WO2020038244A1 - 一种80mm厚低成本FH420海工钢板及其制造方法 - Google Patents

一种80mm厚低成本FH420海工钢板及其制造方法 Download PDF

Info

Publication number
WO2020038244A1
WO2020038244A1 PCT/CN2019/100137 CN2019100137W WO2020038244A1 WO 2020038244 A1 WO2020038244 A1 WO 2020038244A1 CN 2019100137 W CN2019100137 W CN 2019100137W WO 2020038244 A1 WO2020038244 A1 WO 2020038244A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
temperature
cooling
holding time
steel plate
Prior art date
Application number
PCT/CN2019/100137
Other languages
English (en)
French (fr)
Inventor
车马俊
朱爱玲
陈林恒
赵晋斌
崔强
付军
张晓雪
邱保文
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to SG11202101376WA priority Critical patent/SG11202101376WA/en
Publication of WO2020038244A1 publication Critical patent/WO2020038244A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a marine engineering steel, in particular to an 80mm thick low-cost FH420 marine steel plate and a manufacturing method thereof.
  • invention patent CN104674117A provides a 420MPa class marine engineering steel plate and a manufacturing method thereof
  • invention patent CN104357742A provides a 420MPa class marine engineering large thickness hot rolled steel plate and a production method thereof.
  • the manufacturing method is controlled rolling and controlled cooling. Offshore equipment manufacturing companies have very high requirements for the performance uniformity and performance fluctuation of 420MPa-grade offshore steels. It is difficult to accept controlled rolling and controlled cooling delivery, and they all require quenched and tempered delivery.
  • the invention patent CN 104674117 A component design contains the precious elements Ni and Cu, and the invention patent CN 104357742 the A component design contains the precious element Ni; Furthermore, the above two invention patents only meet the requirements of E-grade steel, and cannot meet the F-grade ultra-high strength sea Requirements of Gongsteel.
  • FH420 offshore steel which is delivered in the conventional quenched and tempered state, contains a large amount of precious elements Ni, Mo, and Cu, which are expensive and will greatly increase the production costs of offshore equipment enterprises.
  • the technical problem to be solved by the present invention is, in view of the shortcomings of the prior art above, how to develop a low cost (steel type does not contain precious elements: Ni, Mo, Cu) 80mm thick FH420 steel plate for offshore engineering, on the one hand, the rolling mill load is not too high, and general wide and thick plate rolling mills can be produced. On the other hand, after heat treatment, the grains are fine, the structure is uniform, the internal stress is small, and the mechanical properties are excellent. .
  • An 80mm thick low-cost FH420 offshore steel plate whose weight percentage components are: C: 0.07 to 0.11%, Si: 0.15 to 0.40%, Mn: 1.30 to 1.60%, P ⁇ 0.013%, S ⁇ 0.003%, Nb: 0.010 ⁇ 0.030%, V: 0.030 ⁇ 0.050%, Ti: 0.005 ⁇ 0.020%, Cr: 0.10 ⁇ 0.20%, Al: 0.0250 ⁇ 0.050%, O ⁇ 18ppm, N ⁇ 38ppm, H ⁇ 2.5ppm, the balance is Fe And unavoidable impurities.
  • the aforementioned manufacturing method of the 80mm thick low-cost FH420 offshore steel plate includes the following steps:
  • the target sulfur after molten iron desulfurization is ⁇ 0.004%; converter smelting adopts high-blowing and low-pulling dephosphorization, and converter takes out steel as slag; refining uses white slag operation, white slag holding time is 15-20 minutes, total refining The time is guaranteed to be 35 to 45 minutes; the vacuum treatment holding time is 20 to 23 minutes; the seamless calcium wire treatment is performed after the vacuum treatment; the target temperature of the continuous casting tundish is liquidus temperature + (5-15) ° C, and the drawing speed is stable;
  • Rolling process Controlled rolling and cooling process, two-stage rolling; heating temperature of continuous casting slab before rolling 1150 °C ⁇ 1220 °C; rough rolling temperature 980 ⁇ 1080 °C; finishing rolling start temperature 840 ⁇ 870 °C; finishing rolling The cumulative rolling reduction of the last three passes is greater than 30%; laminar cooling after rolling, the final cooling temperature is 600 to 660 ° C, and the cooling rate is 5 to 8 ° C / s; followed by air cooling;
  • Heat treatment process quenching treatment, quenching temperature is 890 ⁇ 910 °C, heating rate is 1.4min / mm, holding time is 0-25min; tempering treatment, tempering temperature is 550 ⁇ 650 °C, heating rate is 2.0min / mm, heat preservation The time is 80 ⁇ 120min, and 80mm thick low-cost FH420 offshore steel is obtained.
  • the steel plate component Ni is not contained, Cu is not contained, Mo is not contained, and the steel type does not contain precious elements, which greatly reduces the cost;
  • the composition is designed according to the smelting of clean steel And control, molten iron pretreatment to reduce sulfur; converter adopts high-blowing and low-pulling method to reduce phosphorus and steel slag to prevent phosphorus return; to ensure white slag refining time, adsorption of inclusions and reduction of S, O and other elements in steel; use Seamless calcium wire treatment to improve the morphology of inclusions; vacuum treatment to reduce the content of harmful elements such as H and N; and finally to obtain a continuous casting slab with better internal quality.
  • the heating temperature of the continuous casting slab before rolling is from 1150 ° C to 1220 ° C, which not only guarantees the complete solid solution of the microalloying elements, but also prevents the grain growth from being caused by excessive temperature; rough rolling uses high temperature and low speed to crush the columnar crystals and internal defects of the welded billet. 3. Refine austenite grains; the three rolling reductions after finishing rolling are greater than 30%, ferrite mechanism is induced by low temperature large deformation not in the crystallization zone, and proper cooling control process (final cooling temperature 600 ⁇ 660 °C, The cooling rate is 5 ⁇ 8 °C / s), the purpose of controlling the grain size is obtained;
  • the quenching temperature is 890 ⁇ 910 °C
  • the heating rate is 1.4min / mm
  • the holding time is 0-25min, which not only ensures the complete austenitization of the steel plate before quenching, but also ensures that the structure of the steel plate is fine and uniform before quenching
  • the tempering temperature is 550 ⁇ 650 °C
  • the heating rate is 2.0min / mm and the heat preservation time is 80 ⁇ 120min, which ensures that the steel plate is tempered by tempering and prevents cutting deformation during the use of the steel plate.
  • the beneficial effect of the present invention is that the present invention can develop a low-cost (steel type does not contain precious elements: Ni, Mo, Cu) 80mm thick FH420 for marine engineering within the scope of the chemical composition of GB712 and the ten major classification societies.
  • the load requirements of the rolling mill are not too high (the temperature of finishing rolling is high, and the cumulative reduction ratio of the last three passes is only greater than 30%).
  • General wide and thick plate rolling mills can be produced. Therefore, it has wide applicability and is suitable for domestic large-scale rolling mills.
  • the invention reduces the internal defects such as segregation and looseness of the billet through smelting of clean steel; crushes columnar grains and refines austenite grains through rough rolling at high temperature and low speed; and accumulates deformation through finishing rolling and With the control of cooling, the purpose of controlling the grain size after hot rolling is obtained; and after the heat treatment, the grains are fine, the structure is uniform, and the internal stress is small; the manufacturing method of the invention has stable production process and excellent mechanical properties of the steel plate, and the obtained FH420 steel has High strength, high toughness, resistance to lamellar tearing, etc.
  • FIG. 1 is a typical structure morphology of an 80 mm thick low-cost FH420 marine steel plate obtained by quenching and tempering in Example 1 under a metallographic microscope.
  • FIG. 2 is a typical structure morphology of an 80 mm thick low-cost FH420 marine steel plate obtained by quenching and tempering in Example 2 under a metallographic microscope.
  • FIG. 3 is a typical structure morphology of an 80 mm thick low-cost FH420 marine steel plate obtained by quenching and tempering in Example 3 under a metallographic microscope.
  • Fig. 4 is a typical structural morphology of an 80 mm thick low-cost FH420 offshore steel plate obtained by quenching and tempering in Example 4 under a metallographic microscope.
  • the production method of the 80mm thick low-cost FH420 offshore steel plate of Examples 1 to 4 is as follows:
  • the production method of the 80mm thick low-cost FH420 offshore steel plate of Example 1 is as follows:
  • target sulfur is 0.004% after molten iron desulfurization; converter smelting adopts high-blowing and low-pulling dephosphorization, and converter is used as steel slag; refining uses white slag operation, white slag holding time is 15 minutes, and total refining time is 35 minutes ; Vacuum treatment holding time is 20 minutes; seamless calcium wire treatment is performed after vacuum treatment; the target temperature of continuous casting tundish is liquidus temperature + 15 ° C, and the drawing speed is stable.
  • Rolling process controlled rolling and cooling process, two-stage rolling; continuous casting slab heating temperature before rolling 1150 °C; rough rolling temperature 980 °C, rolling at high temperature, low speed and high pressure, the first pass reduction is 40mm ; Finishing rolling start temperature is 840 ° C, and the cumulative rolling reduction of the last three passes is 34%; laminar cooling after rolling, final cooling temperature is 600 ° C, cooling rate is 5 ° C / s; then air cooling.
  • Heat treatment process quenching treatment, quenching temperature is 890 °C, heating rate is 1.4min / mm, holding time is 0min; tempering treatment, tempering temperature is 550 °C, heating rate is 2.0min / mm, holding time is 80min, An 80mm thick low-cost FH420 offshore steel plate with excellent flatness (unevenness of 2mm / m) was obtained.
  • the production method of the 80mm thick low-cost FH420 offshore steel plate of Example 2 is as follows:
  • the target sulfur after molten iron desulfurization is 0.0035%; converter smelting adopts high-blowing and low-draw dephosphorization, and converter is used as steel slag; refining adopts white slag operation, white slag holding time is 18 minutes, and total refining time is 40 minutes ; Vacuum treatment holding time is 21 minutes; seamless calcium wire treatment is performed after vacuum treatment; the target temperature of continuous casting tundish is liquidus temperature + 10 ° C, and the drawing speed is stable.
  • Rolling process adopting controlled rolling and cooling process, two-stage rolling; continuous casting slab heating temperature before rolling is 1180 °C; rough rolling temperature is 1000 °C, rolling at high temperature and low speed, and rolling reduction is 38mm in the first pass ;
  • the finish rolling rolling temperature is 850 ° C, and the cumulative rolling reduction of the last three passes is 31%; the laminar cooling after rolling, the final cooling temperature is 620 ° C, and the cooling rate is 8 ° C / s; then the air cooling is performed.
  • Heat treatment process quenching, quenching temperature is 900 ° C, heating rate is 1.4min / mm, holding time is 10min; tempering, tempering temperature is 580 ° C, heating rate is 2.0min / mm, holding time is 90min, A low-cost FH420 offshore steel plate with an excellent plate shape (unevenness of 2 mm / m) and a thickness of 80 mm was obtained.
  • the production method of the 80mm thick low-cost FH420 offshore steel plate in Example 3 is as follows:
  • target sulfur is 0.003% after molten iron desulfurization; converter smelting adopts high-blowing and low-pulling dephosphorization, and converter takes out steel as slag; refining uses white slag operation, white slag holding time is 19 minutes, and total refining time is 42 minutes Vacuum holding time is 22 minutes; seamless calcium wire treatment is performed after vacuum treatment; the target temperature of continuous casting tundish is liquidus temperature + 8 ° C, and the drawing speed is stable.
  • Rolling process The controlled rolling and cooling process is used for two-stage rolling; the continuous casting slab heating temperature before rolling is 1200 ° C; the rough rolling temperature is 1050 ° C, and the rolling is performed under high temperature and low speed and high pressure. ; Finishing rolling rolling temperature is 860 °C, the cumulative rolling reduction of the last three passes is 32%; laminar cooling after rolling, final cooling temperature is 640 °C, cooling rate is 7 °C / s; then air cooling.
  • Heat treatment process quenching temperature is 905 °C, heating rate is 1.4min / mm, holding time is 15min; tempering temperature is 620 °C, heating rate is 2.0min / mm, holding time is 100min, A low-cost FH420 offshore steel plate with an excellent plate shape (unevenness of 2 mm / m) and a thickness of 80 mm was obtained.
  • the production method of the 80mm thick low-cost FH420 offshore steel plate in Example 4 is as follows:
  • the target sulfur after molten iron desulfurization is 0.0033%; the converter smelting adopts high-blowing and low-draw dephosphorization, and the converter takes out steel as slag; the refining uses white slag operation, the white slag holding time is 20 minutes, and the total refining time is 45 minutes ; Vacuum treatment holding time is 23 minutes; seamless calcium wire treatment is performed after vacuum treatment; the target temperature of continuous casting tundish is liquidus temperature + 5 ° C, and the drawing speed is stable.
  • Rolling process controlled rolling and cooling process, two-stage rolling; continuous casting slab heating temperature before rolling is 1220 ° C; rough rolling temperature is 1080 ° C, rolling at high temperature and low speed, and rolling reduction is 33mm in the first pass
  • the finish rolling rolling temperature is 870 ° C, and the cumulative rolling reduction of the last three passes is 33%
  • the laminar cooling after rolling, the final cooling temperature is 660 ° C, and the cooling rate is 8 ° C / s; and then air cooling.
  • Heat treatment process quenching treatment, quenching temperature is 910 °C, heating rate is 1.4min / mm, holding time is 25min; tempering treatment, tempering temperature is 650 °C, heating rate is 2.0min / mm, holding time is 120min, A low-cost FH420 offshore steel plate with an excellent plate shape (unevenness of 2 mm / m) and a thickness of 80 mm was obtained.
  • FIG. 1 is a typical structure morphology of an FH420 steel plate obtained after the quenching and tempering process of Example 1 under a metallographic microscope
  • FIG. 2 is a typical structure morphology of an FH420 steel plate obtained after the quenching and tempering process of Example 2 under a metallographic microscope
  • FIG. 3 is a typical structure morphology of a FH420 steel plate obtained after the quenching and tempering process of Example 3 under a metallographic microscope
  • FIG. 4 is a typical structure morphology of a FH420 steel plate obtained after the quenching and tempering process of Example 4 under a metallographic microscope. From Figure 1-4, it can be seen that the structure of the 80mm thick low-cost FH420 marine steel plate is a fine and uniform low-carbon bainite structure + a small amount of ferrite structure, thereby ensuring excellent steel plate performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种80mm厚低成本FH420海工钢板,其重量百分比成分为:C:0.07~0.11%,Si:0.15~0.40%,Mn:1.30~1.60%,P≤0.013%,S≤0.003%,Nb:0.010~0.030%,V:0.030~0.050%,Ti:0.005~0.020%,Cr:0.10~0.20%,Al:0.0250~0.050%,O≤18ppm,N≤38ppm,H≤2.5ppm,余量为Fe及不可避免的杂质。该海工钢板的制造采用控轧控冷工艺,轧前加热温度1150℃~1220℃,粗轧温度980~1080℃,精轧开轧温度840~870℃;轧后层流冷却,终冷温度600~660℃,冷却速率5~8℃/s;进行淬火处理,淬火温度为890~910℃,升温速率为1.4min/mm,保温时间为0~25min,进行回火处理,回火温度550~650℃,升温速率为2.0min/mm,保温时间为80~120min。

Description

一种80mm厚低成本FH420海工钢板及其制造方法 技术领域
本发明涉及一种海洋工程用钢,具体地说是一种80mm厚低成本FH420海工钢板及其制造方法。
背景技术
我国开发海洋石油起步较晚,到了20世纪80年代才拥有自己的海洋石油平台,近10年来,国产的海洋平台钢板在我国海洋石油工程中才被广泛采用。我国目前对于EH36以下级别的海洋平台用钢基本实现国产化,占平台用钢量的90%,随着国家《中国制造2025》和《海洋工程装备制造业中长期发展规划》实施、国家南海战略的逐步实施,海洋工程装备和高技术船舶领域将大力发展深海探测、资源开发利用、海上作业保障装备及其关键系统和专用设备;推动深海空间站、大型浮式结构物的开发和工程化,必然对海洋平台用钢的需求量及要求也不断扩大,逐渐向高强度、厚规格方向发展。
发明专利CN 104674117 A提供了一种420MPa级海洋工程用钢板及其制造方法,发明专利CN 104357742 A提供了一种420MPa级海洋工程用大厚度热轧钢板及其生产方法,这以上两专利公开的的制造方法为控轧控冷,海工装备制造企业对420MPa级海工钢的性能均匀性、性能波动值要求非常高,难以接受控轧控冷交货,均要求调质态交货;另外,发明专利CN 104674117 A成分设计含有贵重元素Ni、Cu,发明专利CN 104357742 A成分设计含有贵重元素Ni;再则,上述两个发明专利只满足E级钢的要求, 满足不了F级超高强海工钢的要求。而常规调质态交货的FH420海工钢含有大量贵重元素Ni、Mo、Cu,价格昂贵,会大幅度提高海工装备企业的生产成本。
发明内容
本发明所要解决的技术问题是,针对以上现有技术的缺点,如何在GB712和十大船级社标准的化学成分范围之内,开发出低成本(钢种不含贵重元素:Ni、Mo、Cu)80mm厚海洋工程用FH420钢板,一方面对轧机负荷要求不是太高,一般的宽厚板轧机均可生产,另一方面,热处理后,晶粒细小,组织均匀,内应力小,机械性能优良。
本发明解决以上技术问题的技术方案是:
一种80mm厚低成本FH420海工钢板,其重量百分比成分为:C:0.07~0.11%,Si:0.15~0.40%,Mn:1.30~1.60%,P≤0.013%,S≤0.003%,Nb:0.010~0.030%,V:0.030~0.050%,Ti:0.005~0.020%,Cr:0.10~0.20%,Al:0.0250~0.050%,O≤18ppm,N≤38ppm,H≤2.5ppm,余量为Fe及不可避免的杂质。
前述的80mm厚低成本FH420海工钢板的制造方法,包括以下步骤:
炼钢及连铸工艺:铁水脱硫后目标硫≤0.004%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间15~20分钟,精炼总时间确保35~45分钟;真空处理保持时间20~23分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+(5-15)℃,拉速稳定;
轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1150℃~1220℃; 粗轧温度980~1080℃;精轧开轧温度840~870℃;精轧后三道累计压下率大于30%;轧后层流冷却,终冷温度600~660℃,冷却速率5~8℃/s;随后空冷;
热处理工艺:淬火处理,淬火温度为890~910℃,升温速率为1.4min/mm,保温时间为0~25min;回火处理,回火温度550~650℃,升温速率为2.0min/mm,保温时间为80~120min,得到80mm厚低成本FH420海工钢。
本发明的80mm厚低成本FH420海工钢板及制造方法,钢板成分中,Ni不含,Cu不含,Mo不含,钢种不含贵重元素,大大降低了成本;成分设计按照洁净钢的冶炼及控制,铁水预处理进行降硫;转炉采用高吹低拉法降磷和出钢挡渣防止回磷;保证白渣精炼时间,吸附夹杂物和减少钢中的S、O等元素含量;使用无缝钙线处理,改善夹杂物形态;真空处理,降低H、N等有害元素含量;最终得到内部质量较优良的连铸坯。
轧前连铸坯加热温度1150℃~1220℃,既保证微合金元素完全固溶和又防止温度过高导致晶粒长大;粗轧采用高温低速大压下来破碎柱状晶、焊合坯料内部缺陷、细化奥氏体晶粒;精轧后三道累计压下率大于30%,通过未在结晶区的低温大变形诱导铁素体机制以及适当控冷工艺(终冷温度600~660℃,冷却速率5~8℃/s),得到控制晶粒大小的目的;
淬火温度为890~910℃,升温速率为1.4min/mm,保温时间为0~25min,既保证钢板淬火前完全奥氏体化,又保证钢板淬火前组织细小均匀;回火温度550~650℃,升温速率为2.0min/mm,保温时间为80~120min,保证了钢板通过回火进行消应力处理,防止钢板使用 过程中出现切割变形。
本发明的有益效果是:本发明可在GB712和十大船级社标准的化学成分范围之内,开发出低成本(钢种不含贵重元素:Ni、Mo、Cu)80mm厚海洋工程用FH420钢板,对轧机负荷要求不是太高(精轧开轧温度较高,且后三道累计压下率仅大于30%),一般的宽厚板轧机均可生产,因此,适用性广,适合国内大多数宽厚板厂生产;本发明通过洁净钢的冶炼,降低坯料偏析和疏松等内部缺陷;通过粗轧高温低速大压下,破碎柱状晶和细化奥氏体晶粒;通过精轧累积变形以及配合控冷,得到控制热轧后晶粒大小的目的;且热处理后,晶粒细小,组织均匀,内应力小;本发明的制造方法,生产工艺稳定,钢板机械性能优良,得到的FH420钢具有高强度、高韧性、抗层状撕裂等特点。
附图说明
图1是实施例1经调质得到80mm厚低成本FH420海工钢板在金相显微镜下板典型的组织形貌图。
图2是实施例2经调质得到80mm厚低成本FH420海工钢板在金相显微镜下板典型的组织形貌图。
图3是实施例3经调质得到80mm厚低成本FH420海工钢板在金相显微镜下板典型的组织形貌图。
图4是实施例4经调质得到80mm厚低成本FH420海工钢板在金相显微镜下板典型的组 织形貌图。
具体实施方式
实施例1~4
实施例1~4的80mm厚低成本FH420海工钢板化学成分如表1所示:
表1
Figure PCTCN2019100137-appb-000001
实施例1~4的80mm厚低成本FH420海工钢板生产方法如下:
实施例1的80mm厚低成本FH420海工钢板实施例的生产方法,具体如下:
炼钢及连铸工艺:铁水脱硫后目标硫0.004%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间15分钟,精炼总时间35分钟;真空处理保持时间20分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+15℃,拉速稳定。
轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1150℃;粗轧温度980℃,高温低速大压下轧制,第一道道次压下量40mm;精轧开轧温度840℃,后三道累积压下率34%;轧后层流冷却,终冷温度600℃,冷却速率5℃/s;随后空冷。
热处理工艺:进行淬火处理,淬火温度为890℃,升温速率为1.4min/mm,保温时间为0min;进行回火处理,回火温度550℃,升温速率为2.0min/mm,保温时间为80min,得到板形优良(不平度2mm/m)的80mm厚低成本FH420海工钢板。
实施例2的80mm厚低成本FH420海工钢板实施例的生产方法,具体如下:
炼钢及连铸工艺:铁水脱硫后目标硫0.0035%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间18分钟,精炼总时间40分钟;真空处理保持时间21分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+10℃,拉速稳定。
轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1180℃;粗轧温度1000℃,高温低速大压下轧制,第一道道次压下量38mm;精轧开轧温度850℃,后三道累积 压下率31%;轧后层流冷却,终冷温度620℃,冷却速率8℃/s;随后空冷。
热处理工艺:进行淬火处理,淬火温度为900℃,升温速率为1.4min/mm,保温时间为10min;进行回火处理,回火温度580℃,升温速率为2.0min/mm,保温时间为90min,得到板形优良(不平度2mm/m)80mm厚低成本FH420海工钢板。
实施例3的80mm厚低成本FH420海工钢板实施例的生产方法,具体如下:
炼钢及连铸工艺:铁水脱硫后目标硫0.003%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间19分钟,精炼总时间42分钟;真空处理保持时间22分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+8℃,拉速稳定。
轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1200℃;粗轧温度1050℃,高温低速大压下轧制,第一道道次压下量35mm;精轧开轧温度860℃,后三道累积压下率32%;轧后层流冷却,终冷温度640℃,冷却速率7℃/s;随后空冷。
热处理工艺:进行淬火处理,淬火温度为905℃,升温速率为1.4min/mm,保温时间为15min;进行回火处理,回火温度620℃,升温速率为2.0min/mm,保温时间为100min,得到板形优良(不平度2mm/m)80mm厚低成本FH420海工钢板。
实施例4的80mm厚低成本FH420海工钢板实施例的生产方法,具体如下:
炼钢及连铸工艺:铁水脱硫后目标硫0.0033%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间20分钟,精炼总时间45分钟;真空处理保持时 间23分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+5℃,拉速稳定。
轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1220℃;粗轧温度1080℃,高温低速大压下轧制,第一道道次压下量33mm;精轧开轧温度870℃,后三道累积压下率33%;轧后层流冷却,终冷温度660℃,冷却速率8℃/s;随后空冷。
热处理工艺:进行淬火处理,淬火温度为910℃,升温速率为1.4min/mm,保温时间为25min;进行回火处理,回火温度650℃,升温速率为2.0min/mm,保温时间为120min,得到板形优良(不平度2mm/m)80mm厚低成本FH420海工钢板。
图1是实施例1调质处理后得到FH420钢板在金相显微镜下典型的组织形貌图;图2是实施例2调质处理后得到FH420钢板在金相显微镜下典型的组织形貌图;图3是实施例3调质处理后得到FH420钢板在金相显微镜下典型的组织形貌图;图4是实施例4调质处理后得到FH420钢板在金相显微镜下典型的组织形貌图。由图1-4可以看出80mm厚低成本FH420海工钢板组织为细小均匀的低碳贝氏体组织+少量的铁素体组织,从而保证了钢板性能优良。
调质后,实施例1~4的板厚1/4处和板厚1/2处的横向拉伸性能和横向冷弯性能如表2,横向冲击性能和Z向性能如表3。
表2
Figure PCTCN2019100137-appb-000002
Figure PCTCN2019100137-appb-000003
表3
Figure PCTCN2019100137-appb-000004
Figure PCTCN2019100137-appb-000005
由表2和表3可以看出,实施例1~4力学性能满足各大船级社标准中对420级别F级超高强海工钢的性能要求,屈服强度≥422MPa,抗拉强度≥533MPa,延伸率≥22%,Z向截面收缩率≥53%,满足80mm厚FH420海工钢板的要求。具有合金元素成本低廉,生产工艺稳定,对宽厚板轧机及相应的热处理设备要求较小的特点。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (10)

  1. 一种80mm厚低成本FH420海工钢板,其特征在于:其重量百分比成分为:C:0.07~0.11%,Si:0.15~0.40%,Mn:1.30~1.60%,P≤0.013%,S≤0.003%,Nb:0.010~0.030%,V:0.030~0.050%,Ti:0.005~0.020%,Cr:0.10~0.20%,Al:0.0250~0.050%,O≤18ppm,N≤38ppm,H≤2.5ppm,余量为Fe及不可避免的杂质。
  2. 如权利要求1所述的80mm厚低成本FH420海工钢板,其特征在于:其重量百分比成分为:C:0.07%,Si:0.40%,Mn:1.60%,P:0.013%,S:0.0025%,Nb:0.030%,V:0.040%,Ti:0.020%,Cr:0.20%,Al:0.050%,O:0.0018%,N:0.0037%,H:0.00025%,余量为Fe及不可避免的杂质。
  3. 如权利要求1所述的80mm厚低成本FH420海工钢板,其特征在于:其重量百分比成分为:C:0.09%,Si:0.25%,Mn:1.50%,P:0.012%,S:0.0015%,Nb:0.025%,V:0.050%,Ti:0.015%,Cr:0.18%,Al:0.040%,O:0.0011%,N:0.0038%,H:0.00017%,余量为Fe及不可避免的杂质。
  4. 如权利要求1所述的80mm厚低成本FH420海工钢板,其特征在于:其重量百分比成分为:C:0.10%,Si:0.30%,Mn:1.40%,P:0.011%,S:0.0030%,Nb:0.020%,V:0.035%,Ti:0.010%,Cr:0.15%,Al:0.025%,O:0.0010%,N:0.0030%,H:0.00022%,余量为Fe及不可避免的杂质。
  5. 如权利要求1所述的80mm厚低成本FH420海工钢板,其特征在于:其重量百分比成分为:C:0.11%,Si:0.15%,Mn:1.30%,P:0.008%,S:0.0010%,Nb:0.010%,V:0.030%, Ti:0.005%,Cr:0.10%,Al:0.030%,O:0.0016%,N:0.0033%,H:0.00013%,余量为Fe及不可避免的杂质。
  6. 如权利要求1-5中任一权利要求所述的80mm厚低成本FH420海工钢板的制造方法,其特征在于:包括以下步骤:
    炼钢及连铸工艺:铁水脱硫后目标硫≤0.004%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间15~20分钟,精炼总时间确保35~45分钟;真空处理保持时间20~23分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+(5-15)℃,拉速稳定;
    轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1150℃~1220℃;粗轧温度980~1080℃;精轧开轧温度840~870℃;精轧后三道累计压下率大于30%;轧后层流冷却,终冷温度600~660℃,冷却速率5~8℃/s;随后空冷;
    热处理工艺:淬火处理,淬火温度为890~910℃,升温速率为1.4min/mm,保温时间为0~25min;回火处理,回火温度550~650℃,升温速率为2.0min/mm,保温时间为80~120min,得到80mm厚低成本FH420海工钢。
  7. 如权利要求6所述的80mm厚低成本FH420海工钢板的制造方法,其特征在于:包括以下步骤:
    炼钢及连铸工艺:铁水脱硫后目标硫0.004%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间15分钟,精炼总时间35分钟;真空处理保持时间 20分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+15℃,拉速稳定;
    轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1150℃;粗轧温度980℃,高温低速大压下轧制,第一道道次压下量40mm;精轧开轧温度840℃,后三道累积压下率30%;轧后层流冷却,终冷温度600℃,冷却速率5℃/s;随后空冷;
    热处理工艺:进行淬火处理,淬火温度为890℃,升温速率为1.4min/mm,保温时间为0min;进行回火处理,回火温度550℃,升温速率为2.0min/mm,保温时间为80min,得到的80mm厚低成本FH420海工钢板。
  8. 如权利要求6所述的80mm厚低成本FH420海工钢板的制造方法,其特征在于:包括以下步骤:
    炼钢及连铸工艺:铁水脱硫后目标硫0.0035%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间18分钟,精炼总时间40分钟;真空处理保持时间21分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+10℃,拉速稳定;
    轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1180℃;粗轧温度1000℃,高温低速大压下轧制,第一道道次压下量38mm;精轧开轧温度850℃,后三道累积压下率31%;轧后层流冷却,终冷温度620℃,冷却速率8℃/s;随后空冷;
    热处理工艺:进行淬火处理,淬火温度为900℃,升温速率为1.4min/mm,保温时间为10min;进行回火处理,回火温度580℃,升温速率为2.0min/mm,保温时间为90min,得到 80mm厚低成本FH420海工钢板。
  9. 如权利要求6所述的80mm厚低成本FH420海工钢板的制造方法,其特征在于:包括以下步骤:
    炼钢及连铸工艺:铁水脱硫后目标硫0.003%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间19分钟,精炼总时间42分钟;真空处理保持时间22分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+8℃,拉速稳定;
    轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1200℃;粗轧温度1050℃,高温低速大压下轧制,第一道道次压下量35mm;精轧开轧温度860℃,后三道累积压下率32%;轧后层流冷却,终冷温度640℃,冷却速率7℃/s;随后空冷;
    热处理工艺:进行淬火处理,淬火温度为905℃,升温速率为1.4min/mm,保温时间为15min;进行回火处理,回火温度620℃,升温速率为2.0min/mm,保温时间为100min,得到80mm厚低成本FH420海工钢板。
  10. 如权利要求6所述的80mm厚低成本FH420海工钢板的制造方法,其特征在于:包括以下步骤:
    炼钢及连铸工艺:铁水脱硫后目标硫0.0033%;转炉冶炼采用高吹低拉法脱磷,转炉出钢当渣;精炼采用白渣操作,白渣保持时间20分钟,精炼总时间45分钟;真空处理保持时间23分钟;真空处理后进行无缝钙线处理;连铸中包目标温度为液相线温度+5℃,拉速稳定;
    轧制工艺:采用控轧控冷工艺,为两阶段轧制;轧前连铸坯加热温度1220℃;粗轧温度 1080℃,高温低速大压下轧制,第一道道次压下量33mm;精轧开轧温度870℃,后三道累积压下率33%;轧后层流冷却,终冷温度660℃,冷却速率8℃/s;随后空冷;
    热处理工艺:进行淬火处理,淬火温度为910℃,升温速率为1.4min/mm,保温时间为25min;进行回火处理,回火温度650℃,升温速率为2.0min/mm,保温时间为120min,得到80mm厚低成本FH420海工钢板。
PCT/CN2019/100137 2018-08-24 2019-08-12 一种80mm厚低成本FH420海工钢板及其制造方法 WO2020038244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11202101376WA SG11202101376WA (en) 2018-08-24 2019-08-12 80-mm-Thick Low-Cost FH420 Marine Engineering Steel Plate and Manufacturing Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810971033.9 2018-08-24
CN201810971033.9A CN109097683B (zh) 2018-08-24 2018-08-24 一种80mm厚低成本FH420海工钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2020038244A1 true WO2020038244A1 (zh) 2020-02-27

Family

ID=64851240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100137 WO2020038244A1 (zh) 2018-08-24 2019-08-12 一种80mm厚低成本FH420海工钢板及其制造方法

Country Status (3)

Country Link
CN (1) CN109097683B (zh)
SG (1) SG11202101376WA (zh)
WO (1) WO2020038244A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507818A (zh) * 2022-01-26 2022-05-17 日钢营口中板有限公司 一种厚规格正火海洋工程结构钢及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097683B (zh) * 2018-08-24 2020-08-18 南京钢铁股份有限公司 一种80mm厚低成本FH420海工钢板及其制造方法
CN111926236B (zh) * 2020-08-12 2021-11-23 宝武集团鄂城钢铁有限公司 一种小压缩比条件下采用连铸坯生产z向性能优异的焊接结构用钢板的方法
CN117604389B (zh) * 2023-12-09 2024-04-30 河北普阳钢铁有限公司 一种易焊接的420MPa级低合金高强钢生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046096A (ja) * 2005-08-09 2007-02-22 Nippon Steel Corp 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
KR20100061599A (ko) * 2008-11-29 2010-06-08 주식회사 포스코 강산 염수용액 내에서 전면부식 및 국부부식 저항성이 우수한 고강도 선박용 강재 및 그 제조방법
CN102321847A (zh) * 2011-10-20 2012-01-18 南京钢铁股份有限公司 一种海洋平台用调质结构厚钢板及其生产方法
JP2012148502A (ja) * 2011-01-20 2012-08-09 Jfe Steel Corp 耐海水孔食性に優れたステンレスクラッド鋼
CN102732789A (zh) * 2012-06-05 2012-10-17 舞阳钢铁有限责任公司 一种高性能海洋平台用钢及其生产方法
CN102828114A (zh) * 2012-08-28 2012-12-19 南京钢铁股份有限公司 一种应变时效性能优良的海洋工程用钢板及其制造方法
CN106834923A (zh) * 2016-12-29 2017-06-13 山东钢铁股份有限公司 一种大厚度海洋结构用钢板及其生产方法
CN109097683A (zh) * 2018-08-24 2018-12-28 南京钢铁股份有限公司 一种80mm厚低成本FH420海工钢板及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833611B2 (ja) * 2005-08-17 2011-12-07 新日本製鐵株式会社 溶接性及びガス切断性に優れた溶接構造用490MPa級厚手高張力耐火鋼及びその製造方法
JP5217413B2 (ja) * 2007-12-21 2013-06-19 Jfeスチール株式会社 溶接熱影響部靭性に優れた高強度鋼板及びその製造方法
CN102392192B (zh) * 2011-11-01 2012-12-05 南京钢铁股份有限公司 一种80mm厚低压缩比海洋工程用钢板及其制造方法
CN102851623A (zh) * 2012-09-19 2013-01-02 南京钢铁股份有限公司 一种80mm厚海洋工程用F36-Z35钢板及其制造方法
CN104674117B (zh) * 2015-03-19 2017-05-31 山东钢铁股份有限公司 一种420MPa级海洋工程用钢板及其制造方法
CN104911485B (zh) * 2015-07-06 2017-07-21 武汉钢铁(集团)公司 冲击断口纤维率高的高强度桥梁用结构钢及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046096A (ja) * 2005-08-09 2007-02-22 Nippon Steel Corp 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
KR20100061599A (ko) * 2008-11-29 2010-06-08 주식회사 포스코 강산 염수용액 내에서 전면부식 및 국부부식 저항성이 우수한 고강도 선박용 강재 및 그 제조방법
JP2012148502A (ja) * 2011-01-20 2012-08-09 Jfe Steel Corp 耐海水孔食性に優れたステンレスクラッド鋼
CN102321847A (zh) * 2011-10-20 2012-01-18 南京钢铁股份有限公司 一种海洋平台用调质结构厚钢板及其生产方法
CN102732789A (zh) * 2012-06-05 2012-10-17 舞阳钢铁有限责任公司 一种高性能海洋平台用钢及其生产方法
CN102828114A (zh) * 2012-08-28 2012-12-19 南京钢铁股份有限公司 一种应变时效性能优良的海洋工程用钢板及其制造方法
CN106834923A (zh) * 2016-12-29 2017-06-13 山东钢铁股份有限公司 一种大厚度海洋结构用钢板及其生产方法
CN109097683A (zh) * 2018-08-24 2018-12-28 南京钢铁股份有限公司 一种80mm厚低成本FH420海工钢板及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507818A (zh) * 2022-01-26 2022-05-17 日钢营口中板有限公司 一种厚规格正火海洋工程结构钢及其制造方法

Also Published As

Publication number Publication date
SG11202101376WA (en) 2021-03-30
CN109097683A (zh) 2018-12-28
CN109097683B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN105506494B (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
WO2020038244A1 (zh) 一种80mm厚低成本FH420海工钢板及其制造方法
CN109439857B (zh) 一种fo460海工厚板及其制造方法
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN113106338B (zh) 一种超高强度高塑性热冲压成形钢的制备方法
EP3225710A1 (en) Low-alloy high-strength high-tenacity steel panel and method for manufacturing same
CN104404384B (zh) 一种550MPa级低压缩比高韧性海洋工程平台用钢板及生产方法
CN107475620B (zh) 低温压力容器用调质型A537Cl2钢板及其生产方法
CN111748741B (zh) 一种厚规格管线钢及其低压缩比生产工艺
CN102876999B (zh) 一种调质型低温压力容器用钢板及其制备方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN104694822A (zh) 一种屈服强度700MPa级高强度热轧钢板及其制造方法
CN112981239B (zh) 一种调质低碳合金钢及其制造方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
WO2017219549A1 (zh) 一种250mm厚的S355NL低碳高韧性低合金钢板及其制造方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
WO2022152158A1 (zh) 一种高强韧易切削非调质圆钢及其制造方法
CN107130172B (zh) 布氏硬度400hbw级整体硬化型高韧性易焊接特厚耐磨钢板及其制造方法
CN105112782A (zh) 一种热轧态船用低温铁素体lt-fh40钢板及其生产方法
CN104451379A (zh) 一种高强度低合金铌钒结构钢及其制备方法
CN112226687B (zh) 一种低轧制压缩比齿条钢板及其制造方法
CA3217486A1 (en) Steel for high-temperature carburized gear shaft and manufacturing method for steel
CN104073731B (zh) 一种采用直接淬火工艺的超高强船板的生产方法
KR20230059825A (ko) 저원가 고성능 q500 교량강 및 생산 방법
CN114000056A (zh) 一种屈服强度960MPa级低屈强比海工用钢板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852153

Country of ref document: EP

Kind code of ref document: A1