WO2020038338A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2020038338A1
WO2020038338A1 PCT/CN2019/101412 CN2019101412W WO2020038338A1 WO 2020038338 A1 WO2020038338 A1 WO 2020038338A1 CN 2019101412 W CN2019101412 W CN 2019101412W WO 2020038338 A1 WO2020038338 A1 WO 2020038338A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
side device
terminal
uplink
network
Prior art date
Application number
PCT/CN2019/101412
Other languages
English (en)
French (fr)
Inventor
周涵
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19851454.9A priority Critical patent/EP3829257A4/en
Publication of WO2020038338A1 publication Critical patent/WO2020038338A1/zh
Priority to US17/179,743 priority patent/US11540332B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0858Load balancing or load distribution among entities in the uplink

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • a BWP is a segment of continuous frequency domain resources within a carrier used by a cell, and a carrier may include multiple BWPs.
  • the terminal-side device After the network-side device successfully connects the terminal-side device to the cell, the terminal-side device is configured with at least one BWP on a carrier in the carrier used by the cell, where the frequency domain width of each BWP is smaller than that supported by the terminal device. Maximum bandwidth.
  • a network-side device broadcasts a system message in a managed cell, where the system message includes random access configuration information of the cell, such as a frequency resource corresponding to an uplink BWP and a random access preamble on the uplink BWP (random access preamble) resource pool, etc., so that the terminal-side device accesses the cell through a random access process.
  • random access configuration information of the cell such as a frequency resource corresponding to an uplink BWP and a random access preamble on the uplink BWP (random access preamble) resource pool, etc.
  • the terminal-side device Since the terminal-side device has the same random access configuration information obtained from the system messages of this cell as other terminal-side devices in the coverage area of the same cell, the random access process of this terminal-side device will have a high probability of conflicts. Causes random access to fail.
  • the present application provides a communication method and device, which are used to reduce the probability of random access failure due to contention conflicts between terminal-side devices in a random access process in a mobile communication system.
  • the present application provides a communication method, which includes:
  • the terminal-side device determines a random access preamble on each uplink BWP in the N uplink bandwidth partial BWPs during a random access process, and sends the random access on each uplink BWP to the network-side device Preamble, where N is an integer greater than or equal to two.
  • any terminal-side device can send random access preambles on N uplink BWPs to the network-side device during a random access process.
  • the terminal-side device can perform randomization on multiple uplink BWPs. Access increases the chance of random access of the terminal-side device.
  • this method can reduce the occurrence of each terminal-side device and other terminals during the random access process.
  • the side device competes and conflicts, which can improve the success probability of random access of each terminal side device.
  • the terminal-side device determines a random access preamble on each uplink BWP.
  • the specific method may be that the terminal-side device has at least one random access preamble (can be attributed to The same random access preamble resource pool), determine the random access preamble on each uplink BWP. In this way, the terminal-side device can successfully determine the random access preamble on each uplink BWP.
  • the terminal-side device sends the random access preamble on each uplink BWP to the network-side device
  • a specific method may be: the terminal-side device determines the each And sending the random access preamble on each uplink BWP to the network-side device through the frequency resource and time resource corresponding to the uplink BWP and the frequency resource and time resource corresponding to each uplink BWP.
  • sending the random access preamble on each uplink BWP through the frequency resource and time resource corresponding to each uplink BWP can enable the terminal device to successfully send the uplink BWP on each uplink BWP.
  • the random access preamble can enable the terminal device to successfully send the uplink BWP on each uplink BWP.
  • the time resources corresponding to each uplink BWP do not overlap.
  • the terminal-side device determines the each uplink The time resources corresponding to BWP do not overlap. In this way, the terminal-side device can simply and flexibly determine that the time resources corresponding to each uplink BWP do not overlap in the foregoing manner.
  • the terminal-side device sends the random access preamble on each uplink BWP to the network-side device.
  • An optional method may be: the terminal-side device sends A random access preamble on the i-th uplink BWP, and within a random access response time window corresponding to the random access preamble on the i-th uplink BWP, send the i + 1 uplink BWP to the i-th uplink BWP Random access preambles on N uplink BWPs; where i is any integer from 1 to N-2.
  • the terminal-side device can send multiple subsequent random access preambles within a random access response time window corresponding to a random access preamble.
  • the terminal-side device sends the random access preamble on each uplink BWP to the network-side device.
  • An optional method may be: the terminal-side device sends Random access preamble on the jth uplink BWP, and within the random access response time window corresponding to the random access preamble on the jth uplink BWP, send a random access of the j + 1 uplink BWP Enter the preamble; where j is any integer from 1 to N-1.
  • the terminal-side device can send the next random access preamble within a random access response time window corresponding to the previous random access preamble.
  • time resources corresponding to at least two uplink BWPs in the N uplink BWPs overlap.
  • the terminal-side device determines that the at least two uplink BWPs correspond to Time resources overlap. In this way, the terminal-side device can simply and flexibly determine that the time resources corresponding to each uplink BWP overlap in the foregoing manner.
  • the terminal-side device After the terminal-side device sends the random access preamble on each uplink BWP to the network-side device, it receives M random accesses sent by the network-side device Respond, and select a first random access response from the M random access responses, and send a first message to the network-side device according to the first random access response, where M is less than or equal to N A positive integer; the first message requests a conflict resolution for the random access corresponding to the first random access response.
  • the terminal-side device may notify the network-side device that the terminal-side device chooses which uplink BWP to perform random access, that is, select the random access responded to by sending the first random access response. Random access is performed on the uplink BWP of the preamble. In this way, any terminal-side device can select a suitable uplink BWP among the above N BWPs for random access during the random access process by selecting the first random access response. Due to the uncertain factors of the actual scenario Therefore, the probability that the first random access response selected by different terminal-side devices is the same is low, that is, the probability that different terminal-side devices select random access on the same uplink BWP is low. In this way, the phenomenon that each terminal-side device competes and conflicts with other terminal-side devices during the random access process can be reduced, thereby improving the success probability of each terminal-side device's random access.
  • the first random access response is the first random access response received by the terminal-side device within a preset first time window, and the signal quality is within a preset second time window The best random access response, or a randomly selected random access response.
  • the terminal-side device when the first random access response is the first random access response received by the terminal-side device within a preset first time window, it can be ensured that the terminal-side device has the highest response speed.
  • Performing random access on the fast uplink BWP can reduce the delay of the contention conflict resolution corresponding to the first random access response of the terminal-side device, so that the terminal-side device can access the network-side managed device as quickly as possible.
  • Cell when the first random access response is a random access response with the best signal quality within a preset second time window, the terminal-side device can be guaranteed to perform randomization on the uplink BWP with the best channel quality Access, thereby ensuring communication quality of the terminal-side device after successful access.
  • the terminal-side device sends a second message to the network-side device according to a second random access response, wherein the second message instructs to cancel the random corresponding to the second random access response.
  • the second random access response is any one of the M random access responses excluding the other M-1 random access responses of the first random access response.
  • the terminal-side device can notify the network-side device which uplink BWP the terminal-side device does not perform random access on, that is, the random access preamble in response to the second random access response is not sent. Random access on the uplink BWP of the network, so that the network-side device will cancel the random access on the uplink BWP after receiving the second message on the uplink BWP, that is, the network-side device does not need to perform uplink resource scheduling Therefore, waste of uplink resources can be avoided, and the uplink capacity of a cell can be reduced.
  • the terminal-side device receives M random access responses sent by the network-side device, and sends the random access responses to the network side according to the kth random access response among the M random access responses.
  • the device sends a first message, where M is a positive integer less than or equal to N; the first message requests a conflict resolution of the random access corresponding to the kth random access response, where k is from 1 to M Any integer.
  • the terminal-side device may notify the network-side device that the terminal-side device selects which uplink BWP to perform random access on.
  • the present application provides a communication method, which includes:
  • the network-side device receives P random access preambles on each uplink BWP in the P uplink bandwidth part BWP from the terminal-side device, and sends P random access to the terminal-side device according to the received P random access preambles Response; the network-side device receives a first message in response to the first random access response from the terminal-side device; wherein P uplink BWPs are included in N uplink BWPs, where N is an integer greater than or equal to 2, P Is a positive integer less than or equal to N; the first random access response is one of the P random access responses, and the first message requests a random access corresponding to the first random access response Competitive conflict resolution.
  • any terminal-side device can select a suitable uplink BWP among the N BWPs for random access by selecting the first random access response during the random access process.
  • the phenomenon of competition and conflict between each terminal-side device and other terminal-side devices during the random access process can be reduced, and the success probability of random access of each terminal-side device can be improved.
  • the network-side device receives a second message from the terminal-side device in response to a second random access response; wherein the second random access response is the P random access responses Any one of the other P-1 random access responses from the first random access response is excluded, and the second message instructs to cancel the random access corresponding to the second random access response.
  • the network-side device After receiving a second message on an uplink BWP, the network-side device will cancel random access on the uplink BWP, that is, the network-side device does not need to perform uplink resource scheduling any more, so it can avoid causing Waste of uplink resources reduces the uplink capacity of the cell.
  • the present application provides a communication method, which includes:
  • the network-side device receives P random access preambles on each uplink BWP in the P uplink bandwidth part BWP from the terminal-side device, and sends P random access to the terminal-side device according to the received P random access preambles Response; the network-side device receives L first messages in response to L random access responses from the terminal-side device, selects a target first message from the L first messages, and according to the target first The message sends a contention conflict resolution message; P uplink BWPs are included in N uplink BWPs, where N is an integer greater than or equal to 2 and P is a positive integer less than or equal to N; the L random access responses are contained in Among the P random access responses, L is a positive integer less than or equal to P, and the first message in response to the kth random access response requests competition for the random access corresponding to the kth random access response.
  • Conflict resolution k is an arbitrary integer from 1 to P; the contention conflict resolution message indicates a random access contention conflict resolution corresponding to a
  • any terminal-side device can select a suitable uplink BWP among the N BWPs for random access during the random access process. Due to the uncertain factors of the actual scenario, the network-side device is targeted at The probability that different terminal-side devices choose random access on the same uplink BWP is low. In this way, the phenomenon of competition and conflict between each terminal-side device and other terminal-side devices during the random access process can be reduced, and the success probability of random access of each terminal-side device can be improved.
  • the network-side device may select a target first message from the L first messages from the terminal-side device according to the load situation in the cell: the network-side device may determine the terminal-side device Sending the L uplink BWPs used for sending the L first messages to determine a target uplink BWP with the smallest load among the L uplink BWPs; the network-side device adds the L first messages to the target The first message sent on the uplink BWP is used as the target first message.
  • the network-side device can select a target uplink BWP for the terminal-side device according to the load of the uplink BWP in the cell, thereby achieving load balancing between the uplink BWPs in the cell.
  • the network-side device may also use the following methods to select the target first message from the L first messages from the terminal-side device: Method 1: the network-side device selection The first first message received within a preset third time window is the target first message; Method 2: the network-side device selects the first message with the best signal quality within a preset fourth time window Is the target first message; mode three: the network-side device randomly selects a first message among the L first messages as the target first message.
  • the network-side device can respond to the fastest first message.
  • the network-side device can enable the terminal-side device to perform random access on the uplink BWP with the fastest response speed, thereby reducing
  • the delay of the terminal-side device's competition conflict resolution enables the terminal-side device to access the cell managed by the network side as quickly as possible; through the above second method, the network-side device can respond to the first message with the best signal quality .
  • the network-side device can enable the terminal-side device to perform random access on the uplink BWP with the best channel quality, thereby ensuring the communication quality of the terminal-side device after successful access.
  • the present application provides a terminal-side device that has the functions of implementing the terminal-side device in the method of the first aspect.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the terminal-side device includes a processing unit and a sending unit, and these units can perform corresponding functions in the foregoing method examples.
  • a processing unit and a sending unit can perform corresponding functions in the foregoing method examples.
  • the structure of the terminal-side device includes a transceiver and a processor.
  • the terminal-side device may also include a memory.
  • the transceiver is used to send and receive data, and communicate with other devices in the mobile communication system.
  • the processor is configured to support the terminal-side device to execute a corresponding function in any one of the methods in the first aspect.
  • the memory is coupled to the processor, and it stores program instructions and data necessary for the terminal-side device.
  • the present application provides a network-side device, where the network-side device has a function of implementing the network-side device in the method of the second aspect.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the network-side device includes a receiving unit and a sending unit, and these units can perform corresponding functions in the foregoing method examples.
  • the structure of the network-side device includes a receiving unit and a sending unit, and these units can perform corresponding functions in the foregoing method examples.
  • the structure of the network-side device includes a transceiver and a processor.
  • the network-side device may also include a memory.
  • the transceiver is used to send and receive data, and communicate with other devices in the mobile communication system.
  • the processor is configured to support the network-side device to execute a corresponding function in any one of the methods in the second aspect.
  • the memory is coupled to the processor, and it stores program instructions and data necessary for the network-side device.
  • the present application provides a network-side device, where the network-side device has a function of implementing the network-side device in the method of the third aspect.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the network-side device includes a receiving unit, a sending unit, and a processing unit. These units can perform the corresponding functions in the foregoing method examples. For details, refer to the detailed description in the method examples. To repeat.
  • the structure of the network-side device includes a transceiver and a processor.
  • the network-side device may also include a memory.
  • the transceiver is used to send and receive data, and communicate with other devices in the mobile communication system.
  • the processor is configured to support the network-side device to execute a corresponding function in any one of the methods in the third aspect.
  • the memory is coupled to the processor, and it stores program instructions and data necessary for the network-side device.
  • an embodiment of the present application further provides a computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute when called by the computer
  • an embodiment of the present application further provides a computer program product including instructions, which when executed on an electronic device, causes the electronic device to execute any one of the possible designs in the first to third aspects. Mentioned method.
  • an embodiment of the present application further provides an electronic device.
  • the electronic device may be a chip, and the chip is connected to a memory, and is configured to read and execute program instructions stored in the memory to implement the foregoing first The method mentioned in any one of the possible designs from one aspect to the third aspect.
  • FIG. 1 is an architecture diagram of a mobile communication system according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a random access process according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is an example diagram of time resources corresponding to a first uplink BWP provided by an embodiment of this application;
  • FIG. 5 is an example diagram of a time resource corresponding to a second uplink BWP according to an embodiment of the present application.
  • FIG. 6 is a diagram illustrating an example of time resources corresponding to a third uplink BWP provided by an embodiment of the present application.
  • FIG. 7 is a diagram illustrating an example of time resources corresponding to a fourth uplink BWP according to an embodiment of the present application.
  • FIG. 8 is a diagram illustrating an example of time resources corresponding to a fifth uplink BWP according to an embodiment of the present application.
  • FIG. 9 is a diagram illustrating an example of time resources corresponding to a sixth uplink BWP according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal-side device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another network-side device according to an embodiment of the present application.
  • FIG. 13 is a structural diagram of a communication device according to an embodiment of the present application.
  • the present application provides a communication method and device, which are used to reduce the probability of random access failure due to contention conflicts between terminal-side devices in a random access process in a mobile communication system.
  • the method and equipment are based on the same inventive concept. Since the principle of the method and the equipment to solve the problem is similar, the implementation of the equipment and the method can be referred to each other, and the duplicates are not described again.
  • a terminal-side device is a device that provides voice and / or data connectivity to users.
  • the terminal-side device involved in this application may be a terminal device, or a hardware component inside the terminal device that can implement the functions of the terminal device.
  • the terminal device may also be called a user equipment (UE), a mobile station (MS), a mobile terminal (MT), or the like.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • terminal devices are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals in wireless communication, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality Augmented reality
  • Wireless terminals in wireless communication wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • a hardware component inside the terminal device that can implement the functions of the terminal device may be a processor and / or a programmable chip inside the terminal device.
  • the chip may be implemented by an application-specific integrated circuit (ASIC), or a programmable logic device (PLD).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex program logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), a system on chip (system on chip) , SOC), or any combination thereof.
  • a network-side device is a device that connects a terminal-side device to a wireless network in a mobile communication system.
  • the network-side device involved in this application may be a network device, or a hardware component inside the network device that can implement the functions of the network device.
  • the network device may be a node in a radio access network, may also be called a base station, and may also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • some examples of network equipment are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), or baseband unit (base band) unit, BBU) and so on.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in a long term evolution (LTE) system, and some protocol layers (such as packet data convergence protocol (PDCP) layer and radio resource control) , RRC (layer) functions are placed in the CU centralized control, the rest of the protocol layer (such as physical (PHY) layer, media access control (MAC) layer, radio link control (radio link control) , RLC) layer) functions are distributed in the DU, and the CU is controlled by the CU.
  • LTE long term evolution
  • PDCP packet data convergence protocol
  • RRC layer
  • PHY physical
  • MAC media access control
  • RLC radio link control
  • the hardware component inside the network device that can implement the functions of the network device may be a processor and / or a programmable chip inside the network device.
  • the chip can be implemented by ASIC or PLD.
  • the PLD may be any one of CPLD, FPGA, GAL, and SOC, or any combination thereof.
  • BWP is a continuous frequency resource in a carrier used by a cell managed by a network-side device.
  • a BWP may contain consecutive K subcarriers, or include non-overlapping consecutive M resource block (resource block, RB) frequency resources, or non-overlapping consecutive N resource block groups (resource block group, RBG).
  • K, M, N are integers greater than 0.
  • the BWP may also be referred to as a bandwidth resource, a bandwidth region, a frequency domain resource, a frequency resource part, a part of a frequency resource, or other names, and is not limited in this application.
  • FIG. 1 illustrates an architecture of a possible mobile communication system to which the communication method provided in the embodiment of the present application is applicable.
  • the mobile communication system includes a network-side device 101 and a terminal-side device 102.
  • the network-side device 101 is responsible for providing wireless access-related services to the terminal-side device 102 to implement physical layer functions, resource scheduling and wireless resource management, quality of service (QoS) management, and wireless access control And mobility management functions.
  • QoS quality of service
  • the terminal-side device 102 is a device that accesses a network through the network-side device 101.
  • the network-side device 101 and the terminal-side device 102 are connected through an air interface (such as a Uu) interface, so as to implement communication between the terminal-side device 102 and the network-side device 101.
  • an air interface such as a Uu
  • the bandwidth capabilities of the network-side device 101 and the terminal-side device 102 may be different.
  • the bandwidth capability of any device is the capacity of the maximum transmission bandwidth that the device can support, and can be specifically expressed by the maximum bandwidth of the device.
  • the maximum bandwidth of the terminal-side device 102 is affected by various factors such as the service requirements and manufacturing costs of the terminal-side device 102.
  • the concept of BWP is introduced in the mobile communication system to divide the carrier used by the cell managed by the network-side device 101 into multiple BWP.
  • the BWP division rule may be defined by the network-side device 101 according to actual application requirements, or may be pre-defined by the protocol.
  • the network-side device 101 broadcasts a system message in a managed cell.
  • the system message includes random access configuration information of the cell.
  • the random access configuration information may be: an uplink BWP used for random access by the terminal-side device 102, and at least one random access preamble on the uplink BWP (for example, belonging to a random access preamble resource pool) , One or any combination of frequency resources and time resources corresponding to the uplink BWP.
  • the terminal-side device 102 After entering the coverage of the cell, the terminal-side device 102 receives the system message from the network-side device 101 and initiates a random access process based on the random access configuration information contained in the system message to request access to the cell. .
  • the bandwidth capability of the terminal-side device 102 is reported to the network-side device 101.
  • the terminal-side device 102 sends the maximum bandwidth of the terminal-side device 102 to the network-side device 101.
  • the network-side device 101 configures the terminal-side device 102 with an uplink BWP and a downlink BWP in the multiple BWPs. Subsequently, the terminal-side device 102 and the network-side device 101 can communicate according to the uplink BWP and the downlink BWP.
  • the communication system shown in FIG. 1 does not limit the communication system to which a communication method provided in the embodiment of the present application is applicable.
  • the communication system may be a fifth-generation (The 5 th Generation, 5G) mobile communication systems (e.g., systems NR), other mobile communication systems the evolved mobile communication systems based 5G, the present embodiment is not limited in application .
  • a terminal-side device In the mobile communication system shown in FIG. 1, a terminal-side device generally uses a contention-based random access procedure to request access to a cell.
  • the current contention-based random access process specifically includes the following steps:
  • the terminal-side device After entering the coverage of a cell managed by a network-side device, the terminal-side device receives the system message broadcast by the network-side device after searching for the cell during the network search process, thereby obtaining the cell information included in the system message. Random access configuration information. Then, the terminal-side device determines a random access preamble on the uplink BWP and frequency resources and time resources corresponding to the uplink BWP according to the random access configuration information of the cell, and then passes the frequency resources and time resources corresponding to the uplink BWP. Sending a random access preamble (also known as message 1 (msg1)) on the uplink BWP to the network-side device to notify the network-side device that there is a terminal-side device requesting random access.
  • msg1 message 1
  • the terminal device After sending the random access preamble, the terminal device starts the RAR time window, and listens to the RAR sent by the network device within the RAR time window. If the terminal device does not receive the RAR within the RAR time window, it considers this Random access failed.
  • the network-side device After receiving the random access preamble sent by the terminal-side device, the network-side device sends a random access response (RAR) (also referred to as message 2 (msg2)) to the terminal-side device.
  • RAR random access response
  • each terminal device selects a random access preamble from a common random access preamble resource pool.
  • the random access preamble resource pool may be specified in the protocol or included in a system message broadcasted by a network-side device. Therefore, the following random access contention conflict may exist in the mobile communication system:
  • step S201 multiple terminal-side devices execute step S201 and select the same random access preamble to request random access to the cell. Therefore, in step S202, the network-side device cannot distinguish which terminal-side device the received random access preamble is from. Then, in order to allow the network-side device to identify its own identity, after receiving the RAR, each terminal-side device notifies the network-side device of its own identity through S203.
  • the terminal-side device After receiving the RAR within the RAR time window (window), the terminal-side device sends a scheduled transmission message (also referred to as message 3, message 3, which carries the identity of the terminal-side device) to the network-side device. msg3)), so as to realize the first uplink transmission of the terminal-side device, so as to request the network-side device to resolve a contention conflict of random access to the terminal-side device.
  • a scheduled transmission message also referred to as message 3, message 3, which carries the identity of the terminal-side device
  • the identifier of the terminal-side device may be an identifier assigned to the core network device, such as a cell wireless network temporary identifier (C-RNTI), a UE identifier (ID), and the like.
  • C-RNTI cell wireless network temporary identifier
  • ID UE identifier
  • the scheduled transmission message may also carry a radio resource control (radio resource control, RRC) connection request.
  • RRC radio resource control
  • the network-side device After receiving the scheduled transmission message sent from at least one terminal-side device, the network-side device sends a contention resolution message (also referred to as message 4 (msg4)) to one terminal-side device.
  • the contention resolution message carries the identity of the terminal-side device.
  • the terminal-side device is the terminal-side device designated by the network-side device to win the competition of random access. In other words, the network-side device resolves the conflict of random access to the terminal-side device.
  • the terminal-side device If the terminal-side device receives a contention resolution message carrying its own identity, it indicates that the terminal-side device has succeeded in this random access; if the terminal-side device does not receive a contention-resolution message carrying its own identity, it indicates that this random access has failed , You can re-initiate a new random access process.
  • the contention resolution message when the scheduled transmission message carries an RRC connection request, the contention resolution message also carries configuration information when the RRC connection is established.
  • the terminal-side device may establish an RRC connection according to the configuration information when the RRC connection is established to implement data communication with the network-side device.
  • a cell is designated as a common uplink BWP for terminal-side equipment to perform random access. Therefore, within the coverage area of the cell, multiple terminal-side devices will receive the same system information. Then, multiple terminal-side devices are likely to select the same random access preamble in a common random access preamble resource pool. Code and send it at the same time using resources.
  • the above-mentioned contention and conflict will occur with a higher probability, resulting in randomness of the terminal-side device The access failure increases the delay for the terminal-side device to access the cell.
  • an embodiment of the present application provides a communication method, and the method is applicable to the mobile communication system shown in FIG. 1.
  • the method includes the following steps:
  • the terminal-side device determines a random access preamble on each uplink BWP in the N uplink BWPs during a random access process, where N is an integer greater than or equal to 2.
  • the terminal-side device may trigger, but is not limited to, a contention-based random access procedure in the following scenarios:
  • Scenario 1 The terminal-side device initially accesses the cell within the coverage of a cell managed by the network-side device. For example, the terminal-side device randomly accesses the network-side device from power-on.
  • Scenario 2 The terminal-side device needs to re-establish an RRC connection. For example, a wireless link failure between the terminal-side device and the network-side device occurs, and the RRC connection is reestablished through random access.
  • Scenario 3 The terminal-side device is performing a handover (HO), for example, the source cell switches to the target cell, where the source cell and the target cell may belong to the same network-side device, or may belong to the same network-side device. Different network-side devices.
  • HO handover
  • Scenario 4 The terminal-side device is in the RRC connection state but is out of sync with the network-side device. When downlink data arrives or uplink data arrives, random synchronization is used to complete uplink synchronization so that the terminal-side device can perform downlink data feedback or Uplink data transmission.
  • one random access process of the terminal-side device includes N random accesses, that is, each of the N uplink BWPs corresponds to one random access.
  • the random access preamble on any uplink BWP is the random access preamble used for the random access corresponding to the uplink BWP. It is also the terminal-side device that needs to be on the uplink BWP (using the frequency in the uplink BWP). Resource) random access preamble.
  • the terminal-side device may perform S301 through the following steps:
  • the terminal-side device determines the random access preamble on each uplink BWP in at least one random access preamble (which can belong to the same random access preamble resource pool).
  • the random access preamble resource pool may be predetermined by the protocol, or may be obtained by the terminal-side device from random access configuration information.
  • the terminal-side device obtains the random access configuration information by receiving a system message broadcast by a network-side device.
  • the embodiment of the present application does not limit the number of random access preamble resource pools.
  • the random access preamble resource pool may be one, that is, the random access preamble resource pool is commonly set for the N uplink BWPs; or the random access preamble resource pool is N Each, that is, each random access preamble resource pool is set for one uplink BWP; or the number of random access preamble resource pools is less than N, and some of the random access preamble resource pools are respectively targeted at Two or more uplink BWPs are commonly set, and each random access preamble in the other part of the random access preamble resource pool is set for one uplink BWP respectively.
  • the random access preambles in any two of the random access preamble resource pools may be completely different, may be all the same, and may be partially the same or different. This application does not limit this.
  • the random access preamble on each uplink BWP determined by the terminal-side device through the foregoing step S301 may meet any of the following three situations:
  • the first case the random access preamble on each uplink BWP determined by the terminal-side device is different.
  • the second case the random access preamble on each uplink BWP determined by the terminal-side device is the same.
  • the third case the random access preambles on at least two uplink BWPs determined by the terminal-side device are the same.
  • the N uplink BWPs are uplink BWPs used for random access in the mobile communication system.
  • the N uplink BWPs may be pre-defined by the protocol or the terminal-side device. It is obtained from the random access configuration information, which is not limited in this application.
  • the terminal-side device sends the random access preamble on each uplink BWP to a network-side device.
  • the network-side device receives a random access preamble on each of the P uplink BWPs from the terminal-side device.
  • the network-side device may receive random access preambles on N uplink BWPs, and may also receive random access preambles on some uplink BWPs in the N uplink BWPs. Therefore, in the above steps, the P uplink BWPs are included in the N uplink BWPs, and P is a positive integer less than or equal to N.
  • the terminal-side device may perform the above S302 through the following steps:
  • the terminal-side device determines a frequency resource and a time resource corresponding to each uplink BWP.
  • the terminal-side device sends the random access preamble on the uplink BWP to the network-side device through the frequency resource and time resource corresponding to the uplink BWP.
  • the frequency domain resource and time resource corresponding to each uplink BWP may be frequency resources and time resources used when the terminal-side device sends a random access preamble on the uplink BWP.
  • the following methods can be used to determine the frequency resource and time resource corresponding to any uplink BWP:
  • the terminal-side device selects, from at least one frequency domain resource and at least one time resource set for the uplink BWP, a frequency resource and a time resource (i.e., the uplink BWP) used when sending a random access preamble on the uplink BWP. Corresponding frequency resources and time resources).
  • At least one frequency resource and at least one time resource set for the uplink BWP may be pre-defined by the protocol, or may be obtained by the terminal-side device from random access configuration information.
  • the terminal-side device may, according to the random access preamble on the uplink BWP determined in S301, set multiple frequency domain resources and / or multiple Among the time resources, a frequency resource and a time resource used when sending a random access preamble on the uplink BWP are selected.
  • each uplink BWP since the frequency resources included in each uplink BWP are different, the frequency resources corresponding to different uplink BWPs are different. However, the time resources corresponding to different uplink BWPs may overlap (including partial overlap and full overlap) or non-overlapping, which is not limited in this embodiment of the present application.
  • the network-side device sends P random access responses to the terminal-side device according to the received P random access preambles.
  • the terminal-side device receives M random access responses sent by the network-side device.
  • the terminal-side device may send random access preambles on P uplink BWPs, and may also send random access on some uplink BWPs in P uplink BWPs. Enter the preamble. Therefore, in the above steps, the M uplink BWPs are included in the P uplink BWPs, and M is a positive integer less than or equal to P.
  • the network-side device may send a random access response to the terminal-side device according to each received random access preamble, and a specific process is not described herein again.
  • the network-side device may send the P random access responses through P channels, respectively.
  • the P channels may belong to different downlink BWPs, respectively, or belong to the same downlink BWP.
  • Each of the P random access responses is used to respond to a random access preamble sent by the network-side device.
  • the terminal-side device may determine a random access preamble according to the random access response.
  • the terminal-side device may be based on a channel (e.g., physical downlink shared channel (PDSCH)) that sends the random access response, and an identifier of a random access preamble included in the random access response.
  • Information uplink BWP, sequence information, frequency resources and / or time resources used to send the random access preamble, etc.
  • any terminal-side device in the mobile communication system can send random access preambles on N uplink BWPs to the network-side device during a random access process.
  • the terminal-side device can Random access on the uplink BWP increases the chance of random access by the terminal-side device.
  • the network-side device or each terminal-side device can subsequently perform random access on any of the B uplink BWPs, so this method can reduce the occurrence of each terminal-side device during the random access process.
  • the phenomenon of competition and conflict with other terminal-side devices can improve the success probability of random access of each terminal-side device.
  • the mobile communication system may adopt a variety of schemes after S303 to implement network-side equipment or each terminal-side equipment to perform random access on any one of the above-mentioned N uplink BWPs.
  • Schemes 1 and 2 are described as examples. Referring to FIG. 3, the first solution is implemented through steps S304a-S307a, and the second solution is implemented through steps S304b-S306b.
  • S304a The terminal-side device selects a first random access response from the M random access responses.
  • the first random access response may be selected by the terminal-side device in the following manner:
  • Manner 1 The first random access response received by the terminal-side device within a preset first time window is the first random access response.
  • the first time window is stipulated in an agreement or determined by the terminal-side device according to an actual application, which is not limited in this application.
  • the terminal-side device may respond to the first random access response that is the fastest through subsequent steps, so that the terminal-side device can be guaranteed to perform on the uplink BWP with the fastest response speed. Random access can reduce the delay of contention conflict resolution corresponding to the first random access response of the terminal-side device, so that the terminal-side device can access the cell managed by the network side as quickly as possible.
  • Manner 2 The terminal-side device selects the random access response with the best signal quality within a preset second time window as the first random access response.
  • the second time window is stipulated in an agreement or determined by the terminal-side device according to an actual application, which is not limited in this application.
  • the terminal-side device may sort the signal quality of the M random access responses.
  • the terminal-side device may implement multiple methods to sort the signal quality of the random access response.
  • the terminal-side device may sort the signal quality of the reference signals in the channel carrying the M random access responses, so as to determine the ranking of the signal quality of the M random access responses.
  • the terminal-side device may determine the received power of the channels carrying the M random access responses, and then sort the received power of the channels carrying the M random access responses to determine the M Ordering of signal quality for random access response. The smaller the received power of the channel carrying the random access response, the higher the signal quality of the random access response carried by the channel.
  • the terminal-side device determines the signal-to-noise ratio of the channel carrying the M random access responses, and then sorts the signal-to-noise ratio of the channel carrying the M random access responses, thereby determining the Ordering of signal quality for M random access responses.
  • the terminal-side device can respond to the first random access response with the best signal quality through subsequent steps, so that the terminal-side device can be guaranteed to perform random access on the uplink BWP with the best channel quality. To ensure communication quality of the terminal-side device after successful access.
  • Manner 3 The terminal-side device randomly selects a random access response among the M random access responses as the first random access response.
  • S305a The terminal-side device sends a first message to the network-side device according to the first random access response, and the first message requests a contention conflict for the random access corresponding to the first random access response. solve. Receiving, by the network-side device, the first message in response to the first random access response from the terminal-side device.
  • the terminal-side device may send the first message on an uplink BWP that sends a random access preamble in response to the first random access response.
  • the first message may be the aforementioned msg3, which includes an identifier of the terminal-side device, such as a C-RNTI, a UE ID, and the like.
  • the terminal-side device only needs to respond to the first random access response through S304a and S305a, that is, it can notify the network-side device that the terminal-side device chooses which uplink BWP to perform random access on. That is, random access is selected on the uplink BWP of the random access preamble to which the first random access response is sent. Therefore, the first message may also be referred to as a random access response correct response (RAR-acknowledgement, RAR-ACK).
  • RAR-acknowledgement RAR-ACK
  • the terminal-side device not only responds to the first random access response, but also responds to another M-1 random access responses through S306a.
  • the terminal-side device sends a second message to the network-side device according to a second random access response, where the second message instructs to cancel random access corresponding to the second random access response, where:
  • the second random access response is any one of the M random access responses other than the M-1 random access responses except the first random access response.
  • the network-side device receives a second message from the terminal-side device in response to the second random access response.
  • the terminal-side device may send the second message on the uplink BWP of the random access preamble in response to the second random access response.
  • the second message may also be msg3, which includes an identifier of the terminal-side device, such as a C-RNTI, a UE ID, and the like.
  • the terminal-side device responds to the second random access response, that is, it can notify the network-side device which uplink BWP the terminal-side device does not perform random access on, that is, the second random access Random access is performed on the uplink BWP of the random access preamble in response to the access response, so that the network-side device will cancel random access on the uplink BWP after receiving the second message on the uplink BWP.
  • the second message may also be referred to as a random access response negative response (RAR-negative acknowledgement, RAR-NACK).
  • RAR-negative acknowledgement RAR-NACK
  • the uplink resources are rescheduled so that the terminal-side device sends msg3.
  • the network-side device After the network-side device receives the second message on an uplink BWP, it will cancel random access on the uplink BWP, that is, the network-side device does not need to perform uplink resource scheduling any more. Therefore, This step can avoid the waste of uplink resources and reduce the uplink capacity of the cell.
  • the network-side device sends a contention conflict resolution message according to the received first message, where the contention conflict resolution message indicates a contention conflict resolution for random access corresponding to a random access response to the first message response. Receiving, by the terminal-side device, the contention conflict resolution message from the network-side device.
  • the contention conflict resolution message may also be msg4, which includes the identifier of the terminal-side device included in the first message.
  • the terminal-side device can successfully complete random access on the target BWP, so that after establishing an RRC connection, data communication with the network-side device can be achieved.
  • the target BWP is an uplink BWP used when the terminal-side device sends a random access preamble in response to the first random access response.
  • any terminal-side device can select a suitable uplink BWP among the N BWPs for random access by selecting the first random access response. Uncertain factors, so the probability that the first random access response selected by different terminal-side devices is the same is low, that is, the probability that different terminal-side devices choose random access on the same uplink BWP is low. In this way, this solution can reduce the phenomenon that each terminal-side device competes and conflicts with other terminal-side devices during the random access process, thereby improving the success probability of each terminal-side device's random access.
  • the terminal-side device sends a first message to the network-side device according to the k-th random access response of the M random access responses, where the first message requests the k-th random access response. Contention conflict resolution for random access corresponding to the access response, where k is any integer from 1 to M.
  • the network-side device receives, from the terminal-side device, L first messages in response to L random access responses.
  • the number of first messages received by the network-side device is less than or equal to the number of first messages sent by the terminal-side device, that is, the L random accesses
  • the response is included in the M random access responses, and L is a positive integer less than or equal to M.
  • the terminal-side device sends a first message to the network-side device according to the kth random access response, and the terminal-side device sends the first message to the network-side device according to the first random access response in the first solution.
  • Sending the first message is the same, and the purpose of the first message is also the same in the two schemes. Therefore, reference may be made to the description of S305a in the scheme 1, and details are not described herein again.
  • the terminal-side device when sending the first message according to any random access response, sends the first message on the uplink BWP of the random access preamble to which the random access response is sent.
  • S305b The network-side device selects a target first message from the L first messages.
  • the network-side device can receive first messages from multiple terminal-side devices simultaneously. Therefore, the network-side device may determine the first message from the same terminal-side device by using the identifier of the terminal-side device included in each first message. The network-side device then selects the target first message from the first messages from the same terminal-side device.
  • the network-side device selects the target first message, and selects a target uplink BWP for the terminal-side device for random access.
  • the target uplink BWP is the BWP used when the terminal-side device sends the target first message.
  • the network-side device may select the target first message from the L first messages from the terminal-side device according to the load situation in the cell:
  • the network-side device may determine the L uplink BWPs used by the terminal-side device to send the L first messages;
  • the network-side device uses the first message sent on the target uplink BWP among the L first messages as the target first message.
  • the network-side device can select a target uplink BWP for the terminal-side device according to the load of the uplink BWP in the cell, thereby achieving load balancing between the uplink BWPs in the cell.
  • the network-side device may also use the following methods from The target first message is selected from the L first messages of the terminal device.
  • Manner 1 The network-side device selects the first first message received within a preset third time window as the target first message.
  • the network-side device can respond to the fastest first message.
  • the network-side device can enable the terminal-side device to perform random access on the uplink BWP with the fastest response speed, thereby reducing
  • the delay of the contention resolution of the terminal by the terminal device is described, so that the terminal device can access the cell managed by the network side as quickly as possible.
  • Manner 2 The network-side device selects the first message with the best signal quality within a preset fourth time window as the target first message.
  • the network-side device selects the first message with the best signal quality among the L first messages, and may refer to a specific method when the terminal-side device selects a random access response with the best signal quality among the M random access responses. I will not repeat them here.
  • the network-side device can respond to the first message with the best signal quality.
  • the network-side device can enable the terminal-side device to perform random access on the uplink BWP with the best channel quality, thereby ensuring the communication quality of the terminal-side device after successful access.
  • Manner 3 The network-side device randomly selects a first message among the L first messages as the target first message.
  • S306b The network-side device sends a contention conflict resolution message according to the target first message, where the contention conflict resolution message indicates a random access response corresponding to the target first message response (that is, a target random access response). Completion of access conflict resolution is complete. Receiving, by the terminal-side device, the contention conflict resolution message from the network-side device.
  • the terminal-side device can successfully complete random access on the target BWP, so that after establishing an RRC connection, data communication with the network-side device can be achieved.
  • the target BWP is an uplink BWP used when the terminal-side device sends a random access preamble to which the target random access response is sent.
  • any terminal-side device can select an appropriate uplink BWP among the N BWPs for random access during the random access process. Due to the uncertain factors of the actual scenario, the network-side device The probability of selecting random access on the same uplink BWP for different terminal-side devices is low. In this way, this solution can reduce the phenomenon that each terminal-side device competes and conflicts with other terminal-side devices during the random access process, thereby improving the success probability of each terminal-side device's random access.
  • the time resources corresponding to different uplink BWPs may or may not overlap.
  • the following describes the specific implementation manner of performing S303 on the terminal-side device according to the relationship of the time resources corresponding to different uplink BWPs.
  • the time resources corresponding to each uplink BWP do not overlap.
  • the terminal-side device sends the random access preamble on each uplink BWP in turn.
  • the time resources corresponding to each uplink BWP may be as shown in FIG. 4, No overlap at all.
  • the terminal-side device may send the random access preamble on each uplink BWP in the following manner:
  • the terminal-side device sends a random access from the i + 1th uplink BWP to the Nth uplink BWP within a random access response time window corresponding to the random access preamble on the ith uplink BWP.
  • i is an arbitrary integer from 1 to N-2.
  • the terminal-side device may send multiple subsequent random access preambles within a random access response time window corresponding to a random access preamble, as shown in FIG. 5.
  • the terminal-side device may also send the random access preamble on each uplink BWP in the following manner:
  • the terminal-side device sends a random access preamble on the j-th uplink BWP;
  • j is an arbitrary integer from 1 to N-1.
  • the terminal-side device may send the next random access preamble within a random access response time window corresponding to the previous random access preamble, as shown in FIG. 6.
  • the terminal-side device needs to send at least two random access preambles on the uplink BWP at the same time, as shown in Figures 7-9.
  • the terminal-side device may determine which of the foregoing designs to adopt based on its available uplink power. Specifically, the terminal-side device estimates the uplink power on each of the N uplink BWPs and the total uplink power available to the terminal-side device.
  • the terminal-side device determines that the sum of the uplink power on any two uplink BWPs of the N uplink BWPs is greater than the total uplink power available to the terminal-side device, the terminal-side device adopts the first design described above; When the terminal-side device determines that the sum of uplink power on at least two uplink BWPs in the N uplink BWPs is less than or equal to the total uplink power available to the terminal-side device, the terminal-side device may determine the The time resources corresponding to at least two uplink BWPs overlap, that is, the above second design is adopted.
  • the terminal-side device can estimate the uplink power on each uplink BWP by using the following formula:
  • P PRACH, b, f, c (i) min ⁇ P CMAX, f, c (i), P PRACH, target, f, c + PL b, f, c ⁇
  • P PRACH, b, f, c (i) represents the uplink power that the terminal-side device can actually send the random access preamble on the uplink BWP b in the carrier f used by the cell c at the i-th time
  • P CMAX, f, c (i) represents the maximum available total uplink power in the carrier f used by the terminal-side device in the cell c at the i-th time
  • P PRACH, target, f, c represents the carrier f used in the cell c
  • PL b, f, c represents the uplink BWP b within the carrier f used by the cell c, between the terminal-side device and the network-side device Path loss.
  • the terminal-side device when the total uplink power available to the terminal-side device is limited (that is, P CMAX, f, c (i) ⁇ P PRACH, b1, f, c (i) ⁇ P PRACH, b2, f, c (i), where b1 and b2 are any two uplink BWPs, for example, when the terminal-side device is at the cell edge), the path loss between the terminal-side device and the network-side device is relatively large. The probability that the random access preamble on each uplink BWP is successfully sent, the terminal-side device needs to ensure that the random access preamble on the uplink BWP is sent with uplink power greater than or equal to each uplink BWP.
  • the terminal-side device When the total uplink power available to the terminal-side device is not limited (for example, the terminal-side device is located at the center of the cell and is closer to the network-side device), between the terminal-side device and the network-side device The path loss is relatively small.
  • the terminal-side device may use the second design described above to send the random access preamble.
  • the terminal-side device may also use the first design described above according to an instruction of the network-side device.
  • an overlap threshold W may be set in the mobile communication system, so that the number of random access preambles sent by the terminal-side device at each moment is less than W. In this way, The probability of successfully sending the random access preamble on each uplink BWP can be improved.
  • W is a positive integer less than or equal to N.
  • W may be specified in the protocol or obtained by the terminal-side device from the network-side device. For example, the terminal-side device obtains W from the random access configuration information.
  • the present application further provides a terminal-side device, which can be applied to the mobile communication system shown in FIG. 1 to implement the communication method shown in FIG. 3.
  • the terminal-side device includes: a processing unit 1001 and a sending unit 1002, where:
  • the processing unit 1001 is configured to determine a random access preamble on each uplink BWP in the N uplink bandwidth part BWPs in a random access process, where N is an integer greater than or equal to 2;
  • the sending unit 1002 is configured to send the random access preamble on each uplink BWP to a network-side device.
  • the time resources corresponding to each uplink BWP do not overlap.
  • the processing unit 1001 is further configured to determine a time corresponding to each uplink BWP if a sum of uplink powers on any two uplink BWPs of the N uplink BWPs is greater than a total uplink power available to the terminal-side device. Resources do not overlap.
  • time resources corresponding to at least two uplink BWPs in the N uplink BWPs overlap.
  • the processing unit 1001 is further configured to determine that the time resources corresponding to the at least two uplink BWPs overlap if the sum of the uplink powers on the at least two uplink BWPs is less than or equal to the total uplink power available to the terminal-side device. .
  • the sending unit 1002 when the sending unit 1002 sends the random access preamble on the uplink BWP to the network-side device, the sending unit 1002 is specifically configured to send a random on the i-th uplink BWP.
  • An access preamble within a random access response time window corresponding to the random access preamble on the i-th uplink BWP, sending a random access from the i + 1th uplink BWP to the N-th uplink BWP Preamble; where i is any integer from 1 to N-2.
  • the sending unit 1002 when the sending unit 1002 sends the random access preamble on each uplink BWP to the network-side device, the sending unit 1002 is specifically configured to send the random access preamble on the jth uplink BWP. Random access preamble; within a random access response time window corresponding to the random access preamble on the jth uplink BWP, sending a random access preamble of the j + 1th uplink BWP; where j is Any integer from 1 to N-1.
  • the terminal-side device further includes a receiving unit, configured to send the random access preamble on each uplink BWP to the network-side device in the sending unit 1002. And receiving M random access responses sent by the network-side device, where M is a positive integer less than or equal to N; the processing unit 1001 is further configured to select a first from the M random access responses A random access response; the sending unit 1002 is further configured to send a first message to the network-side device according to the first random access response, where the first message requests a response to the first random access response Contention conflict resolution for random access.
  • the first random access response is the first random access response received by the terminal-side device within a preset first time window, and the signal quality is the highest within a preset second time window. Good random access response, or randomly selected random access response.
  • the sending unit 1002 is further configured to send a second message to the network-side device according to a second random access response, where the second message instructs to cancel the corresponding message corresponding to the second random access response.
  • Random access wherein the second random access response is any one of the M random access responses excluding the other M-1 random access responses of the first random access response.
  • the terminal-side device further includes a receiving unit, configured to receive M random access responses sent by the network-side device, where M is a positive integer less than or equal to N;
  • the sending unit 1002 is further configured to send a first message to the network-side device according to the k-th random access response of the M random access responses, where the first message requests the k-th random access response.
  • the terminal-side device may also execute other content. For details, refer to the related description in FIG. 3, and details are not described herein again.
  • this application further provides a network-side device, which can be applied to the mobile communication system shown in FIG. 1 to implement the communication method shown in FIG. 3.
  • the network-side device includes a receiving unit 1101 and a sending unit 1102, where:
  • the receiving unit 1101 is configured to receive, from a terminal-side device, a random access preamble on each uplink BWP in the P uplink bandwidth part BWPs; wherein the P uplink BWPs are included in the N uplink BWPs, and N is greater than or equal to An integer of 2 and P is a positive integer less than or equal to N;
  • the sending unit 1102 is configured to send P random access responses to the terminal-side device according to the received P random access preambles;
  • the receiving unit 1101 is further configured to receive a first message from the terminal-side device in response to a first random access response; wherein the first random access response is one of the P random access responses.
  • the first message requests a contention conflict resolution for the random access corresponding to the first random access response.
  • the receiving unit 1101 is further configured to receive a second message from the terminal-side device in response to a second random access response; wherein the second random access response is the Any one of the P random access responses other than the other P-1 random access responses of the first random access response, the second message instructs to cancel the random access corresponding to the second random access response .
  • the network-side device may also execute other content. For details, refer to the related description in FIG. 3, and details are not described herein again.
  • this application further provides a network-side device, which can be applied to the mobile communication system shown in FIG. 1 to implement the communication method shown in FIG. 3.
  • the network-side device includes: a receiving unit 1201, a sending unit 1202, and a processing unit 1203, where:
  • the receiving unit 1201 is configured to receive, from a terminal-side device, a random access preamble on each uplink BWP in the P uplink bandwidth part BWPs; wherein the P uplink BWPs are included in the N uplink BWPs, and N is greater than or equal to An integer of 2 and P is a positive integer less than or equal to N;
  • the sending unit 1202 is configured to send P random access responses to the terminal-side device according to the received P random access preambles;
  • the receiving unit 1201 is further configured to receive, from the terminal-side device, L first messages in response to L random access responses; wherein the L random access responses are included in the P random access responses.
  • L is a positive integer less than or equal to P
  • the first message in response to the kth random access response requests a conflict resolution of the random access corresponding to the kth random access response, where k is from 1 to P Any integer of
  • the processing unit 1203 is configured to select a target first message from the L first messages
  • the sending unit 1202 is further configured to send a contention conflict resolution message according to the target first message, where the contention conflict resolution message indicates a random access contention conflict resolution corresponding to a random access response to which the target first message responds.
  • the network-side device may also execute other content. For details, refer to the related description in FIG. 3, and details are not described herein again.
  • each functional unit in each embodiment of the present application It can be integrated in one processing unit, or it can be physically separate, or two or more units can be integrated in one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .
  • an embodiment of the present application further provides a communication device.
  • the communication device may be a terminal-side device or a network-side device.
  • the communication device may include a transceiver 1301 and a processor 1302.
  • the memory 1303 is included.
  • the communication device may include at least one processor and at least one memory, and only one processor and one memory are exemplarily shown in FIG. 13.
  • the processor 1302 may be a central processing unit (CPU), a network processor (NP), a combination of a CPU and an NP, and so on.
  • the processor 1302 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the transceiver 1301 and the processor 1302 are connected to each other.
  • the transceiver 1301 and the processor 1302 are mutually connected through a bus 1304;
  • the bus 1304 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. .
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the communication device shown in FIG. 13 may be used to perform operations of the terminal-side device in the embodiment shown in FIG. 3.
  • the processor 1302 is configured to determine a random access preamble on each uplink BWP in the N uplink bandwidth part BWPs in a random access process, where N is an integer greater than or equal to 2;
  • the transceiver 1301 is configured to send the random access preamble on each uplink BWP to a network-side device when a call from the processor 1302 is received.
  • the time resources corresponding to each uplink BWP do not overlap.
  • the processor 1302 is further configured to determine a time corresponding to each uplink BWP if a sum of uplink powers on any two uplink BWPs of the N uplink BWPs is greater than a total uplink power available to the terminal-side device. Resources do not overlap.
  • time resources corresponding to at least two uplink BWPs in the N uplink BWPs overlap.
  • the processor 1302 is further configured to determine that the time resources corresponding to the at least two uplink BWPs overlap if the sum of the uplink powers on the at least two uplink BWPs is less than or equal to the total uplink power available to the terminal-side device. .
  • the transceiver 1301 when the transceiver 1301 sends the random access preamble on the uplink BWP to the network-side device, the transceiver 1301 is specifically configured to send a random on the i-th uplink BWP.
  • An access preamble within a random access response time window corresponding to the random access preamble on the i-th uplink BWP, sending a random access from the i + 1th uplink BWP to the N-th uplink BWP Preamble; where i is any integer from 1 to N-2.
  • the transceiver 1301 when the transceiver 1301 sends the random access preamble on the uplink BWP to the network-side device, the transceiver 1301 is specifically configured to send the random access preamble on the j-th uplink BWP. Random access preamble; within a random access response time window corresponding to the random access preamble on the jth uplink BWP, sending a random access preamble of the j + 1th uplink BWP; where j is Any integer from 1 to N-1.
  • the transceiver 1301 is further configured to receive the network-side device after sending the random access preamble on each uplink BWP to the network-side device.
  • M random access responses where M is a positive integer less than or equal to N;
  • the processor 1302 is further configured to select a first random access response from the M random access responses;
  • the transceiver 1301 is further configured to send a first message to the network-side device according to the first random access response when receiving a call from the processor 1302, where the first message requests a response to the first random access Corresponding conflict resolution of corresponding random access.
  • the first random access response is the first random access response received by the terminal-side device within a preset first time window, and the signal quality is the highest within a preset second time window. Good random access response, or randomly selected random access response.
  • the transceiver 1301 is further configured to send a second message to the network-side device according to a second random access response when receiving a call from the processor 1302, where the second message indicates cancellation Random access corresponding to the second random access response, wherein the second random access response is other M-1 random ones excluding the first random access response among the M random access responses Either of the access responses.
  • the transceiver 1301 is further configured to receive M random access responses sent by the network-side device when receiving a call from the processor 1302, where M is less than Or a positive integer equal to N; the transceiver 1301 is further configured to send a first message to the network-side device according to the kth random access response of the M random access responses, where the first message Request for contention conflict resolution for the random access corresponding to the k-th random access response, where k is any integer from 1 to M.
  • the memory 1303 is coupled to the processor 1302 and is configured to store a program and the like.
  • the program may include program code, where the program code includes a computer operation instruction.
  • the memory 1303 may include a RAM, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.
  • the processor 1302 executes an application program stored in the memory 1303 to implement the above functions, thereby implementing the communication method shown in FIG. 3.
  • the communication device shown in FIG. 13 may be configured to perform operations of the network-side device in the embodiment shown in FIG. 3.
  • the transceiver 1301 is configured to receive a random access preamble on each uplink BWP in the P uplink bandwidth part BWPs from the terminal-side device when receiving a call from the processor 1302; P uplink BWPs are included in Among the N uplink BWPs, N is an integer greater than or equal to 2, and P is a positive integer less than or equal to N;
  • the transceiver 1301 is further configured to receive a second message in response to a second random access response from the terminal-side device when receiving a call from the processor 1302; wherein, The second random access response is any one of the P random access responses other than the other P-1 random access responses except the first random access response, and the second message instructs to cancel the random access response. Random access corresponding to the second random access response.
  • the memory 1303 is coupled to the processor 1302 and is configured to store a program and the like.
  • the program may include program code, where the program code includes a computer operation instruction.
  • the memory 1303 may include a RAM, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.
  • the processor 1302 executes an application program stored in the memory 1303 to implement the above functions, thereby implementing the communication method shown in FIG. 3.
  • the communication device shown in FIG. 13 may be used to perform operations of the network-side device in the embodiment shown in FIG. 3 described above.
  • the transceiver 1301 is configured to receive a random access preamble on each uplink BWP in the P uplink bandwidth part BWPs from the terminal-side device when receiving a call from the processor 1302; P uplink BWPs are included in Among the N uplink BWPs, N is an integer greater than or equal to 2, and P is a positive integer less than or equal to N;
  • L Receiving L first messages from the terminal-side device in response to L random access responses; wherein the L random access responses are included in the P random access responses, and L is less than or equal to P A positive integer, in response to the first message of the k-th random access response requesting a conflict resolution of the random access corresponding to the k-th random access response, k is an arbitrary integer from 1 to P;
  • the processor 1302 is configured to select a target first message from the L first messages
  • the transceiver 1301 is further configured to send a contention conflict resolution message according to the target first message upon receiving a call from the processor 1302, where the contention conflict resolution message indicates random access to the target first message response Contention conflict resolution in response to corresponding random access.
  • the memory 1303 is coupled to the processor 1302 and is configured to store a program and the like.
  • the program may include program code, where the program code includes a computer operation instruction.
  • the memory 1303 may include a RAM, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.
  • the processor 1302 executes an application program stored in the memory 1303 to implement the above functions, thereby implementing the communication method shown in FIG. 3.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及设备,用于降低移动通信系统中终端侧设备在随机接入过程中由于竞争冲突导致随机接入失败的概率。在该方案中,移动通信系统中的任一个终端侧设备可以在一个随机接入过程中,向网络侧设备发送N个上行BWP上的随机接入前导码,这样,该终端侧设备可以在多个上行BWP上进行随机接入,增加了该终端侧设备的随机接入的机会。通过该方法中,网络侧设备或每个终端侧设备后续可以在上述N个上行BWP中的任一BWP上进行随机接入,所以该方法可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象,从而可以提高每个终端侧设备随机接入的成功概率。

Description

一种通信方法及设备
本申请要求在2018年08月20日提交中国专利局、申请号为201810950039.8、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
随着第五代(5 th generation,5G)移动通信系统(又称为新空口(new radio,NR)系统)的发展,NR系统中引入了带宽部分(bandwidth part,BWP)的概念。一个BWP是一个小区使用的一个载波内的一段连续频域资源,一个载波可包含多个BWP。网络侧设备在终端侧设备成功接入小区后,在该小区使用的载波中为该终端侧设备配置某个载波上至少一个BWP,其中,每个BWP的频域宽度小于该终端设备所支持的最大带宽。
在NR系统中,网络侧设备在管理的小区内广播系统消息,其中,该系统消息中包含该小区的随机接入配置信息,例如上行BWP对应的频率资源和该上行BWP上随机接入前导码(random access preamble)资源池等等,以便终端侧设备通过随机接入过程接入到该小区。
由于终端侧设备与处于同一小区覆盖范围内的其它终端侧设备从这个小区的系统消息中获取的随机接入配置信息相同,这个终端侧设备进行随机接入过程会有较大概率出现竞争冲突,导致随机接入失败。
发明内容
本申请提供一种通信方法及设备,用于降低移动通信系统中终端侧设备在随机接入过程中由于竞争冲突导致随机接入失败的概率。
第一方面,本申请提供了一种通信方法,该方法包括:
终端侧设备确定一个随机接入过程内,在N个上行带宽部分BWP中每个上行BWP上的随机接入前导码,并向网络侧设备发送所述每个上行BWP上的所述随机接入前导码,其中N为大于或等于2的整数。
通过上述方法,任一个终端侧设备可以在一个随机接入过程中,向网络侧设备发送N个上行BWP上的随机接入前导码,这样,该终端侧设备可以在多个上行BWP上进行随机接入,增加了该终端侧设备的随机接入的机会。由于,网络侧设备或每个终端侧设备后续可以在上述N个上行BWP中的任一BWP上进行随机接入,所以该方法可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象,从而可以提高每个终端侧设备随机接入的成功概率。
在一个可能的设计中,所述终端侧设备确定在所述每个上行BWP上的随机接入前导码,具体方法可以为:所述终端侧设备在至少一个随机接入前导码(可以归属于同一随机接入前导码资源池)中,确定所述每个上行BWP上的所述随机接入前导码。这样,所述 终端侧设备可以成功确定出所述每个上行BWP上的所述随机接入前导码。
在一个可能的设计中,所述终端侧设备向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码,具体方法可以为:所述终端侧设备确定所述每个上行BWP对应的频率资源和时间资源,并通过所述每个上行BWP对应的频率资源和时间资源,向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码。
通过上述方法,通过每个上行BWP对应的频率资源和时间资源发送所述每个上行BWP上的所述随机接入前导码,可以使所述终端侧设备成功发送所述每个上行BWP上的所述随机接入前导码。
在一个可能的设计中,所述每个上行BWP对应的时间资源不重叠。
在一个可能的设计中,如果所述N个上行BWP中任意两个上行BWP上的上行功率之和大于所述终端侧设备可用的总上行功率,则所述终端侧设备确定所述每个上行BWP对应的时间资源不重叠。这样,所述终端侧设备可以通过上述方式简单、灵活地判定所述每个上行BWP对应的时间资源不重叠。
在一个可能的设计中,所述终端侧设备向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码,一种可选的方法可以为:所述终端侧设备发送第i个上行BWP上的随机接入前导码,并在所述第i个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送从第i+1个上行BWP到第N个上行BWP上的随机接入前导码;其中,i为从1至N-2的任意整数。
通过上述方法,所述终端侧设备可以在某个随机接入前导码对应的随机接入响应时间窗口内发送后续多个随机接入前导码。
在一个可能的设计中,所述终端侧设备向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码,一种可选的方法可以为:所述终端侧设备发送第j个上行BWP上的随机接入前导码,并在所述第j个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送第j+1个上行BWP的随机接入前导码;其中,j为从1至N-1的任意整数。
通过上述方法,所述终端侧设备可以在前一个随机接入前导码对应的随机接入响应时间窗口内发送后一个随机接入前导码。
在一个可能的设计中,所述N个上行BWP中至少两个上行BWP对应的时间资源重叠。
在一个可能的设计中,如果所述至少两个上行BWP上的上行功率之和小于或等于所述终端侧设备可用的总上行功率,则所述终端侧设备确定所述至少两个上行BWP对应的时间资源重叠。这样,所述终端侧设备可以通过上述方式简单、灵活地判定所述每个上行BWP对应的时间资源重叠。
在一个可能的设计中,在所述终端侧设备向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码后,接收所述网络侧设备发送的M个随机接入响应,并从所述M个随机接入响应中选择第一随机接入响应,根据所述第一随机接入响应向所述网络侧设备发送第一消息,其中,M为小于或等于N的正整数;所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
通过上述方法,所述终端侧设备可以通知所述网络侧设备所述终端侧设备选择在哪个上行BWP上进行随机接入,即选择在发送所述第一随机接入响应所响应的随机接入前导 码的上行BWP上进行随机接入。这样,任一个终端侧设备均可以在随机接入过程中,可以通过选择第一随机接入响应,在上述N个BWP中选择合适的一个上行BWP进行随机接入,由于实际场景的不确定因素,因此不同终端侧设备选择的第一随机接入响应相同的概率较低,即不同终端侧设备选择在同一上行BWP上进行随机接入的概率较低。这样,可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象,从而可以提高每个终端侧设备随机接入的成功概率。
在一个可能的设计中,所述第一随机接入响应为所述终端侧设备在预设的第一时间窗口内接收的首个随机接入响应,在预设的第二时间窗口内信号质量最好的随机接入响应,或者随机选择的随机接入响应。
在上述方式中,当所述第一随机接入响应为所述终端侧设备在预设的第一时间窗口内接收的首个随机接入响应时,可以保证所述终端侧设备在响应速度最快的上行BWP上进行随机接入,可以降低所述终端侧设备对所述第一随机接入响应所对应的竞争冲突解决的延时,使该终端侧设备尽量快速地接入网络侧管理的小区;当所述第一随机接入响应为在预设的第二时间窗口内信号质量最好的随机接入响应时,可以保证所述终端侧设备在信道质量最好的上行BWP上进行随机接入,进而保证接入成功后所述终端侧设备的通信质量。
在一个可能的设计中,所述终端侧设备根据第二随机接入响应向所述网络侧设备发送第二消息,其中,所述第二消息指示取消所述第二随机接入响应对应的随机接入,其中,所述第二随机接入响应为所述M个随机接入响应中除去所述第一随机接入响应的其它M-1个随机接入响应的任意一个。
通过上述方法,所述终端侧设备可以通知所述网络侧设备所述终端侧设备不在哪个上行BWP上进行随机接入,即不在发送所述第二随机接入响应所响应的随机接入前导码的上行BWP上进行随机接入,这样网络侧设备在某个上行BWP上接收到第二消息后,将取消在该上行BWP上的随机接入,即所述网络侧设备无需再进行上行资源调度,因此,可以避免造成上行资源的浪费,降低小区的上行容量。
在一个可能的设计中,所述终端侧设备接收所述网络侧设备发送的M个随机接入响应,并根据所述M个随机接入响应中第k个随机接入响应向所述网络侧设备发送第一消息,其中,M为小于或等于N的正整数;所述第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1至M的任意整数。
通过上述方法,所述终端侧设备可以通知所述网络侧设备所述终端侧设备选择在哪个上行BWP上进行随机接入。
第二方面,本申请提供了一种通信方法,该方法包括:
网络侧设备从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码,并根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;所述网络侧设备从所述终端侧设备接收响应第一随机接入响应的第一消息;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;所述第一随机接入响应为所述P个随机接入响应中的一个,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
通过上述方法,任一个终端侧设备均可以在随机接入过程中,可以通过选择第一随机接入响应,在上述N个BWP中选择合适的一个上行BWP进行随机接入,由于实际场景的不确定因素,因此不同终端侧设备选择的第一随机接入响应相同的概率较低,即不同终 端侧设备选择在同一上行BWP上进行随机接入的概率较低。这样,就可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象,从而可以提高每个终端侧设备随机接入的成功概率。
在一个可能的设计中,所述网络侧设备从所述终端侧设备接收响应第二随机接入响应的第二消息;其中,所述第二随机接入响应为所述P个随机接入响应中除去所述第一随机接入响应的其他P-1个随机接入响应的任意一个,所述第二消息指示取消所述第二随机接入响应对应的随机接入。
通过上述方法,网络侧设备在某个上行BWP上接收到第二消息后,将取消在该上行BWP上的随机接入,即所述网络侧设备无需再进行上行资源调度,因此,可以避免造成上行资源的浪费,降低小区的上行容量。
第三方面,本申请提供了一种通信方法,该方法包括:
网络侧设备从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码,并根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;所述网络侧设备从所述终端侧设备接收响应L个随机接入响应的L个第一消息,从所述L个第一消息中选择目标第一消息,并根据所述目标第一消息发送竞争冲突解决消息;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;所述L个随机接入响应包含于所述P个随机接入响应中,L为小于或等于P的正整数,响应第k个随机接入响应的第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1致P的任意整数;所述竞争冲突解决消息指示所述目标第一消息响应的随机接入响应对应的随机接入的竞争冲突解决。
通过上述方法,任一个终端侧设备均可以在随机接入过程中,在上述N个BWP中选择合适的一个上行BWP进行随机接入,由于实际场景的不确定因素,因此所述网络侧设备针对不同终端侧设备选择在同一上行BWP上进行随机接入的概率较低。这样,就可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象,从而可以提高每个终端侧设备随机接入的成功概率。
在一个可能的设计中,所述网络侧设备可以根据小区内的负载情况,从来自所述终端侧设备的L个第一消息中选择目标第一消息:所述网络侧设备可以确定终端侧设备发送所述L个第一消息所使用的L个上行BWP,确定所述L个上行BWP中负载最小的目标上行BWP;所述网络侧设备将所述L个第一消息中,在所述目标上行BWP上发送的第一消息作为所述目标第一消息。
通过该方法,所述网络侧设备可以根据小区内上行BWP的负载情况,为终端侧设备选择目标上行BWP,从而实现小区内上行BWP之间的负载均衡。
在另一个可能的设计中,所述网络侧设备还可以采用以下几种方式,从来自所述终端侧设备的L个第一消息中选择目标第一消息:方式一:所述网络侧设备选择在预设的第三时间窗口内接收的首个第一消息为所述目标第一消息;方式二:所述网络侧设备选择在预设的第四时间窗口内信号质量最好的第一消息为所述目标第一消息;方式三:所述网络侧设备在所述L个第一消息中随机选择一个第一消息为所述目标第一消息。
通过上述方式一,所述网络侧设备可以响应最快的第一消息,这样所述网络侧设备可以使所述终端侧设备在响应速度最快的上行BWP上进行随机接入,从而可以降低所述终端侧设备对竞争冲突解决的延时,使该终端侧设备尽量快速地接入网络侧管理的小区;通 过上述方式二,所述网络侧设备可以响应信号质量最好的所述第一消息。这样,所述网络侧设备可以使所述终端侧设备在信道质量最好的上行BWP上进行随机接入,从而保证接入成功后所述终端侧设备的通信质量。
第四方面,本申请提供了一种终端侧设备,所述终端侧设备具有实现上述第一方面方法中终端侧设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述终端侧设备的结构中包括处理单元和发送单元,这些单元可以执行上述方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述终端侧设备的结构中包括收发器和处理器,可选的还可以包括存储器,所述收发器用于收发数据,以及与移动通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述终端侧设备执行上述第一方面中任一种方法中相应的功能。所述存储器与所述处理器耦合,其保存所述终端侧设备必要的程序指令和数据。
第五方面,本申请提供了一种网络侧设备,所述网络侧设备具有实现上述第二方面方法中网络侧设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述网络侧设备的结构中包括接收单元和发送单元,这些单元可以执行上述方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述网络侧设备的结构中包括收发器和处理器,可选的还可以包括存储器,所述收发器用于收发数据,以及与移动通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述网络侧设备执行上述第二方面中任一种方法中相应的功能。所述存储器与所述处理器耦合,其保存所述网络侧设备必要的程序指令和数据。
第六方面,本申请提供了一种网络侧设备,所述网络侧设备具有实现上述第三方面方法中网络侧设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述网络侧设备的结构中包括接收单元、发送单元和处理单元,这些单元可以执行上述方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述网络侧设备的结构中包括收发器和处理器,可选的还可以包括存储器,所述收发器用于收发数据,以及与移动通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述网络侧设备执行上述第三方面中任一种方法中相应的功能。所述存储器与所述处理器耦合,其保存所述网络侧设备必要的程序指令和数据。
第七方面,本申请实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述第一方面至第三方面中任一可能的设计中所提及的方法。
第八方面,本申请实施例还提供了一种包含指令的计算机程序产品,当其在电子设备上运行时,使得所述电子设备执行上述第一方面至第三方面中任一可能的设计中所提及的方法。
第九方面,本申请实施例还提供了一种电子设备,所述电子设备可以为芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的程序指令,以实现上述第一方面至第三方面中任一可能的设计中所提及的方法。
附图说明
图1为本申请实施例提供的一种移动通信系统的架构图;
图2为本申请实施例提供的一种随机接入过程流程图;
图3为本申请实施例提供的一种通信方法的流程图;
图4为本申请实施例提供的第一种上行BWP对应的时间资源示例图;
图5为本申请实施例提供的第二种上行BWP对应的时间资源示例图;
图6为本申请实施例提供的第三种上行BWP对应的时间资源示例图;
图7为本申请实施例提供的第四种上行BWP对应的时间资源示例图;
图8为本申请实施例提供的第五种上行BWP对应的时间资源示例图;
图9为本申请实施例提供的第六种上行BWP对应的时间资源示例图;
图10为本申请实施例提供的一种终端侧设备的结构示意图;
图11为本申请实施例提供的一种网络侧设备的结构示意图;
图12为本申请实施例提供的另一种网络侧设备的结构示意图;
图13为本申请实施例提供的一种通信设备的结构图。
具体实施方式
本申请提供一种通信方法及设备,用以降低移动通信系统中终端侧设备在随机接入过程中由于竞争冲突导致随机接入失败的概率。其中,方法和设备是基于同一发明构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端侧设备,是一种向用户提供语音和/或数据连通性的设备。可选的,本申请涉及的终端侧设备可以是终端设备,或者所述终端设备内部能够实现该终端设备功能的硬件部件。
所述终端设备又可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。例如,所述终端设备可以为具有无线连接功能的手持式设备、车载设备等。
目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
所述终端设备内部能够实现该终端设备功能的硬件部件,可以为所述终端设备内部的处理器和/或可编程的芯片。可选的,该芯片可以通过专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic device,PLD)实现。上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic, GAL),片上系统(system on a chip,SOC)中的任一项或其任意组合。
2)、网络侧设备,是移动通信系统中将终端侧设备接入到无线网络的设备。可选的,本申请涉及的网络侧设备可以是网络设备,或者所述网络设备内部能够实现该网络设备功能的硬件部件。
所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB),或基带单元(base band unit,BBU)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层(例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层和无限资源控制(radio resource control,RRC)层)的功能放在CU集中控制,剩下部分或全部协议层(例如物理(physical,PHY)层,媒体访问控制(media access control,MAC)层,无线链路控制(radio link control,RLC)层)的功能分布在DU中,由CU控制DU。
所述网络设备内部能够实现该网络设备功能的硬件部件,可以为所述网络设备内部的处理器和/或可编程的芯片。可选的,该芯片可以通过ASIC实现,或PLD实现。上述PLD可以是CPLD、FPGA、GAL、SOC中任一项或其任意组合。
3)、BWP,为网络侧设备管理的小区使用的载波内一段连续的频率资源。例如,一个BWP可以包含连续K个子载波,或者包含不重叠的连续M个资源块(resource block,RB)所在的频率资源,又或者包含不重叠的连续N个资源块组(resource block group,RBG)所在的频率资源;K、M,N均为大于0的整数。BWP还可以被称为带宽资源、带宽区域、频域资源、频率资源部分、部分频率资源或者其它名称,本申请不做限制。
4)、“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面结合附图对本申请实施例做进行具体说明。
图1示出了本申请实施例提供的通信方法适用的一种可能的移动通信系统的架构。参阅图1所示,在该移动通信系统中包括:网络侧设备101,以及终端侧设备102。
所述网络侧设备101,负责为所述终端侧设备102提供无线接入有关的服务,实现物理层功能、资源调度和无线资源管理、服务质量(Quality of Service,QoS)管理、无线接入控制以及移动性管理功能。
所述终端侧设备102,为通过所述网络侧设备101接入网络的设备。
所述网络侧设备101和所述终端侧设备102之间通过空中接口(例如Uu)接口连接, 从而实现所述终端侧设备102和所述网络侧设备101之间的通信。
在该移动通信系统中,网络侧设备101和终端侧设备102的带宽能力可以不同。其中,任一设备(网络侧设备101和终端侧设备102)的带宽能力即为该设备能够支持的最大的传输带宽的能力,具体可以通过该设备的最大带宽来表现。一般来说,终端侧设备102的最大带宽受到该终端侧设备102的业务需求和制造成本等多种因素影响。
基于移动通信系统中的网络侧设备101以及每个终端侧设备102的最大带宽存在不同,因此,移动通信系统中引入了BWP的概念,将网络侧设备101管理的小区使用的载波划分为多个BWP。可选的,BWP的划分规则可以是网络侧设备101按照实际应用需求定义的,或者是由协议预先规定的。
在终端侧设备102接入网络侧设备101之前,网络侧设备101会在所管理的小区内广播系统消息。其中,该系统消息中包含该小区的随机接入配置信息。其中该随机接入配置信息可以为:用于终端侧设备102进行随机接入的上行BWP,在该上行BWP上的至少一个随机接入前导码(例如属于某个随机接入前导码资源池),该上行BWP对应的频率资源和时间资源中的之一或任意组合。
终端侧设备102在进入该小区的覆盖范围内后,从网络侧设备101接收到该系统消息,并基于系统消息中包含的随机接入配置信息,发起随机接入过程,以请求接入该小区。
在终端侧设备102成功接入该小区后,向网络侧设备101上报所述终端侧设备102的带宽能力。例如,所述终端侧设备102向网络侧设备101发送终端侧设备102的最大带宽。所述网络侧设备101根据该终端侧设备102的最大带宽,在所述多个BWP中为所述终端侧设备102配置上行BWP和下行BWP。后续,所述终端侧设备102和所述网络侧设备101可以根据该上行BWP和下行BWP进行通信。
需要指出的是,如图1所示的通信系统并不对本申请实施例提供的一种通信方法适用的通信系统构成限定。可选的,该通信系统可以为第五代(The 5 th Generation,5G)移动通信系统(例如NR系统),基于5G移动通信系统演进后的其他移动通信系统等,本申请实施例不予限定。
在如图1所示的移动通信系统中,终端侧设备一般采用基于竞争的随机接入过程请求接入小区。参阅图2所示,目前基于竞争的随机接入过程具体包括以下步骤:
S201:在进入一网络侧设备管理的小区的覆盖范围内,终端侧设备通过搜网过程中搜索到该小区后,接收网络侧设备广播的系统消息,从而获得该系统消息中包含的该小区的随机接入配置信息。然后,终端侧设备根据该小区的随机接入配置信息,确定在上行BWP上的随机接入前导码以及该上行BWP对应的频率资源和时间资源,然后通过该上行BWP对应的频率资源和时间资源,向该网络侧设备发送该上行BWP上的随机接入前导码(又称为消息1(message1,msg1)),以通知该网络侧设备存在请求随机接入的终端侧设备。
终端侧设备在发送随机接入前导码后,启动RAR时间窗口,并在该RAR时间窗口内监听网络侧设备的发送的RAR,若终端侧设备在RAR时间窗口内未收到RAR,则认定此次随机接入失败。
S202、网络侧设备在收到终端侧设备发送的随机接入前导码后,向终端侧设备发送随机接入响应(random access response,RAR)(又称为消息2(message2,msg2))。
在基于竞争的随机接入过程中,每个终端侧设备在一个公共的随机接入前导码资源池 中选择随机接入前导码。其中,该随机接入前导码资源池可以是协议规定好或包含在网络侧设备广播的系统消息中的,因此,在该移动通信系统中可能存在以下随机接入的竞争冲突现象:
在同一时刻多个终端侧设备执行步骤S201,并选择同一随机接入前导码请求随机接入该小区。因此在步骤S202时,该网络侧设备不能区分接收的随机接入前导码是来自哪个终端侧设备。那么为了让网络侧设备识别自身的身份,每个终端侧设备在接收到RAR后,通过S203,通知网络侧设备自身的标识。
S203:终端侧设备在RAR时间窗口(window)内接收到RAR后,向该网络侧设备发送携带该终端侧设备的标识的被调度的传输(scheduled transmission)消息(又称为消息3(message3,msg3)),从而实现该终端侧设备的首次上行传输,以请求网络侧设备对该终端侧设备的随机接入的竞争冲突解决。
其中,终端侧设备的标识可以为核心网设备为其分配的标识符,例如小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、UE标识(identifier,ID)等。
可选的,所述被调度的传输消息中还可以携带有无线资源控制(radio resource control,RRC)连接请求。
S204:该网络侧设备在收到来自至少一个终端侧设备发送的被调度的传输消息之后,向一个终端侧设备发送竞争解决(contention resolution)消息(又称为消息4(message4,msg4))。该竞争解决消息中携带了该终端侧设备的标识。该终端侧设备即为该网络侧设备指定的在随机接入的竞争冲突中胜出的终端侧设备,换句话说,该网络侧设备解决了对该终端侧设备的随机接入的竞争冲突。
若终端侧设备收到携带自身标识的竞争解决消息,则表示该终端侧设备本次随机接入成功;若终端侧设备未收到携带自身标识的竞争解决消息,则表示本次随机接入失败,可以重新发起新的随机接入过程。
可选的,当所述被调度的传输消息中携带有RRC连接请求时,所述竞争解决消息中还携带有RRC连接建立时的配置信息。这样,所述终端侧设备在随机接入成功后,可以根据该RRC连接建立时的配置信息,建立RRC连接,实现与所述网络侧设备的数据通信。
目前,在上述移动通信系统中,一般一个小区被指定用于终端侧设备进行随机接入的一个公共上行BWP。因此,在该小区的覆盖范围内,多个终端侧设备会接收到相同的系统信息,那么,多个终端侧设备很可能会在公共的随机接入前导码资源池中选择同一随机接入前导码,并在使用同一时间资源发送。显然,通过以上对随机接入过程的描述可知,在该情况下,每个终端侧设备在随机接入的过程中,会有较大概率出现上述竞争冲突的现象,导致该终端侧设备的随机接入失败,增加了终端侧设备接入小区的时延。
为了解决上述终端侧设备在随机接入过程中竞争失败的问题,本申请实施例提供了一种通信方法,该方法适用于如图1所示的移动通信系统中。参阅图3所示,该方法的流程包括:
S301:终端侧设备确定一个随机接入过程内,在N个上行BWP中每个上行BWP上的随机接入前导码,其中N为大于或等于2的整数。
在本申请实施例中,所述终端侧设备可以但不限于在以下场景中触发执行基于竞争的随机接入过程:
场景一:所述终端侧设备在进入网络侧设备管理的一个小区的覆盖范围内,初始接入该小区,例如所述终端侧设备从开机随机接入到所述网络侧设备的过程。
场景二:所述终端侧设备需要重建立RRC连接,例如,所述终端侧设备与所述网络侧设备发生了无线链路失败,通过随机接入重建RRC连接。
场景三:所述终端侧设备在进行服务小区切换(hand over,HO),例如,源小区切换到目标小区,其中,所述源小区和所述目标小区可以属于同一网络侧设备,也可以属于不同网络侧设备。
场景四:所述终端侧设备处于RRC连接态但与网络侧设备上行失步,在有下行数据到达或上行数据到达时通过随机接入完成上行同步,以便所述终端侧设备进行下行数据反馈或上行数据传输。
需要说明的是,在本申请实施例中,在所述终端侧设备的一个随机接入过程中包含了N个随机接入,即一个N个上行BWP中每个BWP对应一个随机接入。其中,在任一个上行BWP上的随机接入前导码为该上行BWP对应的随机接入使用的随机接入前导码,也是所述终端侧设备需要在该上行BWP上(使用该上行BWP中的频率资源)发送的随机接入前导码。
在一个实现方式中,所述终端侧设备可以通过以下步骤执行S301:
所述终端侧设备在至少一个随机接入前导码(可以归属于同一随机接入前导码资源池)中,确定所述每个上行BWP上的所述随机接入前导码。
其中,随机接入前导码资源池可以为协议预先规定的,或者是所述终端侧设备从随机接入配置信息中获取的。所述终端侧设备是通过接收网络侧设备广播的系统消息中得到所述随机接入配置信息的。
还需要说明的是,本申请实施例不限定随机接入前导码资源池的数量。可选的,所述随机接入前导码资源池可以为一个,即该随机接入前导码资源池是针对所述N个上行BWP公共设置的;或者所述随机接入前导码资源池为N个,即每个随机接入前导码资源池分别是针对一个上行BWP设置的;又或者所述随机接入前导码资源池的数量小于N个,其中一部分随机接入前导码资源池分别是针对两个或两个以上的上行BWP公共设置的,而另一部分随机接入前导码资源池中每个随机接入前导码分别是针对一个上行BWP设置的。
此外,当随机接入前导码资源池的数量为多个时,其中任意两个随机接入前导码资源池中的随机接入前导码可以完全不同,也可以全部相同,还可以部分相同部分不同,本申请对此也不做限定。
基于以上对随机接入前导码资源池的描述可知,所述终端侧设备通过上述步骤S301确定的每个上行BWP上的随机接入前导码可以符合以下三种情况中的任一种:
第一种情况:所述终端侧设备确定的每个上行BWP上的随机接入前导码均不同。
第二种情况:所述终端侧设备确定的每个上行BWP上的随机接入前导码均相同。
第三种情况:所述终端侧设备确定的至少两个上行BWP上的随机接入前导码相同。
值得注意的是,所述N个上行BWP是移动通信系统中用于进行随机接入的上行BWP,可选的,所述N个上行BWP可以是协议预先规定的,或者是所述终端侧设备从随机接入配置信息中获取的,本申请对此也不做限定。
可选的,在移动通信系统中,针对不同类型的终端侧设备或请求不同业务的终端侧设备,用于进行随机接入的上行BWP的数量可以不同。例如,当所述终端侧设备请求低时 延高可靠性业务时,N=3;当所述终端侧设备请求普通时延和可靠性要求较低的业务时,N=2。
S302:所述终端侧设备向网络侧设备发送所述每个上行BWP上的所述随机接入前导码。所述网络侧设备从所述终端侧设备接收P个上行BWP中每个上行BWP上的随机接入前导码。
其中,由于在实际应用场景中,所述网络侧设备可能会接收到N个上行BWP上的随机接入前导码,也可能接收N个上行BWP中部分上行BWP上的随机接入前导码。因此,在上述步骤中,所述P个上行BWP包含于N个上行BWP中,P为小于或等于N的正整数。
在一个实现方式中,所述终端侧设备可以通过以下步骤,执行上述S302:
A、所述终端侧设备确定所述每个上行BWP对应的频率资源和时间资源;
B、所述终端侧设备通过所述每个上行BWP对应的频率资源和时间资源,向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码。
其中,每个上行BWP对应的频域资源和时间资源可以为所述终端侧设备发送该上行BWP上的随机接入前导码时使用的频率资源和时间资源。可选的,所述终端侧设备在执行上述步骤A时,可以通过以下方法,确定任一个上行BWP对应的频率资源和时间资源:
所述终端侧设备获取针对该上行BWP设置的至少一个频率资源和至少一个时间资源;
所述终端侧设备再从针对该上行BWP设置的至少一个频域资源和至少一个时间资源中,选择发送该上行BWP上的随机接入前导码时使用的频率资源和时间资源(即该上行BWP对应的频率资源和时间资源)。
可选的,在上述方法中,针对该上行BWP设置的至少一个频率资源和至少一个时间资源可以是协议预先规定的,或者是所述终端侧设备从随机接入配置信息中获取的。
在一个实现方式中,当针对该上行BWP设置的频率资源和/或时间资源的数量与确定该上行BWP上的随机接入前导码的随机接入前导码资源池中包含的随机接入前导码的数量相同,且一一对应时,所述终端侧设备可以根据在S301中确定的该上行BWP上的随机接入前导码,在针对该上行BWP设置的多个频域资源和/或多个时间资源中,选择发送该上行BWP上的随机接入前导码时使用的频率资源和时间资源。
需要说明是,由于每个上行BWP中包含的频率资源均不同,因此,不同上行BWP对应的频率资源不同。但是,不同上行BWP对应的时间资源可以重叠(包括部分重叠和全部重叠)或者不重叠,本申请实施例对此不作限定。
S303:所述网络侧设备根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应。所述终端侧设备接收所述网络侧设备发送的M个随机接入响应。
其中,与所述网络侧设备接收随机接入前导码相应,所述终端侧设备可能发送P个上行BWP上的随机接入前导码,也可能发送P个上行BWP中部分上行BWP上的随机接入前导码。因此,在上述步骤中,所述M个上行BWP包含于P个上行BWP中,M为小于或等于P的正整数。
在S303中,所述网络侧设备可以根据接收的每个随机接入前导码向所述终端侧设备发送随机接入响应,具体过程此处不再赘述。
需要注意的是,所述网络侧设备可以分别通过P个信道发送所述P个随机接入响应。可选的,所述P个信道可以分别属于不同的下行BWP,或者属于同一下行BWP。
所述P个随机接入响应中每个随机接入响应用于响应所述网络侧设备发送的一个随机接入前导码。可选的,所述终端侧设备在接收到一个随机接入响应后,可以根据该随机接入响应,确定所响应的随机接入前导码。可选的,所述终端侧设备可以根据发送该随机接入响应的信道(例如物理下行共享信道(physical downlink shared channel,PDSCH))、该随机接入响应中包含的随机接入前导码的标识信息(上行BWP、序列信息、发送该随机接入前导码的使用的频率资源和/或时间资源等)中的任一项或组合,确定该随机接入响应所响应的随机接入前导码。
通过以上步骤,移动通信系统中的任一个终端侧设备可以在一个随机接入过程中,向网络侧设备发送N个上行BWP上的随机接入前导码,这样,该终端侧设备可以在多个上行BWP上进行随机接入,增加了该终端侧设备的随机接入的机会。通过该方法中,网络侧设备或每个终端侧设备后续可以在上述N个上行BWP中的任一BWP上进行随机接入,所以该方法可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象,从而可以提高每个终端侧设备随机接入的成功概率。
在本申请实施例中,移动通信系统可以在S303之后采用多种方案,实现网络侧设备或每个终端侧设备在上述N个上行BWP中的任一上行BWP上进行随机接入,下面仅以方案一和方案二为例进行说明。参阅图3中所示,方案一通过步骤S304a-S307a实现,方案二通过步骤S304b-S306b实现。
方案一:
S304a:所述终端侧设备从所述M个随机接入响应中选择第一随机接入响应。
可选的,所述第一随机接入响应可以是所述终端侧设备通过如下方式选择的:
方式一:所述终端侧设备选择在预设的第一时间窗口内接收的首个随机接入响应为所述第一随机接入响应。
其中,所述第一时间窗口为协议规定的或者为所述终端侧设备根据实际应用确定的,本申请对此不作限定。
通过上述方式一,可选的,所述终端侧设备可以通过后续步骤响应最快的所述第一随机接入响应,这样,可以保证所述终端侧设备在响应速度最快的上行BWP上进行随机接入,可以降低所述终端侧设备对所述第一随机接入响应所对应的竞争冲突解决的延时,使该终端侧设备尽量快速地接入网络侧管理的小区。
方式二:所述终端侧设备选择在预设的第二时间窗口内信号质量最好的随机接入响应为所述第一随机接入响应。
其中,所述第二时间窗口为协议规定的或者为所述终端侧设备根据实际应用确定的,本申请对此不作限定。
在所述终端侧设备采用方式二选择所述第一随机接入响应时,所述终端侧设备可以对所述M个随机接入响应的信号质量进行排序。
由于信号质量可以通过承载该信号的多种信道指标体现,例如,信道的参考信号的信号质量、信道的接收功率,以及信道的信噪比(signal to noise ratio,SNR)等。因此,在该方式二中,所述终端侧设备可以通过多种方法,实现对随机接入响应的信号质量的排序。
例如,所述终端侧设备可以按照承载所述M个随机接入响应的信道中的参考信号的信号质量进行排序,从而确定所述M个随机接入响应的信号质量的排序。其中,信道中的参 考信号的信号质量越高,该信道承载的随机接入响应的信号质量也越高。
又例如,所述终端侧设备可以确定承载所述M个随机接入响应的信道的接收功率,然后对承载所述M个随机接入响应的信道的接收功率进行排序,从而确定所述M个随机接入响应的信号质量的排序。其中,承载随机接入响应的信道的接收功率越小,该信道承载的随机接入响应的信号质量也越高。
再例如,所述终端侧设备通过确定承载所述M个随机接入响应的信道的信噪比,然后对承载所述M个随机接入响应的信道的信噪比进行排序,从而确定所述M个随机接入响应的信号质量的排序。其中,承载随机接入响应的信道的信噪比越大,该信道承载的随机接入响应的信号质量也越高。
通过上述方式二,所述终端侧设备可以通过后续步骤响应信号质量最好的所述第一随机接入响应,这样,可以保证所述终端侧设备在信道质量最好的上行BWP上进行随机接入,进而保证接入成功后所述终端侧设备的通信质量。
方式三:所述终端侧设备在所述M个随机接入响应中随机选择一个随机接入响应为所述第一随机接入响应。
S305a:所述终端侧设备根据所述第一随机接入响应向所述网络侧设备发送第一消息,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。所述网络侧设备从所述终端侧设备接收响应所述第一随机接入响应的所述第一消息。
其中,所述终端侧设备可以在发送所述第一随机接入响应所响应的随机接入前导码的上行BWP上发送所述第一消息。可选的,所述第一消息可以为前述的msg3,其中包含有所述终端侧设备的标识符,例如C-RNTI、UE ID等。
在一个实现方式中,所述终端侧设备只需要通过S304a和S305a对第一随机接入响应进行响应,即可以通知所述网络侧设备所述终端侧设备选择在哪个上行BWP上进行随机接入,即选择在发送所述第一随机接入响应所响应的随机接入前导码的上行BWP上进行随机接入。因此,所述第一消息还可以称为随机接入响应正确响应(RAR-acknowledgement,RAR-ACK)。
可选的,在另一个实现方式中,所述终端侧设备不仅对第一随机接入响应进行响应,还通过S306a对另外M-1个随机接入响应进行响应。
S306a:所述终端侧设备根据第二随机接入响应向所述网络侧设备发送第二消息,其中,所述第二消息指示取消所述第二随机接入响应对应的随机接入,其中,所述第二随机接入响应为所述M个随机接入响应中除去所述第一随机接入响应的其它M-1个随机接入响应的任意一个。所述网络侧设备从所述终端侧设备接收响应所述第二随机接入响应的第二消息。
其中,所述终端侧设备可以在发送第二随机接入响应所响应的随机接入前导码的上行BWP上发送所述第二消息。
可选的,所述第二消息也可以为msg3,其中包含有所述终端侧设备的标识符,例如C-RNTI、UE ID等。
通过上述S306a,所述终端侧设备对第二随机接入响应进行响应,即可以通知所述网络侧设备所述终端侧设备不在哪个上行BWP上进行随机接入,即不在发送所述第二随机接入响应所响应的随机接入前导码的上行BWP上进行随机接入,这样网络侧设备在某个上行BWP上接收到第二消息后,将取消在该上行BWP上的随机接入。
在该实现方式中,所述第二消息还可以称为随机接入响应否定响应(RAR-negative acknowledgement,RAR-NACK)。
由于传统的基于竞争的随机接入过程中,若网络侧设备在发送随机接入响应后未收到响应该随机接入响应的msg3,重新调度上行资源以使终端侧设备发送msg3。通过上述步骤,在所述网络侧设备在某个上行BWP上接收到第二消息后,将取消在该上行BWP上的随机接入,即所述网络侧设备无需再进行上行资源调度,因此,该步骤可以避免造成上行资源的浪费,降低小区的上行容量。
S307a:所述网络侧设备根据接收的所述第一消息发送竞争冲突解决消息,所述竞争冲突解决消息指示所述第一消息响应的随机接入响应对应的随机接入的竞争冲突解决。所述终端侧设备从所述网络侧设备接收所述竞争冲突解决消息。
可选的,所述竞争冲突解决消息也可以为msg4,其中包含有所述第一消息中包含的终端侧设备的标识符。
通过S307a,所述终端侧设备可以成功完成在目标BWP上的随机接入,从而可以在建立RRC连接后,实现与所述网络侧设备的数据通信。其中,所述目标BWP为所述终端侧设备发送所述第一随机接入响应所响应的随机接入前导码时使用的上行BWP。
通过以上方案一,任一个终端侧设备均可以在随机接入过程中,可以通过选择第一随机接入响应,在上述N个BWP中选择合适的一个上行BWP进行随机接入,由于实际场景的不确定因素,因此不同终端侧设备选择的第一随机接入响应相同的概率较低,即不同终端侧设备选择在同一上行BWP上进行随机接入的概率较低。这样,该方案就可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象,从而可以提高每个终端侧设备随机接入的成功概率。
方案二:
S304b:所述终端侧设备根据所述M个随机接入响应中第k个随机接入响应向所述网络侧设备发送第一消息,其中,所述第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1至M的任意整数。所述网络侧设备从所述终端侧设备接收响应L个随机接入响应的L个第一消息。
其中,与所述网络侧设备接收随机接入前导码类似,所述网络侧设备接收的第一消息的数量小于或等于终端侧设备发送的第一消息的数量,即所述L个随机接入响应包含于所述M个随机接入响应中,L为小于或等于M的正整数。
在方案二中,所述终端侧设备根据第k个随机接入响应向所述网络侧设备发送第一消息,与在方案一中所述终端侧设备根据第一随机接入响应向网络侧设备发送第一消息相同,且两个方案中第一消息的用途也相同,因此,可以参见方案一中对S305a的描述,此处不再赘述。
其中,所述终端侧设备在根据任一个随机接入响应发送第一消息时,是在发送该随机接入响应所响应的随机接入前导码的上行BWP上发送该第一消息的。
S305b:所述网络侧设备从所述L个第一消息中选择目标第一消息。
由于所述网络侧设备可以同时接收来自多个终端侧设备的第一消息。因此,所述网络侧设备可以通过每个第一消息中包含的终端侧设备的标识符,确定来自同一终端侧设备的第一消息。然后所述网络侧设备从来自同一终端侧设备的第一消息中选择目标第一消息。
所述网络侧设备选择所述目标第一消息,为所述终端侧设备选择目标上行BWP以进行随机接入。所述目标上行BWP即为所述终端侧设备发送所述目标第一消息时使用的BWP。
可选的,所述网络侧设备可以根据小区内的负载情况,从来自所述终端侧设备的L个第一消息中选择目标第一消息:
所述网络侧设备可以确定终端侧设备发送所述L个第一消息所使用的L个上行BWP;
所述网络侧设备确定所述L个上行BWP中负载最小的目标上行BWP;
所述网络侧设备将所述L个第一消息中,在所述目标上行BWP上发送的第一消息作为所述目标第一消息。
通过该方法,所述网络侧设备可以根据小区内上行BWP的负载情况,为终端侧设备选择目标上行BWP,从而实现小区内上行BWP之间的负载均衡。
另外,可选的,与方案一中所述终端侧设备从所述M个随机接入响应中选择第一随机接入响应类似,所述网络侧设备还可以采用以下几种方式,从来自所述终端侧设备的L个第一消息中选择目标第一消息。
方式一:所述网络侧设备选择在预设的第三时间窗口内接收的首个第一消息为所述目标第一消息。
通过上述方式一,所述网络侧设备可以响应最快的第一消息,这样所述网络侧设备可以使所述终端侧设备在响应速度最快的上行BWP上进行随机接入,从而可以降低所述终端侧设备对竞争冲突解决的延时,使该终端侧设备尽量快速地接入网络侧管理的小区。
方式二:所述网络侧设备选择在预设的第四时间窗口内信号质量最好的第一消息为所述目标第一消息。
所述网络侧设备在L个第一消息中选择信号质量最好的第一消息,可以参照终端侧设备在M个随机接入响应中选择信号质量最好的随机接入响应时的具体方法,此处也不再赘述。
通过上述方式二,所述网络侧设备可以响应信号质量最好的所述第一消息。这样,所述网络侧设备可以使所述终端侧设备在信道质量最好的上行BWP上进行随机接入,从而保证接入成功后所述终端侧设备的通信质量。
方式三:所述网络侧设备在所述L个第一消息中随机选择一个第一消息为所述目标第一消息。
S306b:所述网络侧设备根据所述目标第一消息发送竞争冲突解决消息,所述竞争冲突解决消息指示所述目标第一消息响应的随机接入响应(即目标随机接入响应)对应的随机接入的竞争冲突解决的完成。所述终端侧设备从所述网络侧设备接收所述竞争冲突解决消息。
通过S306b,所述终端侧设备可以成功完成在目标BWP上的随机接入,从而可以在建立RRC连接后,实现与所述网络侧设备的数据通信。其中,所述目标BWP为所述终端侧设备发送所述目标随机接入响应所响应的随机接入前导码时使用的上行BWP。
通过以上方案二,任一个终端侧设备均可以在随机接入过程中,在上述N个BWP中选择合适的一个上行BWP进行随机接入,由于实际场景的不确定因素,因此所述网络侧设备针对不同终端侧设备选择在同一上行BWP上进行随机接入的概率较低。这样,该方案就可以降低每个终端侧设备在随机接入过程中出现与其他终端侧设备竞争冲突的现象, 从而可以提高每个终端侧设备随机接入的成功概率。
需要说明的是,在以上图3所示的实施例中,不同上行BWP对应的时间资源可以重叠或者不重叠。下面按照不同上行BWP对应的时间资源的关系,对所述终端侧设备执行S303的具体实现方式进行描述。
在第一种设计中,所述每个上行BWP对应的时间资源不重叠。在该设计中,终端侧设备依次发送每个上行BWP上的随机接入前导码。
例如,图4所示,当移动通信系统中用于进行随机接入的上行BWP为图中上行BWP1、上行BWP2和上行BWP3时,每个上行BWP对应的时间资源可以如图4中所示,完全不重叠。
可选的,在该设计中的一种实现方式中,所述终端侧设备可以通过以下方式发送所述每个上行BWP上的所述随机接入前导码:
所述终端侧设备发送第i个上行BWP上的随机接入前导码;
所述终端侧设备在所述第i个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送从第i+1个上行BWP到第N个上行BWP上的随机接入前导码;
其中,i为从1至N-2的任意整数。
在该实现方式中,所述终端侧设备可以在某个随机接入前导码对应的随机接入响应时间窗口内发送后续多个随机接入前导码,如图5所示。
可选的,在该设计中的另一种实现方式中,所述终端侧设备还可以通过以下方式发送所述每个上行BWP上的所述随机接入前导码:
所述终端侧设备发送第j个上行BWP上的随机接入前导码;
所述终端侧设备在所述第j个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送第j+1个上行BWP的随机接入前导码;
其中,j为从1至N-1的任意整数。
在该实现方式中,所述终端侧设备可以在前一个随机接入前导码对应的随机接入响应时间窗口内发送后一个随机接入前导码,如图6所示。
另外,为了保证每个上行BWP对应的时间资源不重叠,在该实现方式中,需要保证任一个随机接入前导码对应的随机接入响应时间窗口与前后相邻发送的随机接入前导码对应的时间窗口存在不重叠部分,以保证后一个随机接入前导码可以在该不重叠部分发送。
在第二种设计中,所述N个上行BWP中至少两个上行BWP对应的时间资源重叠。在该设计中,终端侧设备在某些时刻,需要同时发送至少两个上行BWP上的随机接入前导码,如图7-图9所示。
可选的,所述终端侧设备可以通过自身的可用的上行功率,判断采用上述哪种设计。具体的,所述终端侧设备估算在所述N个上行BWP中每个上行BWP上的上行功率,以及所述终端侧设备可用的总上行功率。当所述终端侧设备确定所述N个上行BWP中任意两个上行BWP上的上行功率之和大于所述终端侧设备可用的总上行功率时,所述终端侧设备采用上述第一种设计;当所述终端侧设备确定所述N个上行BWP中存在至少两个上行BWP上的上行功率之和小于或等于所述终端侧设备可用的总上行功率,则所述终端侧设备可以确定所述至少两个上行BWP对应的时间资源重叠,即采用上述第二种设计。
其中,所述终端侧设备可以通过如下公式估算每个上行BWP上的上行功率:
P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c}
在该公式中,P PRACH,b,f,c(i)表示在第i个时刻终端侧设备在小区c使用的载波f内的上行BWP b上实际可用发送随机接入前导码的上行功率;P CMAX,f,c(i)表示在第i个时刻终端侧设备在小区c使用的载波f内的最大可用的总上行功率;P PRACH,target,f,c表示在小区c使用的载波f内的上行BWP b上,网络侧设备期望的随机接入前导码接收功率;PL b,f,c表示在小区c使用的载波f内的上行BWP b上,终端侧设备到网络侧设备之间的路径损耗。
通过上述方法,在所述终端侧设备可用的总上行功率受限时(即P CMAX,f,c(i)<P PRACH,b1,f,c(i)<P PRACH,b2,f,c(i),其中,b1和b2为任意两个上行BWP,例如所述终端侧设备处于小区边缘时),所述终端侧设备和所述网络侧设备之间的路径损耗比较大,为了提高每个上行BWP上的随机接入前导码发送成功的概率,所述终端侧设备需要保证采用大于或等于每个上行BWP上的上行功率发送该上行BWP上的随机接入前导码。
在所述终端侧设备可用的总上行功率不受限时(例如所述终端侧设备位于小区中央位置,距离所述网络侧设备较近),所述终端侧设备和所述网络侧设备之间的路径损耗比较小,为了缩小所述终端侧设备发送所述N个上行BWP上的随机接入前导码的时延,所述终端侧设备可以采用上述第二种设计发送随机接入前导码。
可选的,所述终端侧设备还可以根据所述网络侧设备的指示,使用上述第一种设计。
另外,当所述终端侧设备采用上述第二种设计时,移动通信系统中可以设置重叠阈值W,以使终端侧设备在每个时刻发送的随机接入前导码的数目均小于W,这样,可以提高每个上行BWP上的随机接入前导码发送成功的概率。其中,W为小于或等于N的正整数,可选的,W可以为协议规定或者为终端侧设备从所述网络侧设备获取的。例如,所述终端侧设备从随机接入配置信息中获取W。
基于以上实施例,本申请还提供了一种终端侧设备,所述终端侧设备可以应用于如图1所示的移动通信系统,用于实现如图3所示的通信方法。参阅图10所示,所述终端侧设备包括:处理单元1001和发送单元1002,其中:
所述处理单元1001用于确定一个随机接入过程内,在N个上行带宽部分BWP中每个上行BWP上的随机接入前导码,其中N为大于或等于2的整数;
所述发送单元1002用于向网络侧设备发送所述每个上行BWP上的所述随机接入前导码。
一种可选的实施方式中,所述每个上行BWP对应的时间资源不重叠。所述处理单元1001还用于如果所述N个上行BWP中任意两个上行BWP上的上行功率之和大于所述终端侧设备可用的总上行功率,则确定所述每个上行BWP对应的时间资源不重叠。
另一种可选的实施方式中,所述N个上行BWP中至少两个上行BWP对应的时间资源重叠。所述处理单元1001还用于如果所述至少两个上行BWP上的上行功率之和小于或等于所述终端侧设备可用的总上行功率,则确定所述至少两个上行BWP对应的时间资源重叠。
在一种可能的设计中,所述发送单元1002在向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码时,具体用于发送第i个上行BWP上的随机接入前导码;在所述第i个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送从第i+1个上行BWP到第N个上行BWP上的随机接入前导码;其中,i为从1至N-2的任意整数。
在另一种可能的设计中,所述发送单元1002在向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码时,具体用于发送第j个上行BWP上的随机接入前导码;在所述第j个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送第j+1个上行BWP的随机接入前导码;其中,j为从1至N-1的任意整数。
在一种可选的实施方式中,所述终端侧设备还包括接收单元,用于在所述发送单元1002向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码后,接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或等于N的正整数;所述处理单元1001还用于从所述M个随机接入响应中选择第一随机接入响应;所述发送单元1002还用于根据所述第一随机接入响应向所述网络侧设备发送第一消息,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
其中,可选的,所述第一随机接入响应为所述终端侧设备在预设的第一时间窗口内接收的首个随机接入响应,在预设的第二时间窗口内信号质量最好的随机接入响应,或者随机选择的随机接入响应。
可选的,所述发送单元1002,还用于根据第二随机接入响应向所述网络侧设备发送第二消息,其中,所述第二消息指示取消所述第二随机接入响应对应的随机接入,其中,所述第二随机接入响应为所述M个随机接入响应中除去所述第一随机接入响应的其它M-1个随机接入响应的任意一个。
在另一种可选的实施方式中,所述终端侧设备还包括接收单元,用于接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或等于N的正整数;所述发送单元1002还用于根据所述M个随机接入响应中第k个随机接入响应向所述网络侧设备发送第一消息,其中,所述第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1至M的任意整数。
所述终端侧设备还可以执行其他内容,具体参考图3中的相关描述,在此不再赘述。
基于以上实施例,本申请还提供了一种网络侧设备,所述网络侧设备可以应用于如图1所示的移动通信系统,用于实现如图3所示的通信方法。参阅图11所示,所述网络侧设备包括:接收单元1101和发送单元1102,其中:
所述接收单元1101用于从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
所述发送单元1102用于根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
所述接收单元1101,还用于从所述终端侧设备接收响应第一随机接入响应的第一消息;其中,所述第一随机接入响应为所述P个随机接入响应中的一个,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
在一种可选的实施方式中,所述接收单元1101还用于从所述终端侧设备接收响应第二 随机接入响应的第二消息;其中,所述第二随机接入响应为所述P个随机接入响应中除去所述第一随机接入响应的其他P-1个随机接入响应的任意一个,所述第二消息指示取消所述第二随机接入响应对应的随机接入。
所述网络侧设备还可以执行其他内容,具体参考图3中的相关描述,在此不再赘述。
基于以上实施例,本申请还提供了一种网络侧设备,所述网络侧设备可以应用于如图1所示的移动通信系统,用于实现如图3所示的通信方法。参阅图12所示,所述网络侧设备包括:接收单元1201、发送单元1202和处理单元1203,其中:
所述接收单元1201用于从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
所述发送单元1202用于根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
所述接收单元1201还用于从所述终端侧设备接收响应L个随机接入响应的L个第一消息;其中,所述L个随机接入响应包含于所述P个随机接入响应中,L为小于或等于P的正整数,响应第k个随机接入响应的第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1致P的任意整数;
所述处理单元1203用于从所述L个第一消息中选择目标第一消息;
所述发送单元1202还用于根据所述目标第一消息发送竞争冲突解决消息,所述竞争冲突解决消息指示所述目标第一消息响应的随机接入响应对应的随机接入的竞争冲突解决。
所述网络侧设备还可以执行其他内容,具体参考图3中的相关描述,在此不再赘述。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信设备,所述通信设备可以为终端侧设备或者网络侧设备,所述通信设备可以包括收发器1301和处理器1302,可选的还可以包括存储器1303,具体可以参考如图13所示结构图。应理解所述通信设备可以包括至少一个处理器和至少一个存储器,图13中仅示例性的示出了一个处理器和一个存储器。
其中,处理器1302可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。处理器1302还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器1302在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
收发器1301和处理器1302之间相互连接。可选的,收发器1301和处理器1302通过总线1304相互连接;总线1304可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一个实施例中,图13所示的通信设备可用于执行上述图3所示的实施例中的终端侧设备的操作。例如:
所述处理器1302用于确定一个随机接入过程内,在N个上行带宽部分BWP中每个上行BWP上的随机接入前导码,其中N为大于或等于2的整数;
所述收发器1301用于在接收到所述处理器1302的调用时向网络侧设备发送所述每个上行BWP上的所述随机接入前导码。
一种可选的实施方式中,所述每个上行BWP对应的时间资源不重叠。所述处理器1302还用于如果所述N个上行BWP中任意两个上行BWP上的上行功率之和大于所述终端侧设备可用的总上行功率,则确定所述每个上行BWP对应的时间资源不重叠。
另一种可选的实施方式中,所述N个上行BWP中至少两个上行BWP对应的时间资源重叠。所述处理器1302还用于如果所述至少两个上行BWP上的上行功率之和小于或等于所述终端侧设备可用的总上行功率,则确定所述至少两个上行BWP对应的时间资源重叠。
在一种可能的设计中,所述收发器1301在向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码时,具体用于发送第i个上行BWP上的随机接入前导码;在所述第i个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送从第i+1个上行BWP到第N个上行BWP上的随机接入前导码;其中,i为从1至N-2的任意整数。
在另一种可能的设计中,所述收发器1301在向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码时,具体用于发送第j个上行BWP上的随机接入前导码;在所述第j个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送第j+1个上行BWP的随机接入前导码;其中,j为从1至N-1的任意整数。
在一种可选的实施方式中,所述收发器1301还用于在向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码后,接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或等于N的正整数;所述处理器1302还用于从所述M个随机接入响应中选择第一随机接入响应;所述收发器1301还用于在接收到所述处理器1302的调用时根据所述第一随机接入响应向所述网络侧设备发送第一消息,所述第一消息请求对所述第一随 机接入响应所对应随机接入的竞争冲突解决。
其中,可选的,所述第一随机接入响应为所述终端侧设备在预设的第一时间窗口内接收的首个随机接入响应,在预设的第二时间窗口内信号质量最好的随机接入响应,或者随机选择的随机接入响应。
可选的,所述收发器1301还用于在接收到所述处理器1302的调用时根据第二随机接入响应向所述网络侧设备发送第二消息,其中,所述第二消息指示取消所述第二随机接入响应对应的随机接入,其中,所述第二随机接入响应为所述M个随机接入响应中除去所述第一随机接入响应的其它M-1个随机接入响应的任意一个。
在另一种可选的实施方式中,所述收发器1301还用于在接收到所述处理器1302的调用时接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或等于N的正整数;所述收发器1301还用于根据所述M个随机接入响应中第k个随机接入响应向所述网络侧设备发送第一消息,其中,所述第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1至M的任意整数。
在一种可选的实施方式中,存储器1303,与处理器1302耦合,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。存储器1303可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器1302执行存储器1303所存放的应用程序,实现上述功能,从而实现如图3所示的通信方法。
在另一个实施例中,图13所示的通信设备可用于执行上述图3所示的实施例中的网络侧设备的操作。例如:
所述收发器1301用于在接收到所述处理器1302的调用时从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
在接收到所述处理器1302的调用时根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
在接收到所述处理器1302的调用时从所述终端侧设备接收响应第一随机接入响应的第一消息;其中,所述第一随机接入响应为所述P个随机接入响应中的一个,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
在一种可选的实施方式中,所述收发器1301还用于在接收到所述处理器1302的调用时从所述终端侧设备接收响应第二随机接入响应的第二消息;其中,所述第二随机接入响应为所述P个随机接入响应中除去所述第一随机接入响应的其他P-1个随机接入响应的任意一个,所述第二消息指示取消所述第二随机接入响应对应的随机接入。
在一种可选的实施方式中,存储器1303,与处理器1302耦合,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。存储器1303可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器1302执行存储器1303所存放的应用程序,实现上述功能,从而实现如图3所示的通信方法。
在又一个实施例中,图13所示的通信设备可用于执行上述图3所示的实施例中的网 络侧设备的操作。例如:
所述收发器1301用于在接收到所述处理器1302的调用时从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
从所述终端侧设备接收响应L个随机接入响应的L个第一消息;其中,所述L个随机接入响应包含于所述P个随机接入响应中,L为小于或等于P的正整数,响应第k个随机接入响应的第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1致P的任意整数;
所述处理器1302用于从所述L个第一消息中选择目标第一消息;
所述收发器1301还用于在接收到所述处理器1302的调用时根据所述目标第一消息发送竞争冲突解决消息,所述竞争冲突解决消息指示所述目标第一消息响应的随机接入响应对应的随机接入的竞争冲突解决。
在一种可选的实施方式中,存储器1303,与处理器1302耦合,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。存储器1303可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器1302执行存储器1303所存放的应用程序,实现上述功能,从而实现如图3所示的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本 申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    终端侧设备确定一个随机接入过程内,在N个上行带宽部分BWP中每个上行BWP上的随机接入前导码,其中N为大于或等于2的整数;
    所述终端侧设备向网络侧设备发送所述每个上行BWP上的所述随机接入前导码。
  2. 如权利要求1所述的方法,其特征在于,所述每个上行BWP对应的时间资源不重叠。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    如果所述N个上行BWP中任意两个上行BWP上的上行功率之和大于所述终端侧设备可用的总上行功率,则所述终端侧设备确定所述每个上行BWP对应的时间资源不重叠。
  4. 如权利要求1所述的方法,其特征在于,所述N个上行BWP中至少两个上行BWP对应的时间资源重叠。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    如果所述至少两个上行BWP上的上行功率之和小于或等于所述终端侧设备可用的总上行功率,则所述终端侧设备确定所述至少两个上行BWP对应的时间资源重叠。
  6. 如权利要2或3所述的方法,其特征在于,所述终端侧设备向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码,包括:
    所述终端侧设备发送第i个上行BWP上的随机接入前导码;
    所述终端侧设备在所述第i个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送从第i+1个上行BWP到第N个上行BWP上的随机接入前导码;
    其中,i为从1至N-2的任意整数。
  7. 如权利要求2或3所述的方法,其特征在于,所述终端侧设备向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码,包括:
    所述终端侧设备发送第j个上行BWP上的随机接入前导码;
    所述终端侧设备在所述第j个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送第j+1个上行BWP的随机接入前导码;
    其中,j为从1至N-1的任意整数。
  8. 如权利要求1-7任一项所述的方法,其特征在于,在所述终端侧设备向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码后,所述方法还包括:
    所述终端侧设备接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或等于N的正整数;
    所述终端侧设备从所述M个随机接入响应中选择第一随机接入响应;
    所述终端侧设备根据所述第一随机接入响应向所述网络侧设备发送第一消息,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
  9. 如权利要求8所述的方法,其特征在于,所述第一随机接入响应为所述终端侧设备在预设的第一时间窗口内接收的首个随机接入响应,在预设的第二时间窗口内信号质量最好的随机接入响应,或者随机选择的随机接入响应。
  10. 如权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端侧设备根据第二随机接入响应向所述网络侧设备发送第二消息,其中,所述 第二消息指示取消所述第二随机接入响应对应的随机接入,其中,所述第二随机接入响应为所述M个随机接入响应中除去所述第一随机接入响应的其它M-1个随机接入响应的任意一个。
  11. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述终端侧设备接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或等于N的正整数;
    所述终端侧设备根据所述M个随机接入响应中第k个随机接入响应向所述网络侧设备发送第一消息,其中,所述第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1至M的任意整数。
  12. 一种通信方法,其特征在于,包括:
    网络侧设备从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
    所述网络侧设备根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
    所述网络侧设备从所述终端侧设备接收响应第一随机接入响应的第一消息;其中,所述第一随机接入响应为所述P个随机接入响应中的一个,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备从所述终端侧设备接收响应第二随机接入响应的第二消息;其中,所述第二随机接入响应为所述P个随机接入响应中除去所述第一随机接入响应的其他P-1个随机接入响应的任意一个,所述第二消息指示取消所述第二随机接入响应对应的随机接入。
  14. 一种通信方法,其特征在于,包括:
    网络侧设备从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
    所述网络侧设备根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
    所述网络侧设备从所述终端侧设备接收响应L个随机接入响应的L个第一消息;其中,所述L个随机接入响应包含于所述P个随机接入响应中,L为小于或等于P的正整数,响应第k个随机接入响应的第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1致P的任意整数;
    所述网络侧设备从所述L个第一消息中选择目标第一消息,并根据所述目标第一消息发送竞争冲突解决消息,所述竞争冲突解决消息指示所述目标第一消息响应的随机接入响应对应的随机接入的竞争冲突解决。
  15. 一种终端侧设备,其特征在于,包括:
    处理单元,用于确定一个随机接入过程内,在N个上行带宽部分BWP中每个上行BWP上的随机接入前导码,其中N为大于或等于2的整数;
    发送单元,用于向网络侧设备发送所述每个上行BWP上的所述随机接入前导码。
  16. 如权利要求15所述的终端侧设备,其特征在于,所述每个上行BWP对应的时间资源不重叠。
  17. 如权利要求16所述的终端侧设备,其特征在于,所述处理单元,还用于:
    如果所述N个上行BWP中任意两个上行BWP上的上行功率之和大于所述终端侧设备可用的总上行功率,则确定所述每个上行BWP对应的时间资源不重叠。
  18. 如权利要求15所述的终端侧设备,其特征在于,所述N个上行BWP中至少两个上行BWP对应的时间资源重叠。
  19. 如权利要求18所述的终端侧设备,其特征在于,所述处理单元,还用于:
    如果所述至少两个上行BWP上的上行功率之和小于或等于所述终端侧设备可用的总上行功率,则确定所述至少两个上行BWP对应的时间资源重叠。
  20. 如权利要16或17所述的终端侧设备,其特征在于,所述发送单元,在向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码时,具体用于:
    发送第i个上行BWP上的随机接入前导码;
    在所述第i个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送从第i+1个上行BWP到第N个上行BWP上的随机接入前导码;
    其中,i为从1至N-2的任意整数。
  21. 如权利要求16或17所述的终端侧设备,其特征在于,所述发送单元,在向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码时,具体用于:
    发送第j个上行BWP上的随机接入前导码;
    在所述第j个上行BWP上的随机接入前导码对应的随机接入响应时间窗口内,发送第j+1个上行BWP的随机接入前导码;
    其中,j为从1至N-1的任意整数。
  22. 如权利要求15-21任一项所述的终端侧设备,其特征在于,所述终端侧设备还包括:
    接收单元,用于在所述发送单元向所述网络侧设备发送所述每个上行BWP上的所述随机接入前导码后,接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或等于N的正整数;
    所述处理单元,还用于从所述M个随机接入响应中选择第一随机接入响应;
    所述发送单元,还用于根据所述第一随机接入响应向所述网络侧设备发送第一消息,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
  23. 如权利要求22所述的终端侧设备,其特征在于,所述第一随机接入响应为所述终端侧设备在预设的第一时间窗口内接收的首个随机接入响应,在预设的第二时间窗口内信号质量最好的随机接入响应,或者随机选择的随机接入响应。
  24. 如权利要求22或23所述的终端侧设备,其特征在于,所述发送单元,还用于:
    根据第二随机接入响应向所述网络侧设备发送第二消息,其中,所述第二消息指示取消所述第二随机接入响应对应的随机接入,其中,所述第二随机接入响应为所述M个随机接入响应中除去所述第一随机接入响应的其它M-1个随机接入响应的任意一个。
  25. 如权利要求15-21任一项所述的终端侧设备,其特征在于,所述终端侧设备还包括:
    接收单元,用于接收所述网络侧设备发送的M个随机接入响应,其中,M为小于或 等于N的正整数;
    所述发送单元,还用于根据所述M个随机接入响应中第k个随机接入响应向所述网络侧设备发送第一消息,其中,所述第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1至M的任意整数。
  26. 一种网络侧设备,其特征在于,包括:
    接收单元,用于从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
    发送单元,用于根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
    所述接收单元,还用于从所述终端侧设备接收响应第一随机接入响应的第一消息;其中,所述第一随机接入响应为所述P个随机接入响应中的一个,所述第一消息请求对所述第一随机接入响应所对应随机接入的竞争冲突解决。
  27. 如权利要求26所述的网络侧设备,其特征在于,所述接收单元,还用于:
    从所述终端侧设备接收响应第二随机接入响应的第二消息;其中,所述第二随机接入响应为所述P个随机接入响应中除去所述第一随机接入响应的其他P-1个随机接入响应的任意一个,所述第二消息指示取消所述第二随机接入响应对应的随机接入。
  28. 一种网络侧设备,其特征在于,包括:
    接收单元,用于从终端侧设备接收P个上行带宽部分BWP中每个上行BWP上的随机接入前导码;其中,P个上行BWP包含于N个上行BWP中,N为大于或等于2的整数,P为小于或等于N的正整数;
    发送单元,用于根据接收的P个随机接入前导码向所述终端侧设备发送P个随机接入响应;
    所述接收单元,还用于从所述终端侧设备接收响应L个随机接入响应的L个第一消息;其中,所述L个随机接入响应包含于所述P个随机接入响应中,L为小于或等于P的正整数,响应第k个随机接入响应的第一消息请求对所述第k个随机接入响应所对应随机接入的竞争冲突解决,k为从1致P的任意整数;
    处理单元,用于从所述L个第一消息中选择目标第一消息;
    所述发送单元,还用于根据所述目标第一消息发送竞争冲突解决消息,所述竞争冲突解决消息指示所述目标第一消息响应的随机接入响应对应的随机接入的竞争冲突解决。
  29. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-14中任一项所述的方法。
  30. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述权利要求1-14中任一项所述的方法。
PCT/CN2019/101412 2018-08-20 2019-08-19 一种通信方法及设备 WO2020038338A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19851454.9A EP3829257A4 (en) 2018-08-20 2019-08-19 COMMUNICATION PROCESS AND DEVICE
US17/179,743 US11540332B2 (en) 2018-08-20 2021-02-19 Communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810950039.8A CN110856267B (zh) 2018-08-20 2018-08-20 一种通信方法及设备
CN201810950039.8 2018-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/179,743 Continuation US11540332B2 (en) 2018-08-20 2021-02-19 Communication method and device

Publications (1)

Publication Number Publication Date
WO2020038338A1 true WO2020038338A1 (zh) 2020-02-27

Family

ID=69592283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101412 WO2020038338A1 (zh) 2018-08-20 2019-08-19 一种通信方法及设备

Country Status (4)

Country Link
US (1) US11540332B2 (zh)
EP (1) EP3829257A4 (zh)
CN (1) CN110856267B (zh)
WO (1) WO2020038338A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113826427A (zh) * 2019-05-10 2021-12-21 Oppo广东移动通信有限公司 一种资源池的配置方法和终端、网络设备
CN114007203A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 一种随机接入资源选择的方法以及相关装置
WO2023028770A1 (en) * 2021-08-30 2023-03-09 Lenovo (Beijing) Limited Methods and apparatuses for uplink transmission
CN116347644A (zh) * 2021-12-23 2023-06-27 中国移动通信有限公司研究院 消息发送方法、消息接收方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049068A1 (en) * 2016-08-10 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus for supporting flexible ue bandwidth in next generation communication system
CN108012329A (zh) * 2017-09-27 2018-05-08 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
CN109587789A (zh) * 2017-09-28 2019-04-05 维沃移动通信有限公司 随机接入方法、移动终端及网络设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541736B (en) * 2015-08-28 2019-12-04 Imagination Tech Ltd Bandwidth management
US10728927B2 (en) * 2016-11-11 2020-07-28 FG Innovation Company Limited Data packet delivery in RRC inactive state
BR112019023263A2 (pt) * 2017-05-05 2020-05-26 Motorola Mobility Llc Transmitir sr antes de completar rach
KR102588435B1 (ko) * 2017-09-08 2023-10-12 삼성전자주식회사 리소스 결정, 리소스 구성, 랜덤 액세스 프리엠블 송신 및 랜덤 엑세스를 위한 방법 및 장치
WO2019061367A1 (zh) * 2017-09-29 2019-04-04 华为技术有限公司 数据传输的方法、终端设备和网络设备
WO2019087359A1 (ja) * 2017-11-02 2019-05-09 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10687339B2 (en) * 2017-11-09 2020-06-16 Ofinno, Llc Communications based on wireless device capabilities
JP7024867B2 (ja) * 2017-11-17 2022-02-24 富士通株式会社 ランダムアクセス方法、装置及び通信システム
CN108391314B (zh) * 2018-02-12 2022-06-03 宇龙计算机通信科技(深圳)有限公司 一种前导码的确定方法、装置及终端
CN111869304B (zh) * 2018-04-04 2023-03-31 中兴通讯股份有限公司 执行多个rach程序的方法和装置
WO2019193420A1 (en) * 2018-04-05 2019-10-10 Lenovo (Singapore) Pte. Ltd. Ue power control for multiple uplink carriers
JP2019186676A (ja) * 2018-04-05 2019-10-24 シャープ株式会社 基地局装置および端末装置
CN110636613B (zh) * 2018-06-21 2023-05-02 中兴通讯股份有限公司 随机接入方法、终端、基站、存储介质、电子装置
CN110691415B (zh) * 2018-07-06 2022-11-01 大唐移动通信设备有限公司 一种随机接入方法及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049068A1 (en) * 2016-08-10 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus for supporting flexible ue bandwidth in next generation communication system
CN108012329A (zh) * 2017-09-27 2018-05-08 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
CN109587789A (zh) * 2017-09-28 2019-04-05 维沃移动通信有限公司 随机接入方法、移动终端及网络设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829257A4
SPREADTRUM COMMUNICATIONS: "Random Access Procedure in NR-U", 3GPP TSG-RAN WG2 MEETING #103BIS R2-1813874, 12 October 2018 (2018-10-12), XP051523346 *
ZTE: "Considerations on 4-step RACH procedure for NR-U", 3GPP TSG RAN WG2 NR #104 MEETING R2-1816829, 16 November 2018 (2018-11-16), XP051480769 *
ZTE: "Considerations on channel access procedure for NR-U", 3GPP TSG RAN WG2 NR #103 MEETING R2-1811281, 9 August 2018 (2018-08-09), XP051520945 *

Also Published As

Publication number Publication date
CN110856267A (zh) 2020-02-28
US11540332B2 (en) 2022-12-27
EP3829257A4 (en) 2021-10-20
EP3829257A1 (en) 2021-06-02
CN110856267B (zh) 2021-10-01
US20210176798A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
WO2020038338A1 (zh) 一种通信方法及设备
US10791575B2 (en) Data transmission method, device and system
US11064538B2 (en) Methods and apparatuses for performing random access procedures
WO2019084816A1 (zh) 一种终端选择资源的方法及装置、计算机存储介质
JP6856300B2 (ja) ランダムアクセス方法、ネットワークデバイス、及びユーザ機器
WO2019242604A1 (zh) 随机接入方法、终端设备及网络侧设备
WO2019154272A1 (zh) 波束失败恢复方法及用户终端
WO2021190278A1 (zh) 业务的请求方法及装置
JP2023537067A (ja) 周波数領域リソース決定方法、デバイス、及び記憶媒体
WO2023198022A1 (zh) 随机接入方法及设备
US20230049532A1 (en) Random access method and terminal device
US20230107391A1 (en) Data transmission method and apparatus, terminal, and network side device
US20220117005A1 (en) Random access method, user equipment, and storage medium
WO2021218682A1 (zh) 通信方法、装置及系统
WO2021249299A1 (zh) 数据的处理方法及装置、终端及网络侧设备
WO2022082674A1 (zh) 通信方法、装置和系统
JP2018011348A (ja) データ送信方法、デバイスおよびシステム
KR20220004135A (ko) 랜덤 액세스 방법 및 장치
RU2791244C1 (ru) Способ и устройство произвольного доступа
JP7060611B2 (ja) ランダムアクセス方法および装置、デバイス、ならびに記憶媒体
WO2020082394A1 (zh) 随机接入的方法、终端设备和网络设备
WO2019178729A1 (zh) 一种随机接入方法及装置
EP3619991A1 (en) A communications device and methods therein for transmission of a message in response to a random access response comprising multiple grants
WO2023198059A1 (zh) 一种通信方法、装置、系统及存储介质
WO2024067270A1 (zh) 一种切换方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851454

Country of ref document: EP

Effective date: 20210226