JP2016143798A - Vaporizer - Google Patents

Vaporizer Download PDF

Info

Publication number
JP2016143798A
JP2016143798A JP2015019404A JP2015019404A JP2016143798A JP 2016143798 A JP2016143798 A JP 2016143798A JP 2015019404 A JP2015019404 A JP 2015019404A JP 2015019404 A JP2015019404 A JP 2015019404A JP 2016143798 A JP2016143798 A JP 2016143798A
Authority
JP
Japan
Prior art keywords
inner tube
tube
outer tube
atomizer
vaporizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015019404A
Other languages
Japanese (ja)
Other versions
JP6203207B2 (en
Inventor
小野 弘文
Hirofumi Ono
弘文 小野
八木 茂雄
Shigeo Yagi
茂雄 八木
龍彦 古門
Tatsuhiko Kokado
龍彦 古門
健太 山本
Kenta Yamamoto
健太 山本
哲弘 斎藤
Tetsuhiro Saito
哲弘 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2015019404A priority Critical patent/JP6203207B2/en
Publication of JP2016143798A publication Critical patent/JP2016143798A/en
Application granted granted Critical
Publication of JP6203207B2 publication Critical patent/JP6203207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vaporizer which achieves excellent vaporization efficiency of nearly 100% and prevents secular change in the vaporization amount and concentration.SOLUTION: A vaporizer A according to the invention includes: an atomizer 7 which atomizes a liquid material L to spray the liquid material L; a hollow outer tube 1 connected with a spray port 73 of the atomizer 7; an inner tube 2 housed in the outer tube 1; and a heater 4 (9) provided in at least one of an outer side of the outer tube 1 and an inner side of the inner tube 2. A tip head part 2a of the inner tube 2 is disposed so as to be oriented in a direction of the spray port 73, and an atomization space M is provided between the spray port 73 and the tip head part 2a. A vaporization gap 3 communicating with the atomization space M is provided between an inner peripheral surface of the outer tube 1 and an outer surface of the inner tube 2. The tip head part 2a of the inner tube 2 is formed into a hemispherical shape or a conical shape. An arc shaped projection 81 or an arch shaped groove 82 is formed from a top part P of the tip head part 2a to the outer surface.SELECTED DRAWING: Figure 1

Description

本発明は気化効率に優れた、特に半導体製造用並びに光導波路形成用の気化器に関する。   The present invention relates to a vaporizer excellent in vaporization efficiency, particularly for semiconductor manufacturing and optical waveguide formation.

SiやSiCなどの半導体材料の熱酸化手法の種類としてウェット酸化とドライ酸化がある。ウェット酸化では水を使う。H2Oをガス(水蒸気)として炉の中に流して、水の中の酸素を酸化膜の成長に使う。この特徴は、酸化速度が速い。したがって厚い膜厚が必要な場合にはこの方法を使う。一方、ドライ酸化は酸化膜成長に酸素ガスを使う。これは、ウェット酸化の反対で、成長速度は遅い。近年、更に酸化膜の成長速度を上げるために、水(H2O)の代わりに過酸化水素(H22)が使用されるようになってきた。他方、半導体以外の用途として、光導波路の形成がある。(特許文献1を参照)。この場合、10〜25μmの厚さの二酸化ケイ素(SiO2)の堆積には、H2Oによる酸化法では、長時間の堆積時間を必要とする。H2Oの代わりに過酸化水素(H22)を利用すれば、大幅な時間短縮が可能となる。 There are wet oxidation and dry oxidation as types of thermal oxidation methods for semiconductor materials such as Si and SiC. Water is used in wet oxidation. H 2 O is flowed into the furnace as gas (water vapor), and oxygen in the water is used for growth of the oxide film. This feature has a high oxidation rate. Therefore, this method is used when a thick film is required. On the other hand, dry oxidation uses oxygen gas for oxide film growth. This is the opposite of wet oxidation, and the growth rate is slow. In recent years, hydrogen peroxide (H 2 O 2 ) has been used instead of water (H 2 O) in order to further increase the growth rate of oxide films. On the other hand, there is formation of an optical waveguide as an application other than the semiconductor. (See Patent Document 1). In this case, the deposition of silicon dioxide (SiO 2 ) having a thickness of 10 to 25 μm requires a long deposition time in the oxidation method using H 2 O. If hydrogen peroxide (H 2 O 2 ) is used instead of H 2 O, the time can be significantly reduced.

そのためには大量の過酸化水素水を気化させて反応炉に送り込む必要がある。このような目的の装置として特許文献1に示すような装置が提案されている。   For this purpose, it is necessary to vaporize a large amount of hydrogen peroxide and send it to the reactor. An apparatus as shown in Patent Document 1 has been proposed as such an apparatus.

特開2001−337240号公報JP 2001-337240 A

特許文献1に記載された、過酸化水素水を気化させて酸化性ガスを発生させる気化器は、過酸化水素水の入ったフラスコに似た中空球状容器の気化器の下半分を外からヒータで覆うもので、中空球状容器は100〜130℃に加熱され、気化した過酸化水素ガスの含有された水蒸気ガスが、ガス供給管を経て反応炉に流れ込むようになっている。この装置は過酸化水素水を単に加熱させ気化させているもので、気化器内での過酸化水素水の蒸発と共に、過酸化水素の濃度が変化することが欠点である。さらに、過酸化水素の流量を一定に保持できることも困難であるほか、どれだけ流れているかの流量が不明である。   The vaporizer described in Patent Document 1 that vaporizes hydrogen peroxide water to generate oxidizing gas is a heater from the outside of the lower half of the vaporizer of a hollow spherical container similar to a flask containing hydrogen peroxide water. The hollow spherical container is heated to 100 to 130 ° C., and the vaporized water vapor gas containing hydrogen peroxide gas flows into the reaction furnace through the gas supply pipe. This apparatus simply heats and vaporizes the hydrogen peroxide solution, and the disadvantage is that the concentration of hydrogen peroxide changes as the hydrogen peroxide solution evaporates in the vaporizer. Furthermore, it is difficult to keep the flow rate of hydrogen peroxide constant, and the flow rate of how much is flowing is unknown.

本発明は、かかる従来の問題点に鑑みてなされたものであり、その目的は、従来例に比べて気化効率がほぼ100%と遥かに優れ、且つ、気化量や濃度に関して経時的変化がない気化器を提供することにある。   The present invention has been made in view of such conventional problems, and the object thereof is far superior to the conventional example in vaporization efficiency of almost 100%, and there is no change with time in vaporization amount and concentration. To provide a vaporizer.

請求項1に記載した発明に係る気化器Aは、
液体原料Lを霧化して吹き出すアトマイザ7と、
アトマイザ7の噴霧口73が接続された中空のアウターチューブ1と、
アウターチューブ1内に収納されたインナーチューブ2と、
アウターチューブ1の外側或いはインナーチューブ2の内側の少なくともいずれか一方に設けられたヒータ4(9)とで構成され、
インナーチューブ2の先端頭部2aは前記噴霧口73方向に向くように配置され、噴霧口73と該先端頭部2aとの間に霧化空間Mが設けられ、
アウターチューブ1の内周面とインナーチューブ2の外側面との間に前記霧化空間Mに連通する気化用間隙3が設けられ、
インナーチューブ2の先端頭部2aは、半球状又は円錐状に形成されており、先端頭部2aの頂部Pから外側面に向かって弧状突条81又は弧状溝82が形成されていることを特徴とする。
The vaporizer A according to the invention described in claim 1 is:
An atomizer 7 that atomizes and blows off the liquid raw material L;
A hollow outer tube 1 to which the atomizing port 73 of the atomizer 7 is connected;
An inner tube 2 housed in the outer tube 1;
A heater 4 (9) provided on at least one of the outer side of the outer tube 1 or the inner side of the inner tube 2;
The tip portion 2a of the inner tube 2 is disposed so as to face the spray port 73, and an atomization space M is provided between the spray port 73 and the tip portion 2a.
Between the inner peripheral surface of the outer tube 1 and the outer surface of the inner tube 2, a vaporizing gap 3 communicating with the atomizing space M is provided,
The tip head 2a of the inner tube 2 is formed in a hemispherical or conical shape, and an arc-shaped protrusion 81 or an arc-shaped groove 82 is formed from the top P of the tip head 2a toward the outer surface. And

請求項2は、請求項1に記載した気化器Aにおいて、アトマイザ7、インナーチューブ2及びアウターチューブ1が石英ガラスで形成されていることを特徴とする。   According to a second aspect of the present invention, in the vaporizer A according to the first aspect, the atomizer 7, the inner tube 2, and the outer tube 1 are formed of quartz glass.

本発明にかかる気化器Aは、「霧化空間M」とこれに連通する「気化用間隙3」が設けられているので、アトマイザ7からの液体原料Lは「霧化空間M」で霧化され、先端頭部2aに沿って流れ、十分に幅の狭い「気化用間隙3」内に流れ込み、ヒータ4(9)により急速に気化される。   Since the vaporizer A according to the present invention is provided with the “atomization space M” and the “vaporization gap 3” communicating with the “atomization space M”, the liquid raw material L from the atomizer 7 is atomized in the “atomization space M”. Then, it flows along the tip head 2a, flows into the sufficiently small “vaporization gap 3”, and is rapidly vaporized by the heater 4 (9).

この時、インナーチューブ2の先端頭部2aは、半球状又は円錐状に形成されており、先端頭部2aの頂部Pから外側面に向かって弧状突条81又は弧状溝82が形成されているので、先端頭部2aに沿って流れる霧状流体Kを含む流体は弧状突条81又は弧状溝82に沿ってカーブし、「気化用間隙3」ではインナーチューブ2の周囲を旋回する旋回流GRを形成して流れる。これにより気化に十分な時間が確保でき、常に定量の気化ガスG2が次工程に供給される。   At this time, the distal end head 2a of the inner tube 2 is formed in a hemispherical shape or a conical shape, and an arc-shaped protrusion 81 or an arc-shaped groove 82 is formed from the top P of the distal end head 2a toward the outer surface. Therefore, the fluid containing the mist-like fluid K flowing along the tip head portion 2a curves along the arc-shaped protrusion 81 or the arc-shaped groove 82, and the swirl flow GR swirling around the inner tube 2 in the “vaporization gap 3”. Flow to form. Thus, a sufficient time for vaporization can be secured, and a constant amount of vaporized gas G2 is always supplied to the next step.

このような本発明の気化器Aは、液体流量制御器Eと直結でき、気化器A内に輸送されてきた過酸化水素水を、ほぼ100%の高率で気化できる。従って、定量的且つ定濃度で過酸化水素ガスを発生できる。   The vaporizer A of the present invention can be directly connected to the liquid flow rate controller E, and can vaporize the hydrogen peroxide solution transported into the vaporizer A at a high rate of almost 100%. Therefore, hydrogen peroxide gas can be generated quantitatively and at a constant concentration.

本発明の一実施例の一部を断面した正面図である。It is the front view which carried out a cross section of a part of one example of the present invention. 図4のX−X断面矢視図である。FIG. 5 is a cross-sectional view taken along the line XX in FIG. 4. 図4のY−Y断面矢視図である。It is a YY cross-sectional arrow view of FIG. 図1の断面図である。It is sectional drawing of FIG. 本発明のインナーチューブの先端頭部の拡大斜視図である。It is an expansion perspective view of the front-end | tip head of the inner tube of this invention. 本発明のインナーチューブの先端頭部の拡大斜視図である。It is an expansion perspective view of the front-end | tip head of the inner tube of this invention. 本発明のインナーチューブの先端頭部の更に他例の拡大斜視図である。It is an expansion perspective view of the further another example of the front-end | tip head of the inner tube of this invention. 本発明の気化器を使用した半導体製造装置に構成図である。It is a block diagram in the semiconductor manufacturing apparatus using the vaporizer | carburetor of this invention.

以下、本発明を図面に従って説明する。気化器Aは、アトマイザ7と、アウターチューブ1及びインナーチューブ2並びにヒータ4(9)とで構成される。気化器Aが適用される液体原料Lは気化して使用されるもの(半導体製造に供される例えば各種の液体原料)であればどのようなものでもよいが、ここでは過酸化水素水とする。気化器Aが、過酸化水素水の気化用で、且つ、半導体製造装置のように極めて高純度な過酸化水素含有水蒸気ガスG2が必要な場合、高温環境において、過酸化水素含有水蒸気ガスG2に犯されないような「石英ガラス」でアトマイザ7、アウターチューブ1及びインナーチューブ2が作られる。そうでない分野では、パイレックス(登録商標)ガラスのような耐熱性ガラス、或いはハステロイやステンレス鋼のような耐食性金属の使用も可能である。   The present invention will be described below with reference to the drawings. The vaporizer A includes an atomizer 7, an outer tube 1, an inner tube 2, and a heater 4 (9). The liquid raw material L to which the vaporizer A is applied may be anything as long as it is vaporized and used (for example, various liquid raw materials used for semiconductor manufacturing). . When the vaporizer A is used for vaporizing hydrogen peroxide water and an extremely high purity hydrogen peroxide-containing water vapor gas G2 is required as in a semiconductor manufacturing apparatus, the hydrogen peroxide-containing water vapor gas G2 is converted into a hydrogen peroxide-containing water vapor gas G2 in a high-temperature environment. The atomizer 7, the outer tube 1 and the inner tube 2 are made of “quartz glass” which is not violated. In other fields, it is also possible to use a heat resistant glass such as Pyrex (registered trademark) glass or a corrosion resistant metal such as Hastelloy or stainless steel.

アトマイザ7は、アウターチューブ1の端部に接続される噴霧ガス管7aと、噴霧ガス管7aに対して直角又はこれに近い角度或いは図示していないが、霧化ガスの通流方向に傾斜させた液体原料導入管7bとで構成され、噴霧ガス管7aには霧化ガスが通過する主供給孔7cが穿設されており、液体原料導入管7bには主供給孔7cに連通する副供給孔7dが穿設されている。主供給孔7cの内径は副供給孔7dの内径より大で、出口は細く絞られ噴霧口73となっている。このアトマイザ7の噴霧ガス管7aの出口部分はインナーチューブ2に接続されている。   The atomizer 7 is inclined to the spray gas pipe 7a connected to the end of the outer tube 1 and to the spray gas pipe 7a at a right angle or an angle close thereto or not shown, but in the flow direction of the atomized gas. A main feed hole 7c through which the atomized gas passes, and the liquid feed inlet pipe 7b is connected to the main feed hole 7c. A hole 7d is formed. The inner diameter of the main supply hole 7 c is larger than the inner diameter of the sub supply hole 7 d, and the outlet is narrowed down to form a spray port 73. The outlet portion of the atomizing gas pipe 7 a of the atomizer 7 is connected to the inner tube 2.

アウターチューブ1は円筒状の中空管で、一端が閉塞され、この閉塞端1aにアトマイザ7の噴霧ガス管7aが接続されており、噴霧口73が開口している。そしてアウターチューブ1の閉塞端1aと反対側の外周面には後述する気化用間隙3に連通する出口ノズル11が接続されている。   The outer tube 1 is a cylindrical hollow tube, one end of which is closed, a spray gas tube 7a of an atomizer 7 is connected to the closed end 1a, and a spray port 73 is opened. An outlet nozzle 11 communicating with a vaporizing gap 3 described later is connected to the outer peripheral surface of the outer tube 1 opposite to the closed end 1a.

インナーチューブ2は挿入端側である先端頭部2aが閉塞され、半球状に形成されており、その先端頭部2aの頂部Pから外側縁に至り、且つ、インナーチューブ2の外側面に向かう3本の弧状突条81が等角度、同方向(凸湾曲方向が図2のように時計方向に突曲している)に形成されている。弧状突条81は細い石英ガラス棒で形成され当該部分に溶着されている。弧状突条81の本数は特段限定されるものではなく、1以上であればよいが少なくとも3本以上が好ましい。   The inner tube 2 has a distal end head 2a which is the insertion end side closed, is formed in a hemispherical shape, reaches the outer edge from the apex P of the distal end head 2a, and faces the outer surface of the inner tube 2 3 The arc-shaped ridges 81 of the book are formed at the same angle and in the same direction (the convex curve direction projects clockwise as shown in FIG. 2). The arc-shaped ridge 81 is formed of a thin quartz glass rod and is welded to the portion. The number of the arc-shaped protrusions 81 is not particularly limited, and may be one or more, but is preferably at least three.

インナーチューブ2の外側縁に達した弧状突条81の端部に接する直線(外接線)は、インナーチューブ2の外側面の接線或いはこれに近い線になるようにするのが好ましい。なお、図の実施例では先端頭部2aの形状は、半球状であるが、勿論、これに限られず、回転楕円体面、回転放物面或いは円錐状であってもよい。また、ここでは弧状突条81を用いたが、同方向(凸湾曲方向が図2のように時計方向に突曲している)に湾曲した弧状溝82を形成してもよい。いずれの場合でも複数設けることが好ましい(図7)。   It is preferable that a straight line (outer tangent) that contacts the end of the arc-shaped protrusion 81 that reaches the outer edge of the inner tube 2 is a tangent to the outer surface of the inner tube 2 or a line close thereto. In the embodiment shown in the figure, the shape of the tip head 2a is hemispherical, but of course it is not limited to this, and may be a spheroid, a paraboloid or a cone. Further, although the arc-shaped protrusion 81 is used here, an arc-shaped groove 82 that is curved in the same direction (the convex curve direction is curved clockwise as shown in FIG. 2) may be formed. In any case, it is preferable to provide a plurality (FIG. 7).

インナーチューブ2の他端は開放しており、インナーヒータ9が挿入される。そして、インナーチューブ2の外周面には同一円周上で少なくとも3点の微小な突起6が2段に亘って設けられており、インナーチューブ2をアウターチューブ1に挿入した時にこの微小な突起6がアウターチューブ1の内周面に接触してインナーチューブ2とアウターチューブ1との間に全周に亘って均一な且つ十分に狭い気化用間隙3を形成する。この気化用間隙3はヒータ挿入端側で前述のように出口ノズル11に繋がっている。この出口ノズル11は例えばシリコン基板酸化用の反応炉に気化ガスG2を質量流量だけ供給する質量流量制御器Sに接続されている。   The other end of the inner tube 2 is open, and the inner heater 9 is inserted. Further, at least three minute projections 6 on the same circumference are provided in two stages on the outer circumferential surface of the inner tube 2, and when the inner tube 2 is inserted into the outer tube 1, these minute projections 6. Comes into contact with the inner peripheral surface of the outer tube 1 and forms a uniform and sufficiently narrow vaporization gap 3 between the inner tube 2 and the outer tube 1 over the entire circumference. The vaporization gap 3 is connected to the outlet nozzle 11 as described above on the heater insertion end side. The outlet nozzle 11 is connected to a mass flow controller S for supplying the vaporized gas G2 by a mass flow rate to a reaction furnace for silicon substrate oxidation, for example.

気化用間隙3の幅Wは、特段限定されるものではないが、該幅Wは気化効率の面から高い熱伝達率を有する温度境界層が形成される範囲であることが好ましい。即ち、気化用間隙3を流れる通流流体Qの温度は、インナーチューブ2の外周面又はアウターチューブ1の内周面の温度を壁面温度とすると、これら壁面から離れるに従って流体温度が次第に下がり、或る温度で一定の温度(一様流温度)になる。壁面から一定の温度になる範囲が温度境界層であり、気化用間隙3の幅Wをこの範囲にすることが好ましい。   The width W of the vaporization gap 3 is not particularly limited, but the width W is preferably within a range in which a temperature boundary layer having a high heat transfer coefficient is formed in terms of vaporization efficiency. That is, the temperature of the flowing fluid Q flowing through the vaporizing gap 3 is such that the temperature of the outer peripheral surface of the inner tube 2 or the inner peripheral surface of the outer tube 1 is a wall surface temperature, the fluid temperature gradually decreases as the distance from the wall surface increases. At a certain temperature (uniform flow temperature). The range in which the temperature reaches a certain temperature from the wall surface is the temperature boundary layer, and the width W of the vaporization gap 3 is preferably in this range.

インナーチューブ2とアウターチューブ1のヒータ挿入側の開口端は全周に亘って融着され、前記気化用間隙3のヒータ挿入側の開口側端部は全周に亘って閉塞される。アウターチューブ1に収納されたインナーチューブ2の先端頭部2aは噴霧口73方向に向いており、噴霧口73が設けられている閉塞端1aと先端頭部2aとの間に霧化空間Mが設けられている。そしてこの霧化空間Mに気化用間隙3が全周に亘って連通している。   The opening ends on the heater insertion side of the inner tube 2 and the outer tube 1 are fused over the entire circumference, and the opening end on the heater insertion side of the vaporization gap 3 is closed over the entire circumference. The tip head 2a of the inner tube 2 housed in the outer tube 1 faces the spray port 73, and an atomization space M is formed between the closed end 1a where the spray port 73 is provided and the tip head 2a. Is provided. The vaporization gap 3 communicates with the atomization space M over the entire circumference.

加熱装置として電気ヒータが使用され、図の実施例ではインナーヒータ9とアウターヒータ4とが使用されている。勿論、加熱が十分であれば、いずれか一方でも構わない。インナーヒータ9はインナーチューブ2の内側に挿入され、熱伝導性に優れた接着用のペースト5でインナーチューブ2の内周面に接着されている。同様にアウターヒータ4がアウターチューブ1の外周面に接着用のペースト5で接着されている。そしてインナーヒータ9には温度センサ10が装備されており、インナーヒータ9の温度を制御している。アウターヒータ4はインナーヒータ9の温度センサ10に連動するように制御してもよいし、図示していないが、独自に温度センサを用意してもよい。   An electric heater is used as the heating device, and an inner heater 9 and an outer heater 4 are used in the illustrated embodiment. Of course, as long as the heating is sufficient, either one may be used. The inner heater 9 is inserted inside the inner tube 2 and bonded to the inner peripheral surface of the inner tube 2 with an adhesive paste 5 having excellent thermal conductivity. Similarly, the outer heater 4 is bonded to the outer peripheral surface of the outer tube 1 with an adhesive paste 5. The inner heater 9 is equipped with a temperature sensor 10 to control the temperature of the inner heater 9. The outer heater 4 may be controlled so as to be linked to the temperature sensor 10 of the inner heater 9, or although not shown, a temperature sensor may be prepared independently.

次に、本発明の気化器Aの作用について説明する。図8は本発明の気化器Aを使用した半導体製造装置の装置構成の一例で、液体原料L(本実施例では過酸化水素水)が貯蔵された、加圧ガスG0により液体原料Lが送り出される原料タンクT、前記原料タンクTに接続され、供給された液体原料Lを一定流量だけ送り出す液体流量制御器E、窒素ガスや酸素ガスなどの霧化ガス供給源に接続され、これら霧化ガスG1を質量流量だけ送り出す質量流量制御器S、前記液体流量制御器Eから送り出された液体原料Lを受け取る液体原料導入管7bと質量流量制御器Sからの霧化ガスG1を受け取る噴霧ガス管7aとで構成されたアトマイザ7がその入口部分に装備され、例えばシリコン基板酸化用の反応炉Hに処理ガスG2(本実施例では過酸化水素含有水蒸気ガス)を一定量安定的に供給する気化器Aとで構成されている。   Next, the operation of the vaporizer A of the present invention will be described. FIG. 8 shows an example of the configuration of a semiconductor manufacturing apparatus using the vaporizer A of the present invention. The liquid source L is sent out by the pressurized gas G0 in which the liquid source L (hydrogen peroxide solution in this embodiment) is stored. A raw material tank T connected to the raw material tank T, connected to a liquid flow rate controller E for sending the supplied liquid raw material L at a constant flow rate, and an atomizing gas supply source such as nitrogen gas or oxygen gas. A mass flow controller S for sending G1 by the mass flow rate, a liquid raw material introduction pipe 7b for receiving the liquid raw material L sent from the liquid flow rate controller E, and an atomizing gas pipe 7a for receiving the atomized gas G1 from the mass flow controller S. And an atomizer 7 constituted by the above-mentioned is provided at the inlet portion, and for example, a fixed amount of processing gas G2 (hydrogen peroxide-containing water vapor gas in this embodiment) is stably supplied to a reactor H for oxidizing a silicon substrate. It is composed of a vaporizer A.

この装置において、ヒータ4(9)が通電されてアウターチューブ1及びインナーチューブ2が所定温度まで加熱されるとアトマイザ7に液体原料L(本実施例では過酸化水素水)が液体原料供給口72に供給され、同時にガス供給口71に霧化ガスG1が圧入される。これによって噴霧口73から流体原料Lが霧状流体Kとなって霧化空間M内に吹き込まれる。   In this apparatus, when the heater 4 (9) is energized and the outer tube 1 and the inner tube 2 are heated to a predetermined temperature, the liquid material L (hydrogen peroxide solution in this embodiment) is supplied to the atomizer 7 as the liquid material supply port 72. At the same time, the atomized gas G1 is press-fitted into the gas supply port 71. As a result, the fluid raw material L is sprayed into the atomizing space M from the spray port 73 as the mist fluid K.

この霧状流体Kはインナーチューブ2の球状の先端頭部2aに衝突し、先端頭部2aの弧状突条81(或いは弧状溝82)に沿って流れる。先端頭部2aの外周縁ではインナーチューブ2の外周円の接線方向或いはこれに近い方向で流れ、インナーチューブ2の周囲を旋回しながら出口ノズル11に向かって気化用間隙3内を進む。即ち、気化用間隙3内で旋回流GRを発生させる。これにより加熱時間を十分に確保することが出来る。この間、気化用間隙3全体が温度境界層となっている場合には、前記旋回流GRは壁面温度に近い温度に熱せられて急速に気化し、出口ノズル11から排出されて質量流量制御器Sに供給される。   The mist-like fluid K collides with the spherical tip head 2a of the inner tube 2 and flows along the arc-shaped protrusion 81 (or arc-shaped groove 82) of the tip head 2a. It flows in the tangential direction of the outer circumference of the inner tube 2 or a direction close thereto at the outer peripheral edge of the tip head 2a, and advances in the vaporization gap 3 toward the outlet nozzle 11 while turning around the inner tube 2. That is, the swirl flow GR is generated in the vaporization gap 3. Thereby, a sufficient heating time can be secured. During this time, when the entire vaporization gap 3 is a temperature boundary layer, the swirling flow GR is heated to a temperature close to the wall surface temperature and rapidly vaporized, and is discharged from the outlet nozzle 11 to be mass flow controller S. To be supplied.

なお、上記気化器Aのアトマイザ7、アウターチューブ1及びインナーチューブ2が「石英ガラス」で形成されている場合には、液体原料Lが過酸化水素水であったとしても、犯されないので、シリコン基板の表面酸化に適用することが出来る。   In addition, when the atomizer 7, the outer tube 1 and the inner tube 2 of the vaporizer A are formed of “quartz glass”, even if the liquid raw material L is hydrogen peroxide, it is not violated. It can be applied to surface oxidation of a substrate.

A:気化器、L:液体原料、E:液体流量制御器、G0:加圧ガス、G1:霧化ガス、G2:気化ガス、GR:旋回流、H:反応炉、K:霧状流体、M:霧化空間、P:頂部、Q:通流流体、S:質量流量制御器、T:原料タンク、W:気化用間隙の幅、1:アウターチューブ、1a:閉塞端、2:インナーチューブ、2a:先端頭部、3:気化用間隙、4:アウターヒータ、5:ペースト、6:突起、7:アトマイザ、7a:噴霧ガス管、7b:液体原料導入管、7c:主供給孔、7d:副供給孔、9:インナーヒータ、10:温度センサ、11:出口ノズル、71:ガス供給口、72:液体原料供給口、73:噴霧口、81:弧状突条、82:弧状溝。   A: vaporizer, L: liquid raw material, E: liquid flow controller, G0: pressurized gas, G1: atomized gas, G2: vaporized gas, GR: swirling flow, H: reactor, K: atomized fluid, M: atomization space, P: top, Q: flow fluid, S: mass flow controller, T: raw material tank, W: width of vaporization gap, 1: outer tube, 1a: closed end, 2: inner tube 2a: tip head, 3: gap for vaporization, 4: outer heater, 5: paste, 6: protrusion, 7: atomizer, 7a: spray gas pipe, 7b: liquid raw material introduction pipe, 7c: main supply hole, 7d : Sub-supply hole, 9: inner heater, 10: temperature sensor, 11: outlet nozzle, 71: gas supply port, 72: liquid raw material supply port, 73: spraying port, 81: arc-shaped ridge, 82: arc-shaped groove.

Claims (2)

液体原料を霧化して吹き出すアトマイザと、
アトマイザの噴霧口が接続された中空のアウターチューブと、
アウターチューブ内に収納されたインナーチューブと、
アウターチューブの外側或いはインナーチューブの内側の少なくともいずれか一方に設けられたヒータとで構成され、
インナーチューブの先端頭部は前記噴霧口方向に向くように配置され、噴霧口と該先端頭部との間に霧化空間が設けられ、
アウターチューブの内周面とインナーチューブの外側面との間に前記霧化空間に連通する気化用間隙が設けられ、
インナーチューブの先端頭部は、半球状又は円錐状に形成されており、先端頭部の頂部から外側面に向かって弧状突条又は弧状溝が形成されていることを特徴とする気化器。
An atomizer that atomizes and blows off liquid ingredients;
A hollow outer tube to which the atomizer spray port is connected;
An inner tube stored in the outer tube;
It is composed of a heater provided on at least one of the outside of the outer tube or the inside of the inner tube,
The tip of the inner tube is disposed so as to face the spray port, and an atomization space is provided between the spray port and the tip of the head.
A vaporizing gap communicating with the atomization space is provided between the inner peripheral surface of the outer tube and the outer surface of the inner tube,
The carburetor characterized in that the tip head portion of the inner tube is formed in a hemispherical shape or a conical shape, and an arc-shaped protrusion or arc-shaped groove is formed from the top of the tip head portion toward the outer surface.
アトマイザ、インナーチューブ及びアウターチューブが石英ガラスで形成されていることを特徴とする請求項1に記載の気化器。   The vaporizer according to claim 1, wherein the atomizer, the inner tube, and the outer tube are made of quartz glass.
JP2015019404A 2015-02-03 2015-02-03 Vaporizer Active JP6203207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019404A JP6203207B2 (en) 2015-02-03 2015-02-03 Vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019404A JP6203207B2 (en) 2015-02-03 2015-02-03 Vaporizer

Publications (2)

Publication Number Publication Date
JP2016143798A true JP2016143798A (en) 2016-08-08
JP6203207B2 JP6203207B2 (en) 2017-09-27

Family

ID=56570787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019404A Active JP6203207B2 (en) 2015-02-03 2015-02-03 Vaporizer

Country Status (1)

Country Link
JP (1) JP6203207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033353A1 (en) * 2019-08-21 2021-02-25 株式会社リンテック Vaporizer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074746A (en) * 1996-05-23 1998-03-17 Ebara Corp Liquid raw material vaporizing apparatus
JPH1128349A (en) * 1997-05-16 1999-02-02 Tokyo Electron Ltd Method and apparatus for vapor generation
JP2000216150A (en) * 1999-01-22 2000-08-04 Watanabe Shoko:Kk Mocvd vaporizer and vaporizing method of material solution
JP2002115067A (en) * 2000-10-06 2002-04-19 Anelva Corp Carburetor of raw material solution for thin film deposition
JP2006202965A (en) * 2005-01-20 2006-08-03 Lintec Co Ltd Vaporizing apparatus and vaporizing structure
JP2008231515A (en) * 2007-03-20 2008-10-02 Tokyo Electron Ltd Vaporizer, vaporization module, and film deposition system
JP2008251614A (en) * 2007-03-29 2008-10-16 Tokyo Electron Ltd Vaporizing apparatus, film forming apparatus, and vaporizing method
WO2014157211A1 (en) * 2013-03-28 2014-10-02 株式会社日立国際電気 Substrate-processing apparatus, method for manufacturing semiconductor device, and recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074746A (en) * 1996-05-23 1998-03-17 Ebara Corp Liquid raw material vaporizing apparatus
JPH1128349A (en) * 1997-05-16 1999-02-02 Tokyo Electron Ltd Method and apparatus for vapor generation
JP2000216150A (en) * 1999-01-22 2000-08-04 Watanabe Shoko:Kk Mocvd vaporizer and vaporizing method of material solution
JP2002115067A (en) * 2000-10-06 2002-04-19 Anelva Corp Carburetor of raw material solution for thin film deposition
JP2006202965A (en) * 2005-01-20 2006-08-03 Lintec Co Ltd Vaporizing apparatus and vaporizing structure
JP2008231515A (en) * 2007-03-20 2008-10-02 Tokyo Electron Ltd Vaporizer, vaporization module, and film deposition system
JP2008251614A (en) * 2007-03-29 2008-10-16 Tokyo Electron Ltd Vaporizing apparatus, film forming apparatus, and vaporizing method
WO2014157211A1 (en) * 2013-03-28 2014-10-02 株式会社日立国際電気 Substrate-processing apparatus, method for manufacturing semiconductor device, and recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033353A1 (en) * 2019-08-21 2021-02-25 株式会社リンテック Vaporizer
JP2021034472A (en) * 2019-08-21 2021-03-01 株式会社リンテック Vaporizer
TWI728740B (en) * 2019-08-21 2021-05-21 日商琳科技股份有限公司 Vaporizer

Also Published As

Publication number Publication date
JP6203207B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
KR20080021535A (en) Plasma spraying device and a method for introducing a liquid precursor into a plasma gas stream
JP2008196054A (en) Vaporizer and vaporizing method
JP5118644B2 (en) Liquid material vaporizer
JP2001507757A (en) Flash vaporizer
NO812067L (en) PROCEDURE AND DEVICE FOR MICROWAVE CREATION PRODUCTION
US6598805B2 (en) Substrate cleaning apparatus
JP6747727B1 (en) Vaporizer
JP6203207B2 (en) Vaporizer
JP2002217181A (en) Vaporizer for supplying semiconductor raw materials
JP3567831B2 (en) Vaporizer
JP6769645B1 (en) Vaporizer
KR102555279B1 (en) Vaporizer for semiconductor process with improved vaporization efficiency
JP4433392B2 (en) Vaporizer
JP2008001994A (en) Evaporator and evaporation method
JP2022084254A (en) Vaporizer
JPH0445838A (en) Vaporizer in liquid material supply system
KR100322410B1 (en) Apparatus for vaporizing a liquid source
JP7340561B2 (en) Superheated steam production equipment
JP6979914B2 (en) Vaporizer
WO2020039886A1 (en) Vaporizer, liquid material vaporization device, and vaporization method
JPH0367498A (en) Induction plasma generation device
KR100554022B1 (en) Apparatus for vaporization
KR101721681B1 (en) Vaporizer
KR20220105317A (en) Vaporizer for semiconductor process using carrier gas
JPH10150030A (en) Film forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R150 Certificate of patent or registration of utility model

Ref document number: 6203207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250