WO2020039588A1 - 表示デバイスの製造方法および表示デバイス - Google Patents

表示デバイスの製造方法および表示デバイス Download PDF

Info

Publication number
WO2020039588A1
WO2020039588A1 PCT/JP2018/031411 JP2018031411W WO2020039588A1 WO 2020039588 A1 WO2020039588 A1 WO 2020039588A1 JP 2018031411 W JP2018031411 W JP 2018031411W WO 2020039588 A1 WO2020039588 A1 WO 2020039588A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
gate
gate electrode
resist pattern
transistor
Prior art date
Application number
PCT/JP2018/031411
Other languages
English (en)
French (fr)
Inventor
庸輔 神崎
誠二 金子
貴翁 斉藤
昌彦 三輪
雅貴 山中
屹 孫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/031411 priority Critical patent/WO2020039588A1/ja
Priority to US17/270,446 priority patent/US12114540B2/en
Publication of WO2020039588A1 publication Critical patent/WO2020039588A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • the present invention relates to a method for manufacturing a display device formed on a substrate and a display device.
  • an organic EL display device has a configuration including a pixel circuit for supplying a current to a pixel in a light emitting layer, and the pixel circuit usually forms a metal film on a substrate and patterns the metal film. It is manufactured including a patterning step. In patterning a metal film, a resist film formed on the metal film is exposed and developed (photo step) by photolithography, and an etching mask is provided by the developed resist film, and etching is performed.
  • an etching residue may be generated, which may cause a leak defect which causes a short circuit of a wiring or the like.
  • a method of manufacturing a liquid crystal display element as a countermeasure against the above-described etching residue, for example, a rework process in which an etching mask is formed and etching is performed again is known (for example, see Patent Document 1).
  • a stripe pattern of a metal wiring is formed by etching, and a mist-like etchant is sprayed to repair an etching residual defect between stripe patterns.
  • a resist pattern for repairing residual defects in metal wiring etching is formed prior to spraying the etching solution.
  • a driving transistor is used for control.
  • an oxide semiconductor is applied to the OLED, there is a problem that it is difficult to control luminance depending on characteristics of the driving transistor.
  • the defective portion is repaired, but no consideration is given to adjusting the characteristics of the driving transistor.
  • the present invention has been made to solve the above problems, and has as its object to provide a method for manufacturing a display device in which characteristics of a transistor are changed and a display device.
  • a method for manufacturing a display device is a method for manufacturing a display device having a first transistor formed on a substrate, comprising: forming a semiconductor layer on an oxide semiconductor layer on the substrate; A semiconductor layer etching step of etching the oxide semiconductor layer; an insulating layer forming step of forming a gate insulating film on the substrate and the oxide semiconductor layer; and a gate electrode on the gate insulating film.
  • the conductive film for a gate electrode is etched using the first resist pattern as a mask, and the conductive film for a gate electrode is formed into a first resist pattern gate based on the first resist pattern.
  • a second gate etching step of forming a gate electrode based on the pattern, and stripping the second resist pattern And the second peeling step is performed in order to manufacture the display device, and further, using the gate insulating layer as a mask, a conductive step of making the oxide semiconductor layer outside the first resist pattern a conductive region. It is characterized by including.
  • the method for manufacturing a display device according to the present invention may be configured such that in the second photo process, the same mask pattern as in the first photo process is used, and the exposure amount is set to be different from that in the first photo process.
  • the first resist pattern has a line width in a channel length direction, It may be configured to be thicker than the resist pattern.
  • the display device includes a plurality of wirings corresponding to a pixel circuit, the plurality of wirings being formed in the same layer with the same material with respect to the gate electrode.
  • the width of the wiring formed in the first gate etching step may be larger than the width of the wiring formed in the second gate etching step. Good.
  • the display device includes a plurality of wirings corresponding to a pixel circuit, the plurality of wirings being formed in the same layer with the same material with respect to the gate electrode.
  • the first gate etching step is performed in a state where at least two or more wirings are connected, and the second gate etching step is performed while forming the first gate etching step.
  • a configuration may be adopted in which interconnects formed in a connected state in the gate etching step are separated.
  • one of the plurality of wirings is a gate control line and a light emission control line
  • the gate control line and the light emission corresponding to the same pixel circuit are provided.
  • the second gate etching step may be configured to separate the gate control line and the light emission control line formed in the connected state in the first gate etching step.
  • the resist in the second photo step, may include a first transistor region covering a part of the gate electrode, and a resist covering a whole of the gate electrode. Forming the first transistor by etching the gate electrode in the first transistor region, and protecting the gate electrode in the second transistor region with a resist in the second gate etching step.
  • a transistor may be formed, and the oxide semiconductor layer of the second transistor may be provided with the conductor region and a first resistance region located below the gate electrode.
  • the conductive step may be performed between the insulating layer etching step and the second photo step.
  • the conductive step may be performed after the second gate etching step.
  • the method for manufacturing a display device according to the present invention may include a step of forming a display element after the second gate etching step.
  • a display device is a display device having a first transistor formed on a substrate, wherein the first transistor includes an oxide semiconductor layer formed on the substrate and the oxide semiconductor layer.
  • a gate insulating layer formed on the gate insulating layer, and a gate electrode formed on the gate insulating layer, wherein the oxide semiconductor layer has a conductive region and a conductive region below the gate electrode.
  • a first resistance region located between the conductor region and the first resistance region, and a second resistance region located outside the gate electrode is provided between the conductor region and the first resistance region. The resistance value is larger than that of the second resistance region.
  • the gate insulating layer may cover the second resistance region, and may have a length in a channel length direction longer than that of the gate electrode.
  • the gate insulating layer may have a shape matching the gate electrode, and the second resistance region may be provided outside the gate insulating layer.
  • a second transistor is provided over the substrate, and the second transistor is formed over the oxide semiconductor layer formed over the substrate and over the oxide semiconductor layer.
  • the semiconductor device further includes the gate insulating layer formed, and the gate electrode formed on the gate insulating layer, wherein the oxide semiconductor layer is formed under the conductive region and the gate electrode.
  • the gate insulating layer has a shape matching the first resistance region and the gate electrode, and the first resistance region is provided in contact with the conductor region. Configuration.
  • FIG. 9 is a schematic cross-sectional view illustrating a transistor before a protective layer is formed in a second embodiment.
  • FIG. 11 is a schematic cross-sectional view schematically illustrating a display device according to a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a second transistor whose entire surface is covered with a resist mask.
  • FIG. 4 is a schematic top view showing a wiring corresponding to a first resist pattern.
  • FIG. 4 is a schematic top view showing a wiring corresponding to a second resist pattern.
  • FIG. 1 is a schematic sectional view schematically showing the display device according to the first embodiment of the present invention. Note that hatching is omitted in FIG. 1 in consideration of the legibility of the drawings.
  • the first transistor 1a in the display device 1 includes a substrate 2, a base layer 3, an oxide semiconductor layer 4, a gate insulating layer 5, a gate electrode 6, and a protective layer. 7 are sequentially laminated. The manufacturing process of the first transistor 1a and details of each part will be described with reference to FIGS.
  • first transistor 1a one transistor formed on the substrate 2 is shown in an enlarged manner, and a plurality of transistors may be further formed on the substrate 2.
  • the underlayer 3 is formed so as to cover the entire substrate 2. Note that, for the sake of explanation, a direction along the surface of the substrate 2 may be referred to as a channel length direction X below. Also, a second transistor 1b and a first transistor 1a, which will be described later, may be collectively referred to as a transistor.
  • the oxide semiconductor layer 4 is provided on the base layer 3 and is arranged for each transistor. That is, the oxide semiconductor layer 4 is provided separately from the oxide semiconductor layer 4 in another transistor.
  • the oxide semiconductor layer 4 includes a conductor region 4a located at both ends in the channel length direction X, a first resistance region 4b located at the center in the channel length direction X, the conductor region 4a and the first resistance region 4b. And the second resistance region 4c provided between the two.
  • the conductor region 4a is a region where the resistance of the oxide semiconductor is reduced
  • the first resistance region 4b is a region where the resistance of the oxide semiconductor is not reduced.
  • the gate insulating layer 5 (first resist pattern gate insulating layer 5b) is provided on the oxide semiconductor layer 4 and overlaps the first resistance region 4b and the second resistance region 4c of the oxide semiconductor layer 4. .
  • the gate electrode 6 (second resist pattern gate electrode 6c) is provided on the gate insulating layer 5 and faces the first resistance region 4b via the gate insulating layer 5. Therefore, the second resistance region 4c is located outside the gate electrode 6.
  • the gate insulating layer 5 is formed to be longer in the channel length direction X than the gate electrode 6.
  • the first resist pattern gate insulating layer 5b indicates that the gate insulating layer 5 corresponds to the first resist pattern
  • the second resist pattern gate electrode 6c indicates that the gate electrode 6 corresponds to the second resist pattern. Indicates that they are supported.
  • the first resist pattern and the second resist pattern will be described in detail with reference to FIGS.
  • the protective layer 7 is formed so as to cover the oxide semiconductor layer 4 and the gate electrode 6.
  • a source electrode 8 left in FIG. 1
  • a drain electrode 9 right in FIG. 1
  • the source electrode 8 and the drain electrode 9 are provided apart from each other in the channel length direction X.
  • the source electrode 8 is electrically connected to one conductor region 4a (the left side in FIG. 1) of the oxide semiconductor layer 4 via a source contact hole 7a provided in the protective layer 7.
  • the drain electrode 9 is electrically connected to the other conductor region 4a (the right side in FIG. 1) of the oxide semiconductor layer 4 via a drain contact hole 7b provided in the protective layer 7.
  • FIG. 2 is a schematic cross-sectional view showing the transistor after the semiconductor layer forming step and the semiconductor layer etching step.
  • the underlayer 3 is a 375 nm thick SiO2 film formed by a CVD method.
  • the underlayer 3 is not limited to this, and for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy; x> y), silicon nitride oxide (SiNxOy; x> y), aluminum oxide, And tantalum oxide or the like, and a plurality of layers may be stacked.
  • the oxide semiconductor layer 4 is formed on the base layer 3.
  • the oxide semiconductor layer 4 is formed by, for example, a sputtering method, and is an In—Ga—Zn—O-based semiconductor film having a thickness of 30 nm to 100 nm.
  • the oxide semiconductor layer 4 is formed into an island shape corresponding to each transistor by patterning by a photolithography process and etching.
  • FIG. 3 is a schematic cross-sectional view showing the transistor after the insulating layer forming step and the gate forming step.
  • FIG. 3 shows a state in which the gate insulating film 5a and the conductive film 6a for a gate electrode are formed so as to cover the oxide semiconductor layer 4 in FIG.
  • the gate insulating film 5a is formed of silicon oxide (SiOx) formed by a CVD method and has a thickness of 80 nm or more and 250 nm or less, for example, 150 nm. I have.
  • the gate insulating film 5a is a base of the gate insulating layer 5, and may be formed of the same material as the base layer 3, or may have a stacked structure in which a plurality of layers are stacked.
  • the conductive film 6a for a gate electrode is a base of the gate electrode 6, is formed by a sputtering method, and is formed by stacking an Al film having a thickness of 350 nm as a lower layer and a MoN film having a thickness of 50 nm as an upper layer. It is a membrane.
  • the conductive film 6a for a gate electrode is not limited to this. For example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu) ), An alloy film containing these elements as a component, or a stacked film containing a plurality of films among them.
  • FIG. 4 is a schematic sectional view showing the transistor in the first photo process.
  • FIG. 5 is a schematic cross-sectional view showing the transistor after the first gate etching step and the insulating layer etching step.
  • FIG. 5 shows a state in which etching (for example, dry etching) of the gate electrode conductive film 6a and the gate insulating film 5a is performed simultaneously with respect to FIG. That is, in the first gate etching step and the insulating layer etching step, etching is continuously performed using the same resist mask Re. As a result, portions of the gate electrode conductive film 6a and the gate insulating film 5a shown in FIG. 4 that are not covered with the resist mask Re are removed, and the first resist pattern gate electrode 6b and the One resist pattern gate insulating layer 5b remains. As a result, the first resist pattern gate electrode 6b and the first resist pattern gate insulating layer 5b match in patterning shape and are formed into a shape based on the first resist pattern.
  • etching for example, dry etching
  • the term “matching” here does not mean strict agreement, but also includes a deviation of about several ⁇ m due to a difference in etching rate.
  • FIG. 6 is a schematic cross-sectional view showing a transistor in a conductive process.
  • a first peeling step is performed, and the resist mask Re is removed after the etching for forming the first resist pattern gate electrode 6b and the first resist pattern gate insulating layer 5b is completed.
  • a plasma process is performed on the entire surface of the substrate 2 from above the first resist pattern gate electrode 6b.
  • the plasma processing is, for example, a hydrogen plasma processing or a He plasma processing.
  • the first resist pattern gate electrode 6b functions as a mask, and only the portion of the oxide semiconductor layer 4 that is not covered with the first resist pattern gate electrode 6b is reduced in resistance. That is, the resistance of the first resistance region 4b immediately below the first resist pattern gate electrode 6b is not reduced, and the resistance of the conductor region 4a is reduced.
  • the conductive step is not limited to after the first etching step, but may be performed in a different order. The details will be described later.
  • FIG. 7 is a schematic sectional view showing the transistor in the second photo process.
  • a resist mask Re patterned by a photolithography process is formed on the first resist pattern gate electrode 6b in the state shown in FIG.
  • the resist mask Re here is provided in a portion overlapping the first resistance region 4b shown in FIG. 1, and is formed as a second resist pattern covering only a part of the first resist pattern gate electrode 6b.
  • the resist mask Re based on the second resist pattern has a smaller range than the first resist pattern, and the first resist pattern gate electrode 6b formed according to the first resist pattern has Some are exposed.
  • FIG. 8 is a schematic sectional view showing the transistor in the second gate etching step.
  • FIG. 8 shows a state in which the first resist pattern gate electrode 6b is etched (for example, dry-etched) with respect to FIG.
  • the portion of the first resist pattern gate electrode 6b that is not covered by the resist mask Re is removed, and is shaped into a shape based on the second resist pattern (second resist pattern gate electrode 6c).
  • the first resist pattern gate insulating layer 5b is not etched and maintains a shape based on the first resist pattern.
  • the first resistance region 4b immediately below the second resist pattern gate electrode 6c becomes narrower, and the second resist pattern gate electrode 6c is provided between the conductor region 4a and the first resistance region 4b. An uncovered second resistance region 4c is provided.
  • the oxide semiconductor layer 4 (particularly, the second resistance The resistance of the region 4c) may be reduced.
  • FIG. 9 is a schematic cross-sectional view showing a transistor before a protective layer is formed
  • FIG. 10 is a schematic plan view of the transistor shown in FIG.
  • the gate electrode 6 extends outside the oxide semiconductor layer 4, and serves as, for example, a gate wiring connected to another transistor or the like.
  • FIG. 10 shows a configuration in which the gate electrode 6 extends linearly.
  • the present invention is not limited to this, and the extension direction may be appropriately changed according to the position of the connection target.
  • the gate insulating layer 5 is slightly extended to the outside of the oxide semiconductor layer 4 in order to easily distinguish the gate electrode 6 from the gate insulating layer 5.
  • the present invention is not limited thereto.
  • the gate electrode 6 may be extended to be connected to another transistor or the like. The shape of the wiring including the gate electrode 6 will be described in detail with reference to FIGS. 17A and 17B described later.
  • the protective layer 7 covering the oxide semiconductor layer 4, the gate insulating layer 5, and the gate electrode 6 is formed in the state shown in FIG.
  • the protective layer 7 is formed of the same material and method as the underlayer 3, and has a thickness of, for example, 100 nm or more and 500 nm or less.
  • a 100-nm-thick SiNx film and a 300-nm-thick SiO2 film are continuously formed by the CVD method.
  • a heat treatment (annealing treatment) is performed.
  • the temperature of the annealing treatment is, for example, 200 to 400 ° C.
  • the oxide semiconductor layer 4 is annealed together with the protective layer 7.
  • a contact hole exposing a part of the oxide semiconductor layer 4 is formed in the protective layer 7 by a known photolithography process.
  • the source contact hole 7a corresponding to the source electrode 8 is provided at a position overlapping with one conductive region 4a
  • the drain contact hole 7b corresponding to the drain electrode 9 is provided in the other conductive region 4a. Is provided at a position overlapping with.
  • a conductive film for electrodes serving as a base for the source electrode 8 and the drain electrode 9 is formed on the protective layer 7 and in the contact hole.
  • the materials exemplified for the gate electrode 6 can be used.
  • a stacked film in which a 30-nm-thick Ti film is used as a lower layer, a 300-nm-thick Al film is used as a main layer, and a 50-nm-thick Ti film is used as an upper layer is used.
  • the first transistor 1a shown in FIG. 1 is formed. That is, the electrode conductive film is formed into a shape separated by the source electrode 8 and the drain electrode 9 by the patterning.
  • the source electrode 8 and the drain electrode 9 extend to the outside of the oxide semiconductor layer 4, and may be, for example, wirings connected to another transistor or the like.
  • a planarization film may be provided so as to cover the upper surface of the transistor (the side on which the source electrode 8 and the drain electrode 9 are formed), and a pixel electrode or the like may be provided over the planarization film. Is also good. Further, a display element such as an OLED, a QLED, and an LCD, which will be described later, may be provided above the transistor.
  • the conductor region 4a is formed between the oxide semiconductor layer 4 (the first resistance region 4b) immediately below the gate electrode 6 and the oxide semiconductor layer 4 serving as the conductor region 4a. Since the oxide semiconductor layer 4 (the second resistance region 4c) which is not provided is provided, characteristics of the transistor can be changed. Specifically, in the first transistor 1a, as a result of providing the second resistance region 4c, the S value (threshold coefficient) increases, and the change in the current value with respect to the gate voltage becomes gentle. This makes it possible to easily control the brightness that changes according to the current value.
  • the oxide semiconductor layer 4 is not limited to the above-described material, and may be formed of another material.
  • the oxide semiconductor included in the oxide semiconductor layer 4 may be, for example, an amorphous oxide semiconductor (amorphous oxide semiconductor) or a crystalline oxide semiconductor having a crystalline portion.
  • Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is substantially perpendicular to a layer surface.
  • the oxide semiconductor layer 4 may have a stacked structure of two or more layers.
  • the oxide semiconductor layer 4 includes an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer. You may go out.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included, or a plurality of amorphous oxide semiconductor layers may be included.
  • the oxide semiconductor layer 4 may include, for example, at least one metal element among In, Ga, and Zn.
  • the oxide semiconductor layer 4 includes an In—Ga—Zn—O-based semiconductor (eg, Indium gallium zinc oxide) was used.
  • the In-Ga-Zn-O-based semiconductor may be amorphous or crystalline.
  • a crystalline In-Ga-Zn-O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In-Ga-Zn-O-based semiconductor layer has higher mobility and lower leakage current than an a-Si TFT, and thus can be suitably used as a transistor of the display device 1. .
  • the oxide semiconductor layer 4 may include another oxide semiconductor instead of the In-Ga-Zn-O-based semiconductor, for example, may include an In-Sn-Zn-O-based semiconductor.
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In, Sn (tin), and Zn, and examples include In 2 O 3 —SnO 2 —ZnO (InSnZnO).
  • the oxide semiconductor layer 4 is not limited to this, and may be any of an In-Al-Zn-O-based semiconductor, an In-Al-Sn-Zn-O-based semiconductor, a Zn-O-based semiconductor, an In-Zn-O-based semiconductor, and a Zn- Ti—O based semiconductor, Cd—Ge—O based semiconductor, Cd—Pb—O based semiconductor, CdO (cadmium oxide), Mg—Zn—O based semiconductor, In—Ga—Sn—O based semiconductor, In—Ga— O-based semiconductor, Zr-In-Zn-O-based semiconductor, Hf-In-Zn-O-based semiconductor, Al-Ga-Zn-O-based semiconductor, Ga-Zn-O-based semiconductor, In-Ga-Zn-Sn- An O-based semiconductor, InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg X Zn 1-X O), cadmium zinc oxide (Cd X Zn 1-X
  • an amorphous state of ZnO to which one or more of a Group 1 element, a Group 13 element, a Group 14 element, a Group 15 element, or a Group 17 element or an impurity element is added.
  • a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a state in which no impurity element is added can be used.
  • a mask pattern different from that of the first photo step is used in the second photo step.
  • the first resist pattern has a line width in the channel length direction X larger than that of the second resist pattern.
  • FIG. 11A is an explanatory diagram showing a photo process when the exposure amount is a reference
  • FIG. 11B is an explanatory diagram showing a photo process when the exposure amount is increased.
  • FIGS. 11A and 11B are views showing an example of a photo process, in which a prototype film 102 and a resist mask Re are laminated on a prototype substrate 101. Then, irradiation light (first irradiation light L1 or second irradiation light L2) is irradiated through a light-shielding mask Ma that shields part of the resist mask Re. As a result, in the resist mask Re, a non-exposed area Re1 that is not exposed and an exposed area Re2 that is exposed are provided.
  • the same mask pattern as that in the first photo process is used, and the exposure amount is set to be different from that in the first photo process. Therefore, by using a common mask pattern, a pattern having a different shape can be formed while simplifying the design.
  • FIG. 12 is a schematic sectional view schematically showing a display device according to the second embodiment of the present invention. Note that hatching is omitted in FIG. 12 in consideration of the legibility of the drawing.
  • the second embodiment is different from the first embodiment in the range in which the gate insulating layer 5 is provided. Specifically, the gate insulating layer 5 (the second resist pattern gate insulating layer 5c) overlaps the first resistance region 4b of the oxide semiconductor layer 4, and the gate electrode 6 (the second resist pattern gate electrode 6c) ) And consistent.
  • FIG. 13 is a schematic cross-sectional view showing a transistor in a self-alignment step of the second embodiment
  • FIG. 14 is a schematic cross-sectional view showing a transistor before forming a protective layer in the second embodiment.
  • FIG. 13 shows a state in which the gate insulating layer 5 has been etched (for example, dry-etched) with respect to FIG. That is, in the self-alignment step, the etching is continuously performed using the same resist mask Re as in the first gate etching step and the insulating layer etching step.
  • the pattern shape of the first resist pattern gate insulating layer 5b shown in FIG. 8 matches the second resist pattern gate electrode 6c, and the shape based on the second resist pattern (the second resist pattern gate insulating layer 5c).
  • the process can be simplified by incorporating the self-alignment process.
  • the second transistor 1b has substantially the same structure as the first transistor 1a illustrated in FIG. 1, and differs in a range where the gate electrode 6 overlaps the oxide semiconductor layer 4.
  • the oxide semiconductor layer 4 includes a conductor region 4a that has been converted into a conductor and a first resistance region 4b immediately below the gate electrode 6, and does not include the second resistance region 4c.
  • the gate electrode 6 (first resist pattern gate electrode 6b) and the gate insulating layer 5 (first resist pattern gate insulating layer 5b) overlap with the first resistance region 4b, and their shapes match each other.
  • the protection layer 7, the source electrode 8, the drain electrode 9, and the like may be formed not only on the first transistor 1a but also on the second transistor 1b.
  • the conductive process for the second transistor 1b may be performed together with the first transistor 1a.
  • a plurality of wirings are formed corresponding to the pixel circuits, and a gate control line 301 and a light emission control line 304 shown in FIG. 17B are provided as the wirings.
  • the wiring is formed in the same layer with the same material as the gate electrode 6. Specifically, the wiring is formed as a part of the conductive film 6a for a gate electrode, and is formed at the same time when the gate electrode 6 is formed.
  • the strip-shaped wiring portion 201 extends in the up-down direction in FIG. 17A.
  • the first electrode corresponding portions 202 are provided so as to protrude from one side (the right side in FIG. 17A) of the strip-shaped wiring portion 201, and a plurality of the first electrode corresponding portions 202 are provided apart from each other in the vertical direction in FIG. 17A.
  • the first electrode corresponding portion 202 corresponds to the gate electrode 6 of any one of the first transistor 1a and the second transistor 1b, and the number and position of the first electrode corresponding portion 202 are determined according to the transistors provided in the substrate 2. It may be adjusted appropriately.
  • the direction in which the strip-shaped wiring portion 201 extends corresponds to the above-described channel length direction X.
  • the vertical width (first line width DW1) of the first electrode corresponding portion 202 in FIG. 17A corresponds to the line width of the first resist pattern gate electrode 6b in the channel length direction X.
  • the width of the strip-shaped wiring portion 201 in the left-right direction in FIG. 17A is referred to as a first wiring width DL1.
  • FIG. 17B is a schematic top view showing the wiring corresponding to the second resist pattern.
  • FIG. 17B shows a state where only the wiring including the gate electrode 6 formed in accordance with the second resist pattern is extracted and viewed from above, and shows the same portion as FIG. 17A.
  • the first wiring pattern 200 shown in FIG. 17A is formed into the second wiring pattern 300 shown in FIG. 17B by etching or the like.
  • the second wiring pattern 300 includes a gate control line 301, a second electrode corresponding portion 302, a capacitor electrode 303, and a light emission control line 304.
  • the second electrode corresponding portion 302 is provided so as to protrude from one side (the right side in FIG. 17B) of the gate control line 301, and a plurality of the second electrode corresponding portions 302 are provided apart from each other in the vertical direction in FIG. 17B.
  • the second electrode corresponding portion 302 is provided in a portion overlapping with the first electrode corresponding portion 202, and the width in the up-down direction (second line width DW2) in FIG. 17B is smaller than the first line width DW1.
  • the second line width DW2 corresponds to the line width of the second resist pattern gate electrode 6c in the channel length direction X.
  • the alternate long and short dash line shown in FIG. 17B indicates the first electrode corresponding portion 202 when the first wiring pattern 200 and the second wiring pattern 300 are overlapped.
  • the capacitance electrode 303 is located between the gate control line 301 and the light emission control line 304, has a rectangular shape, and is provided in plural in the vertical direction in FIG. 17B.
  • FIG. 17B shows only the second electrode corresponding portion 302 having a reduced line width with respect to the first electrode corresponding portion 202, but is not limited thereto.
  • the second wiring pattern 300 may include a second electrode corresponding portion 302 that does not change.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

表示デバイス(1)は、基板(2)上に形成される第1トランジスタ(1a)を有する。第1トランジスタ(1a)は、基板(2)上に成膜された酸化物半導体層(4)と、酸化物半導体層(4)の上に成膜されたゲート絶縁層(5)と、ゲート絶縁層(5)の上に成膜されたゲート電極(6)とを備える。酸化物半導体層(4)は、導体化された導体領域(4a)と、ゲート電極(6)の下方に位置する第1抵抗領域(4b)とを有する。導体領域(4a)と第1抵抗領域(4b)との間には、ゲート電極(6)より外側に位置する第2抵抗領域(4c)が設けられている。第1抵抗領域(4b)は、第2抵抗領域(4c)より抵抗値が大きい。

Description

表示デバイスの製造方法および表示デバイス
 本発明は、基板上に形成される表示デバイスの製造方法および表示デバイスに関する。
 近年、OLED(Organic Light Emitting Diode)技術の進歩に伴い、有機EL(エレクトロルミネッセンス)表示装置を備えた製品が広がってきている。一般に、有機EL表示装置では、発光層における画素に電流を供給する画素回路を含む構成を用いられており、画素回路は、通常、基板上に金属膜を成膜し、この金属膜をパターニングするパターニング工程を含んで製造される。金属膜のパターニングでは、金属膜上に形成されたレジスト膜をフォトリソグラフィによって露光・現像(フォト工程)し、現像後のレジスト膜によるエッチングマスクが設けられて、エッチングが行われる。
 金属膜のパターニング工程では、エッチング時にエッチングマスク上に異物などが存在していた場合、エッチング残りが生じて、配線の短絡などの要因となるリーク欠陥を発生させることがある。液晶表示素子の製造方法では、上述したエッチング残りへの対策として、例えば、エッチングマスク形成およびエッチングを再度行うリワーク処理が知られている(例えば、特許文献1参照)。
特開平5-100236号公報
 特許文献1に記載の液晶表示装置の製造方法では、金属配線のストライプパターンをエッチングによって形成しており、霧状のエッチング液を吹き付けて、ストライプパターン間エッチング残欠陥を修復している。また、エッチング液の噴霧に先立って、金属配線エッチング残欠陥修復用レジストパターンを形成している。
 ところで、OLEDの画素回路では、制御のために駆動トランジスタを用いているが、OLEDに酸化物半導体を適用した際、駆動トランジスタの特性によっては、輝度のコントロールが難しくなるという課題があった。上述した液晶表示装置の製造方法では、欠陥部の修復は行われているが、駆動トランジスタの特性を調整することについて考慮されていない。
 本発明は、上記の課題を解決するためになされたものであり、トランジスタにおける特性を変化させた表示デバイスの製造方法および表示デバイスを提供することを目的とする。
 本発明に係る表示デバイスの製造方法は、基板上に形成される第1トランジスタを有する表示デバイスの製造方法であって、前記基板上に酸化物半導体層を成膜する半導体層成膜工程と、前記酸化物半導体層をエッチングする半導体層エッチング工程と、前記基板および前記酸化物半導体層の上に、ゲート絶縁膜を成膜する絶縁層成膜工程と、前記ゲート絶縁膜の上に、ゲート電極用導電膜を成膜するゲート成膜工程と、前記ゲート電極用導電膜の上にレジストを塗布し、第1マスクを用いて、該レジストから第1レジストパターンを形成する第1フォト工程と、前記第1レジストパターンをマスクとして、前記ゲート電極用導電膜をエッチングし、該ゲート電極用導電膜を該第1レジストパターンに基づいた第1レジストパターンゲート電極用導電膜に成形する第1ゲートエッチング工程と、前記第1レジストパターンをマスクとして、前記ゲート絶縁膜をエッチングし、該ゲート絶縁膜を該第1レジストパターンに基づいたゲート絶縁層に成形する絶縁層エッチング工程と、前記第1レジストパターンを剥離する第1剥離工程と、前記第1レジストパターンゲート電極用導電膜の上に前記レジストを塗布し、第2マスクを用いて、該レジストから第2レジストパターンを形成する第2フォト工程と、前記第2レジストパターンをマスクとして、前記第1レジストパターンゲート電極用導電膜をエッチングし、該第1レジストパターンゲート電極用導電膜を該第2レジストパターンに基づいたゲート電極に成形する第2ゲートエッチング工程と、前記第2レジストパターンを剥離する第2剥離工程とを順に実施して前記表示デバイスが製造され、さらに、前記ゲート絶縁層をマスクとして、前記第1レジストパターンより外側の前記酸化物半導体層を導体領域にする導体化工程を含むことを特徴とする。
 本発明に係る表示デバイスの製造方法は、前記第2フォト工程では、前記第1フォト工程と同じマスクパターンが用いられ、前記第1フォト工程と異なる露光量に設定されている構成としてもよい。
 本発明に係る表示デバイスの製造方法は、前記第2フォト工程では、前記第1フォト工程と異なるマスクパターンが用いられ、前記第1レジストパターンは、チャネル長方向での線幅が、前記第2レジストパターンより太く形成されている構成としてもよい。
 本発明に係る表示デバイスの製造方法では、前記表示デバイスは、前記ゲート電極に対し、同じ材料によって同一の層に形成され、画素回路に対応する複数の配線を有し、前記配線は、表示領域の一方の端部から他方の端部まで横断して設けられ、前記第1ゲートエッチング工程において成形される配線の幅は、前記第2ゲートエッチング工程において成形される配線の幅より大きい構成としてもよい。
 本発明に係る表示デバイスの製造方法では、前記表示デバイスは、前記ゲート電極に対し、同じ材料によって同一の層に形成され、画素回路に対応する複数の配線を有し、前記配線は、表示領域の一方の端部から他方の端部まで横断して設けられ、前記第1ゲートエッチング工程では、少なくとも2つ以上の配線を繋いだ状態で成形し、前記第2ゲートエッチング工程では、前記第1ゲートエッチング工程において繋いだ状態に成形した配線を分離する構成としてもよい。
 本発明に係る表示デバイスの製造方法では、前記複数の配線のうちいずれかは、ゲート制御線および発光制御線とされ、前記第1ゲートエッチング工程では、同じ画素回路に対応するゲート制御線および発光制御線を繋いだ状態で成形し、前記第2ゲートエッチング工程では、前記第1ゲートエッチング工程において繋いだ状態に成形したゲート制御線および発光制御線を分離する構成としてもよい。
 本発明に係る表示デバイスの製造方法は、前記第2ゲートエッチング工程と前記第2剥離工程との間に行われ、前記第2レジストパターンをマスクとして、前記ゲート絶縁層をエッチングし、前記ゲート電極と前記ゲート絶縁層との形状を整合させるセルフアライン工程を含む構成としてもよい。
 本発明に係る表示デバイスの製造方法では、前記第1トランジスタの前記酸化物半導体層は、前記導体領域と、前記ゲート電極の下方に位置する第1抵抗領域と、前記導体領域と前記第1抵抗領域との間に位置する第2抵抗領域とが設けられ、前記第1抵抗領域は、前記第2抵抗領域より抵抗値が大きい構成としてもよい。
 本発明に係る表示デバイスの製造方法は、前記第2フォト工程では、前記レジストが前記ゲート電極の一部を覆う第1トランジスタ領域と、前記レジストが前記ゲート電極の全体を覆う第2トランジスタ領域とを形成し、前記第2ゲートエッチング工程では、前記第1トランジスタ領域における前記ゲート電極をエッチングして前記第1トランジスタを形成し、前記第2トランジスタ領域における前記ゲート電極をレジストで保護して第2トランジスタを形成し、前記第2トランジスタの前記酸化物半導体層は、前記導体領域と、前記ゲート電極の下方に位置する第1抵抗領域とが設けられている構成としてもよい。
 本発明に係る表示デバイスの製造方法では、前記導体化工程は、前記絶縁層エッチング工程と前記第2フォト工程との間に行われる構成としてもよい。
 本発明に係る表示デバイスの製造方法では、前記導体化工程は、前記第2ゲートエッチング工程の後に行われる構成としてもよい。
 本発明に係る表示デバイスの製造方法は、前記第2ゲートエッチング工程の後、表示素子を形成する工程を含む構成としてもよい。
 本発明に係る表示デバイスは、基板上に形成される第1トランジスタを有する表示デバイスであって、前記第1トランジスタは、前記基板上に成膜された酸化物半導体層と、前記酸化物半導体層の上に成膜されたゲート絶縁層と、前記ゲート絶縁層の上に成膜されたゲート電極とを備え、前記酸化物半導体層は、導体化された導体領域と、前記ゲート電極の下方に位置する第1抵抗領域とを有し、前記導体領域と前記第1抵抗領域との間には、前記ゲート電極より外側に位置する第2抵抗領域が設けられ、前記第1抵抗領域は、前記第2抵抗領域より抵抗値が大きいことを特徴とする。
 本発明に係る表示デバイスでは、前記ゲート絶縁層は、前記第2抵抗領域を覆っており、チャネル長方向での長さが、前記ゲート電極より長い構成としてもよい。
 本発明に係る表示デバイスでは、前記ゲート絶縁層は、前記ゲート電極と整合する形状とされ、前記第2抵抗領域は、前記ゲート絶縁層より外側に設けられている構成としてもよい。
 本発明に係る表示デバイスは、前記基板上には、第2トランジスタが設けられ、前記第2トランジスタは、前記基板上に成膜された前記酸化物半導体層と、前記酸化物半導体層の上に成膜された前記ゲート絶縁層と、前記ゲート絶縁層の上に成膜された前記ゲート電極とを備え、前記酸化物半導体層は、導体化された前記導体領域と、前記ゲート電極の下方に位置する前記第1抵抗領域とを有し、前記ゲート絶縁層は、前記第1抵抗領域および前記ゲート電極と整合する形状とされ、前記第1抵抗領域は、前記導体領域に接して設けられている構成としてもよい。
 本発明によると、ゲート電極の直下の酸化物半導体層と、導体領域とされた酸化物半導体層との間に、導体領域とされていない酸化物半導体層が設けられるので、トランジスタにおける特性を変化させることができる。
本発明の第1実施形態に係る表示デバイスを模式的に示す模式断面図である。 半導体層成膜工程および半導体層エッチング工程を経たトランジスタを示す模式断面図である。 絶縁層成膜工程およびゲート成膜工程を経たトランジスタを示す模式断面図である。 第1フォト工程におけるトランジスタを示す模式断面図である。 第1ゲートエッチング工程および絶縁層エッチング工程を経たトランジスタを示す模式断面図である。 導体化工程におけるトランジスタを示す模式断面図である。 第2フォト工程におけるトランジスタを示す模式断面図である。 第2ゲートエッチング工程におけるトランジスタを示す模式断面図である。 保護層を形成する前のトランジスタを示す模式断面図である。 図9に示すトランジスタの模式平面図である。 基準となる露光量である場合のフォト工程を示す説明図である。 露光量を大きくした場合のフォト工程を示す説明図である。 本発明の第2実施形態に係る表示デバイスを模式的に示す模式断面図である。 第2実施形態のセルフアライン工程におけるトランジスタを示す模式断面図である。 第2実施形態において、保護層を形成する前のトランジスタを示す模式断面図である。 本発明の第3実施形態に係る表示デバイスを模式的に示す模式断面図である。 レジストマスクで全面が覆われた第2トランジスタを示す模式断面図である。 第1レジストパターンに対応した配線を示す概略上面図である。 第2レジストパターンに対応した配線を示す概略上面図である。
 (第1実施形態)
 以下、本発明の第1実施形態に係る表示デバイスについて、図面を参照して説明する。
 図1は、本発明の第1実施形態に係る表示デバイスを模式的に示す模式断面図である。なお、図面の見易さを考慮して、図1では、ハッチングを省略している。
 本発明の第1実施形態に係る表示デバイス1(薄膜トランジスタ:TFT)における第1トランジスタ1aは、基板2に、下地層3、酸化物半導体層4、ゲート絶縁層5、ゲート電極6、および保護層7を順に積層して形成されている。なお、第1トランジスタ1aの製造工程と各部の詳細とについては、後述する図2ないし図10を参照して説明する。
 図1では、基板2上に形成された1つのトランジスタ(第1トランジスタ1a)を拡大して示しており、基板2には、さらに、複数のトランジスタが形成されていてもよい。下地層3は、基板2全体を覆うように形成されている。なお、以下では説明のため、基板2の表面に沿う方向をチャネル長方向Xと呼ぶことがある。また、後述する第2トランジスタ1bと第1トランジスタ1aとを併せて、トランジスタと呼ぶことがある。
 酸化物半導体層4は、下地層3上に設けられ、それぞれのトランジスタ毎に配置されている。つまり、酸化物半導体層4は、他のトランジスタにおける酸化物半導体層4と離間して設けられている。酸化物半導体層4は、チャネル長方向Xでの両端部に位置する導体領域4aと、チャネル長方向Xでの中央部に位置する第1抵抗領域4bと、導体領域4aと第1抵抗領域4bとの間に設けられた第2抵抗領域4cとを含む。導体領域4aは、酸化物半導体が低抵抗化された領域であって、第1抵抗領域4bは、酸化物半導体が低抵抗化されていない領域である。
 ゲート絶縁層5(第1レジストパターンゲート絶縁層5b)は、酸化物半導体層4上に設けられ、酸化物半導体層4のうちの第1抵抗領域4bおよび第2抵抗領域4cに重畳している。ゲート電極6(第2レジストパターンゲート電極6c)は、ゲート絶縁層5上に設けられ、ゲート絶縁層5を介して、第1抵抗領域4bに対向している。従って、第2抵抗領域4cは、ゲート電極6より外側に位置している。また、ゲート絶縁層5は、チャネル長方向Xでの長さが、ゲート電極6より長く形成されている。
 なお、第1レジストパターンゲート絶縁層5bとは、ゲート絶縁層5が第1レジストパターンに対応していることを示し、第2レジストパターンゲート電極6cとは、ゲート電極6が第2レジストパターンに対応していることを示している。第1レジストパターンおよび第2レジストパターンについては、後述する図2ないし図10を参照して、詳細に説明する。
 保護層7は、酸化物半導体層4およびゲート電極6を覆うように形成されている。第1トランジスタ1aでは、保護層7上に、ソース電極8(図1では、左方)およびドレイン電極9(図1では、右方)が設けられている。ソース電極8とドレイン電極9とは、チャネル長方向Xで離間して設けられている。
 ソース電極8は、保護層7に設けられたソースコンタクトホール7aを介して、酸化物半導体層4のうち、一方の導体領域4a(図1では、左側)と電気的に接続されている。ドレイン電極9は、保護層7に設けられたドレインコンタクトホール7bを介して、酸化物半導体層4のうち、他方の導体領域4a(図1では、右側)と電気的に接続されている。
 次に、トランジスタの製造工程について、図2ないし図10を参照して、詳細に説明する。
 図2は、半導体層成膜工程および半導体層エッチング工程を経たトランジスタを示す模式断面図である。
 トランジスタの製造工程では、酸化物半導体層4を形成する前に、絶縁膜である下地層3を基板2上に成膜する。基板2としては、例えば、ガラス基板、シリコン基板、および耐熱性を有するプラスチック基板(樹脂基板)を用いることができる。プラスチック基板(樹脂基板)の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル樹脂、およびポリイミド等を用いることができる。
 本実施の形態において、下地層3は、SiO2膜をCVD法によって成膜し、厚さ375nmとした。下地層3は、これに限定されず、例えば、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy;x>y)、窒化酸化珪素(SiNxOy;x>y)、酸化アルミニウム、および酸化タンタルなどで形成されていてもよく、複数の層を積層してもよい。
 次に、半導体層成膜工程では、下地層3上に、酸化物半導体層4を成膜する。酸化物半導体層4は、例えば、スパッタリング法で形成され、厚さが30nm以上100nm以下のIn-Ga-Zn-O系半導体膜とされている。そして、半導体層エッチング工程において、酸化物半導体層4は、フォトリソグラフィプロセスおよびエッチングによりパターニングすることによって、それぞれのトランジスタ毎に対応した島状に形成される。
 なお、半導体層成膜工程と半導体層エッチング工程との間では、酸化物半導体層4への熱処理(アニール処理)を行ってもよい。アニール処理の温度は、例えば、200~500℃である。
 図3は、絶縁層成膜工程およびゲート成膜工程を経たトランジスタを示す模式断面図である。
 図3では、図2に対し、酸化物半導体層4を覆うように、ゲート絶縁膜5aおよびゲート電極用導電膜6aを成膜していた状態を示している。具体的に、絶縁層成膜工程において、ゲート絶縁膜5aは、CVD法を用いて成膜された酸化珪素(SiOx)で形成され、厚さが80nm以上250nm以下で、例えば、150nmとされている。ゲート絶縁膜5aは、ゲート絶縁層5の基となるものであって、下地層3と同じ材料で形成してもよく、複数の層を重ねた積層構造とされていてもよい。
 ゲート電極用導電膜6aは、ゲート電極6の基となるものであって、スパッタリング法を用いて成膜され、厚さ350nmのAl膜を下層とし、厚さ50nmのMoN膜を上層とした積層膜とされている。ゲート電極用導電膜6aは、これに限定されず、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、および銅(Cu)から選ばれた元素を含む金属膜、またはこれらの元素を成分とする合金膜などを用いてもよいし、これらのうちの複数の膜を含む積層膜を用いてもよい。
 図4は、第1フォト工程におけるトランジスタを示す模式断面図である。
 第1フォト工程では、図3に示す状態に対し、ゲート電極用導電膜6a上に、フォトリソグラフィプロセスによってパターニングされたレジストマスクReが形成されている。レジストマスクReは、図1に示す第1抵抗領域4bおよび第2抵抗領域4cと重なる部分に設けられており、ゲート電極用導電膜6aの一部だけを覆う第1レジストパターンとして形成されている。
 図5は、第1ゲートエッチング工程および絶縁層エッチング工程を経たトランジスタを示す模式断面図である。
 図5は、図4に対し、ゲート電極用導電膜6aおよびゲート絶縁膜5aのエッチング(例えば、ドライエッチング)を、同時に行った状態を示している。つまり、第1ゲートエッチング工程および絶縁層エッチング工程では、同じレジストマスクReを用いて、連続してエッチングを行っている。その結果、図4に示したゲート電極用導電膜6aおよびゲート絶縁膜5aは、レジストマスクReに覆われていない部分が除去されて、図5に示す部分の第1レジストパターンゲート電極6bおよび第1レジストパターンゲート絶縁層5bが残る。これによって、第1レジストパターンゲート電極6bと第1レジストパターンゲート絶縁層5bとは、パターニング形状が整合し、第1レジストパターンに基づいた形状に成形される。
 なお、ここでの整合とは、厳密に一致することを意味せず、エッチングレートの違いなどによって生じる数μm程度の寸法のズレも含まれる。このように、第1レジストパターンゲート電極6bと第1レジストパターンゲート絶縁層5bとのパターニング形状を整合させることで、セルフアライメント構造とすることができる。これによって、工程を簡略化しつつ、両者を精度良く位置合わせすることができる。
 図6は、導体化工程におけるトランジスタを示す模式断面図である。
 導体化工程におけるプラズマ処理に先立って、第1剥離工程が行われ、レジストマスクReは、第1レジストパターンゲート電極6bおよび第1レジストパターンゲート絶縁層5bに成形するエッチングが完了した後に除去される。導体化工程では、第1レジストパターンゲート電極6bの上方から、基板2の全面に対して、プラズマ処理が施される。プラズマ処理は、例えば、水素プラズマ処理やHeプラズマ処理などである。プラズマ処理では、第1レジストパターンゲート電極6bがマスクとして機能し、酸化物半導体層4のうち、第1レジストパターンゲート電極6bで覆われていない部分のみが低抵抗化される。つまり、第1レジストパターンゲート電極6bの直下の第1抵抗領域4bは、低抵抗化されず、導体領域4aは低抵抗化される。
 なお、導体化工程は、第1エッチング工程の後に限らず、異なる順序で行ってもよく、詳細は後述する。
 図7は、第2フォト工程におけるトランジスタを示す模式断面図である。
 第2フォト工程では、図6に示す状態に対し、第1レジストパターンゲート電極6b上に、フォトリソグラフィプロセスによってパターニングされたレジストマスクReが形成されている。ここでのレジストマスクReは、図1に示す第1抵抗領域4bと重なる部分に設けられており、第1レジストパターンゲート電極6bの一部だけを覆う第2レジストパターンとして形成されている。
 図7に示すように、第2レジストパターンに基づくレジストマスクReは、第1レジストパターンよりも範囲が小さくなっており、第1レジストパターンに応じて成形された第1レジストパターンゲート電極6bは、一部が露出している。
 図8は、第2ゲートエッチング工程におけるトランジスタを示す模式断面図である。
 図8は、図7に対し、第1レジストパターンゲート電極6bのエッチング(例えば、ドライエッチング)を行った状態を示している。その結果、第1レジストパターンゲート電極6bは、レジストマスクReに覆われていない部分が除去されて、第2レジストパターンに基づいた形状(第2レジストパターンゲート電極6c)に成形される。この際、第1レジストパターンゲート絶縁層5bは、エッチングされず、第1レジストパターンに基づいた形状を維持している。その結果、酸化物半導体層4では、第2レジストパターンゲート電極6c直下の第1抵抗領域4bが狭くなり、導体領域4aと第1抵抗領域4bとの間に、第2レジストパターンゲート電極6cに覆われていない第2抵抗領域4cが設けられる。なお、第2ゲートエッチング工程においては、ドライエッチングによるプラズマが、第1レジストパターンゲート絶縁層5bを介して酸化物半導体層4に注入されることで、酸化物半導体層4(特に、第2抵抗領域4c)を低抵抗化するようにしてもよい。
 図9は、保護層を形成する前のトランジスタを示す模式断面図であって、図10は、図9に示すトランジスタの模式平面図である。
 図1に示す保護層7を形成するのに先立って、第2剥離工程が行われ、レジストマスクReは、第2レジストパターンゲート電極6cに成形するエッチングが完了した後に除去される。また、第1エッチング工程の後に導体化工程を行っていない場合は、図9に示す状態のトランジスタに対してプラズマ処理を施してもよい。その際には、プラズマがゲート絶縁層5を介して酸化物半導体層4に注入されて、酸化物半導体層4(特に、第2抵抗領域4c)を低抵抗化する。つまり、導体領域4aの導体化と併せて、第2抵抗領域4cの低抵抗化を同時に行うことができる。なお、酸化物半導体層4へのプラズマの注入では、ゲート絶縁層5の有無によって、抵抗が変化する程度が異なり、導体領域4aは導体化されるが、第2抵抗領域4cは導体化されない。
 上述したように、プラズマ処理を施す際、酸化物半導体層4における被覆状態に差を付けることで、第1抵抗領域は、第2抵抗領域より抵抗値が大きくなる。
 図10に示すように、平面視において、ゲート電極6は酸化物半導体層4の外側へ延伸されており、例えば、他のトランジスタなどに接続されるゲート配線とされている。図10では、ゲート電極6が直線状に延びた構成を示したが、これに限定されず、接続する対象の位置に応じて、延ばす向きを適宜変えるなどしてよい。また、図10では、ゲート電極6とゲート絶縁層5とを区別しやすくするため、ゲート絶縁層5は、酸化物半導体層4の外側へ少し広がった程度としたが、これに限定されず、ゲート電極6と同様に、他のトランジスタなどに接続されるように長く延伸してもよい。ゲート電極6を含む配線の形状については、後述する図17Aおよび図17Bを参照して、詳細に説明する。
 上述した図1では、図9に示す状態に対し、酸化物半導体層4、ゲート絶縁層5、およびゲート電極6を覆う保護層7を成膜している。保護層7は、下地層3と同様の材料および方法で形成され、厚さが、例えば、100nm以上500nm以下とされている。本実施の形態では、第2絶縁膜7として、厚さが100nmのSiNx膜と、厚さが300nmのSiO2膜とを、CVD法で連続して成膜している。
 保護層7を成膜した後、熱処理(アニール処理)が行われる。アニール処理の温度は、例えば、200~400℃である。この際、保護層7と併せて、酸化物半導体層4もアニール処理される。
 保護層7には、公知のフォトリソグラフィプロセスにより、酸化物半導体層4の一部を露出するコンタクトホールが形成されている。図1に示すように、ソース電極8に対応するソースコンタクトホール7aは、一方の導体領域4aと重なる位置に設けられており、ドレイン電極9に対応するドレインコンタクトホール7bは、他方の導体領域4aと重なる位置に設けられている。
 保護層7を形成した後、保護層7上およびコンタクトホール内に、ソース電極8およびドレイン電極9の基となる電極用導電膜を成膜している。電極用導電膜は、ゲート電極6として例示した材料を用いることができる。本実施の形態では、厚さ30nmのTi膜を下層とし、厚さ300nmのAl膜を主層とし、厚さ50nmのTi膜を上層とした積層膜を用いている。
 電極用導電膜に対して、パターニングを行うことで、図1に示す第1トランジスタ1aが形成される。つまり、パターニングによって、電極用導電膜は、ソース電極8とドレイン電極9とで離間した形状とされる。
 平面視において、ソース電極8およびドレイン電極9は、酸化物半導体層4の外側へ延伸されており、例えば、他のトランジスタなどに接続される配線としてもよい。
 なお、図示していないが、トランジスタの上面(ソース電極8やドレイン電極9が形成された側)を覆うように、平坦化膜を設けてもよく、平坦化膜上に画素電極等を設けてもよい。さらに、トランジスタの上部には、後述するOLED、QLED、およびLCDといった表示素子を設けてもよい。
 上述した表示デバイスの製造方法では、ゲート電極6の直下の酸化物半導体層4(第1抵抗領域4b)と、導体領域4aとされた酸化物半導体層4との間に、導体領域4aとされていない酸化物半導体層4(第2抵抗領域4c)が設けられるので、トランジスタにおける特性を変化させることができる。具体的に、第1トランジスタ1aでは、第2抵抗領域4cを設けた結果、S値(スレッショルド係数)が大きくなり、ゲート電圧に対する電流値の変化が緩やかになる。これによって、電流値に応じて変化する輝度を容易に制御できるようになる。
 酸化物半導体層4については、上述した材料だけに限らず、他の材料によって形成してもよい。酸化物半導体層4に含まれる酸化物半導体は、例えば、アモルファス酸化物半導体(非晶質酸化物半導体)であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、およびc軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
 また、酸化物半導体層4は、2層以上の積層構造を有していてもよく、この場合、酸化物半導体層4は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造が異なる複数の結晶質酸化物半導体層を含んでいてもよいし、複数の非晶質酸化物半導体層を含んでいてもよい。
 次に、非晶質酸化物半導体および結晶質酸化物半導体の材料や構造などについて、詳細に説明する。酸化物半導体層4は、例えば、In、Ga、およびZnのうち、少なくとも1種の金属元素を含んでいてもよく、本実施の形態では、In-Ga-Zn-O系の半導体(例えば、酸化インジウムガリウム亜鉛)を用いた。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、およびZn(亜鉛)の三元系酸化物であって、In、Ga、およびZnの割合(組成比)は、特に限定されず、例えば、In:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、およびIn:Ga:Zn=1:1:2等を含む。また、In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 In-Ga-Zn-O系の半導体層を有するTFTは、a-SiTFTに比べて、高い移動度および低いリーク電流を有しているので、表示デバイス1のトランジスタとして、好適に用いることができる。
 酸化物半導体層4は、In-Ga-Zn-O系半導体の換わりに、他の酸化物半導体を含んでいてもよく、例えば、In-Sn-Zn-O系半導体を含んでいてもよい。In-Sn-Zn-O系の半導体は、In、Sn(スズ)、およびZnの三元系酸化物であって、例えば、In-SnO-ZnO(InSnZnO)などが挙げられる。
 酸化物半導体層4は、これに限らず、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体、In-Ga-Zn-Sn-O系半導体、InGaO(ZnO)、酸化マグネシウム亜鉛(MgZn1-XO)、および酸化カドミウム亜鉛(CdZn1-XO)などを含んでいてもよい。Zn-O系半導体としては、1族元素、13族元素、14族元素、15族元素または17族元素のうち一種、または複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態、多結晶状態または非晶質状態と多結晶状態が混在する微結晶状態のもの、または何も不純物元素が添加されていないものを用いることができる。
 本実施の形態において、第2フォト工程では、第1フォト工程と異なるマスクパターンが用いられている。そして、第1レジストパターンは、チャネル長方向Xでの線幅が、第2レジストパターンより太く形成されている。このように、異なるマスクパターンを用いてフォト工程を行うことで、異なる形状のパターンを形成して、ゲート電極6の幅を容易に調整することができる。
 次に、フォト工程において、異なる手法を用いた変形例について、図11Aおよび図11Bを参照して説明する。
 図11Aは、基準となる露光量である場合のフォト工程を示す説明図であって、図11Bは、露光量を大きくした場合のフォト工程を示す説明図である。
 図11Aおよび図11Bは、フォト工程の一例を示す図面であって、試作基板101の上に、試作膜102とレジストマスクReとが積層されている。そして、レジストマスクReの一部を遮光する遮光マスクMaを介して、照射光(第1照射光L1または第2照射光L2)が照射されている。これによって、レジストマスクReでは、露光されていない非露光領域Re1と、露光された露光領域Re2とが設けられる。
 一般的に、フォトリソグラフィ工程では、遮光マスクMaで遮光する幅(マスク幅MW)に対して、レジストマスクReが露光される幅(図11Aの第1露光幅RW1)が略一致するように、照射光(第1照射光L1)の露光量の基準値が設定されている。
 ここで、照射光の露光量を変動させると、遮光マスクMa近傍での露光範囲が変化する。図11Bに示すように、露光量を大きくした第2照射光L2を照射した場合は、レジストマスクReが露光された第2露光幅RW2が、マスク幅MWより小さくなる。このように、同じマスクパターンを用いる場合であっても、フォト工程における露光量に差を設けることで、露光範囲が変化させて、レジストマスクReの形状を変えることができる。
 上述した手法を用いた変形例において、第2フォト工程では、第1フォト工程と同じマスクパターンが用いられ、第1フォト工程と異なる露光量に設定されている。従って、共通するマスクパターンを用いることで設計を簡略化しつつ、異なる形状のパターンを形成することができる。
 (第2実施形態)
 次に、本発明の第2実施形態に係る表示デバイスについて、図面を参照して説明する。なお、第2実施形態において、第1実施形態と機能が実質的に等しい構成要素については、同一の符号を付して説明を省略する。
 図12は、本発明の第2実施形態に係る表示デバイスを模式的に示す模式断面図である。なお、図面の見易さを考慮して、図12では、ハッチングを省略している。
 第2実施形態では、第1実施形態に対し、ゲート絶縁層5が設けられている範囲が異なる。具体的に、ゲート絶縁層5(第2レジストパターンゲート絶縁層5c)は、酸化物半導体層4のうちの第1抵抗領域4bに重畳しており、ゲート電極6(第2レジストパターンゲート電極6c)と整合している。
 次に、第2実施形態に係るトランジスタの製造工程について、図面を参照して説明する。
 図13は、第2実施形態のセルフアライン工程におけるトランジスタを示す模式断面図であって、図14は、第2実施形態において、保護層を形成する前のトランジスタを示す模式断面図である。
 第2実施形態では、第1実施形態に対し、第2ゲートエッチング工程まで略同様の手順とされている。図13は、図8に対し、ゲート絶縁層5のエッチング(例えば、ドライエッチング)を行った状態を示している。つまり、セルフアライン工程では、第1ゲートエッチング工程および絶縁層エッチング工程と同様に、同じレジストマスクReを用いて、連続してエッチングを行っている。その結果、図8に示す第1レジストパターンゲート絶縁層5bは、第2レジストパターンゲート電極6cに対してパターニング形状が整合し、第2レジストパターンに基づいた形状(第2レジストパターンゲート絶縁層5c)に成形される。このように、セルフアライン工程を取り入れることで、工程を簡略化できる。
 その後、図14に示すように、レジストマスクReを除去してから、保護層7、ソース電極8、およびドレイン電極9等が形成される。なお、レジストマスクReを除去した後に、プラズマ処理を施してもよく、第2抵抗領域4cが導体化しないように調整すればよい。
 (第3実施形態)
 次に、本発明の第3実施形態に係る表示デバイスについて、図面を参照して説明する。なお、第3実施形態において、第1実施形態および第2実施形態と機能が実質的に等しい構成要素については、同一の符号を付して説明を省略する。
 図15は、本発明の第3実施形態に係る表示デバイスを模式的に示す模式断面図である。なお、図面の見易さを考慮して、図15では、ハッチングを省略している。
 第3実施形態では、表示デバイス1において、第1トランジスタ1aと伴に、第2トランジスタ1bを設けた構成とされている。図15では、基板2上に形成された複数のトランジスタのうち、1つの第2トランジスタ1bを拡大して示しており、同じ基板2上には、さらに、少なくとも1つ以上の第1トランジスタ1aが形成されている。
 第2トランジスタ1bは、図1に示す第1トランジスタ1aと略同様の構造とされており、酸化物半導体層4に対して、ゲート電極6が重畳している範囲が異なっている。具体的に、酸化物半導体層4は、導体化された導体領域4aと、ゲート電極6直下の第1抵抗領域4bとを含んでおり、第2抵抗領域4cが設けられていない。ゲート電極6(第1レジストパターンゲート電極6b)およびゲート絶縁層5(第1レジストパターンゲート絶縁層5b)は、第1抵抗領域4bと重畳しており、互いの形状が整合している。
 次に、第3実施形態における第2トランジスタの製造工程について、図面を参照して説明する。
 図16は、レジストマスクで全面が覆われた第2トランジスタを示す模式断面図である。
 第2トランジスタ1bは、第1トランジスタ1aに対し、絶縁層エッチング工程まで略同様の手順で製造される。第1トランジスタ1aでは、ゲート電極用導電膜6aおよびゲート絶縁膜5aを第1レジストパターンに基づく形状に成形した後、さらに、ゲート電極6の2回目のエッチングが行われるが、第2トランジスタ1bでは、ゲート電極6に2回目のエッチングを施さない。第1トランジスタ1aにおいて、ゲート電極6(第1レジストパターンゲート電極6b)の2回目のエッチングが行う際には、図16に示すように、第2トランジスタ1bの全面をレジストマスクReで覆うことで、ゲート電極6(第1レジストパターンゲート電極6b)がエッチングされないように保護している。
 2回目のエッチングが完了した後は、第1トランジスタ1aと併せて、第2トランジスタ1bにも、保護層7、ソース電極8、およびドレイン電極9等が形成すればよい。また、第2トランジスタ1bに対する導体化処理も、第1トランジスタ1aと併せて行えばよい。
 上述したように、第3実施形態において、第2フォト工程では、レジストがゲート電極6の一部を覆う第1トランジスタ領域と、レジストがゲート電極6の全体を覆う第2トランジスタ領域とを形成している。第2ゲートエッチング工程では、第1トランジスタ領域におけるゲート電極6をエッチングして第1トランジスタ1aを形成し、第2トランジスタ領域におけるゲート電極6をレジストで保護して第2トランジスタ1bを形成する。このように、第1トランジスタ1aと第2トランジスタ1bとで共通する工程を適用しつつ、一部を変えることで、特性が異なる2つのトランジスタを同じ基板2上に形成することができる。
 次に、ゲート電極6を含む配線の形状について、図面を参照して説明する。
 図17Aは、第1レジストパターンに対応した配線を示す概略上面図である。
 表示デバイス1では、画素回路に対応して複数の配線が形成されており、配線として、図17Bに示すゲート制御線301および発光制御線304が設けられている。本実施の形態において、配線は、ゲート電極6に対し、同じ材料によって同一の層に形成されている。具体的に、配線は、ゲート電極用導電膜6aの一部とされ、ゲート電極6を成型する際に併せて成形される。
 図17Aは、第1レジストパターンに応じた形状とされたゲート電極6を含む配線だけを抽出して、上面視した状態を示し、基板2内において、複数のトランジスタに跨る範囲を示している。本実施の形態では、複数の配線とゲート電極6とを併せて第1配線パターン200を形成している。第1配線パターン200は、直線状に延伸された幅広の帯状配線部201と、帯状配線部201から外側に突出して設けられた第1電極対応部202とを有している。図17Aでは、図面における左右方向で並べられた3つの第1配線パターン200の一部を拡大して示したが、これに限定されず、基板2に設ける第1配線パターン200の数は、適宜調整すればよい。
 帯状配線部201は、図17Aにおける上下方向に沿って延伸されている。第1電極対応部202は、帯状配線部201の一方の側辺(図17Aでは、右辺)から突出して設けられており、図17Aにおける上下方向で離間して複数設けられている。第1電極対応部202は、第1トランジスタ1aおよび第2トランジスタ1bのうち、いずれか1つのトランジスタにおけるゲート電極6に対応しており、基板2内に設けるトランジスタに応じて、設ける数や位置を適宜調整すればよい。帯状配線部201が延伸されている方向は、上述したチャネル長方向Xに対応している。つまり、第1電極対応部202の図17Aにおける上下方向での幅(第1線幅DW1)は、第1レジストパターンゲート電極6bのチャネル長方向Xでの線幅に相当する。なお、後述する第2レジストパターンと比較するため、帯状配線部201の図17Aにおける左右方向での幅を、第1配線幅DL1と呼ぶ。
 図17Bは、第2レジストパターンに対応した配線を示す概略上面図である。
 図17Bは、第2レジストパターンに応じた形状とされたゲート電極6を含む配線だけを抽出し、上面視した状態であって、図17Aと同じ部分を示している。図17Aに示す第1配線パターン200は、エッチング等を経ることによって、図17Bに示す第2配線パターン300に成形される。第2配線パターン300は、ゲート制御線301、第2電極対応部302、容量電極303、および発光制御線304で構成されている。
 ゲート制御線301は、図17Bにおける上下方向に沿って延伸されており、帯状配線部201より細い直線状とされている。ゲート制御線301は、帯状配線部201において、第1電極対応部202が設けられた側の側辺部(図17Bでは、右辺部)に対応している。
 第2電極対応部302は、ゲート制御線301の一方の側辺(図17Bでは、右辺)から突出して設けられており、図17Bにおける上下方向で離間して複数設けられている。第2電極対応部302は、第1電極対応部202と重なる部分に設けられており、図17Bにおける上下方向での幅(第2線幅DW2)が、第1線幅DW1より小さくなっている。つまり、第2線幅DW2は、第2レジストパターンゲート電極6cのチャネル長方向Xでの線幅に相当する。なお、図17Bに示す一点鎖線は、第1配線パターン200と第2配線パターン300とを重ねた場合の第1電極対応部202を表している。
 発光制御線304は、図17Bにおける上下方向に沿って延伸されており、帯状配線部201より細い直線状とされている。発光制御線304は、帯状配線部201において、第1電極対応部202が設けられた側と反対側の側辺部(図17Bでは、左辺部)に対応している。発光制御線304の図17Bにおける左右方向での幅(第2配線幅DL2)は、第1配線幅DL1より小さい。
 容量電極303は、ゲート制御線301と発光制御線304との間に位置し、矩形状とされ、図17Bにおける上下方向で離間して複数設けられている。
 第1ゲートエッチング工程では、第1レジストパターンを用いて、第2レジストパターンにおけるゲート制御線301、発光制御線304、および容量電極303に対応する部分が繋がった帯状配線部201を形成する。そして、第2ゲートエッチング工程では、第2レジストパターンを用いて、帯状配線部201のうち、ゲート制御線301、発光制御線304、および容量電極303の間の部分をエッチングすることで、それらを分離するように成形する。
 つまり、第1ゲートエッチング工程において成形される配線の幅(例えば、第1配線幅DL1)は、第2ゲートエッチング工程において成形される配線の幅(例えば、第2配線幅DL2)より大きい。なお、第2レジストパターンでの配線の幅として、発光制御線304の幅を示したが、ゲート制御線301の幅についても同様に、第1配線幅DL1より小さく成形されていてもよい。
 上述したように、ゲート制御線301および発光制御線304は、長く延伸されており、表示デバイス1における表示領域の一方の端部から他方の端部まで横断して設けられている。
 図17Bでは、第1電極対応部202に対して、線幅が小さくなった第2電極対応部302だけを示したが、これに限定されず、第1電極対応部202に対して、線幅が変わらない第2電極対応部302を含む第2配線パターン300としてもよい。
 本実施の形態に係る表示デバイス1は、表示素子を備えた表示パネルであれば、特に限定されるものではない。表示素子は、電流によって輝度や透過率が制御される表示素子と、電圧によって輝度や透過率が制御される表示素子とがある。電流制御の表示素子としては、例えば、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイ、無機発光ダイオードを備えた無機ELディスプレイ等のELディスプレイ、およびQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等がある。また、電圧制御の表示素子としては、液晶表示素子等がある。
 なお、今回開示した実施の形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。
 1 表示デバイス
 1a 第1トランジスタ
 1b 第2トランジスタ
 2 基板
 3 下地層
 4 酸化物半導体層
 4a 導体領域
 4b 第1抵抗領域
 4c 第2抵抗領域
 5 ゲート絶縁層
 5a ゲート絶縁膜
 5b 第1レジストパターンゲート絶縁層
 5c 第2レジストパターンゲート絶縁層
 6 ゲート電極
 6a ゲート電極用導電膜
 6b 第1レジストパターンゲート電極
 6c 第2レジストパターンゲート電極
 7 保護層
 7a ソースコンタクトホール
 7b ドレインコンタクトホール
 8 ソース電極
 9 ドレイン電極
 200 第1配線パターン
 201 帯状配線部
 202 第1電極対応部
 300 第2配線パターン
 301 ゲート制御線
 302 第2電極対応部
 303 容量電極
 304 発光制御線
 Re レジストマスク
 X チャネル長方向
 
 
 

Claims (16)

  1.  基板上に形成される第1トランジスタを有する表示デバイスの製造方法であって、
     前記基板上に酸化物半導体層を成膜する半導体層成膜工程と、
     前記酸化物半導体層をエッチングする半導体層エッチング工程と、
     前記基板および前記酸化物半導体層の上に、ゲート絶縁膜を成膜する絶縁層成膜工程と、
     前記ゲート絶縁膜の上に、ゲート電極用導電膜を成膜するゲート成膜工程と、
     前記ゲート電極用導電膜の上にレジストを塗布し、第1マスクを用いて、該レジストから第1レジストパターンを形成する第1フォト工程と、
     前記第1レジストパターンをマスクとして、前記ゲート電極用導電膜をエッチングし、該ゲート電極用導電膜を該第1レジストパターンに基づいた第1レジストパターンゲート電極用導電膜に成形する第1ゲートエッチング工程と、
     前記第1レジストパターンをマスクとして、前記ゲート絶縁膜をエッチングし、該ゲート絶縁膜を該第1レジストパターンに基づいたゲート絶縁層に成形する絶縁層エッチング工程と、
     前記第1レジストパターンを剥離する第1剥離工程と、
     前記第1レジストパターンゲート電極用導電膜の上に前記レジストを塗布し、第2マスクを用いて、該レジストから第2レジストパターンを形成する第2フォト工程と、
     前記第2レジストパターンをマスクとして、前記第1レジストパターンゲート電極用導電膜をエッチングし、該第1レジストパターンゲート電極用導電膜を該第2レジストパターンに基づいたゲート電極に成形する第2ゲートエッチング工程と、
     前記第2レジストパターンを剥離する第2剥離工程とを順に実施して前記表示デバイスが製造され、
     さらに、前記ゲート絶縁層をマスクとして、前記第1レジストパターンより外側の前記酸化物半導体層を導体領域にする導体化工程を含むこと
     を特徴とする表示デバイスの製造方法。
  2.  請求項1に記載の表示デバイスの製造方法であって、
     前記第2フォト工程では、前記第1フォト工程と同じマスクパターンが用いられ、前記第1フォト工程と異なる露光量に設定されていること
     を特徴とする表示デバイスの製造方法。
  3.  請求項1に記載の表示デバイスの製造方法であって、
     前記第2フォト工程では、前記第1フォト工程と異なるマスクパターンが用いられ、
     前記第1レジストパターンは、チャネル長方向での線幅が、前記第2レジストパターンより太く形成されていること
     を特徴とする表示デバイスの製造方法。
  4.  請求項1から請求項3までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記表示デバイスは、前記ゲート電極に対し、同じ材料によって同一の層に形成され、画素回路に対応する複数の配線を有し、
     前記配線は、表示領域の一方の端部から他方の端部まで横断して設けられ、
     前記第1ゲートエッチング工程において成形される配線の幅は、前記第2ゲートエッチング工程において成形される配線の幅より大きいこと
     を特徴とする表示デバイスの製造方法。
  5.  請求項1から請求項3までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記表示デバイスは、前記ゲート電極に対し、同じ材料によって同一の層に形成され、画素回路に対応する複数の配線を有し、
     前記配線は、表示領域の一方の端部から他方の端部まで横断して設けられ、
     前記第1ゲートエッチング工程では、少なくとも2つ以上の配線を繋いだ状態で成形し、
     前記第2ゲートエッチング工程では、前記第1ゲートエッチング工程において繋いだ状態に成形した配線を分離すること
     を特徴とする表示デバイスの製造方法。
  6.  請求項5に記載の表示デバイスの製造方法であって、
     前記複数の配線のうちいずれかは、ゲート制御線および発光制御線とされ、
     前記第1ゲートエッチング工程では、同じ画素回路に対応するゲート制御線および発光制御線を繋いだ状態で成形し、
     前記第2ゲートエッチング工程では、前記第1ゲートエッチング工程において繋いだ状態に成形したゲート制御線および発光制御線を分離すること
     を特徴とする表示デバイスの製造方法。
  7.  請求項1から請求項6までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記第2ゲートエッチング工程と前記第2剥離工程との間に行われ、前記第2レジストパターンをマスクとして、前記ゲート絶縁層をエッチングし、前記ゲート電極と前記ゲート絶縁層との形状を整合させるセルフアライン工程を含むこと
     を特徴とする表示デバイスの製造方法。
  8.  請求項1から請求項7までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記第1トランジスタの前記酸化物半導体層は、前記導体領域と、前記ゲート電極の下方に位置する第1抵抗領域と、前記導体領域と前記第1抵抗領域との間に位置する第2抵抗領域とが設けられ、
     前記第1抵抗領域は、前記第2抵抗領域より抵抗値が大きいこと
     を特徴とする表示デバイスの製造方法。
  9.  請求項1から請求項8までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記第2フォト工程では、前記レジストが前記ゲート電極の一部を覆う第1トランジスタ領域と、前記レジストが前記ゲート電極の全体を覆う第2トランジスタ領域とを形成し、
     前記第2ゲートエッチング工程では、前記第1トランジスタ領域における前記ゲート電極をエッチングして前記第1トランジスタを形成し、前記第2トランジスタ領域における前記ゲート電極をレジストで保護して第2トランジスタを形成し、
     前記第2トランジスタの前記酸化物半導体層は、前記導体領域と、前記ゲート電極の下方に位置する第1抵抗領域とが設けられていること
     を特徴とする表示デバイスの製造方法。
  10.  請求項1から請求項9までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記導体化工程は、前記絶縁層エッチング工程と前記第2フォト工程との間に行われること
     を特徴とする表示デバイスの製造方法。
  11.  請求項1から請求項9までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記導体化工程は、前記第2ゲートエッチング工程の後に行われること
     を特徴とする表示デバイスの製造方法。
  12.  請求項1から請求項11までのいずれか1つに記載の表示デバイスの製造方法であって、
     前記第2ゲートエッチング工程の後、表示素子を形成する工程を含むこと
     を特徴とする表示デバイスの製造方法。
  13.  基板上に形成される第1トランジスタを有する表示デバイスであって、
     前記第1トランジスタは、前記基板上に成膜された酸化物半導体層と、
     前記酸化物半導体層の上に成膜されたゲート絶縁層と、
     前記ゲート絶縁層の上に成膜されたゲート電極とを備え、
     前記酸化物半導体層は、導体化された導体領域と、前記ゲート電極の下方に位置する第1抵抗領域とを有し、
     前記導体領域と前記第1抵抗領域との間には、前記ゲート電極より外側に位置する第2抵抗領域が設けられ、
     前記第1抵抗領域は、前記第2抵抗領域より抵抗値が大きいこと
     を特徴とする表示デバイス。
  14.  請求項13に記載の表示デバイスであって、
     前記ゲート絶縁層は、前記第2抵抗領域を覆っており、チャネル長方向での長さが、前記ゲート電極より長いこと
     を特徴とする表示デバイス。
  15.  請求項13に記載の表示デバイスであって、
     前記ゲート絶縁層は、前記第1抵抗領域および前記ゲート電極と整合する形状とされ、
     前記第2抵抗領域は、前記ゲート絶縁層より外側に設けられていること
     を特徴とする表示デバイス。
  16.  請求項13から請求項15までのいずれか1つに記載の表示デバイス
     前記基板上には、第2トランジスタが設けられ、
     前記第2トランジスタは、前記基板上に成膜された前記酸化物半導体層と、
     前記酸化物半導体層の上に成膜された前記ゲート絶縁層と、
     前記ゲート絶縁層の上に成膜された前記ゲート電極とを備え、
     前記酸化物半導体層は、導体化された前記導体領域と、前記ゲート電極の下方に位置する前記第1抵抗領域とを有し、
     前記ゲート絶縁層は、前記第1抵抗領域および前記ゲート電極と整合する形状とされ、
     前記第1抵抗領域は、前記導体領域に接して設けられていること
     を特徴とする表示デバイス。
     
PCT/JP2018/031411 2018-08-24 2018-08-24 表示デバイスの製造方法および表示デバイス WO2020039588A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/031411 WO2020039588A1 (ja) 2018-08-24 2018-08-24 表示デバイスの製造方法および表示デバイス
US17/270,446 US12114540B2 (en) 2018-08-24 2018-08-24 Method for manufacturing display device, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031411 WO2020039588A1 (ja) 2018-08-24 2018-08-24 表示デバイスの製造方法および表示デバイス

Publications (1)

Publication Number Publication Date
WO2020039588A1 true WO2020039588A1 (ja) 2020-02-27

Family

ID=69592927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031411 WO2020039588A1 (ja) 2018-08-24 2018-08-24 表示デバイスの製造方法および表示デバイス

Country Status (2)

Country Link
US (1) US12114540B2 (ja)
WO (1) WO2020039588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097295A (zh) * 2021-03-30 2021-07-09 合肥维信诺科技有限公司 薄膜晶体管及其制备方法、显示面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474830B (zh) * 2019-02-27 2023-04-18 夏普株式会社 显示装置及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223347A (ja) * 1993-02-10 2005-08-18 Seiko Epson Corp 薄膜トランジスタ
JP2009278115A (ja) * 2008-05-15 2009-11-26 Samsung Electronics Co Ltd トランジスタとこれを含む半導体素子及びそれらの製造方法
JP2012033911A (ja) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2017085079A (ja) * 2015-10-27 2017-05-18 Nltテクノロジー株式会社 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
US20170179164A1 (en) * 2015-12-21 2017-06-22 Samsung Display Co., Ltd. Method of manufacturing thin-film transistor, thin-film transistor substrate, and flat panel display apparatus
US20170373094A1 (en) * 2016-06-24 2017-12-28 Samsung Display Co., Ltd. Thin film transistor substrate and display apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100236A (ja) 1991-10-09 1993-04-23 Canon Inc 液晶表示素子の製造方法
WO1994018706A1 (en) 1993-02-10 1994-08-18 Seiko Epson Corporation Active matrix substrate and thin film transistor, and method of its manufacture
US5953582A (en) 1993-02-10 1999-09-14 Seiko Epson Corporation Active matrix panel manufacturing method including TFTS having variable impurity concentration levels
WO2003067666A1 (fr) * 2002-02-07 2003-08-14 Matsushita Electric Industrial Co., Ltd. Dispositif a semi-conducteur et son procede de production
TWI576646B (zh) * 2015-04-30 2017-04-01 群創光電股份有限公司 顯示裝置
US9859391B2 (en) 2015-10-27 2018-01-02 Nlt Technologies, Ltd. Thin film transistor, display device, and method for manufacturing thin film transistor
JP2018101681A (ja) * 2016-12-20 2018-06-28 株式会社Joled 半導体装置および表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223347A (ja) * 1993-02-10 2005-08-18 Seiko Epson Corp 薄膜トランジスタ
JP2009278115A (ja) * 2008-05-15 2009-11-26 Samsung Electronics Co Ltd トランジスタとこれを含む半導体素子及びそれらの製造方法
JP2012033911A (ja) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2017085079A (ja) * 2015-10-27 2017-05-18 Nltテクノロジー株式会社 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
US20170179164A1 (en) * 2015-12-21 2017-06-22 Samsung Display Co., Ltd. Method of manufacturing thin-film transistor, thin-film transistor substrate, and flat panel display apparatus
US20170373094A1 (en) * 2016-06-24 2017-12-28 Samsung Display Co., Ltd. Thin film transistor substrate and display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097295A (zh) * 2021-03-30 2021-07-09 合肥维信诺科技有限公司 薄膜晶体管及其制备方法、显示面板

Also Published As

Publication number Publication date
US20210257427A1 (en) 2021-08-19
US12114540B2 (en) 2024-10-08

Similar Documents

Publication Publication Date Title
US10367073B2 (en) Thin film transistor (TFT) with structured gate insulator
US8445301B2 (en) Thin-film transistor substrate, method of manufacturing the same, and display device including the same
US8796680B2 (en) Thin-film transistor substrate and method of manufacturing the same
US9613990B2 (en) Semiconductor device and method for manufacturing same
KR101790176B1 (ko) 어레이 기판의 제조방법
TWI395036B (zh) 薄膜電晶體陣列面板及其製造方法
US8907341B2 (en) Thin-film semiconductor device and method for fabricating thin-film semiconductor device
US9299763B2 (en) Thin film transistor array substrate and method of manufacturing the same
US10120256B2 (en) Preparation method for thin film transistor, preparation method for array substrate, array substrate, and display apparatus
US20220077266A1 (en) Semiconductor device including a flexible substrate
US10510781B2 (en) Semiconductor device and method for manufacturing semiconductor device
US10018906B2 (en) Display device and method of manufacturing the same
WO2020039588A1 (ja) 表示デバイスの製造方法および表示デバイス
KR20120043404A (ko) 표시장치 및 이의 제조방법
US20150221773A1 (en) Semiconductor device and method for producing same
TW201503374A (zh) 氧化物半導體薄膜電晶體
KR102449066B1 (ko) 표시장치용 어레이기판 및 그 제조방법
WO2020059027A1 (ja) 表示装置
US11437520B2 (en) Transistor and display device
WO2019187070A1 (ja) トランジスタおよび表示装置
KR102259278B1 (ko) 표시장치와 그 제조 방법
KR102423678B1 (ko) 박막 트랜지스터 표시판 및 그 제조 방법
US20230075289A1 (en) Active matrix substrate and method for manufacturing same
KR20150061256A (ko) 화소 박막트랜지스터와 구동 박막트랜지스터를 포함하는 표시기판 및 그 제조방법
KR20200105458A (ko) 표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP