WO2020039608A1 - Outer rotor-type motor and electric vehicle - Google Patents

Outer rotor-type motor and electric vehicle Download PDF

Info

Publication number
WO2020039608A1
WO2020039608A1 PCT/JP2019/000526 JP2019000526W WO2020039608A1 WO 2020039608 A1 WO2020039608 A1 WO 2020039608A1 JP 2019000526 W JP2019000526 W JP 2019000526W WO 2020039608 A1 WO2020039608 A1 WO 2020039608A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
bobbin
stator core
outer rotor
type motor
Prior art date
Application number
PCT/JP2019/000526
Other languages
French (fr)
Japanese (ja)
Inventor
清水 浩
正樹 川口
隆昌 加藤
Original Assignee
株式会社e-Gle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社e-Gle filed Critical 株式会社e-Gle
Publication of WO2020039608A1 publication Critical patent/WO2020039608A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an outer rotor type motor and an electric vehicle.
  • This application claims the priority based on Japanese Patent Application No. 2018-157654 filed on Aug. 24, 2018, and incorporates all the contents described in the Japanese application.
  • an in-wheel motor that mounts a drive motor of an electric vehicle in a wheel has been proposed.
  • This in-wheel motor has no energy loss due to the conventional gears, drive shafts, and the like, so that improvement in drive efficiency and cruising distance can be expected.
  • a stator in an outer rotor type (eversion type) motor in which a permanent magnet rotates, a stator (stator) is constituted by a ring-shaped yoke portion and an iron core having a plurality of teeth on an outer diameter side thereof.
  • the stator coil wound around the tooth may be wound directly on the tooth or may be wound once on a bobbin and inserted into the tooth.
  • the bobbin has an engagement portion on the inner diameter side of the stator, and the engagement portion of the bobbin is also provided in a state where the stator is sandwiched from both sides by the motor base and the motor support.
  • the bobbin is fixed to the stator while being sandwiched from both sides by the engagement portions of the motor base and the motor support. Therefore, by assembling the motor base and the motor support, the bobbin can be fixed at the same time, and the bobbin can be prevented from moving in the radial direction.
  • the present invention has been made in view of these circumstances, and the bobbin can be easily attached to the stator core, and even if the stator core is firmly held, there is no possibility that the engagement portion of the bobbin will be damaged during use. It is an object of the present invention to provide an outer rotor type motor having a bobbin mounting structure and having an excellent heat radiation effect, and to provide an electric vehicle equipped with the outer rotor type motor.
  • a first technical means of the present invention is a stator core having a plurality of teeth radially on an outer diameter side of an annular base, a stator center and a stator guide for positioning the stator core from both axial sides.
  • An outer rotor type motor having a bobbin on which a coil is wound and mounted on the teeth of the plurality of stator cores, and penetrates in the axial direction on both sides in the axial direction on the inner diameter side of the bobbin.
  • An engaging portion that has an engaging hole and protrudes is provided, and a plurality of engaging pieces that protrude in the axial direction are provided on outer peripheral portions of the stator center and the stator guide, respectively, and the bobbin is mounted on the stator core.
  • the tips of the engagement pieces of the stator center and the stator guide are inserted into the engagement holes of the bobbin, and the engagement pieces are It is characterized in that the axial end faces of the serial stator core are positioned in contact with the stator core in the axial direction.
  • a second technical means is the first technical means, wherein the bobbin has two flange portions which are separated in a radial direction in a state where the bobbin is mounted on the stator core, and the bobbin has a flange portion on an inner diameter side.
  • a notch is provided at a location on the axial direction, into which the winding end of the coil is inserted.
  • a third technical means is an electric vehicle, wherein the outer rotor type motor of the first or second technical means is provided on a wheel of a wheel, and the wheel is directly driven by the outer rotor type motor. It is a feature.
  • the bobbin can be easily attached to the stator, and the engagement pieces provided on the stator center and the stator guide for holding the stator abut on the axial end surfaces of the stator. There is no pressing force acting on the engaging portion, and there is no possibility that the engaging portion of the bobbin is damaged during use. Further, heat from the stator is easily transmitted to the stator center and the stator guide via the engagement pieces provided on the stator center and the stator guide, and the heat radiation effect of the stator is improved.
  • FIG. 2 is a schematic sectional view when the outer rotor type motor according to the first embodiment of the present invention is configured as an in-wheel motor. It is a perspective view of the bobbin used for the outer rotor type motor which concerns on one Embodiment of this invention.
  • FIG. 3 is a diagram showing the bobbin shown in FIG. 2 viewed from each direction and a diagram showing a cross section.
  • FIG. 3 is a perspective view showing a state in which a bobbin is mounted on a stator in the outer rotor type motor according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a state in which a stator center and a stator guide are mounted on a stator core in one embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view when the outer rotor type motor according to the first embodiment of the present invention is configured as an in-wheel motor, and is partially simplified. The wheels and tires of the vehicle are not shown.
  • the in-wheel motor 100 is built in the wheel of the electric vehicle, and is arranged on the same axis as the axis of the wheel. As shown in FIG. 1, the in-wheel motor 100 has a hub shaft 11, and a wheel (not shown) is mounted by a wheel mounting hub bolt 16 protruding from a wheel mounting surface. For this reason, steel is used for the hub shaft 11 from the viewpoint of securing the strength of mounting the wheels of the vehicle.
  • a brake clamp 18 is also fixed to the hub shaft 11.
  • the hub shaft 11 is rotatably supported by a bearing support member 26 via a bearing 17.
  • the bearing 17 has an inner race 17a, an outer race 17b, and a plurality of rolling elements 17c provided between the inner race 17a and the outer race 17b.
  • the bearing support member 26 is fixed by a bolt 27 to a knuckle which is an underbody frame part (not shown) on the vehicle body side.
  • the bearing support member 26 is made of steel in the same manner as the hub shaft 11 from the viewpoint of securing strength for mounting the in-wheel motor 100 on the vehicle body side.
  • the in-wheel motor 100 is attached to the vehicle body (not shown), and the hub shaft 11 is rotatable with respect to the vehicle body.
  • the hub shaft 11 is arranged on the same axis as the axis of the wheel.
  • a rotor case 12 is fixed to the hub shaft 11.
  • the rotor case 12 has a side surface portion 12a that covers the side surface of the in-wheel motor 100 on the wheel mounting side, and a peripheral portion 12b that extends in the axial direction from the side surface portion 12a. It is desirable to use aluminum for the rotor case 12 in terms of weight reduction and heat conduction.
  • a groove is formed in the inner peripheral surface of the peripheral portion 12b of the rotor case 12, and a cylindrical rotor core 13 made of a magnetic material is disposed inside the groove.
  • a plurality of grooves are formed on the inner peripheral surface of the rotor core 13, and the rotor magnet 14 is fixed in an annular shape in the grooves.
  • the rotor magnet 14 it is desirable to use a neodymium magnet having a strong magnetic force.
  • a stator core 21 is arranged on the inner peripheral surface side of the annularly arranged rotor magnets 14 with a predetermined gap therebetween.
  • the stator core 21 has an annular base 21a and a plurality of teeth 21b radially protruding from the annular base 21a, and is composed of a laminated body of electromagnetic steel sheets.
  • the teeth 21b are formed in a substantially rectangular parallelepiped shape.
  • a bobbin 30 around which a stator coil 40 is wound is fixed to each tooth 21b of the stator core 21.
  • a stator center 22 and a stator guide 23 that support the stator core 21 are provided on the inner peripheral side of the stator core 21, and the stator center 22 is fixed to a bearing support member 26.
  • the stator center 22 and the stator guide 23 are members for supporting the stator core 21, and have holding pieces 22 a and 23 a that sandwich and hold the stator core 21 from both sides in the axial direction.
  • the stator center 22 and the stator guide 23 are fixed by bolts 24 provided on the inner diameter side of the stator core 21 in a state where the inner peripheral surface of the stator core 21 and both end surfaces in the axial direction are positioned.
  • the fixing structure of the stator core 21 will be described later.
  • the stator center 22 and the stator guide 23 are made of aluminum having a high thermal conductivity.
  • a wiring bus 25 is provided on the axial side surface of the stator coil 40, and the winding end 41 of the stator coil 40 is connected outside the wiring bus 25.
  • the bearing support member 26 or the stator center 22 is provided with a rotor position detection sensor 50 composed of, for example, a resolver for detecting the rotational position of the rotor.
  • the rotor position signal from the rotor position detection sensor 50 is sent to a control circuit of a motor driving inverter (not shown).
  • the inverter switches a DC power supply by a switching element according to the position of the rotor, converts the DC power into, for example, three-phase AC, and supplies a current to each stator coil 40 through the current supply line 60 and the wiring bus 25.
  • a motor cap 15 is provided on the peripheral edge 12b of the rotor case 12 to cover the opposite side of the wheel mounting surface.
  • the motor cap 15 faces the stator center 22 via the oil seal 19. In the present embodiment, it is possible to prevent water and dust from entering the in-wheel motor 100.
  • the bearing support member 26, the stator core 21, the bobbin 30, the stator coil 40, the stator center 22, and the stator guide 23 are fixed members that do not rotate. It is attached. Further, the hub shaft 11, the rotor case 12, the rotor core 13, the rotor magnet 14, and the motor cap 15 serve as rotating members. Since the rotor magnet 14 is located outside the stator core 21, the in-wheel motor 100 of the present embodiment constitutes an outer rotor type motor. The wheel of the electric vehicle rotates at the same speed as the rotor of the in-wheel motor 100.
  • FIG. 2 is a perspective view of a bobbin used for the outer rotor type motor according to one embodiment of the present invention.
  • 3A and 3B are a view and a cross-sectional view of the bobbin shown in FIG. 2 when viewed from each direction.
  • FIG. 3A is a bottom view of the bobbin
  • FIG. 3C is a front view of the bobbin
  • FIG. 3D is a cross-sectional view taken along a line DD in FIG. 3A.
  • the positional relationship of each part of the bobbin 30 will be described on the assumption that the bobbin 30 is mounted on the teeth 21 b of the stator core 21.
  • the X-axis direction is the radial direction
  • the positive direction side is the outer diameter side
  • the negative direction side is the inner diameter side.
  • the Y-axis direction and the Z-axis direction are the circumferential direction and the axial direction of the outer rotor type motor, respectively.
  • the bobbin 30 is molded from synthetic resin, glass fiber reinforced resin, or the like, and has a body 31 and two flanges at both ends of the body 31, an outer flange 32 and an inner flange 33. ing.
  • the inside of the body portion 31 is a hollow portion 31a formed in a hollow shape, and the cross-sectional shape is substantially equal to the cross-sectional shape of the teeth 21b of the stator core 21.
  • the teeth 21b are inserted into the hollow portions 31a.
  • a stator coil 40 is wound around the body 31.
  • a cutout 33a into which the winding end 41 of the stator coil 40 is inserted is provided at a location on the inner side flange portion 33 on the wiring bus 25 side in the axial direction.
  • a first engaging portion 34 and a second engaging portion 35 for preventing the bobbin 30 from moving in the radial direction from the stator core 21 are provided on both sides of the inner diameter side flange portion 33 further on the inner diameter side in the axial direction. Have been.
  • the interval between the first engagement portion 34 and the second engagement portion 35 is formed to be substantially equal to the axial thickness of the stator core 21.
  • the circumferential width of the first engaging portion 34 and the second engaging portion 35 is substantially equal to the circumferential width of the inner diameter side flange portion 33 as shown in FIGS. It has a width.
  • the first engagement portion 34 is provided with an engagement hole 34a into which an engagement piece 22c provided in the stator center 22 described later is inserted.
  • the engagement hole 34a penetrates in the axial direction, and when the bobbin 30 is mounted on the teeth 21b of the stator core 21, the stator core 21 is exposed through the engagement hole 34a.
  • a projection 34b projecting outward in the axial direction is provided on the inner diameter side of the engagement hole 34a of the first engagement portion 34.
  • the protrusion 34b prevents the bobbin 30 from moving in the radial direction from the stator core 21 together with the engagement hole 34a when the inner diameter surface of the engagement piece 22c of the stator center 22 abuts on the outer diameter surface. It has a function to prevent it.
  • the second engagement portion 35 is provided with an engagement hole 35a into which an engagement piece 23c provided in the stator guide 23 described later is inserted.
  • the engagement hole 35a penetrates in the axial direction, and when the bobbin 30 is mounted on the teeth 21b of the stator core 21, the stator core 21 is exposed through the engagement hole 35a.
  • a projection 35b projecting outward in the axial direction is provided on the inner diameter side of the engagement hole 35a of the second engagement portion 35.
  • the protrusion 35b prevents the bobbin 30 from moving in the radial direction from the stator core 21 together with the engagement hole 35a when the inner diameter surface of the engagement piece 23c of the stator guide 23 contacts the outer diameter surface. It has a function to prevent it.
  • FIG. 4 is a perspective view showing how a bobbin is mounted on a stator core in the outer rotor type motor according to one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which a stator center and a stator guide are mounted on a stator according to an embodiment of the present invention.
  • FIG. 5A is a cross-sectional view of a tooth portion on which a bobbin is mounted.
  • FIG. 5 (B) shows a cross section at a location where the bobbin is not mounted.
  • the stator core 21 includes the annular base 21a and the teeth 21b radially protruding from the annular base 21a.
  • FIG. 4 shows only one bobbin around which a coil is wound, a bobbin 30 around which a stator coil 40 is wound is mounted on each tooth 21b.
  • the holding piece 22a of the stator center 22 covers the axial end face of the projection 34b of the first engagement portion 34 of the bobbin 30, and the annular portion 22b located on the outer periphery of the stator center 22 and the bobbin 30 are mounted on the stator core 21.
  • a plurality of engagement pieces 22c are integrally provided that protrude in the axial direction from the outer diameter side of the annular portion 22b toward the engagement hole 34a of the first engagement portion 34 of the bobbin 30.
  • the holding piece 23a of the stator guide 23 covers an axial end face of the projection 35b of the second engaging portion 35 of the bobbin 30 and an annular portion 23b located on the outer peripheral portion of the stator guide 23.
  • a plurality of engaging pieces 23c are integrally provided that project in the axial direction from the outer diameter side of the annular portion 23b toward the engaging hole 35a of the second engaging portion 35 of the bobbin 30 when mounted on the bobbin 30. .
  • the bobbin 30 on which the stator coil 40 is wound is mounted on all the teeth 21 b of the stator core 21.
  • the stator core 21 is placed on the stator center 22.
  • the engagement pieces 22 c of the stator center 22 are inserted into the engagement holes 34 a of the first engagement portions 34 of the bobbin 30.
  • the stator core 21 is positioned.
  • the stator guide 23 is placed on the upper part of the stator core 21. At this time, the stator guide 23 is positioned so that the engagement pieces 23c of the stator guide 23 are inserted into the respective engagement holes 35a of the bobbin 30.
  • stator center 22 and the stator guide 23 are fixed by the bolts 24.
  • the tip of the engagement piece 22c of the stator center 22 and the tip of the engagement piece 23c of the stator guide 23 directly contact the stator core 21 to position the stator core 21 in the axial direction.
  • the annular portion 22b of the stator center 22 does not press the axial end surface of the projection 34b of the first engagement portion 34 of the bobbin 30, and the annular portion 23b of the stator guide 23 is The dimensions of each member are determined so that the axial end surface of the protrusion 35b of the second engaging portion 35 is not pressed.
  • the stator core 21 is axially positioned and held by the engaging pieces 22c of the stator center 22 and the engaging pieces 23c of the stator guide 23.
  • the inner surface of the engagement piece 22c of the stator center 22 contacts the inner surface of the engagement hole 34a of the first engagement portion 34 of the bobbin 30.
  • the inner surface of the bobbin 30 contacts the inner surface of each of the engagement holes 35a of the bobbin 30, so that the bobbin 30 does not move in the radial direction from the stator core 21.
  • the pressing force is not directly applied to the bobbin 30 made of the resin material from the stator center 22 or the stator guide 23. Further, even if the bobbin 30 repeatedly expands and contracts due to heat generation from the stator coil 40 due to the stoppage of the operation of the outer rotor type motor, no force is applied to the bobbin 30 from the stator center 22 or the stator guide 23. Then, the heat from the stator core 21 is transmitted to the stator center 22 via the engagement pieces 22c of the stator center 22 and the engagement pieces of the stator guide 23. Therefore, the heat radiation effect of the stator core 21 is improved.
  • the stator core 21 may be positioned by the stator center 22 and other portions of the stator guide in addition to the engagement pieces 22c of the stator center 22 and the engagement pieces 23c of the stator guide 23.
  • the radial length of the first engaging portion 34 of the bobbin 30 on the wiring bus 25 side is configured to be longer than the length of the second engaging portion 35.
  • the shape of the holding piece 22a of the stator center 22 and the holding piece 23a of the stator guide 23 also depends on the presence or absence of the protrusion 34b of the first engagement portion 34 and the protrusion 35b of the second engagement portion 35. What is necessary is just to change the shape. For example, when the projection 34b of the first engagement portion 34 is not provided, the annular portion 22b of the holding piece 22a of the stator center 22 has a shape that covers the axial end surface of the first engagement portion 34 of the bobbin 30. The annular portion 23b of the holding piece 23a of the stator guide 23 has a shape that covers the axial end surface of the second engagement portion 35 of the bobbin 30.
  • the outer rotor type motor of the present invention when used as an in-wheel motor, all or most of the outer rotor type motor can be housed in the wheel of an electric vehicle. Also, even outside the wheel, the wheel of the electric vehicle can be directly driven without interposing a gear or the like by arranging the outer rotor type motor on the same axis as the wheel. Further, the outer rotor type motor of the present invention can be applied to other uses than electric vehicles.
  • engagement Pieces 23: stator guide, 23a: holding piece, 23b: annular portion, 23c: engaging piece, 24: bolt, 25: wiring bus, 26: bearing support member, 27: bolt, 30: bobbin, 31: trunk 31a: hollow portion, 32: outer diameter side flange portion, 33: inner diameter side flange portion, 33a: notch, 34: first engagement portion, 34a: engagement hole, 34b: projection portion, 5 ... second engaging portion, 35a ... engagement hole, 35b ... protrusion, 40 ... stator coil, 41 ... winding end, 50 ... rotor position detection sensor, 60 ... current supply line, 100 ... in-wheel motor.

Abstract

Provided are: an outer rotor-type motor that has a bobbin attachment structure in which bobbins can be simply attached to a stator and there is no danger of damage to engagement parts of the bobbins in use, even when strongly holding the stator, and that has an excellent heat dissipation effect; and an electric vehicle provided with the outer rotor-type motor. This outer rotor-type motor has: a stator core (21) having a plurality of teeth (21b) in a radial shape on the outer diameter side of an annular base part; a stator center (22) and a stator guide (23) that sandwich the stator core (21) from both axial sides and position the stator core; and bobbins (30) around which coils (40) are wound and which are attached to the plurality of teeth (21b) of the stator core (21). In a state in which the bobbins (30) are attached to the stator core (21), engagement pieces (22c), (23c) provided to the stator center (22) and the stator guide (23) are inserted into engagement holes (34a), (35a) of the bobbins (30), and the engagement pieces (22c), (23c) are fixed, with the stator core (21) therebetween.

Description

アウターロータ型モータ、および、電気自動車Outer rotor type motor and electric vehicle
 本発明は、アウターロータ型モータ、および、電気自動車に関する。
 本出願は、2018年8月24日出願の日本出願第2018-157654号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to an outer rotor type motor and an electric vehicle.
This application claims the priority based on Japanese Patent Application No. 2018-157654 filed on Aug. 24, 2018, and incorporates all the contents described in the Japanese application.
 電気自動車の駆動モータをホイール内に取り付けるインホイールモータが提案されている。このインホイールモータは、従来のギアや駆動軸などによるエネルギー損失がないため、駆動効率の向上と航続距離の向上が期待できる。インホイールモータとして、アウターロータ型(外転型)で永久磁石が回転するモータにおいて、ステータ(固定子)はリング状のヨーク部とその外径側に複数の歯を有する鉄心で構成される。この歯に捲回するステータコイルは、歯に直接捲回する場合と、一度ボビンに捲回しそのボビンを歯に挿入する場合がある。 イ ン An in-wheel motor that mounts a drive motor of an electric vehicle in a wheel has been proposed. This in-wheel motor has no energy loss due to the conventional gears, drive shafts, and the like, so that improvement in drive efficiency and cruising distance can be expected. As an in-wheel motor, in an outer rotor type (eversion type) motor in which a permanent magnet rotates, a stator (stator) is constituted by a ring-shaped yoke portion and an iron core having a plurality of teeth on an outer diameter side thereof. The stator coil wound around the tooth may be wound directly on the tooth or may be wound once on a bobbin and inserted into the tooth.
 ボビンを用いる場合、モータの使用中にボビンが径方向に移動すると、回転するアウターロータにボビンが接触し重大な障害を起こすことになるので、ボビンを強固に歯に固定する必要がある。例えば、特許文献1には、ステータを軸方向の両側から挟むことによって、ステータを支持するモータベースおよびモータサポートを有するモータにおいて、モータベースおよびモータサポートを利用して、ステータに装着したボビンを固定するボビン構造が開示されている。 (4) In the case of using a bobbin, if the bobbin moves in the radial direction during use of the motor, the bobbin comes into contact with the rotating outer rotor and causes serious trouble. Therefore, it is necessary to firmly fix the bobbin to the teeth. For example, in Patent Document 1, in a motor having a motor base and a motor support that supports the stator by sandwiching the stator from both sides in the axial direction, the bobbin mounted on the stator is fixed using the motor base and the motor support. Is disclosed.
特許第6112525号公報Japanese Patent No. 61212525
 特許文献1に開示されたボビン構造では、ボビンが、ステータの内径側に係合部を有しており、ステータがモータベースおよびモータサポートにより両側から挟まれた状態において、ボビンの係合部もモータベースおよびモータサポートの係合部により両側から挟まれた状態で、ボビンがステータに固定される。このため、モータベースおよびモータサポートを組み立てることによって、同時にボビンを固定でき、ボビンが径方向に移動することを阻止できる。 In the bobbin structure disclosed in Patent Literature 1, the bobbin has an engagement portion on the inner diameter side of the stator, and the engagement portion of the bobbin is also provided in a state where the stator is sandwiched from both sides by the motor base and the motor support. The bobbin is fixed to the stator while being sandwiched from both sides by the engagement portions of the motor base and the motor support. Therefore, by assembling the motor base and the motor support, the bobbin can be fixed at the same time, and the bobbin can be prevented from moving in the radial direction.
 しかしながら、特許文献1に開示されたボビン構造では、ステータをモータベースおよびモータサポートにより両側から挟んで固定する際に、部材の寸法精度によっては、ボビンに設けた係合部もモータベースおよびモータサポートの係合部に挟まれるため、ボビンの係合部に押圧力が作用するおそれがあった。インホイールモータは自動車の車輪内に設けられるため、使用時には、車輪の振動が直接もモータの構成部材に伝わることになる。このため、インホイールモータのステータはモータベースおよびモータサポートに強固に取り付けられる必要があるが、ボビンの係合部に強い力が作用すると、使用時にボビンの係合部が破損するおそれがあった。 However, in the bobbin structure disclosed in Patent Literature 1, when the stator is sandwiched and fixed from both sides by the motor base and the motor support, depending on the dimensional accuracy of the members, the engagement portion provided on the bobbin also has the motor base and the motor support. Therefore, there is a possibility that the pressing force acts on the engaging portion of the bobbin. Since the in-wheel motor is provided in the wheel of the automobile, the vibration of the wheel is directly transmitted to the components of the motor during use. For this reason, the stator of the in-wheel motor needs to be firmly attached to the motor base and the motor support. However, if a strong force acts on the engagement portion of the bobbin, the engagement portion of the bobbin may be damaged during use. .
 本発明は、これらの実情に鑑みてなされたものであり、ボビンのステータコアへの取り付けが簡単に行え、ステータコアの保持を強固に行っても、使用時にボビンの係合部が破損するおそれがないボビンの取り付け構造を有し、放熱効果に優れたアウターロータ型モータを提供すること、および、このアウターロータ型モータを備えた電気自動車を提供することをその目的とする。 The present invention has been made in view of these circumstances, and the bobbin can be easily attached to the stator core, and even if the stator core is firmly held, there is no possibility that the engagement portion of the bobbin will be damaged during use. It is an object of the present invention to provide an outer rotor type motor having a bobbin mounting structure and having an excellent heat radiation effect, and to provide an electric vehicle equipped with the outer rotor type motor.
 上記課題を解決するために、本発明の第1の技術手段は、環状基部の外径側に放射状に複数の歯を有するステータコアと、該ステータコアを軸方向の両側から位置決めするステータセンタおよびステータガイドと、コイルが卷回されて複数の前記ステータコアの前記歯に装着されるボビンを有する、アウターロータ型モータであって、前記ボビンの内径側の前記軸方向の両側に、前記軸方向に貫通する係合孔を有して突出する係合部が設けられ、前記ステータセンタおよびステータガイドのそれぞれ外周部に、前記軸方向に突出する複数の係合片が設けられ、前記ボビンが前記ステータコアに装着された状態で、前記ステータセンタおよびステータガイドの前記係合片の先端が前記ボビンの前記係合孔に挿入されるとともに、前記係合片が前記ステータコアの軸方向端面に当接して前記ステータコアを軸方向に位置決めしていることを特徴とするものである。 In order to solve the above problem, a first technical means of the present invention is a stator core having a plurality of teeth radially on an outer diameter side of an annular base, a stator center and a stator guide for positioning the stator core from both axial sides. An outer rotor type motor having a bobbin on which a coil is wound and mounted on the teeth of the plurality of stator cores, and penetrates in the axial direction on both sides in the axial direction on the inner diameter side of the bobbin. An engaging portion that has an engaging hole and protrudes is provided, and a plurality of engaging pieces that protrude in the axial direction are provided on outer peripheral portions of the stator center and the stator guide, respectively, and the bobbin is mounted on the stator core. In this state, the tips of the engagement pieces of the stator center and the stator guide are inserted into the engagement holes of the bobbin, and the engagement pieces are It is characterized in that the axial end faces of the serial stator core are positioned in contact with the stator core in the axial direction.
 第2の技術手段は、第1の技術手段において、前記ボビンは、該ボビンが前記ステータコアに装着された状態で、径方向に離間する2つの鍔部を有し、内径側の鍔部の前記軸方向側の箇所に、前記コイルの巻き端が挿入される切欠きを有することを特徴とするものである。 A second technical means is the first technical means, wherein the bobbin has two flange portions which are separated in a radial direction in a state where the bobbin is mounted on the stator core, and the bobbin has a flange portion on an inner diameter side. A notch is provided at a location on the axial direction, into which the winding end of the coil is inserted.
 第3の技術手段は、電気自動車であって、第1または第2の技術手段のアウターロータ型モータが、車輪のホイールに設けられ、前記車輪が前記アウターロータ型モータによって直接駆動されることを特徴とするものである。 A third technical means is an electric vehicle, wherein the outer rotor type motor of the first or second technical means is provided on a wheel of a wheel, and the wheel is directly driven by the outer rotor type motor. It is a feature.
 本発明によれば、ボビンのステータへの取り付けが簡単に行え、ステータを挟持するステータセンタおよびステータガイドに設けた係合片が、ステータの軸方向端面に当接しているため、ボビンに設けた係合部に押圧力が作用することがなく、使用時にボビンの係合部が破損するおそれがない。また、ステータセンタおよびステータガイドに設けた係合片を介して、ステータからの熱をステータセンタおよびステータガイドに伝導しやすくなり、ステータの放熱効果が良好となる。 According to the present invention, the bobbin can be easily attached to the stator, and the engagement pieces provided on the stator center and the stator guide for holding the stator abut on the axial end surfaces of the stator. There is no pressing force acting on the engaging portion, and there is no possibility that the engaging portion of the bobbin is damaged during use. Further, heat from the stator is easily transmitted to the stator center and the stator guide via the engagement pieces provided on the stator center and the stator guide, and the heat radiation effect of the stator is improved.
本発明の第1の実施形態に係るアウターロータ型モータをインホイールモータとして構成した際の模式的な断面図である。FIG. 2 is a schematic sectional view when the outer rotor type motor according to the first embodiment of the present invention is configured as an in-wheel motor. 本発明の一実施形態に係るアウターロータ型モータに用いるボビンの斜視図である。It is a perspective view of the bobbin used for the outer rotor type motor which concerns on one Embodiment of this invention. 図2に示すボビンを各方向から見た図および一断面を示す図である。FIG. 3 is a diagram showing the bobbin shown in FIG. 2 viewed from each direction and a diagram showing a cross section. 本発明の一実施形態に係るアウターロータ型モータおいて、ステータにボビンを装着する様子を示す斜視図である。FIG. 3 is a perspective view showing a state in which a bobbin is mounted on a stator in the outer rotor type motor according to one embodiment of the present invention. 本発明の一実施形態において、ステータコアにステータセンタおよびステータガイドを装着した状態での断面図である。FIG. 3 is a cross-sectional view illustrating a state in which a stator center and a stator guide are mounted on a stator core in one embodiment of the present invention.
 以下、図面を参照しながら、本発明のアウターロータ型モータおよび電気自動車に係る好適な実施形態について説明する。以下の説明において、異なる図面においても同じ符号を付した構成は同様のものであるとして、その説明を省略する場合がある。なお、本発明はこれらの実施形態での例示に限定されるものではなく、請求の範囲に記載された事項の範囲内および均等の範囲内におけるすべての変更を含む。また、複数の実施形態について組み合わせが可能である限り、本発明は任意の実施形態を組み合わせたものを含む。 Hereinafter, preferred embodiments of the outer rotor type motor and the electric vehicle according to the present invention will be described with reference to the drawings. In the following description, configurations denoted by the same reference numerals in different drawings are the same, and description thereof may be omitted. It should be noted that the present invention is not limited to the exemplifications of these embodiments, but includes all changes within the scope of the matters described in the claims and within the equivalent scope. Further, the present invention includes a combination of any of the embodiments, as long as a combination of a plurality of embodiments is possible.
 以下の説明では、アウターロータ型モータとして、車両のホイール内に搭載するインホイールモータを例に説明する。図1は、本発明の第1の実施形態に係るアウターロータ型モータをインホイールモータとして構成した際の模式的な断面図であり、部分的に簡略化して図示している。車両のホイールやタイヤは図示していない。 In the following description, the outer rotor type motor will be described as an example of an in-wheel motor mounted in a wheel of a vehicle. FIG. 1 is a schematic cross-sectional view when the outer rotor type motor according to the first embodiment of the present invention is configured as an in-wheel motor, and is partially simplified. The wheels and tires of the vehicle are not shown.
 インホイールモータ100は、電気自動車の車輪のホイールの内側に内蔵され、車輪の軸と同一軸上に配置される。図1に示すように、インホイールモータ100は、ハブシャフト11を有しており、図示しないホイールが、ホイール取り付け面から突出するホイール取り付け用ハブボルト16によって取り付けられる。このため、ハブシャフト11は、自動車の車輪取り付けの強度を確保する点からスチールが用いられる。また、ハブシャフト11には、ブレーキクランプ18も固定される。ハブシャフト11は、軸受17を介して軸受支持部材26に対して回転可能に軸支される。軸受17は、内輪17aと、外輪17bと、内輪17aおよび外輪17bとの間に設けられた複数の転動体17cとを有している。軸受支持部材26は、図示しない車体側の足回りフレーム部品であるナックルにボルト27によって固定される。軸受支持部材26は、インホイールモータ100を車体側に取り付けるための強度を確保する点から、ハブシャフト11と同様にスチールが用いられる。これによって、インホイールモータ100が図示しない車体側に取り付けられ、ハブシャフト11は、車体に対して回転可能となる。ハブシャフト11は、車輪の軸と同一軸上に配置される。 The in-wheel motor 100 is built in the wheel of the electric vehicle, and is arranged on the same axis as the axis of the wheel. As shown in FIG. 1, the in-wheel motor 100 has a hub shaft 11, and a wheel (not shown) is mounted by a wheel mounting hub bolt 16 protruding from a wheel mounting surface. For this reason, steel is used for the hub shaft 11 from the viewpoint of securing the strength of mounting the wheels of the vehicle. A brake clamp 18 is also fixed to the hub shaft 11. The hub shaft 11 is rotatably supported by a bearing support member 26 via a bearing 17. The bearing 17 has an inner race 17a, an outer race 17b, and a plurality of rolling elements 17c provided between the inner race 17a and the outer race 17b. The bearing support member 26 is fixed by a bolt 27 to a knuckle which is an underbody frame part (not shown) on the vehicle body side. The bearing support member 26 is made of steel in the same manner as the hub shaft 11 from the viewpoint of securing strength for mounting the in-wheel motor 100 on the vehicle body side. Thereby, the in-wheel motor 100 is attached to the vehicle body (not shown), and the hub shaft 11 is rotatable with respect to the vehicle body. The hub shaft 11 is arranged on the same axis as the axis of the wheel.
 ハブシャフト11には、ロータケース12が固着されている。ロータケース12は、インホイールモータ100のホイール取り付け側の側面を覆う側面部12aと側面部12aから軸方向に延びる周縁部12bを有している。ロータケース12には、軽量化と熱伝導の点からアルミニウムを用いることが望ましい。ロータケース12の周縁部12bの内周面には溝が形成されており、溝の内部には磁性体からなる円筒状のロータコア13が配置される。ロータコア13の内周面には、例えば複数の溝が形成されており、この溝にロータ磁石14が環状に固定される。ロータ磁石14としては、磁力の強いネオジム磁石を用いることが望ましい。 ロ ー タ A rotor case 12 is fixed to the hub shaft 11. The rotor case 12 has a side surface portion 12a that covers the side surface of the in-wheel motor 100 on the wheel mounting side, and a peripheral portion 12b that extends in the axial direction from the side surface portion 12a. It is desirable to use aluminum for the rotor case 12 in terms of weight reduction and heat conduction. A groove is formed in the inner peripheral surface of the peripheral portion 12b of the rotor case 12, and a cylindrical rotor core 13 made of a magnetic material is disposed inside the groove. For example, a plurality of grooves are formed on the inner peripheral surface of the rotor core 13, and the rotor magnet 14 is fixed in an annular shape in the grooves. As the rotor magnet 14, it is desirable to use a neodymium magnet having a strong magnetic force.
 環状に配置されたロータ磁石14の内周面側には、所定の間隙を介してステータコア21が配置されている。ステータコア21は、環状基部21aとこの環状基部21aから放射状に突出した複数の歯21bを有しており、電磁鋼板の積層体から構成される。歯21bは、略直方体の形状に形成される。ステータコア21の各歯21bには、ステータコイル40を卷回したボビン30が固定されている。 ス テ ー タ A stator core 21 is arranged on the inner peripheral surface side of the annularly arranged rotor magnets 14 with a predetermined gap therebetween. The stator core 21 has an annular base 21a and a plurality of teeth 21b radially protruding from the annular base 21a, and is composed of a laminated body of electromagnetic steel sheets. The teeth 21b are formed in a substantially rectangular parallelepiped shape. A bobbin 30 around which a stator coil 40 is wound is fixed to each tooth 21b of the stator core 21.
 ステータコア21の内周側にはステータコア21を支持するステータセンタ22とステータガイド23が設けられており、ステータセンタ22は、軸受支持部材26に固定されている。ステータセンタ22およびステータガイド23は、ステータコア21を支持するための部材であり、ステータコア21を軸方向の両側から挟み込んで保持する保持片22a、23aをそれぞれ有している。ステータセンタ22およびステータガイド23は、ステータコア21の内周面と軸方向両端面を位置決めした状態で、ステータコア21よりも内径側に設けられたボルト24によって固定される。ステータコア21の固定構造については後述する。ステータセンタ22およびステータガイド23は熱伝導率の高いアルミニウムから構成される。ステータコイル40の軸方向側面には、配線バス25が設けられており、ステータコイル40の巻き端41は配線バス25の外側で結線される。 ス テ ー タ A stator center 22 and a stator guide 23 that support the stator core 21 are provided on the inner peripheral side of the stator core 21, and the stator center 22 is fixed to a bearing support member 26. The stator center 22 and the stator guide 23 are members for supporting the stator core 21, and have holding pieces 22 a and 23 a that sandwich and hold the stator core 21 from both sides in the axial direction. The stator center 22 and the stator guide 23 are fixed by bolts 24 provided on the inner diameter side of the stator core 21 in a state where the inner peripheral surface of the stator core 21 and both end surfaces in the axial direction are positioned. The fixing structure of the stator core 21 will be described later. The stator center 22 and the stator guide 23 are made of aluminum having a high thermal conductivity. A wiring bus 25 is provided on the axial side surface of the stator coil 40, and the winding end 41 of the stator coil 40 is connected outside the wiring bus 25.
 軸受支持部材26あるいはステータセンタ22には、ロータの回転位置を検出するための、例えば、レゾルバからなるロータ位置検出センサ50が設けられている。ロータ位置検出センサ50からのロータ位置信号は、図示しないモータ駆動用のインバータの制御回路に送られる。インバータはロータの位置に応じてスイッチング素子によって直流電源をスイッチングして、例えば、三相交流に変換し、電流供給線60、配線バス25を通じて各ステータコイル40に電流を供給する。 ロ ー タ The bearing support member 26 or the stator center 22 is provided with a rotor position detection sensor 50 composed of, for example, a resolver for detecting the rotational position of the rotor. The rotor position signal from the rotor position detection sensor 50 is sent to a control circuit of a motor driving inverter (not shown). The inverter switches a DC power supply by a switching element according to the position of the rotor, converts the DC power into, for example, three-phase AC, and supplies a current to each stator coil 40 through the current supply line 60 and the wiring bus 25.
 ロータケース12の周縁部12bには、ホイール取り付け面の反対側を覆うモータキャップ15が設けられている。モータキャップ15は、本実施形態では、ステータセンタ22とオイルシール19を介して対向している。本実施形態では、インホイールモータ100内に水や塵が入り込むのを防ぐことができる。 モ ー タ A motor cap 15 is provided on the peripheral edge 12b of the rotor case 12 to cover the opposite side of the wheel mounting surface. In the present embodiment, the motor cap 15 faces the stator center 22 via the oil seal 19. In the present embodiment, it is possible to prevent water and dust from entering the in-wheel motor 100.
 本実施形態に係るインホイールモータ100は、軸受支持部材26、ステータコア21、ボビン30、ステータコイル40、ステータセンタ22、および、ステータガイド23は、回転しない固定部材であり、電気自動車の車体側に取り付けられる。また、ハブシャフト11、ロータケース12、ロータコア13、ロータ磁石14、および、モータキャップ15は、回転部材となる。ロータ磁石14がステータコア21の外側に位置しているため、本実施形態のインホイールモータ100は、アウターロータ型モータを構成する。電気自動車のホイールは、インホイールモータ100のロータと同じ回転数で回転する。 In the in-wheel motor 100 according to the present embodiment, the bearing support member 26, the stator core 21, the bobbin 30, the stator coil 40, the stator center 22, and the stator guide 23 are fixed members that do not rotate. It is attached. Further, the hub shaft 11, the rotor case 12, the rotor core 13, the rotor magnet 14, and the motor cap 15 serve as rotating members. Since the rotor magnet 14 is located outside the stator core 21, the in-wheel motor 100 of the present embodiment constitutes an outer rotor type motor. The wheel of the electric vehicle rotates at the same speed as the rotor of the in-wheel motor 100.
 次に、本実施形態におけるボビン30の構造について説明する。図2は、本発明の一実施形態に係るアウターロータ型モータに用いるボビンの斜視図である。図3は、図2に示すボビンを各方向から見た図と断面図であり、図3において、図3(A)はボビンの底面図、図3(B)はボビンの側面図、図1(C)はボビンの正面図、また、図3(D)は図3(A)の矢視D-Dの断面図である。以下の説明において、ボビン30の各部の位置関係は、ボビン30がステータコア21の歯21bに装着されている状態を前提に説明する。図3に示すボビン30については、X軸方向が径方向であり、正方向側が外径側、負方向側が内径側になる。また、Y軸方向とZ軸方向が、それぞれアウターロータ型モータの周方向と軸方向となる。 Next, the structure of the bobbin 30 in the present embodiment will be described. FIG. 2 is a perspective view of a bobbin used for the outer rotor type motor according to one embodiment of the present invention. 3A and 3B are a view and a cross-sectional view of the bobbin shown in FIG. 2 when viewed from each direction. In FIG. 3, FIG. 3A is a bottom view of the bobbin, FIG. 3C is a front view of the bobbin, and FIG. 3D is a cross-sectional view taken along a line DD in FIG. 3A. In the following description, the positional relationship of each part of the bobbin 30 will be described on the assumption that the bobbin 30 is mounted on the teeth 21 b of the stator core 21. In the bobbin 30 shown in FIG. 3, the X-axis direction is the radial direction, the positive direction side is the outer diameter side, and the negative direction side is the inner diameter side. The Y-axis direction and the Z-axis direction are the circumferential direction and the axial direction of the outer rotor type motor, respectively.
 ボビン30は、合成樹脂やガラス繊維強化樹脂等から成型されており、胴部31と、この胴部31の両端に外径側鍔部32と内径側鍔部33の2つの鍔部を有している。胴部31の内側は中空状に形成された中空部31aとなっており、その断面形状はステータコア21の歯21bの断面形状とほぼ等しく形成されている。ボビン30をステータコア21の歯21bに装着する際は、中空部31aに歯21bを挿入する。胴部31の周囲にはステータコイル40が卷回される。内径側鍔部33の配線バス25側の軸方向側の箇所には、ステータコイル40の巻き端41が挿入される切欠き33aが設けられている。 The bobbin 30 is molded from synthetic resin, glass fiber reinforced resin, or the like, and has a body 31 and two flanges at both ends of the body 31, an outer flange 32 and an inner flange 33. ing. The inside of the body portion 31 is a hollow portion 31a formed in a hollow shape, and the cross-sectional shape is substantially equal to the cross-sectional shape of the teeth 21b of the stator core 21. When the bobbin 30 is mounted on the teeth 21b of the stator core 21, the teeth 21b are inserted into the hollow portions 31a. A stator coil 40 is wound around the body 31. A cutout 33a into which the winding end 41 of the stator coil 40 is inserted is provided at a location on the inner side flange portion 33 on the wiring bus 25 side in the axial direction.
 内径側鍔部33のさらに内径側の軸方向両側には、ボビン30がステータコア21から径方向に移動するのを防止するための第1の係合部34と第2の係合部35が設けられている。第1の係合部34と第2の係合部35との間隔は、ステータコア21の軸方向厚さとほぼ等しく形成されている。また、第1の係合部34と第2の係合部35の周方向の幅は、図2、図3(A)に示すように、内径側鍔部33の周方向の幅とほぼ等しい幅を有している。 A first engaging portion 34 and a second engaging portion 35 for preventing the bobbin 30 from moving in the radial direction from the stator core 21 are provided on both sides of the inner diameter side flange portion 33 further on the inner diameter side in the axial direction. Have been. The interval between the first engagement portion 34 and the second engagement portion 35 is formed to be substantially equal to the axial thickness of the stator core 21. The circumferential width of the first engaging portion 34 and the second engaging portion 35 is substantially equal to the circumferential width of the inner diameter side flange portion 33 as shown in FIGS. It has a width.
 第1の係合部34には、後述するステータセンタ22に設けた係合片22cが挿入される係合孔34aが設けられている。この係合孔34aは、軸方向に貫通しており、ボビン30がステータコア21の歯21bに装着されている状態では、係合孔34aを通してステータコア21が露出している。第1の係合部34の係合孔34aの内径側には、軸方向外側に向けて突出する突起部34bが設けられている。この突起部34bは、その外径側の面にステータセンタ22の係合片22cの内径側の面が当接することによって、係合孔34aとともにボビン30がステータコア21から径方向に移動するのを防止する機能を有している。 The first engagement portion 34 is provided with an engagement hole 34a into which an engagement piece 22c provided in the stator center 22 described later is inserted. The engagement hole 34a penetrates in the axial direction, and when the bobbin 30 is mounted on the teeth 21b of the stator core 21, the stator core 21 is exposed through the engagement hole 34a. On the inner diameter side of the engagement hole 34a of the first engagement portion 34, a projection 34b projecting outward in the axial direction is provided. The protrusion 34b prevents the bobbin 30 from moving in the radial direction from the stator core 21 together with the engagement hole 34a when the inner diameter surface of the engagement piece 22c of the stator center 22 abuts on the outer diameter surface. It has a function to prevent it.
 第2の係合部35には、後述するステータガイド23に設けた係合片23cが挿入される係合孔35aが設けられている。この係合孔35aは、軸方向に貫通しており、ボビン30がステータコア21の歯21bに装着されている状態では、係合孔35aを通してステータコア21が露出している。第2の係合部35の係合孔35aの内径側には、軸方向外側に向けて突出する突起部35bが設けられている。この突起部35bは、その外径側の面にステータガイド23の係合片23cの内径側の面が当接することによって、係合孔35aとともにボビン30がステータコア21から径方向に移動するのを防止する機能を有している。 The second engagement portion 35 is provided with an engagement hole 35a into which an engagement piece 23c provided in the stator guide 23 described later is inserted. The engagement hole 35a penetrates in the axial direction, and when the bobbin 30 is mounted on the teeth 21b of the stator core 21, the stator core 21 is exposed through the engagement hole 35a. On the inner diameter side of the engagement hole 35a of the second engagement portion 35, a projection 35b projecting outward in the axial direction is provided. The protrusion 35b prevents the bobbin 30 from moving in the radial direction from the stator core 21 together with the engagement hole 35a when the inner diameter surface of the engagement piece 23c of the stator guide 23 contacts the outer diameter surface. It has a function to prevent it.
 次に、本実施形態におけるボビン30およびステータコア21の固定構造について説明する。図4は、本発明の一実施形態に係るアウターロータ型モータおいて、ステータコアにボビンを装着する様子を示す斜視図である。図5は、本発明の一実施形態において、ステータにステータセンタおよびステータガイドを装着した状態での断面図であり、図5(A)はボビンを装着した歯の部分での断面を示し、図5(B)はボビンを装着していない箇所での断面を示している。ステータコア21は、先述のとおり、環状基部21aとこの環状基部21aから放射状に突出する歯21bを備えている。図4ではコイルを卷回したボビンを1つだけ示しているが、各歯21bに、ステータコイル40を卷回したボビン30が装着される。ステータセンタ22およびステータガイド23には、ステータコア21を軸方向の両側から保持する保持片22a、23aがそれぞれ形成されている。 Next, the structure for fixing the bobbin 30 and the stator core 21 in the present embodiment will be described. FIG. 4 is a perspective view showing how a bobbin is mounted on a stator core in the outer rotor type motor according to one embodiment of the present invention. FIG. 5 is a cross-sectional view showing a state in which a stator center and a stator guide are mounted on a stator according to an embodiment of the present invention. FIG. 5A is a cross-sectional view of a tooth portion on which a bobbin is mounted. FIG. 5 (B) shows a cross section at a location where the bobbin is not mounted. As described above, the stator core 21 includes the annular base 21a and the teeth 21b radially protruding from the annular base 21a. Although FIG. 4 shows only one bobbin around which a coil is wound, a bobbin 30 around which a stator coil 40 is wound is mounted on each tooth 21b. On the stator center 22 and the stator guide 23, holding pieces 22a and 23a for holding the stator core 21 from both sides in the axial direction are formed, respectively.
 ステータセンタ22の保持片22aは、ボビン30の第1の係合部34の突起部34bの軸方向端面を覆いステータセンタ22の外周部に位置する環状部22bと、ボビン30をステータコア21に装着した際に、この環状部22bの外径側からボビン30の第1の係合部34の係合孔34aに向けて軸方向に突出する複数の係合片22cを一体に備えている。また、ステータガイド23の保持片23aは、ボビン30の第2の係合部35の突起部35bの軸方向端面を覆いステータガイド23の外周部に位置する環状部23bと、ボビン30をステータコア21に装着した際に、この環状部23bの外径側からボビン30の第2の係合部35の係合孔35aに向けて軸方向に突出する複数の係合片23cを一体に備えている。 The holding piece 22a of the stator center 22 covers the axial end face of the projection 34b of the first engagement portion 34 of the bobbin 30, and the annular portion 22b located on the outer periphery of the stator center 22 and the bobbin 30 are mounted on the stator core 21. In this case, a plurality of engagement pieces 22c are integrally provided that protrude in the axial direction from the outer diameter side of the annular portion 22b toward the engagement hole 34a of the first engagement portion 34 of the bobbin 30. The holding piece 23a of the stator guide 23 covers an axial end face of the projection 35b of the second engaging portion 35 of the bobbin 30 and an annular portion 23b located on the outer peripheral portion of the stator guide 23. A plurality of engaging pieces 23c are integrally provided that project in the axial direction from the outer diameter side of the annular portion 23b toward the engaging hole 35a of the second engaging portion 35 of the bobbin 30 when mounted on the bobbin 30. .
 ボビン30およびステータコア21の固定に当たっては、まず、ステータコア21の全ての歯21bにステータコイル40を卷回したボビン30を装着する。次に、このステータコア21をステータセンタ22の上に載置する、その際に、ステータセンタ22の係合片22cがボビン30の第1の係合部34の係合孔34aに挿入されるように、ステータコア21を位置決めする。次に、ステータコア21の上部にステータガイド23を載置する。その際に、ステータガイド23の係合片23cがボビン30の各係合孔35aに挿入されるようにステータガイド23を位置決めする。 In fixing the bobbin 30 and the stator core 21, first, the bobbin 30 on which the stator coil 40 is wound is mounted on all the teeth 21 b of the stator core 21. Next, the stator core 21 is placed on the stator center 22. At this time, the engagement pieces 22 c of the stator center 22 are inserted into the engagement holes 34 a of the first engagement portions 34 of the bobbin 30. Next, the stator core 21 is positioned. Next, the stator guide 23 is placed on the upper part of the stator core 21. At this time, the stator guide 23 is positioned so that the engagement pieces 23c of the stator guide 23 are inserted into the respective engagement holes 35a of the bobbin 30.
 ステータコア21、ステータセンタ22、および、ステータガイド23の位置決めが終了した後、ボルト24によって、ステータセンタ22とステータガイド23とを固定する。この状態では、ステータセンタ22の係合片22cの先端とステータガイド23の係合片23cの先端は直接ステータコア21に当接しステータコア21を軸方向に位置決めしている。また、ステータセンタ22の環状部22bはボビン30の第1の係合部34の突起部34bの軸方向先端面を押圧することがなく、かつ、ステータガイド23の環状部23bはボビン30の第2の係合部35の突起部35bの軸方向先端面を押圧することがないように、各部材の寸法が決められている。 After the positioning of the stator core 21, the stator center 22, and the stator guide 23 is completed, the stator center 22 and the stator guide 23 are fixed by the bolts 24. In this state, the tip of the engagement piece 22c of the stator center 22 and the tip of the engagement piece 23c of the stator guide 23 directly contact the stator core 21 to position the stator core 21 in the axial direction. Further, the annular portion 22b of the stator center 22 does not press the axial end surface of the projection 34b of the first engagement portion 34 of the bobbin 30, and the annular portion 23b of the stator guide 23 is The dimensions of each member are determined so that the axial end surface of the protrusion 35b of the second engaging portion 35 is not pressed.
 ステータコア21は、ステータセンタ22の係合片22cとステータガイド23の係合片23cによって軸方向から位置決めされて保持される。また、ステータセンタ22の係合片22cの内径側の面がボビン30の第1の係合部34の係合孔34aの内径側の面に当接し、さらに、ステータガイド23の係合片23cの内径側の面がボビン30の各係合孔35aの内径側の面に当接するため、ボビン30がステータコア21から径方向に移動することがない。 The stator core 21 is axially positioned and held by the engaging pieces 22c of the stator center 22 and the engaging pieces 23c of the stator guide 23. The inner surface of the engagement piece 22c of the stator center 22 contacts the inner surface of the engagement hole 34a of the first engagement portion 34 of the bobbin 30. The inner surface of the bobbin 30 contacts the inner surface of each of the engagement holes 35a of the bobbin 30, so that the bobbin 30 does not move in the radial direction from the stator core 21.
 このように、本実施形態では、樹脂材料から構成されたボビン30にステータセンタ22やステータガイド23から直接押圧力が加わることがない。また、アウターロータ型モータの運転停止によるステータコイル40からの発熱に起因して、ボビン30が膨張収縮を繰り返しても、ボビン30にステータセンタ22やステータガイド23から力が加わることがない。そして、ステータコア21からの熱は、ステータセンタ22の係合片22cおよびステータガイド23の係合片を介してステータセンタ22に伝導する。このため、ステータコア21の放熱効果が良好となる。なお、ステータセンタ22の係合片22cとステータガイド23の係合片23cに加えて、ステータセンタ22とステータガイドの他の部分でステータコア21を位置決めするようにしてもよい。 As described above, in the present embodiment, the pressing force is not directly applied to the bobbin 30 made of the resin material from the stator center 22 or the stator guide 23. Further, even if the bobbin 30 repeatedly expands and contracts due to heat generation from the stator coil 40 due to the stoppage of the operation of the outer rotor type motor, no force is applied to the bobbin 30 from the stator center 22 or the stator guide 23. Then, the heat from the stator core 21 is transmitted to the stator center 22 via the engagement pieces 22c of the stator center 22 and the engagement pieces of the stator guide 23. Therefore, the heat radiation effect of the stator core 21 is improved. The stator core 21 may be positioned by the stator center 22 and other portions of the stator guide in addition to the engagement pieces 22c of the stator center 22 and the engagement pieces 23c of the stator guide 23.
 また、本実施形態では、ボビン30の配線バス25側の第1の係合部34の径方向の長さは、第2の係合部35の長さよりも長く構成している。これにより、図1に示すように、配線バス25の一部をステータセンタ22の係合片22cに当接させることができるため、配線バス25の径方向の位置決めが可能になる。 In the present embodiment, the radial length of the first engaging portion 34 of the bobbin 30 on the wiring bus 25 side is configured to be longer than the length of the second engaging portion 35. As a result, as shown in FIG. 1, a part of the wiring bus 25 can be brought into contact with the engaging piece 22c of the stator center 22, so that the positioning of the wiring bus 25 in the radial direction becomes possible.
 さらに、第1の係合部34の突起部34b、第2の係合部35の突起部35bはボビン30がステータコア21から抜け出すのを防止するために必要とされる強度に応じて設けるか否かを選択することができる。そして、ステータセンタ22の保持片22aとステータガイド23の保持片23aの形状も、第1の係合部34の突起部34bと第2の係合部35の突起部35bの有無に応じて、その形状を変更すればよい。例えば、第1の係合部34の突起部34bを設けない場合は、ステータセンタ22の保持片22aの環状部22bは、ボビン30の第1の係合部34の軸方向端面を覆う形状となり、ステータガイド23の保持片23aの環状部23bは、ボビン30の第2の係合部35の軸方向端面を覆う形状となる。 Furthermore, whether or not the protrusion 34b of the first engagement portion 34 and the protrusion 35b of the second engagement portion 35 are provided according to the strength required to prevent the bobbin 30 from coming off the stator core 21 is determined. You can choose. The shape of the holding piece 22a of the stator center 22 and the holding piece 23a of the stator guide 23 also depends on the presence or absence of the protrusion 34b of the first engagement portion 34 and the protrusion 35b of the second engagement portion 35. What is necessary is just to change the shape. For example, when the projection 34b of the first engagement portion 34 is not provided, the annular portion 22b of the holding piece 22a of the stator center 22 has a shape that covers the axial end surface of the first engagement portion 34 of the bobbin 30. The annular portion 23b of the holding piece 23a of the stator guide 23 has a shape that covers the axial end surface of the second engagement portion 35 of the bobbin 30.
 以上、本発明のアウターロータ型モータは、インホイールモータとして用いる場合は、電気自動車の車輪のホイール内にその全てあるいは大部分を収納することが可能である。また、ホイール外であっても、車輪と同一軸上にアウターロータ型モータを配置してギア等を介さずに電気自動車の車輪を直接駆動することができる。さらに、本発明のアウターロータ型モータは、電気自動車以外の他の用途にも適用可能である。 As described above, when the outer rotor type motor of the present invention is used as an in-wheel motor, all or most of the outer rotor type motor can be housed in the wheel of an electric vehicle. Also, even outside the wheel, the wheel of the electric vehicle can be directly driven without interposing a gear or the like by arranging the outer rotor type motor on the same axis as the wheel. Further, the outer rotor type motor of the present invention can be applied to other uses than electric vehicles.
11…ハブシャフト、12…ロータケース、12a…側面部、12b…周縁部、13…ロータコア、14…ロータ磁石、15…モータキャップ、16…ホイール取り付け用ハブボルト、17…軸受、17a…内輪、17b…外輪、17c…転動体、18…ブレーキクランプ、19…オイルシール、21…ステータコア、21a…環状基部、21b…歯、22…ステータセンタ、22a…保持片、22b…環状部、22c…係合片、23…ステータガイド、23a…保持片、23b…環状部、23c…係合片、24…ボルト、25…配線バス、26…軸受支持部材、27…ボルト、30…ボビン、31…胴部、31a…中空部、32…外径側鍔部、33…内径側鍔部、33a…切欠き、34…第1の係合部、34a…係合孔、34b…突起部、35…第2の係合部、35a…係合孔、35b…突起部、40…ステータコイル、41…巻き端、50…ロータ位置検出センサ、60…電流供給線、100…インホイールモータ。 DESCRIPTION OF SYMBOLS 11 ... Hub shaft, 12 ... Rotor case, 12a ... Side surface part, 12b ... Peripheral part, 13 ... Rotor core, 14 ... Rotor magnet, 15 ... Motor cap, 16 ... Wheel mounting hub bolt, 17 ... Bearing, 17a ... Inner ring, 17b ... outer ring, 17c ... rolling element, 18 ... brake clamp, 19 ... oil seal, 21 ... stator core, 21a ... annular base, 21b ... teeth, 22 ... stator center, 22a ... holding piece, 22b ... annular part, 22c ... engagement Pieces, 23: stator guide, 23a: holding piece, 23b: annular portion, 23c: engaging piece, 24: bolt, 25: wiring bus, 26: bearing support member, 27: bolt, 30: bobbin, 31: trunk 31a: hollow portion, 32: outer diameter side flange portion, 33: inner diameter side flange portion, 33a: notch, 34: first engagement portion, 34a: engagement hole, 34b: projection portion, 5 ... second engaging portion, 35a ... engagement hole, 35b ... protrusion, 40 ... stator coil, 41 ... winding end, 50 ... rotor position detection sensor, 60 ... current supply line, 100 ... in-wheel motor.

Claims (3)

  1.  環状基部の外径側に放射状に複数の歯を有するステータコアと、
     該ステータコアを軸方向の両側から位置決めするステータセンタおよびステータガイドと、
     コイルが卷回されて複数の前記ステータコアの前記歯に装着されるボビンを有する、アウターロータ型モータであって、
     前記ボビンの内径側の前記軸方向の両側に、前記軸方向に貫通する係合孔を有して突出する係合部が設けられ、
     前記ステータセンタおよびステータガイドのそれぞれの外周部に、前記軸方向に突出する複数の係合片が設けられ、
     前記ボビンが前記ステータコアに装着された状態で、前記ステータセンタおよびステータガイドの前記係合片が前記ボビンの前記係合孔に挿入されるとともに、前記係合片の先端が前記ステータコアの軸方向端面に当接して前記ステータコアを前記軸方向に位置決めしていることを特徴とする、アウターロータ型モータ。
    A stator core having a plurality of teeth radially on the outer diameter side of the annular base;
    A stator center and a stator guide for positioning the stator core from both sides in the axial direction;
    An outer rotor type motor having a bobbin around which a coil is wound and attached to the teeth of the plurality of stator cores,
    On both sides in the axial direction on the inner diameter side of the bobbin, there is provided an engaging portion projecting with an engaging hole penetrating in the axial direction,
    A plurality of engagement pieces projecting in the axial direction are provided on respective outer peripheral portions of the stator center and the stator guide,
    In a state where the bobbin is mounted on the stator core, the engagement pieces of the stator center and the stator guide are inserted into the engagement holes of the bobbin, and a tip of the engagement piece is an axial end face of the stator core. Wherein the stator core is positioned in the axial direction by contact with the outer rotor type motor.
  2.  前記ボビンは、該ボビンが前記ステータコアに装着された状態で、径方向に離間する2つの鍔部を有し、内径側の鍔部の前記軸方向側の箇所に、前記コイルの巻き端が挿入される切欠きを有することを特徴とする、請求項1に記載のアウターロータ型モータ。 The bobbin has two flanges spaced apart in the radial direction in a state where the bobbin is mounted on the stator core, and a winding end of the coil is inserted into a position on the axial side of the flange on the inner diameter side. The outer rotor type motor according to claim 1, wherein the outer rotor type motor has a notch formed.
  3.  請求項1または2に記載のアウターロータ型モータが、車輪のホイールに設けられ、前記車輪が前記アウターロータ型モータによって直接駆動されることを特徴とする電気自動車。 An electric vehicle, wherein the outer rotor type motor according to claim 1 or 2 is provided on a wheel of a wheel, and the wheel is directly driven by the outer rotor type motor.
PCT/JP2019/000526 2018-08-24 2019-01-10 Outer rotor-type motor and electric vehicle WO2020039608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157654 2018-08-24
JP2018157654A JP6443958B1 (en) 2018-08-24 2018-08-24 Outer rotor type motor and electric vehicle

Publications (1)

Publication Number Publication Date
WO2020039608A1 true WO2020039608A1 (en) 2020-02-27

Family

ID=64899542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000526 WO2020039608A1 (en) 2018-08-24 2019-01-10 Outer rotor-type motor and electric vehicle

Country Status (4)

Country Link
JP (1) JP6443958B1 (en)
CN (1) CN110149017A (en)
TW (1) TW202010220A (en)
WO (1) WO2020039608A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114054A (en) * 2019-01-08 2020-07-27 トヨタ自動車株式会社 In-wheel motor
JP7092066B2 (en) * 2019-02-25 2022-06-28 株式会社デンソー Rotating electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054246A (en) * 1999-08-06 2001-02-23 Sawafuji Electric Co Ltd Stator insulation structure in outer rotor type multipole power generator
WO2004030180A1 (en) * 2002-09-24 2004-04-08 Sawafuji Electric Co., Ltd. Stator for outer rotor multipole generator and method of assembling the stator
JP2012016216A (en) * 2010-07-02 2012-01-19 Hitachi Industrial Equipment Systems Co Ltd Rotation electrical machinery
JP2012161195A (en) * 2011-02-02 2012-08-23 Hitachi Industrial Equipment Systems Co Ltd Electric motor
JP2017229178A (en) * 2016-06-23 2017-12-28 公益財団法人岡山県産業振興財団 Bobbin structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305851A (en) * 2001-03-30 2002-10-18 Mitsuba Corp Salient pole structure of stator
JP5004110B2 (en) * 2010-07-30 2012-08-22 本田技研工業株式会社 Outer rotor type salient pole concentrated winding motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054246A (en) * 1999-08-06 2001-02-23 Sawafuji Electric Co Ltd Stator insulation structure in outer rotor type multipole power generator
WO2004030180A1 (en) * 2002-09-24 2004-04-08 Sawafuji Electric Co., Ltd. Stator for outer rotor multipole generator and method of assembling the stator
JP2012016216A (en) * 2010-07-02 2012-01-19 Hitachi Industrial Equipment Systems Co Ltd Rotation electrical machinery
JP2012161195A (en) * 2011-02-02 2012-08-23 Hitachi Industrial Equipment Systems Co Ltd Electric motor
JP2017229178A (en) * 2016-06-23 2017-12-28 公益財団法人岡山県産業振興財団 Bobbin structure

Also Published As

Publication number Publication date
CN110149017A (en) 2019-08-20
TW202010220A (en) 2020-03-01
JP6443958B1 (en) 2018-12-26
JP2020031524A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
EP2200154B1 (en) Axial gap motor
US10050480B2 (en) Axial flux machine having a lightweight design
US9793768B2 (en) Rotor and rotary electric machine having the same
WO2020039608A1 (en) Outer rotor-type motor and electric vehicle
JPWO2017150487A1 (en) motor
JP2012508671A (en) Electric motor wheel structure
WO2017199828A1 (en) Electric linear motion actuator
JP2017186006A (en) Motor and electric vehicle
JP2011172345A (en) Fixing structure of resolver sensor
JP7406546B2 (en) motor
KR20180050810A (en) motor with types of segmented rotor
JP5470913B2 (en) Motor core, motor core unit using the same, brushless motor, electric power steering device using the same, and method for manufacturing motor core unit
JP7330010B2 (en) Rotors, motors and brushless wiper motors
JP5580064B2 (en) Hub dynamo
JP7330011B2 (en) Rotors, motors and brushless wiper motors
JP2011239575A (en) Rotary electric machine and stator for rotary electric machine
JP5966399B2 (en) Brushless motor and electric power steering device
JP2009183058A (en) Method for securing stator core, and brushless motor
JP2005045923A (en) Method of manufacturing rotor for motor, and rotor for motor
WO2024043004A1 (en) In-wheel motor
JP2013005464A (en) Rotary electric machine
JP2010110163A (en) Axial gap type motor and method of manufacturing its rotor
JP2023175187A (en) Electric vehicle motor
JP4482900B2 (en) Axial gap type motor
WO2021131951A1 (en) Electric motor, automotive power apparatus provided with said electric motor, generator, and generator-equipped wheel bearing provided with said generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851872

Country of ref document: EP

Kind code of ref document: A1