WO2020038231A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2020038231A1
WO2020038231A1 PCT/CN2019/099472 CN2019099472W WO2020038231A1 WO 2020038231 A1 WO2020038231 A1 WO 2020038231A1 CN 2019099472 W CN2019099472 W CN 2019099472W WO 2020038231 A1 WO2020038231 A1 WO 2020038231A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber array
optical fiber
substrate
waveguide grating
Prior art date
Application number
PCT/CN2019/099472
Other languages
English (en)
French (fr)
Inventor
傅钦豪
谢一帆
付孟博
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2020038231A1 publication Critical patent/WO2020038231A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12085Integrated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating

Definitions

  • the present application relates to the field of optical fiber communication technologies, and in particular, to an optical module.
  • an optical module is an indispensable communication module.
  • a demultiplexer (DEMUX) is an integral part of the optical module. Its function is to decompose a mixed optical signal into multiple optical wavelength signals. The optical path of the optical module is demultiplexed.
  • a DEMUX based on a Planar Lightwave Circuit Splitter (PLC) chip is composed of an optical fiber, a glass coupler, an array waveguide grating chip, and a glass plate for protecting the array waveguide grating chip.
  • PLC Planar Lightwave Circuit Splitter
  • the light emitting hole pitch (pitch pitch) of the array waveguide grating chip in the low-speed optical module is generally small, and the high-speed optical module, especially the optical module with a transmission rate of 400 Gb / s, requires a change in the pitch pitch of the array waveguide grating chip.
  • the array waveguide grating chip with a large pitch will also increase the overall size and price, and will increase the overall size of the DEMUX, which is not conducive to miniaturization packaging, resulting in the overall size of the optical module is larger, which is not conducive to miniaturization packaging .
  • the present application provides an optical module that uses an arrayed waveguide grating chip with a small light exit hole, which increases the pitch of the outgoing light and reduces the cost of the optical module.
  • optical module including:
  • the first end of the substrate is provided with a plurality of first grooves
  • the second end of the substrate is provided with a plurality of second grooves
  • the distance between two adjacent second grooves is greater than that between adjacent two first grooves.
  • the light input hole of the array waveguide grating chip is coupled with a coupler, the coupler is connected with an optical fiber, and the optical fiber is connected with an adapter.
  • the optical module provided in this application includes a substrate, an optical fiber array, an arrayed waveguide grating chip, a coupler, an optical fiber, and an adapter, wherein a first end of the substrate is provided with a plurality of first slots, and a second end of the substrate is provided with a plurality of first slots.
  • the second slot, the distance between two adjacent second slots is greater than the distance between two adjacent first slots, and the optical fibers at the first end of the fiber array are respectively placed in the plurality of first slots.
  • the fibers at the second end of the fiber array are respectively placed in a plurality of second slots, and the fiber spacing at the first end of the fiber array is smaller than the fiber spacing at the second end of the fiber array;
  • the optical signal is transmitted to the coupler through the optical fiber.
  • the coupler couples the optical signal to the array waveguide grating chip, and then the array waveguide grating chip transmits the optical signal to the fiber array.
  • the first end of the optical fiber array is emitted from the second end of the fiber array;
  • the fiber spacing at the first end of the fiber array is smaller than the fiber spacing at the second end of the fiber array, the light pitch emitted from the second end of the fiber array is greater than the light pitch when entering the first end of the fiber array.
  • the first slot on the substrate is used The arrangement of the body and the second slot body and the optical fiber array changes the optical distance of the optical signal transmitted to the optical fiber array from small to large, not only avoiding the use of a large-sized array waveguide grating chip, but also meeting the high-speed transmission to the optical fiber array spacing. Not too small a requirement.
  • FIG. 1 is a schematic structural diagram of an optical module provided by this application.
  • FIG. 2 is a schematic structural diagram of an embodiment of an optical module provided by this application.
  • FIG. 3 is a structural top view of a component consisting of a substrate, an optical fiber array, and a cover plate in an optical module provided in the present application;
  • FIG. 5 is a schematic diagram of a coupling angle between a coupler and an arrayed waveguide grating chip and a coupling angle between a component and the arrayed waveguide grating chip in an optical module provided in the present application;
  • FIG. 6 is a schematic diagram of placing an optical fiber array on a substrate
  • FIG. 7 is a schematic diagram of a cover plate in an optical module provided by the present application.
  • FIG. 8 is a schematic diagram of a substrate and another end of an optical fiber array in an optical module provided by the present application.
  • the pitch of the array waveguide grating chip in the low-speed optical module is generally small, where the pitch is the wavelength of the multi-channel light when the demultiplexer decomposes the optical signal into multiple optical wavelength signals.
  • the pitch between two pairs of signals is also referred to as the optical pitch in the following, and the high-speed optical module requires a larger pitch of the arrayed waveguide grating chip, but the overall size of the arrayed waveguide grating chip with a larger pitch also becomes larger and It is expensive and at the same time makes the overall size of the demultiplexer larger, which is not conducive to miniaturization.
  • this application provides an optical module, which includes a substrate, an optical fiber array, an arrayed waveguide grating chip, a coupler, and an optical fiber.
  • the adapter, the components consisting of the substrate, the optical fiber array and the cover plate can increase the pitch of the pitch, thereby avoiding the use of larger arrayed waveguide grating chips and reducing the overall size and cost of the optical module.
  • FIG. 1 is a schematic structural diagram of an optical module provided by the present application.
  • an optical module provided in this application includes an upper case 120, a lower case 110, and a circuit board 200.
  • a light emitting module 202 and a light receiving module 204 are disposed on the circuit board.
  • the upper case 120 and the lower case 110 are combined to form a cavity that encapsulates the circuit board 200, the light emitting module 202 and the light receiving module 204.
  • the light transmitting module 202 includes a plurality of laser chips, and the light signals of multiple wavelengths emitted by the plurality of laser chips are combined into one light, and then transmitted out of the optical module through the transmitting optical fiber 201, and then enter the external communication optical fiber.
  • the light emitting module 202 is disposed on one end edge of the circuit board 200 in the length direction, and the other end edge of the circuit board 200 is provided with a gold finger 208 for electrical communication with the outside of the optical module.
  • the circuit board 200 is further provided with a receiving end component 205.
  • the structure of the receiving end component 205 will be described in detail below with reference to the drawings.
  • FIG. 2 is a schematic structural diagram of an embodiment of an optical module provided in this application.
  • the optical module in this embodiment may include: a substrate, an optical fiber array, an arrayed waveguide grating chip 4, a coupler 5, an optical fiber 6, and The adapter 7, in which the substrate and the optical fiber array constitute the component 1 shown in FIG. 2, optionally, further includes a cover plate for fixing the optical fiber array.
  • FIG. 3 is a structural plan view of a component composed of a substrate and an optical fiber array in an optical module provided in the present application. As shown in FIG. 3, the component 1 of this embodiment includes a substrate 11, an optical fiber array 12, and a fixed optical fiber array 12. The cover plate 10 is optional.
  • the optical fiber array includes N optical fibers, where N is a positive integer.
  • the number of optical fiber arrays shown in FIG. 3 is 4.
  • the value of N depends on the array waveguide grating chip 4 to decompose the optical signals into
  • N is 4.
  • FIG. 4 is a left side view of the substrate.
  • the first end of the substrate 11 is provided with a plurality of first grooves 111
  • the second end of the substrate 11 is provided with a plurality of second grooves 112.
  • the distance between two adjacent second slot bodies 112 is greater than the distance between two adjacent first slot bodies 111.
  • the optical fibers at the first end of the optical fiber array 12 are respectively placed in the plurality of first slot bodies 111.
  • optical fibers at the second end of the optical fiber array 12 are respectively placed in a plurality of second groove bodies 112, and the light exit holes of the arrayed waveguide grating chip 4 are docked with the first end of the optical fiber array 12, so that the light in the arrayed waveguide grating chip 4 passes in. Fiber array 12.
  • the light-entry hole of the array waveguide grating chip 4 is coupled with a coupler 5.
  • the coupler 5 is connected to an optical fiber 6, and the optical fiber 6 is connected to an adapter 7.
  • the number N of optical fibers included in the optical fiber array 12 depends on the number of light emitting holes of the array waveguide grating chip 4. If the number of optical fibers included in the optical fiber array 12 is N, the first end of the substrate 11 At least N first groove bodies 111 are provided, and at least N second groove bodies 112 are provided at the second end of the substrate 11.
  • an interval between two adjacent second groove bodies 112 is equal, and an interval between two adjacent first groove bodies 111 is equal.
  • N is taken as an example.
  • the first groove body 111 and the second groove body 112 are V-shaped grooves or semi-circular grooves.
  • the first groove body 111 and the second groove body 112 are V-shaped grooves.
  • the optical module further includes a circuit board and a light receiving chip located on the surface of the circuit board.
  • One end of the optical fiber array located at the second slot 112 is a slope, and the slope is used to reflect light to the light receiving chip.
  • the pitch of the optical fibers in the fiber array corresponds to the pitch between the photosensitive surfaces of the light receiving chip array.
  • the light receiving chips are arranged in an array. Compared with the low speed receiving chip, the volume of the high speed receiving chip is increased, and the distance between two photosensitive surfaces between adjacent chips is increased, which makes the array applied to the low speed receiving chip.
  • the output light pitch of a waveguide grating chip cannot be applied to a high-speed receiving chip.
  • the angle of the inclined surface may be 40 ° to 45 °.
  • the corresponding end of the substrate 11 is also an inclined surface with an angle of 40 ° to 45 °.
  • two inclined surfaces The angle is the same.
  • FIG. 8 is a schematic diagram of a substrate and the other end of an optical fiber array in an optical module provided in the present application. As shown in FIG. 8, the optical fiber array is located at one end of the second slot 112 with a 42 ° bevel, and the corresponding end of the substrate 11 is also The 42 ° angle bevel makes it easy to grind the angle of the fiber array.
  • the arrayed waveguide grating chip 4 has a first inclined end surface
  • the inclination angle of the first inclined end surface may be 82 °, 84 °, 96 °, or 98 °
  • the coupler 5 has a second inclined end surface.
  • the inclination angle can be 82 °, 84 °, 96 °, or 98 °, and the first inclined end surface and the second inclined end surface are adhered to achieve the coupling between the arrayed waveguide grating chip 4 and the coupler 5.
  • FIG. 5 is a schematic diagram of a coupling angle between a coupler and an arrayed waveguide grating chip and a coupling angle between a component and the arrayed waveguide grating chip in an optical module provided in the present application.
  • the first inclined end face and the first The angle of the two inclined end faces is 82 °.
  • the coupling angle between the component 1 and the arrayed waveguide grating chip is also 82 °, 84 °, 96 °, or 98 °.
  • a pitch between two adjacent light emitting holes of the arrayed waveguide grating chip 4 is the same as a pitch between two adjacent first slot bodies 111.
  • the distance between two adjacent light emitting holes of the arrayed waveguide grating chip 4 is smaller than the distance between two adjacent second slot bodies 112.
  • FIG. 6 is a schematic diagram of placing an optical fiber array on a substrate.
  • FIG. 6 only shows the placement positions of two optical fibers in the optical fiber array.
  • the optical fiber array when the optical fiber array is placed on the substrate, the optical fiber array
  • the optical fibers at the first end are respectively placed in the plurality of first slots 111, and the optical fibers at the second end of the fiber array are respectively placed in the plurality of second slots 112.
  • the middle portion of the substrate 11 is lower than both ends of the substrate 11, and the optical fiber array 12 is distributed on the substrate 11.
  • FIG. 7 is a schematic diagram of a cover plate in an optical module provided in the present application.
  • the cover plate 10 includes a first cover plate 13 and a second cover plate 14, and the first cover plate 13 is disposed on the N fiber arrays 12 and is located on the first end of the substrate 11, and the second cover plate 13 is disposed on the N fiber arrays 12 and is located on the second end of the substrate 11. That is, two cover plates are provided at both ends of the substrate 11: a first cover plate 13 and a second cover plate 14.
  • the substrate, the first cover plate 13 and the second cover plate 14 are made of glass or silicon.
  • the working principle of the optical module in this embodiment is: after receiving the optical signal through the adapter 7, the optical signal is transmitted to the coupler 5 through the optical fiber 6, and the optical signal is coupled to the array waveguide grating chip 4 by the coupler 5, and then the array
  • the waveguide grating chip 4 decomposes the optical signal into N-channel pitch signals with a first pitch and transmits them to the component 1 composed of the substrate and the optical fiber array.
  • the component 1 converts the N-channel pitch signals with a first pitch into
  • the optical pitch of the N-channel pitch is a second pitch optical signal
  • the second pitch is a pitch between two adjacent second slot bodies
  • the second pitch is larger than the first pitch, thereby increasing the pitch of the array waveguide grating chip. Therefore, the array waveguide grating chip with a smaller pitch can still be used in the optical module, thereby reducing the overall size and cost of the optical module.
  • the demultiplexer provided in this embodiment includes a substrate, an optical fiber array, an arrayed waveguide grating chip, a coupler, an optical fiber, and an adapter.
  • a first end of the substrate is provided with a plurality of first slots, and a second end of the substrate is provided. There are a plurality of second slots, and the distance between two adjacent second slots is larger than the distance between two adjacent first slots.
  • the optical fibers at the first end of the fiber array are respectively placed in the plurality of first slots. In the tank, the optical fibers at the second end of the fiber array are respectively placed in a plurality of second tanks.
  • the optical signal is transmitted to the coupler through the optical fiber, and the optical signal is transmitted by the coupler Coupled to the arrayed waveguide grating chip, and then the arrayed waveguide grating chip decomposes the optical signal into N-channel pitch optical signals with a first pitch and transmits the optical signal to the first end of the fiber array, which is emitted from the second end of the fiber array.
  • the fiber spacing at the first end of the array is smaller than the fiber spacing at the second end of the fiber array, so the light spacing exiting from the second end of the fiber array is greater than the light spacing when entering the first end of the fiber array.
  • the first groove and the second groove on the substrate and the arrangement of the optical fiber array are used to change the optical distance of the optical signals transmitted to the optical fiber array from small to large, which avoids the use of large-sized arrayed waveguide grating chips. It also satisfies the requirement of high-speed transmission for the fiber array spacing not too small.
  • the optical module of this embodiment may include: a substrate 11, an optical fiber array 12, a cover plate 10 for fixing the optical fiber array 12, an arrayed waveguide grating chip 4, a coupler 5, an optical fiber 6, and an adapter 7 .
  • the component 1 composed of the substrate, the optical fiber array, and the cover plate is coupled to the arrayed waveguide grating chip 4 at 82 ° or 98 °, and the arrayed waveguide grating chip 4 has a first angle of 82 °, 84 °, 96 °, or 98 °.
  • the coupler 5 has a second inclined end face with an angle of 82 °, 84 °, 96 °, or 98 °, and the first inclined end face is bonded to the second inclined end face to realize the light entrance hole of the array waveguide grating chip 4
  • the coupler 5 is connected to the optical fiber 6, and the optical fiber 6 is connected to the adapter 7.
  • the light exit hole of the arrayed waveguide grating chip 4 is docked with the first end of the optical fiber array 12, so that the light in the arrayed waveguide grating chip 4 is transmitted into the optical fiber array 12.
  • the first end of the substrate 11 is provided with four first grooves 111, and the four first grooves 111 have an equal distance of 250um.
  • the second end of the substrate 11 is provided with four second grooves 111.
  • the groove body 112 and the four second groove bodies 112 have an equal distance of 750um.
  • the first groove body 111 and the second groove body 112 are V-shaped grooves.
  • the optical fibers at the first end of the optical fiber array 12 are respectively placed in a plurality of first slots 111, and the optical fibers at the second end of the optical fiber array 12 are respectively placed in a plurality of second slots 112 in.
  • the middle portion of the substrate 11 is lower than both ends of the substrate 11, and the four optical fibers in the optical fiber array 12 are evenly distributed on the substrate 11.
  • the cover plate 10 includes a first cover plate 13 and a second cover plate 14.
  • the first cover plate 13 is disposed on the four optical fibers of the optical fiber array 12 and is located at the first end of the substrate 11.
  • the second cover plate 13 is disposed on the optical fiber array 12. 4 optical fibers are located on the second end of the substrate 11.
  • one end of the optical fiber array 12 in the second groove body 112 is an inclined surface with an angle of 42 °
  • the other end of the substrate 11 is an inclined surface with an angle of 42 °, which is convenient for grinding the angle of the optical fiber array 12.
  • the working principle of the demultiplexer of this embodiment is: after receiving the optical signal through the adapter 7, the optical signal is transmitted to the coupler 5 through the optical fiber 6, and the optical signal is coupled to the array waveguide grating chip 4 by the coupler 5, and then The array waveguide grating chip 4 decomposes the optical signal into four optical signals with a pitch of 250um and transmits them to the component 1 consisting of the substrate, the fiber array and the cover plate. Finally, the optical signal of the four pitches of 250um is converted by the component 1 For a 4-channel optical signal with a pitch of 750um, the pitch is three times the original, so the pitch can be increased. Therefore, an arrayed waveguide grating chip with a smaller pitch can still be used, thereby reducing the overall size and cost of the optical module. .
  • the demultiplexer provided in this embodiment includes a substrate, an optical fiber array, an arrayed waveguide grating chip, a coupler, an optical fiber, and an adapter.
  • the first end of the substrate is provided with a plurality of first slots
  • the second end of the substrate is provided with a plurality of first slots.
  • Two second slots the distance between two adjacent second slots is greater than the distance between two adjacent first slots, and the optical fibers at the first end of the fiber array are respectively placed in the plurality of first slots
  • the optical fibers at the second end of the optical fiber array are respectively placed in a plurality of second slots.
  • the optical signal is transmitted to the coupler through the optical fiber, and the optical signal is coupled to the coupler by the coupler.
  • the optical signal is decomposed by the arrayed waveguide grating chip into N channels with a pitch of 250um and transmitted to the component composed of the substrate and the optical fiber array.
  • the distance between the bodies is 750um, and the distance between two adjacent first slots is 250um, so this component can convert the optical signal with a pitch of 250um in N channels into an optical signal with a pitch of 750um in N channels Therefore, the pitch of the array waveguide grating chip can be increased.
  • the pitch of the optical signal transmitted to the fiber array is changed from small to large by setting the first slot and the second slot on the substrate and the fiber array. It not only avoids the use of large-sized arrayed waveguide grating chips, but also meets the requirements of high-speed transmission on the fiber array spacing not too small.
  • a person of ordinary skill in the art may understand that all or part of the steps of implementing the foregoing method embodiments may be implemented by a program instructing related hardware.
  • the aforementioned program may be stored in a computer-readable storage medium.
  • the steps including the foregoing method embodiments are executed; and the foregoing storage medium includes: various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disc.

Abstract

一种光模块。该光模块包括:基板(11)、光纤阵列(12)、阵列波导光栅芯片(4)、耦合器(5)、光纤(6)和适配器(7),其中,基板(11)的第一端开设有复数个第一槽体(111),基板(11)的第二端开设有复数个第二槽体(112),相邻的两个第二槽体(112)之间的间距大于相邻的两个第一槽体(111)之间的间距,光纤阵列(12)第一端的光纤(6)分别置于复数个第一槽体(111)中,光纤阵列(12)第二端的光纤(6)分别置于复数个第二槽体(112)中,阵列波导光栅芯片(4)的出光孔与光纤阵列(12)的第一端对接,以使阵列波导光栅芯片(4)中的光传入光纤阵列(12)中,阵列波导光栅芯片(4)的进光孔与耦合器(5)相耦合,耦合器(5)与光纤(6)相连接,光纤(6)与适配器(7)相连接。从而可增大阵列波导光栅芯片(4)的pitch间距。

Description

光模块
本申请要求于2018年08月21日提交中国专利局、申请号为201810955760.6、申请名称为“光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
在光纤通信领域,光模块是不可或缺的一个通讯模块,解复用器(demultiplexe,DEMUX)是光模块的一个组成部分,其作用是将混合光信号分解为多路光波长信号,用于光模块的光路解复用。
一种基于平面光波导分路器(Planar Lightwave Circuit Splitter,PLC)芯片(chip)的DEMUX由光纤、玻璃耦合器、阵列波导光栅芯片和用于保护阵列波导光栅芯片的玻璃板组成。随着光模块技术的高速发展,光模块传输速率越来越高,逐渐从低速到100Gb/s、200Gb/s以及400Gb/s发展。
DEMUX中,低速光模块中的阵列波导光栅芯片的出光孔间距(pitch间距)一般较小,而高速光模块尤其是传输速率为400Gb/s的光模块,对阵列波导光栅芯片的pitch间距要求变大,而pitch间距大的阵列波导光栅芯片整体尺寸也会变大并且价格昂贵,同时会使得DEMUX整体尺寸变大,不利于小型化封装,导致光模块的整体尺寸变大,不利于小型化封装。
发明内容
本申请提供一种光模块,使用出光孔较小的阵列波导光栅芯片,增加了出射光的间距,减小光模块的成本。
本申请提供一种光模块,包括:
基板、光纤阵列、阵列波导光栅芯片、耦合器、光纤和适配器;
其中,基板的第一端开设有复数个第一槽体,基板的第二端开设有复 数个第二槽体,相邻的两个第二槽体之间的间距大于相邻的两个第一槽体之间的间距,光纤阵列第一端的光纤分别置于复数个第一槽体中,光纤阵列第二端的光纤分别置于复数个第二槽体中,阵列波导光栅芯片的出光孔与光纤阵列的一端对接,以使阵列波导光栅芯片中的光传入光纤阵列中;
阵列波导光栅芯片的进光孔与耦合器相耦合,耦合器与光纤相连接,光纤与适配器相连接。
本申请提供的光模块,包括基板、光纤阵列、阵列波导光栅芯片、耦合器、光纤和适配器,其中,基板的第一端开设有复数个第一槽体,基板的第二端开设有复数个第二槽体,相邻的两个第二槽体之间的间距大于相邻的两个第一槽体之间的间距,光纤阵列第一端的光纤分别置于复数个第一槽体中,光纤阵列第二端的光纤分别置于复数个第二槽体中,光纤阵列第一端的光纤间距小于光纤阵列第二端的光纤间距;
在光信号传输过程中,适配器接收到光信号之后,光信号通过光纤传输到耦合器,由耦合器将光信号耦合到阵列波导光栅芯片里,接着由阵列波导光栅芯片将光信号传输至光纤阵列的第一端,从光纤阵列的第二端射出;
由于光纤阵列第一端的光纤间距小于光纤阵列第二端的光纤间距,所以从光纤阵列第二端出射的光间距大于进入光纤阵列第一端时的光间距,本申请中通过基板上第一槽体和第二槽体以及光纤阵列的设置,将传输至光纤阵列的光信号的光间距由小变大,既避免了使用大尺寸的阵列波导光栅芯片,又满足了高速率传输对光纤阵列间距不能太小的要求。
附图说明
为了清楚地说明本申请的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的光模块结构示意图;
图2为本申请提供的一种光模块实施例的结构示意图;
图3为本申请提供的一种光模块中基板、光纤阵列和盖板组成的部件 的结构俯视图;
图4为基板的左视图;
图5为本申请提供的一种光模块中耦合器与阵列波导光栅芯片之间的耦合角度以及部件与阵列波导光栅芯片之间的耦合角度示意图;
图6为光纤阵列在基板上的放置示意图;
图7为本申请提供的一种光模块中盖板的示意图;
图8为本申请提供的一种光模块中基板和光纤阵列另一端的示意图。
附图标记说明:
部件-1;
阵列波导光栅芯片-4;
耦合器-5;
光纤-6;
适配器-7;
盖板-10;
基板-11;
光纤阵列-12;
第一盖板-13;
第二盖板-14;
第一槽体-111;
第二槽体-112;
上壳体-120;
下壳体-110;
电路板-200;
光纤-201;
光发射模块-202;
光接收模块-204;
接收端组件-205;
金手指-208。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在解复用器中,低速光模块中的阵列波导光栅芯片的pitch间距一般较小,其中,pitch间距是指解复用器将光信号分解为多路光波长信号时,该多路光波长信号两两之间的间距,下文中pitch间距也称为光间距,而高速光模块对阵列波导光栅芯片的pitch间距要求变大,但是pitch间距大的阵列波导光栅芯片整体尺寸也会变大并且价格昂贵,同时会使得解复用器整体尺寸变大,不利于小型化封装,为解决这一问题,本申请提供一种光模块,包括基板、光纤阵列、阵列波导光栅芯片、耦合器、光纤和适配器,其中的基板、光纤阵列和盖板组成的部件可增大pitch间距,从而可避免较大阵列波导光栅芯片的使用,减小光模块的整体尺寸和成本。下面结合附图详细说明本申请的技术方案。
图1为本申请提供的光模块结构示意图。如图1所示,本申请提供的一种光模块包括上壳体120、下壳体110及电路板200,在电路板上设置有光发射模块202及光接收模块204。上壳体120及下壳体110结合形成封装电路板200、光发射模块202及光接收模块204的腔体。
光发射模块202中包含有多个激光芯片,多个激光芯片发射的多个波长的光信号合并成一路光后,通过发射光纤201传出光模块,进而进入外部通信光纤中。具体地,光发射模块202设置在电路板200长度方向的一端边缘,在电路板200长度方向的另一端边缘设置有用于与光模块外部进行电通信的金手指208。
电路板200上还设置有接收端组件205,下面结合附图详细说明接收端组件205的结构。
图2为本申请提供的一种光模块实施例的结构示意图,如图2所示,本实施例的光模块可以包括:基板、光纤阵列、阵列波导光栅芯片4、耦合器5、光纤6和适配器7,其中基板和光纤阵列组成图2中所示的部件1, 可选的,还包括用于固定光纤阵列的盖板。图3为本申请提供的一种光模块中基板和光纤阵列组成的部件的结构俯视图,如图3所示,本实施例的部件1包括基板11、光纤阵列12和用于固定光纤阵列12的盖板10,可选的,光纤阵列包含N个光纤,N为正整数,图3所示中光纤阵列的个数为4个,N的取值取决于阵列波导光栅芯片4将光信号分解为几路光波长信号,本实施例中例如分解为4路光波长信号,则N为4。
本实施例中,图4为基板的左视图,如图4所示,基板11的第一端开设有复数个第一槽体111,基板11的第二端开设有复数个第二槽体112,相邻的两个第二槽体112之间的间距大于相邻的两个第一槽体111之间的间距,光纤阵列12第一端的光纤分别置于复数个第一槽体111中,光纤阵列12第二端的光纤分别置于复数个第二槽体112中,阵列波导光栅芯片4的出光孔与光纤阵列12的第一端对接,以使阵列波导光栅芯片4中的光传入光纤阵列12中。
阵列波导光栅芯片4的进光孔与耦合器5相耦合,耦合器5与光纤6相连接,光纤6与适配器7相连接。
需要说明的是,光纤阵列12所包含的光纤的个数N取决于阵列波导光栅芯片4的出光孔的个数,若光纤阵列12所包含的光纤的个数为N,基板11的第一端开设有至少N个第一槽体111,基板11的第二端开设有至少N个第二槽体112。
可选的,相邻的两个第二槽体112之间的间距相等,相邻的两个第一槽体111之间的间距相等。
图4所示实施例中N以4为例。可选的,第一槽体111和第二槽体112为V型槽或半圆形槽,图4所示实施例中第一槽体111和第二槽体112为V型槽。
本实施例中,可选的,光模块还包括电路板及位于电路板表面的光接收芯片,光纤阵列位于第二槽体112的一端为斜面,斜面用于将光反射到光接收芯片。光纤阵列中光纤的间距与光接收芯片阵列光敏面之间的间距对应。
具体地,光接收芯片成阵列排布,相对于低速接收芯片而言,高速接收芯片的体积增大,相邻芯片间的两个光敏面之间的距离增加,使得应用于低速接收芯片的阵列波导光栅芯片的出射光间距,无法应用于高速接收 芯片。
具体地,上述斜面的角度可以为40°~45°的,相应地,为了研磨光纤阵列的角度,基板11的对应端也为角度为40°~45°的斜面,可选的,两个斜面的角度相同。图8为本申请提供的一种光模块中基板和光纤阵列另一端的示意图,如图8所示光纤阵列位于第二槽体112的一端为42°角的斜面,基板11的对应端也为42°角的斜面,便于研磨光纤阵列的角度。
可选的,阵列波导光栅芯片4具有第一倾斜端面,第一倾斜端面的倾斜角度可以为82°、84°、96°或98°,耦合器5具有第二倾斜端面,第二倾斜端面的倾斜角度可以为82°、84°、96°或98°,第一倾斜端面与第二倾斜端面贴合,以实现阵列波导光栅芯片4与耦合器5的耦合。图5为本申请提供的一种光模块中耦合器与阵列波导光栅芯片之间的耦合角度以及部件与阵列波导光栅芯片之间的耦合角度示意图,如图5所示,第一倾斜端面和第二倾斜端面的角度为82°。本实施例中,部件1与阵列波导光栅芯片之间的耦合角度也为82°、84°、96°或98°。
可选的,本实施例中,阵列波导光栅芯片4相邻两个出光孔的间距与相邻的两个第一槽体111之间的间距相同。阵列波导光栅芯片4相邻两个出光孔的间距是小于相邻的两个第二槽体112之间的间距的。
图6为光纤阵列在基板上的放置示意图,图6中仅示出了光纤阵列中2个光纤的放置位置,如图6所示,本实施例中,光纤阵列在基板上放置时,光纤阵列第一端的光纤分别置于复数个第一槽体111中,光纤阵列第二端的光纤分别置于复数个第二槽体112中。基板11的中间部位低于基板11的两端,光纤阵列12分布在基板11上。
本实施例中,进一步地,图7为本申请提供的一种光模块中盖板的示意图,请参照图7,盖板10包括第一盖板13和第二盖板14,第一盖板13设置在N个光纤阵列12上面且位于基板11的第一端,第二盖板13设置在N个光纤阵列12上面且位于基板11的第二端。即就是在基板11的两端设置两个盖板:第一盖板13和第二盖板14。
可选的,本实施例中基板、第一盖板13及第二盖板14的材质为玻璃或硅。
本实施例的光模块的工作原理为:通过适配器7接收到光信号之后,光信号通过光纤6传输到耦合器5,由耦合器5将光信号耦合到阵列波导 光栅芯片4里,接着由阵列波导光栅芯片4将光信号分解成N路pitch间距为第一间距的光信号传输到由基板和光纤阵列组成的部件1,最后由部件1将N路pitch间距为第一间距的光信号转换为N路pitch间距为第二间距的光信号,第二间距为相邻的两个第二槽体之间的间距,第二间距大于第一间距,从而可增大阵列波导光栅芯片的pitch间距,因此光模块中依然可使用pitch间距较小的阵列波导光栅芯片,进而减小光模块的整体尺寸和成本。
本实施例提供的解复用器,包括基板、光纤阵列、阵列波导光栅芯片、耦合器、光纤和适配器,其中,基板的第一端开设有复数个第一槽体,基板的第二端开设有复数个第二槽体,相邻的两个第二槽体之间的间距大于相邻的两个第一槽体之间的间距,光纤阵列第一端的光纤分别置于复数个第一槽体中,光纤阵列第二端的光纤分别置于复数个第二槽体中,在光信号传输过程中,适配器接收到光信号之后,光信号通过光纤传输到耦合器,由耦合器将光信号耦合到阵列波导光栅芯片里,接着由阵列波导光栅芯片将光信号分解成N路pitch间距为第一间距的光信号传输至光纤阵列的第一端,从光纤阵列的第二端射出,由于光纤阵列第一端的光纤间距小于光纤阵列第二端的光纤间距,所以从光纤阵列第二端出射的光间距大于进入光纤阵列第一端时的光间距,总之,本实施例中通过基板上第一槽体和第二槽体以及光纤阵列的设置,将传输至光纤阵列的光信号的光间距由小变大,既避免了使用大尺寸的阵列波导光栅芯片,又满足了高速率传输对光纤阵列间距不能太小的要求。
下面采用一个具体的实施例,以pitch间距从250um增大到750um为例,N等于4为例来详细说明本申请提供的解复用器。
请参照图1-图8,本实施例的光模块可以包括:基板11、光纤阵列12、用于固定光纤阵列12的盖板10、阵列波导光栅芯片4、耦合器5、光纤6和适配器7。其中,由基板、光纤阵列和盖板组成的部件1与阵列波导光栅芯片4以82°或98°相耦合,阵列波导光栅芯片4具有角度为82°、84°、96°或98°的第一倾斜端面,耦合器5具有角度为82°、84°、96°或98°的第二倾斜端面,第一倾斜端面与第二倾斜端面贴合,以实现阵列波导光栅芯片4的进光孔与耦合器5的耦合,耦合器5与光纤6相连接,光纤6与适配器7相连接。阵列波导光栅芯片4的出光孔与光纤阵列12 的第一端对接,以使阵列波导光栅芯片4中的光传入光纤阵列12中。
本实施例中,基板11的第一端开设有4个第一槽体111,4个第一槽体111之间有相等的250um长的间距,基板11的第二端开设有4个第二槽体112,4个第二槽体112之间有相等的750um长的间距,本实施例中第一槽体111和第二槽体112为V型槽。
本实施例中,光纤阵列在基板上放置时,光纤阵列12第一端的光纤分别置于复数个第一槽体111中,光纤阵列12第二端的光纤分别置于复数个第二槽体112中。基板11的中间部位低于基板11的两端,光纤阵列12中的4个光纤均匀分布在基板11上。盖板10包括第一盖板13和第二盖板14,第一盖板13设置在光纤阵列12的4个光纤上面且位于基板11的第一端,第二盖板13设置在光纤阵列12的4个光纤上面且位于基板11的第二端。
本实施例中,光纤阵列12位于第二槽体112的一端为角度为42°的斜面,基板11的另一端为角度为42°角的斜面,便于研磨光纤阵列12的角度。
本实施例的解复用器的工作原理为:通过适配器7接收到光信号之后,光信号通过光纤6传输到耦合器5,由耦合器5将光信号耦合到阵列波导光栅芯片4里,接着由阵列波导光栅芯片4将光信号分解成4路pitch间距为250um的光信号传输到由基板、光纤阵列和盖板组成的部件1,最后由部件1将4路pitch间距为250um的光信号转换为4路pitch间距为750um的光信号,pitch间距是原来的3倍,从而可增大pitch间距,因此依然可使用pitch间距较小的阵列波导光栅芯片,进而减小光模块的整体尺寸和成本。
本实施例提供的解复用器,包括基板、光纤阵列、阵列波导光栅芯片、耦合器、光纤和适配器,基板的第一端开设有复数个第一槽体,基板的第二端开设有复数个第二槽体,相邻的两个第二槽体之间的间距大于相邻的两个第一槽体之间的间距,光纤阵列第一端的光纤分别置于复数个第一槽体中,光纤阵列第二端的光纤分别置于复数个第二槽体中,在光信号传输过程中,适配器接收到光信号之后,光信号通过光纤传输到耦合器,由耦合器将光信号耦合到阵列波导光栅芯片里,接着由阵列波导光栅芯片将光信号分解成N路pitch间距为250um的光信号传输到由基板和光纤阵列组 成的部件,由于基板上开设的相邻的两个第二槽体之间的间距为750um,相邻的两个第一槽体之间的间距为250um,从而该部件可将N路pitch间距为250um的光信号转换为N路pitch间距为750um的光信号,从而可增大阵列波导光栅芯片的pitch间距,本申请中通过基板上第一槽体和第二槽体以及光纤阵列的设置,将传输至光纤阵列的光信号的pitch间距由小变大,既避免了使用大尺寸的阵列波导光栅芯片,又满足了高速率传输对光纤阵列间距不能太小的要求。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (9)

  1. 一种光模块,包括:
    基板、光纤阵列、阵列波导光栅芯片、耦合器、光纤和适配器;
    其中,所述基板的第一端开设有复数个第一槽体,所述基板的第二端开设有复数个第二槽体,相邻的两个第二槽体之间的间距大于相邻的两个第一槽体之间的间距,所述光纤阵列第一端的光纤分别置于所述复数个第一槽体中,所述光纤阵列第二端的光纤分别置于所述复数个第二槽体中,所述阵列波导光栅芯片的出光孔与所述光纤阵列的第一端对接,以使所述阵列波导光栅芯片中的光传入所述光纤阵列中;
    所述阵列波导光栅芯片的进光孔与所述耦合器相耦合,所述耦合器与所述光纤相连接,所述光纤与所述适配器相连接。
  2. 根据权利要求1所述的光模块,还包括电路板及位于所述电路板表面的光接收芯片,所述光纤阵列位于所述第二槽体的一端为斜面,所述斜面用于将光反射到所述光接收芯片。
  3. 根据权利要求1或2所述的光模块,所述阵列波导光栅芯片具有第一倾斜端面,所述耦合器具有第二倾斜端面,所述第一倾斜端面与所述第二倾斜端面贴合,以实现所述阵列波导光栅芯片与所述耦合器的耦合。
  4. 根据权利要求1或2所述的光模块,所述阵列波导光栅芯片相邻两个出光孔的间距与两个相邻的第一槽体之间的间距相同。
  5. 根据权利要求4所述的光模块,所述第一槽体和所述第二槽体为V型槽或半圆形槽。
  6. 根据权利要求1或2所述的光模块,还包括第一盖板和第二盖板,所述第一盖板设置在所述光纤阵列上面且位于所述基板的第一端,所述第二盖板设置在所述光纤阵列上面且位于所述基板的第二端。
  7. 根据权利要求1所述的光模块,两个相邻的第二槽体之间的间距相等,两个相邻的第一槽体之间的间距相等。
  8. 根据权利要求1所述的光模块,所述基板的中间部位低于所述基板的两端,所述光纤阵列分布在所述基板上。
  9. 根据权利要求6所述的光模块,所述基板、所述第一盖板及所述第二盖板的材质为玻璃或硅。
PCT/CN2019/099472 2018-08-21 2019-08-06 光模块 WO2020038231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810955760.6A CN109116469B (zh) 2018-08-21 2018-08-21 光模块
CN201810955760.6 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020038231A1 true WO2020038231A1 (zh) 2020-02-27

Family

ID=64853480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099472 WO2020038231A1 (zh) 2018-08-21 2019-08-06 光模块

Country Status (2)

Country Link
CN (1) CN109116469B (zh)
WO (1) WO2020038231A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116469B (zh) * 2018-08-21 2020-07-28 青岛海信宽带多媒体技术有限公司 光模块
CN111367023A (zh) * 2020-03-24 2020-07-03 中航光电科技股份有限公司 光纤背板及光纤背板尾纤并带方法、并带工装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003205A1 (en) * 2005-06-30 2007-01-04 Costas Saravanos Optical fiber splitter module and fiber optic array therefor
CN201830261U (zh) * 2010-10-09 2011-05-11 深圳新飞通光电子技术有限公司 具有多通道监控功能的awg
CN107707301A (zh) * 2017-11-16 2018-02-16 北京遥测技术研究所 一种阵列波导光栅输出光信号集成测量装置
CN108121040A (zh) * 2017-12-18 2018-06-05 江苏奥雷光电有限公司 一种光模块
CN109116469A (zh) * 2018-08-21 2019-01-01 青岛海信宽带多媒体技术有限公司 光模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246022B (zh) * 2012-02-09 2016-06-01 博创科技股份有限公司 可插拔式平面光波导器件及其制作方法
CN204855854U (zh) * 2015-07-10 2015-12-09 南京华脉科技股份有限公司 一种多路集成阵列式光滤波器
CN105278056B (zh) * 2015-11-06 2017-05-03 武汉电信器件有限公司 一种波分复用/解复用光组件
CN105866904A (zh) * 2016-05-23 2016-08-17 宁波环球广电科技有限公司 多通道并行的光接收器件
CN106405755B (zh) * 2016-11-30 2018-11-06 武汉光迅科技股份有限公司 一种高速多通道的收发器件
CN206863275U (zh) * 2017-09-22 2018-01-09 武汉驿路通科技股份有限公司 一种阵列波导光栅波分复用器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003205A1 (en) * 2005-06-30 2007-01-04 Costas Saravanos Optical fiber splitter module and fiber optic array therefor
CN201830261U (zh) * 2010-10-09 2011-05-11 深圳新飞通光电子技术有限公司 具有多通道监控功能的awg
CN107707301A (zh) * 2017-11-16 2018-02-16 北京遥测技术研究所 一种阵列波导光栅输出光信号集成测量装置
CN108121040A (zh) * 2017-12-18 2018-06-05 江苏奥雷光电有限公司 一种光模块
CN109116469A (zh) * 2018-08-21 2019-01-01 青岛海信宽带多媒体技术有限公司 光模块

Also Published As

Publication number Publication date
CN109116469B (zh) 2020-07-28
CN109116469A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
US9322987B2 (en) Multicore fiber coupler between multicore fibers and optical waveguides
US9470846B2 (en) Wavelength division multiplexing with multi-core fiber
WO2019184100A1 (zh) 一种光模块
JP2019184941A (ja) 光サブアセンブリ及びその製造方法並びに光モジュール
WO2020038231A1 (zh) 光模块
WO2022246917A1 (zh) 一种基于cob工艺的平面多通道单纤双向器件
JP7081356B2 (ja) 光ファイバガイド部品と光接続構造
WO2020007197A1 (zh) 一种用于将电转换为光的光学器件
WO2020080196A1 (ja) 光接続構造
JP2008020721A (ja) 並列光送受信装置
La Porta et al. Scalable optical coupling between silicon photonics waveguides and polymer waveguides
US10948659B2 (en) Integrated optoelectronic chip and lens array
JP2005003855A (ja) 双方向光通信モジュールおよび光導波路素子および双方向光通信モジュール装置
KR101961812B1 (ko) Ftth 오버레이를 위한 광모듈
CN206224021U (zh) 一种plc光背板
CN115185040B (zh) 一种硅光子芯片被动对准光学封装结构和光开关设备
CN215340424U (zh) 一种光接收集成组件
US20230314740A1 (en) Optical semiconductor module and manufacturing method of the same
CN214310973U (zh) 一种二氧化硅基光波分解复用器芯片
JP3920201B2 (ja) サブキャリアおよびそれを用いた光モジュール
US20220163723A1 (en) Planar Fiber Shuffle
JP2009139861A (ja) アレイ型光学素子
KR20220141719A (ko) 광섬유 광결합기
Lee et al. Dual-layer WDM routing for wafer-scale packaging of photonically-interconnected computing systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851861

Country of ref document: EP

Kind code of ref document: A1