 前記開閉弁が前記噴射口の先端をせき止めるピストンと、電磁誘導によって噴射口の開閉制御を可能とする電磁コイルとからなる請求項1〜3の何れかに記載の液体材料気化供給装置。  The liquid material vaporization supply device according to any one of claims 1 to 3, wherein the on-off valve includes a piston that blocks the tip of the injection port, and an electromagnetic coil that enables opening / closing control of the injection port by electromagnetic induction. 請求項1〜4の何れかに記載の液体材料気化供給装置を備え、前記噴射口が前記反応室内に設けられたことを特徴とする薄膜堆積装置。  A thin film deposition apparatus comprising the liquid material vaporization supply apparatus according to claim 1, wherein the injection port is provided in the reaction chamber. 薄膜堆積装置の反応室内に液体材料を気化し供給する方法であって、前記液体材料に圧力をかけると共に、この加圧された液体材料を減圧下の反応室に噴射することで、液体材料を供給すると同時に圧力差を生じさせることで起こる減圧沸騰によって気化し、また、この気化前の液体材料に、当該液体材料とで二相領域を形成できる添加液を混合して沸点を下げることを特徴とする液体材料気化供給方法。A method of vaporizing and supplying a liquid material into a reaction chamber of a thin film deposition apparatus, and applying pressure to the liquid material and injecting the pressurized liquid material into a reaction chamber under reduced pressure, It is vaporized by boiling under reduced pressure caused by causing a pressure difference at the same time as being supplied, and the liquid material before vaporization is mixed with an additive solution capable of forming a two-phase region with the liquid material to lower the boiling point. Liquid material vaporization supply method. 前記加圧された液体材料を加熱した後に噴射する請求項6に記載の液体材料気化供給方法。  The liquid material vaporization supply method according to claim 6, wherein the pressurized liquid material is sprayed after being heated. 前記液体材料の噴射時間を制御して反応室内の反応を制御する請求項6または7に記載の液体材料気化供給方法。  The liquid material vaporization supply method according to claim 6 or 7, wherein a reaction time in the reaction chamber is controlled by controlling an ejection time of the liquid material.
JP2002364741A 2002-12-17 2002-12-17 Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus Expired - Lifetime JP4445702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364741A JP4445702B2 (en) 2002-12-17 2002-12-17 Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364741A JP4445702B2 (en) 2002-12-17 2002-12-17 Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus

Publications (2)

Publication Number Publication Date
JP2004197135A JP2004197135A (en) 2004-07-15
JP4445702B2 true JP4445702B2 (en) 2010-04-07

Family

ID=32762476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364741A Expired - Lifetime JP4445702B2 (en) 2002-12-17 2002-12-17 Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus

Country Status (1)

Country Link
JP (1) JP4445702B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006000611T5 (en) * 2005-03-18 2008-01-24 Horiba, Ltd. Method for producing a film and film formation system
JP4708167B2 (en) * 2005-11-17 2011-06-22 学校法人同志社 Film forming apparatus and film forming method
JP2008007838A (en) * 2006-06-30 2008-01-17 Horiba Ltd Film deposition apparatus, and film deposition method
DE102006046553A1 (en) * 2006-09-28 2008-04-03 Innovent E.V. Applying a silicate layer comprises providing a substrate to be coated in a circulating air oven, bringing alkoxy- or halogen group containing silicon compound in liquid form into the oven and depositing the silicon layer on the substrate
JP6151943B2 (en) * 2013-03-26 2017-06-21 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2004197135A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
TWI662149B (en) Methods and apparatuses for showerhead backside parasitic plasma suppression in a secondary purge enabled ald system
KR100368319B1 (en) Liquid delivery system
JP4964142B2 (en) Self-cooled gas distributor in high vacuum for high density plasma applications
US8584965B2 (en) Device for introducing, injecting or spraying a mixture of a carrier gas and liquid compounds and method for implementing said device
TW476994B (en) Semiconductor manufacturing system having a vaporizer which efficiently vaporizes a liquid material
US20010035127A1 (en) Deposition reactor having vaporizing, mixing and cleaning capabilities
TW201507031A (en) Method for filling recesses using pre-treatment with hydrocarbon-containing gas
KR102144321B1 (en) Direct Liquid Deposition
KR20040078643A (en) Chemical vapor deposition vaporizer
KR20080106544A (en) Direct liquid injector device
JP2008007838A (en) Film deposition apparatus, and film deposition method
JP4445702B2 (en) Liquid material vaporization supply apparatus, thin film deposition apparatus, and liquid material vaporization supply method to thin film deposition apparatus
KR20150128417A (en) Liquid Precursor Delivery System
JP4447216B2 (en) Liquid material vaporization supply apparatus and liquid material vaporization supply method
JP2010532426A (en) Method and apparatus for applying a layer of release agent on a substrate
KR102139125B1 (en) Steam release device and film forming device
KR20100124383A (en) Apparatus for supplying precursor and system for depositing thin film with the same
JP4511414B2 (en) Vaporizer
US8122903B2 (en) Close-coupled purgeable vaporizer valve
JP4044810B2 (en) Gas supply device for surface treatment
KR20090128925A (en) Nano-fluid manufacturing equipment
KR20120011582A (en) Depositing apparatus having vaporizer and depositing method
KR100685798B1 (en) Evaporation unit for depositing thin film on wafer having the unit
KR20110046625A (en) Apparatus for vapor deposition of thin film
KR100487880B1 (en) Apparatus and method for fabricating carbon thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Ref document number: 4445702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term