WO2020007197A1 - 一种用于将电转换为光的光学器件 - Google Patents

一种用于将电转换为光的光学器件 Download PDF

Info

Publication number
WO2020007197A1
WO2020007197A1 PCT/CN2019/092037 CN2019092037W WO2020007197A1 WO 2020007197 A1 WO2020007197 A1 WO 2020007197A1 CN 2019092037 W CN2019092037 W CN 2019092037W WO 2020007197 A1 WO2020007197 A1 WO 2020007197A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
optical
lens
waveguide grating
connector
Prior art date
Application number
PCT/CN2019/092037
Other languages
English (en)
French (fr)
Inventor
黄美金
万亮
杨博华
周硕
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2020007197A1 publication Critical patent/WO2020007197A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide

Definitions

  • the invention relates to the field of optical fiber communication, and in particular to an optical device for converting electricity into light.
  • Wavelength division multiplexing technology is an effective method to increase the transmission information capacity and make full use of optical fiber resources.
  • Wavelength division multiplexing refers to the coupling of multiple wavelengths into the same waveguide or fiber for transmission
  • demultiplexing refers to the technology of separating light in a waveguide or fiber by wavelength.
  • array waveguide gratings and multi-core fiber arrays with MINI LC connectors are usually used for optical path coupling, and then the MINI LC connector and TO array are docked to achieve optical path coupling. In practice, this method has the following problems:
  • the multi-core fiber arrays used in this solution are generally small in size. Therefore, when the multi-core fiber array is ground and positioned, the cover of the multi-core fiber array is easily fractured by the positioning screws. The qualification rate is lower when mass production.
  • the fibers of the multi-core fiber array need to be bent. In actual operation, the optical fiber is easily broken, and the stress at the bending point of the optical fiber is large. When the temperature cycle is performed, the multi-core optical fiber array may be broken.
  • the MINI LC end of the multi-core fiber array in the existing array waveguide fiber coupling process requires an external optical fiber jumper for optical power transmission. This method is likely to cause damage to the MINI LC end face.
  • an object of the present invention is to provide an optical device for converting electricity into light, so as to solve at least one of the above technical problems.
  • an optical device for converting electricity into light which includes:
  • Photoelectric conversion component which includes a laser array for receiving electrical signals and converting them into optical signals
  • An optical transmission component including a connector, an arrayed waveguide grating, and a lens array that are sequentially connected and optically coupled; a light input end of the lens array is far from the arrayed waveguide grating and is close to the laser array, and the light of the lens array An input end is coupled to the laser array optical path; the lens array is used to receive the optical signal and transmit it to the arrayed waveguide grating.
  • the lens array includes a substrate and a plurality of lens spherical surfaces provided on the same side of the substrate and used to receive the optical signals, and the lens spherical surfaces are arranged at equal intervals.
  • the focal points of the spherical surfaces of the lenses are located in the same horizontal plane.
  • the laser array includes a plurality of lasers, and the lasers and the lens have the same number of spherical surfaces and are arranged one-to-one correspondingly.
  • the connector includes:
  • a sleeve which is inserted into the connector housing
  • a ferrule tailstock one end of which is inserted into the connector housing and is in contact with the sleeve;
  • a ferrule one end of the ferrule passes through the ferrule tailstock and is inserted into the sleeve, and the other end is connected to the array waveguide grating.
  • an end face of the ferrule located in the sleeve is a first plane substantially perpendicular to a length extension direction of the ferrule, and an end face of the ferrule connected to the array waveguide grating A second plane having an angle ⁇ with the first plane.
  • the value range of ⁇ is 0 ° ⁇ 12 °.
  • the connector includes:
  • a bending-resistant optical fiber one end of which is connected to the connector housing
  • a single-core optical fiber array two ends of the single-core optical fiber array are respectively connected to the other end of the bending-resistant optical fiber and the array waveguide grating.
  • an end surface of an end of the single-core optical fiber array connected to the bending-resistant optical fiber is a third plane substantially perpendicular to a length extension direction of the single-core optical fiber array, and the single-core optical fiber array and the The end surface of one end of the arrayed waveguide grating is a fourth plane having an angle ⁇ with the third plane.
  • the value range of ⁇ is 0 ° ⁇ 12 °.
  • the present invention uses a lens array instead of a multi-core fiber array, a MINI LC connector, and a single lens. Since there is no multi-core fiber array in the present invention, there is no multi-core fiber array cover during polishing and positioning of the multi-core fiber array. The problem of low yields during large-scale production caused by fracturing of plates by positioning screws.
  • the present invention uses a lens array instead of a multi-core fiber array and a MINI LC connector and a single lens. Since there is no multi-core fiber array in the present invention, there is no problem of fiber breakage of the multi-core fiber array.
  • the present invention uses a lens array instead of a multi-core fiber array and a MINI LC connector and a single lens. Since there is no MINI LC connector in the present invention, it is not necessary to consider the accuracy and four-way problems of the MINI LC connector, reducing Technical requirements.
  • the present invention uses a lens array instead of a multi-core fiber array, a MINI LC connector, and a single lens. Since there is no MINI LC connector in the present invention, there is no problem of end surface damage of the MINI LC connector.
  • the present invention uses a lens array instead of a multi-core optical fiber array and a MINI LC connector and a single lens. Since there is no multi-core optical fiber array in the present invention, it is not necessary to consider whether the length of the optical fiber is uniform and reduces the difficulty of the production process.
  • FIG. 1 is a schematic structural diagram of an optical device for converting electricity into light according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a cross section taken along A-A in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a photoelectric conversion module according to an embodiment of the present invention.
  • Figure 4 is a top view of Figure 3;
  • FIG. 5 is a schematic structural diagram of a lens array according to an embodiment of the present invention.
  • Figure 6 is a top view of Figure 5;
  • FIG. 7 is a schematic structural diagram of an optical transmission component according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another optical device for converting electricity to light according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another optical transmission component according to an embodiment of the present invention.
  • FIG. 10 is a perspective view of FIG. 8.
  • Optical transmission components 10. Connectors; 100. Connector housings; 101. Sleeve; 102. Ferrule tailstock; 103. Ferrules; 104. First UV glue; 105. Bend-resistant optical fibers; 106. Single-core optical fiber array; 107. Second UV glue; 11. Array waveguide grating; 12. Lens array; 120. Substrate; 121; Lens spherical surface; 2. Photoelectric conversion module; 20. Laser array; 21. PCB board; 22. Flexible board; 3. Packaging box; 30. Silicone mat; 31. Third UV glue; 32. Fourth UV glue; 33. Fifth UV glue.
  • an embodiment of the present invention provides an optical device for converting electricity into light, which includes a photoelectric conversion component 2 and a light transmission component 1.
  • the conversion module 2 includes a laser array 20, a PCB board 21, and a flexible board 22.
  • the laser array 20 and the flexible board 22 are respectively fixed at two ends of the PCB board 21.
  • the PCB board is used to supply power to the laser array 20, and the flexible board 22 is used to communicate with peripheral circuits.
  • the laser array 20 is used for receiving electrical signals and converting them into optical signals.
  • the optical transmission module 1 includes a connector 10, an arrayed waveguide grating 11 and a lens array 12 that are sequentially connected and optically coupled.
  • the optical input end of the array 12 is far from the array waveguide grating 11 and is close to the laser array 20.
  • the optical input end of the lens array 12 is optically coupled to the laser array 20; the lens array 12 is used to receive optical signals and transmit them to the array waveguide grating 11.
  • the lens array 12 includes a substrate 120 and a plurality of lens spheres 121 provided on the same side of the substrate 120 and used to receive optical signals.
  • the lens spheres 121 are arranged at equal intervals, and the focal points of the lens spheres 121 are located at the same. Within the horizontal plane.
  • the laser array 20 includes a plurality of lasers, and the lasers and the lens spheres 121 have the same number and are arranged one-to-one correspondingly.
  • an optical path alignment platform is used to align and couple the optical paths in the connector 10, the arrayed waveguide grating 11, and the lens array 12.
  • the coupling distance between the array waveguide grating 11 and the connector 10 is about 0 to 5 ⁇ m.
  • the gap can be filled with the first UV glue 104 with a matching refractive index, such as a UV glue with a refractive index of about 1.49 to 1.51, or without any Form of fill.
  • the coupling distance between the arrayed waveguide grating 11 and the lens array 12 is about 0 to 5 ⁇ m.
  • the gap is filled with a third UV glue 31 having a matching refractive index, such as a UV glue having a refractive index of about 1.49 to 1.51.
  • the laser array 20, the PCB board 21, and the flexible board 22 are assembled by fixing the laser array 20 and its peripheral components on the PCB board 21, and soldering the flexible board 22 to the flexible board 22. On the PCB 21.
  • the present invention is mainly directed to an active optical component using an arrayed waveguide grating type wavelength division multiplexing technology.
  • an optical waveguide is coupled between the arrayed waveguide grating 11 and the laser array 20 to realize mutual conversion of optical signals and electrical signals.
  • the array waveguide grating 11 described in the present invention has N channels, which respectively transmit light waves with wavelengths of ⁇ 1 ,..., ⁇ n .
  • the light waves of the wavelengths are converged by the corresponding lens spherical surface 121 into the corresponding channels for transmission, and then the arrayed waveguide grating 11 combines light of N wavelengths into one light wave.
  • the lens array 12 receives the light emitted by the laser on the lens spherical surface 121 side, and the light waves are collected on the light condensing side after passing through the lens array 12 and used for coupling with the array waveguide grating 11.
  • the center distance between the lens spherical surfaces 121 of the lens array 12 may be 250 ⁇ m, 500 ⁇ m, 750 ⁇ m, or the like.
  • the present invention uses a lens array instead of a multi-core optical fiber array and a MINI LC connector. Since there is no multi-core optical fiber array in the present invention, there is no multi-core optical fiber array. The cover of the multi-core optical fiber array is crushed by the positioning screw during grinding and positioning. The problem of low qualified rate during large-scale production, there is no problem of fiber breakage of multi-core fiber arrays, there is no need to consider the accuracy and four-way problem of MINI LC connector, reducing the technical requirements, and no end surface damage of MINI LC connector Problem, there is no need to consider whether the length of the optical fiber is uniform, which reduces the difficulty of the production process.
  • an embodiment of the present invention provides an optical device for converting electricity into light.
  • the connector 10 includes a connector housing 100, a sleeve 101, and a ferrule.
  • the base 102 is inserted into the sleeve 101 in parallel, and the other end is connected to the array waveguide grating 11.
  • the ferrule 103 and the array waveguide grating 11 are connected through a first UV glue 104. Both the ferrule 103 and the sleeve 101 are made of ceramic.
  • the assembly steps of the connector 10 provided in this embodiment are as follows: the ferrule 103 is pressed into the ferrule tailstock 102 using a clamp; the two ends of the ferrule 103 are polished using a grinding jig, and one end is ground obliquely according to design requirements Angle, one end is plane polished; insert the ferrule 103 with the plane polished end into the sleeve 101 until the sleeve 101 contacts the ferrule tailstock 102; press the sleeve 101, the ferrule tailstock 102, and the ferrule 103 as a whole ⁇ ⁇ 100 ⁇ The housing 100.
  • an embodiment of the present invention provides an optical device for converting electricity into light.
  • This embodiment differs from Embodiment 2 in that the end face of the ferrule 103 located in the sleeve 101 is the same as the ferrule.
  • 103 length extension direction is substantially perpendicular to the first plane
  • the end surface of the ferrule 103 connected to the array waveguide grating 11 is a second plane with an angle ⁇ between the first plane, and the size of ⁇ is polished according to specific requirements, of course
  • the value range of ⁇ is preferably 0 ° ⁇ 12 °.
  • the end of the arrayed waveguide grating 11 connected to the ferrule 103 is a plane matching the second plane.
  • the connector 10 includes a connector housing 100, Bend optical fiber 105 and single-core optical fiber array 106; one end of the bend-resistant optical fiber 105 is connected to the connector housing 100, and both ends of the single-core optical fiber array 106 are respectively connected to the other end of the bend-resistant optical fiber 105 and the array waveguide grating 11.
  • the connector housing 100, the bending-resistant optical fiber 105, and the single-core optical fiber array 106 are glued together.
  • a single UV fiber 107 is passed between the single-core optical fiber array 106 and the array waveguide grating 11. connection.
  • an embodiment of the present invention provides an optical device for converting electricity into light.
  • the end face of one end of the single-core optical fiber array 106 and the bending-resistant optical fiber 105 is A third plane substantially perpendicular to the length extension direction of the single-core optical fiber array 106, and an end surface of the single-core optical fiber array 106 connected to the array waveguide grating 11 is a fourth plane having an angle ⁇ with the third plane.
  • the size of ⁇ is ground according to specific requirements. Of course, the range of ⁇ is preferably 0 ° ⁇ 12 °.
  • an end of the arrayed waveguide grating 11 connected to the single-core optical fiber array 106 is a plane matching the fourth plane.
  • an embodiment of the present invention provides an optical device for converting electricity into light.
  • a packaging box 3 is also provided, and the optical transmission component 1 is located in the packaging box 3
  • the connector 10 and the packaging box 3 are laser welded so that the ferrule 103 is at least partially located in the packaging box 3 and the array waveguide grating 11 and the lens array 12 are located in the packaging box 3; a silicone pad 30 is provided inside the packaging box 3,
  • the array waveguide grating 11 is carried on a silicone pad 30;
  • the photoelectric conversion module 2 is located on the other side of the packaging box 3;
  • the laser array 20 and the PCB board 21 are located inside the packaging box 3;
  • the flexible board 22 is at least partially outside the packaging box 3; the PCB board 21
  • the fourth UV glue 32 is fixed on the packaging box 3.
  • the gap between the flexible board 22 and the packaging box 3 is sealed with a fifth UV glue 33, and the flexible board 22 is fixed.
  • an embodiment of the present invention provides an optical device for converting electricity into light.
  • a packaging box 3 is also provided, and the optical transmission component 1 is located in the packaging box 3
  • the connector 10 and the packaging box 3 are fixed by UV glue or directly controlled by size, so that the single-core optical fiber array 106 is at least partially located in the packaging box 3 and the array waveguide grating 11 and the lens array 12 are located in the packaging box 3;
  • the inside of the package box 3 is provided with a silicone pad 30, and the array waveguide grating 11 is carried on the silicon pad 30;
  • the photoelectric conversion module 2 is located on the other side of the package box 3, the laser array 20 and the PCB board 21 are located in the package box 3, and the flexible board 22 is at least Partly outside the packaging box 3, the PCB board 21 is fixed to the packaging box 3 by a fourth UV glue 32, and referring to FIG. 8, a gap between the flexible board 22 and the packaging box 3 is sealed with a fifth UV glue 33,

Abstract

一种用于将电转换为光的光学器件,包括光电转换组件(2)和光传输组件(1),光电转换组件(2)包括激光器阵列(20),激光器阵列(20)用于接收电信号并将其转换为光信号;光传输组件(1)包括顺次相连且光路耦合的连接器(10)、阵列波导光栅(11)和透镜阵列(12);透镜阵列(12)的光输入端远离阵列波导光栅(11)并靠近激光器阵列(20),透镜阵列(12)的光输入端与激光器阵列(20)光路耦合;透镜阵列(12)用于接收光信号并将其传输至阵列波导光栅(11)。采用透镜阵列(12)替代多芯光纤阵列和MINI LC连接器,由于没有多芯光纤阵列,不存在多芯光纤阵列盖板裂、多芯光纤阵列断纤、MINI LC连接器的精度和四向性要求高、MINI LC连接器端面损伤的问题以及不用考虑光纤长度是否统一的问题,降低了生产工艺难度。

Description

一种用于将电转换为光的光学器件 技术领域
本发明涉及光纤通信领域,具体涉及一种用于将电转换为光的光学器件。
背景技术
波分复用技术是一种提升传输信息容量、充分利用光纤资源的有效手段。波分复用是指将多个波长耦合到同一根波导或光纤中传输,解复用是指将一根波导或光纤中光按波长分开的技术。目前往往采用阵列波导光栅与带MINI LC连接器的多芯光纤阵列先进行光路耦合,然后将MINI LC连接器与TO阵列进行对接,以此实现光路的耦合。这种方法在实际应用中,存在如下问题:
(1)该方案中所用多芯光纤阵列,为了满足波分模块设计要求,一般结构尺寸均比较小,因此,多芯光纤阵列在研磨定位时,多芯光纤阵列盖板易被定位螺丝压裂,大规模生产时合格率较低。
(2)该方案中所用多芯光纤阵列安装到波分复用模块上时,多芯光纤阵列的光纤需要弯曲。实际操作时,光纤容易折断,且光纤弯曲点应力较大,在进行温度循环时,可能会造成多芯光纤阵列断纤。
(3)该方案对多芯光纤阵列上的MINI LC连接器的精度、四向性等技术要求较高。
(4)现有阵列波导光纤耦合工艺中多芯光纤阵列的MINI LC端需外接一段光纤跳线用作光功率传输,此种方式容易造成MINI LC端面损伤。
(5)由于光模块设计方案的差异,多芯光线阵列上所用光纤长度无法统一,从而导致生产工艺复杂。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种用于将电转换为光的光学器件,以解决上述技术问题中的至少一个。
为达到以上目的,本发明采取的技术方案是:一种用于将电转换为光的光学器件,其包括:
光电转换组件,其包括激光器阵列,所述激光器阵列用于接收电信号并将其转换为光信号;
光传输组件,其包括顺次相连且光路耦合的连接器、阵列波导光栅和透镜阵列;所述透镜阵列的光输入端远离所述阵列波导光栅并靠近所述激光器阵列,所述透镜阵列的光输入端与所述激光器阵列光路耦合;所述透镜阵列用于接收所述光信号并将其传输至所述阵列波导光栅。
在上述方案的基础上,所述透镜阵列包括基板和设于所述基板同一侧并用于接收所述光信号的多个透镜球面,各所述透镜球面等间距布置。
在上述方案的基础上,各所述透镜球面的焦点位于同一水平面内。
在上述方案的基础上,所述激光器阵列包括多个激光器,所述激光器与所述透镜球面数量相同且一一对应布置。
在上述方案的基础上,所述连接器包括:
连接器外壳;
套筒,所述套筒插接于所述连接器外壳内;
插芯尾座,所述插芯尾座一端插接于所述连接器外壳内并与所述 套筒接触;
插芯,所述插芯一端穿过所述插芯尾座并插接于所述套筒内,且另一端与所述阵列波导光栅连接。
在上述方案的基础上,所述插芯位于所述套筒内的一端端面为与所述插芯长度延伸方向大致垂直的第一平面,所述插芯与所述阵列波导光栅相连的一端端面为与所述第一平面之间夹角为θ的第二平面。
在上述方案的基础上,θ的取值范围为0°≤θ≤12°。
在上述方案的基础上,所述连接器包括:
连接器外壳;
抗弯光纤,所述抗弯光纤一端与所述连接器外壳相连;
单芯光纤阵列,所述单芯光纤阵列两端分别与所述抗弯光纤另一端和所述阵列波导光栅连接。
在上述方案的基础上,所述单芯光纤阵列与所述抗弯光纤相连的一端端面为与所述单芯光纤阵列长度延伸方向大致垂直的第三平面,所述单芯光纤阵列与所述阵列波导光栅相连的一端端面为与所述第三平面之间夹角为β的第四平面。
在上述方案的基础上,β的取值范围为0°≤β≤12°。
与现有技术相比,本发明的优点在于:
(1)本发明采用透镜阵列替代多芯光纤阵列和MINI LC连接器以及单颗透镜,由于本发明中没有多芯光纤阵列,因此,不存在多芯光纤阵列在研磨定位时多芯光纤阵列盖板被定位螺丝压裂所造成的大规模生产时低合格率的问题。
(2)本发明采用透镜阵列替代多芯光纤阵列和MINI LC连接器以及单颗透镜,由于本发明中没有多芯光纤阵列,因此,不存在多芯光纤阵列断纤的问题。
(3)本发明采用透镜阵列替代多芯光纤阵列和MINI LC连接器以及单颗透镜,由于本发明中没有MINI LC连接器,因此,不用考虑MINI LC连接器的精度、四向性问题,降低了技术要求。
(4)本发明采用透镜阵列替代多芯光纤阵列和MINI LC连接器以及单颗透镜,由于本发明中没有MINI LC连接器,因此,不存在MINI LC连接器端面损伤问题。
(5)本发明采用透镜阵列替代多芯光纤阵列和MINI LC连接器以及单颗透镜,由于本发明中没有多芯光纤阵列,因此,不用考虑光纤长度是否统一的问题,降低了生产工艺难度。
附图说明
图1为本发明实施例提供的一种用于将电转换为光的光学器件的结构示意图;
图2为图1中A-A向截面的结构示意图;
图3为本发明实施例提供的光电转换组件结构示意图;
图4为图3的俯视图;
图5为本发明实施例提供的透镜阵列结构示意图;
图6为图5的俯视图;
图7为本发明实施例提供的光传输组件结构示意图;
图8为本发明实施例提供的另一种用于将电转换为光的光学器件的结构示意图;
图9为本发明实施例提供的另一种光传输组件结构示意图;
图10为图8的立体图。
图中:1、光传输组件;10、连接器;100、连接器外壳;101、套筒;102、插芯尾座;103、插芯;104、第一UV胶;105、抗弯光纤;106、单芯光纤阵列;107、第二UV胶;11、阵列波导光栅;12、 透镜阵列;120、基板;121、透镜球面;2、光电转换组件,20、激光器阵列;21、PCB板;22、柔性板;3、封装盒;30、硅胶垫;31、第三UV胶;32、第四UV胶;33、第五UV胶。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
实施例1
参见图1和图2所示,本发明实施例提供一种用于将电转换为光的光学器件,其包括光电转换组件2和光传输组件1,其中,参见图3和图4所示,光电转换组件2包括激光器阵列20、PCB板21和柔性板22,激光器阵列20和柔性板22分别固定在PCB板21两端,PCB板用于对激光器阵列20供电,柔性板22用于与外围电路连接,激光器阵列20用于接收电信号并将其转换为光信号;参见图2所示,光传输组件1包括顺次相连且光路耦合的连接器10、阵列波导光栅11和透镜阵列12;透镜阵列12的光输入端远离阵列波导光栅11并靠近激光器阵列20,透镜阵列12的光输入端与激光器阵列20光路耦合;透镜阵列12用于接收光信号并将其传输至阵列波导光栅11。
参见图5和图6所示,透镜阵列12包括基板120和设于基板120同一侧并用于接收光信号的多个透镜球面121,各透镜球面121等间距布置,各透镜球面121的焦点位于同一水平面内。
参见图3和图4所示,激光器阵列20包括多个激光器,激光器与透镜球面121数量相同且一一对应布置。
本实施例中,使用光路对准平台对连接器10、阵列波导光栅11、透镜阵列12中的光路进行对准耦合。
阵列波导光栅11与连接器10之间的耦合间距约为0~5μm,间隙可采用折射率相匹配的第一UV胶104进行填充,如折射率约 1.49~1.51的UV胶,也可不进行任何形式的填充。阵列波导光栅11和透镜阵列12间耦合间距约为0~5μm,参见图2所示,间隙采用折射率相匹配的第三UV胶31进行填充,如折射率约1.49~1.51的UV胶。
本实施例中,参见图3和图4所示,激光器阵列20、PCB板21和柔性板22组装方式为:将激光器阵列20及其外围组件固定在PCB板21上,将柔性板22焊接在PCB板21上。
本发明主要针对应用阵列波导光栅型波分复用技术的有源光组件,本发明中阵列波导光栅11与激光器阵列20间进行光路耦合,实现光信号和电信号的相互转换。本发明中所描述的阵列波导光栅11有N个通道,分别传输λ 1、……、λ n波长的光波,透镜球面121有N个,对应激光器阵列20包含N颗激光器,每颗激光器发射不同波长的光波,激光器发射的光波经对应的透镜球面121汇聚后进入对应的通道进行传输,然后由阵列波导光栅11将N个波长的光合为一束光波。
透镜阵列12在透镜球面121侧接收激光器发出的光,光波经过透镜阵列12后在聚光侧被汇聚,用于与阵列波导光栅11进行耦合。透镜阵列12各个透镜球面121之间的中心间距可以是250μm、500μm、750μm等。
本发明采用透镜阵列替代多芯光纤阵列和MINI LC连接器,由于本发明中没有多芯光纤阵列,因此,不存在多芯光纤阵列在研磨定位时多芯光纤阵列盖板被定位螺丝压裂所造成的大规模生产时低合格率的问题,不存在多芯光纤阵列断纤的问题,不用考虑MINI LC连接器的精度、四向性问题,降低了技术要求,不存在MINI LC连接器端面损伤问题,不用考虑光纤长度是否统一的问题,降低了生产 工艺难度。
实施例2
参见图7所示,本发明实施例提供一种用于将电转换为光的光学器件,本实施例与实施例1的区别在于:连接器10包括连接器外壳100、套筒101、插芯尾座102和插芯103;套筒101插接于连接器外壳100内,插芯尾座102一端插接于连接器外壳100内并与套筒101接触,插芯103一端穿过插芯尾座102并插接于套筒101内,且另一端与阵列波导光栅11连接,参见图7所示,插芯103与阵列波导光栅11之间通过第一UV胶104连接。插芯103和套筒101均采用陶瓷材质。
本实施例提供的连接器10的组装步骤如下:将插芯103使用夹具压入插芯尾座102中;使用研磨治具对插芯103的两端分别进行研磨,根据设计需要一端磨成斜角,一端做平面研磨;将插芯103平面研磨一端插入套筒101中,直到套筒101接触到插芯尾座102;将套筒101、插芯尾座102和插芯103整体压入连接器外壳100中。
实施例3
参见图7所示,本发明实施例提供一种用于将电转换为光的光学器件,本实施例与实施例2的区别在于:插芯103位于套筒101内的一端端面为与插芯103长度延伸方向大致垂直的第一平面,插芯103与阵列波导光栅11相连的一端端面为与第一平面之间夹角为θ的第二平面,θ的大小根据具体使用要求进行研磨,当然了,θ的取值范围最好为0°≤θ≤12°。此外,参见图7所示,阵列波导光栅11与插芯103相连的一端呈与第二平面相配合的平面。
实施例4
参见图8至图10所示,本发明实施例提供的另一种用于将电转 换为光的光学器件,本实施例与实施例1的区别在于:连接器10包括连接器外壳100、抗弯光纤105和单芯光纤阵列106;抗弯光纤105一端与连接器外壳100相连,单芯光纤阵列106两端分别与抗弯光纤105另一端和阵列波导光栅11连接。组装时,将连接器外壳100、抗弯光纤105、单芯光纤阵列106用胶水粘接在一起,参见图9所示,单芯光纤阵列106与阵列波导光栅11之间通过第二UV胶107连接。
实施例5
参见图9所示,本发明实施例提供一种用于将电转换为光的光学器件,本实施例与实施例4的区别在于:单芯光纤阵列106与抗弯光纤105相连的一端端面为与单芯光纤阵列106长度延伸方向大致垂直的第三平面,单芯光纤阵列106与阵列波导光栅11相连的一端端面为与第三平面之间夹角为β的第四平面。β的大小根据具体使用要求进行研磨,当然了,β的取值范围最好为0°≤β≤12°。此外,参见图9所示,阵列波导光栅11与单芯光纤阵列106相连的一端呈与第四平面相配合的平面。
实施例6
参见图2所示,本发明实施例提供一种用于将电转换为光的光学器件,本实施例与实施例2的区别在于:还提供了封装盒3,光传输组件1位于封装盒3一侧,连接器10与封装盒3通过激光焊接,使插芯103至少部分位于封装盒3内以及阵列波导光栅11和透镜阵列12位于封装盒3内;封装盒3内部设有硅胶垫30,阵列波导光栅11承载在硅胶垫30上;光电转换组件2位于封装盒3另一侧,激光器阵列20、PCB板21位于封装盒3内,柔性板22至少部分位于封装盒3外,PCB板21通过第四UV胶32固定在封装盒3上,同时,参见图2所示,用第五UV胶33密封柔性板22与封装盒3之间的间隙, 并将柔性板22固定。
实施例7
参见图8所示,本发明实施例提供一种用于将电转换为光的光学器件,本实施例与实施例4的区别在于:还提供了封装盒3,光传输组件1位于封装盒3一侧,连接器10与封装盒3通过UV胶固定或直接通过尺寸进行控制固定,使单芯光纤阵列106至少部分位于封装盒3内以及阵列波导光栅11和透镜阵列12位于封装盒3内;封装盒3内部设有硅胶垫30,阵列波导光栅11承载在硅胶垫30上;光电转换组件2位于封装盒3另一侧,激光器阵列20、PCB板21位于封装盒3内,柔性板22至少部分位于封装盒3外,PCB板21通过第四UV胶32固定在封装盒3上,同时,参见图8所示,用第五UV胶33密封柔性板22与封装盒3之间的间隙,并将柔性板22固定。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

  1. 一种用于将电转换为光的光学器件,其特征在于,其包括:
    光电转换组件(2),其包括激光器阵列(20),所述激光器阵列(20)用于接收电信号并将其转换为光信号;
    光传输组件(1),其包括顺次相连且光路耦合的连接器(10)、阵列波导光栅(11)和透镜阵列(12);所述透镜阵列(12)的光输入端远离所述阵列波导光栅(11)并靠近所述激光器阵列(20),所述透镜阵列(12)的光输入端与所述激光器阵列(20)光路耦合;所述透镜阵列(12)用于接收所述光信号并将其传输至所述阵列波导光栅(11)。
  2. 如权利要求1所述的用于将电转换为光的光学器件,其特征在于:所述透镜阵列(12)包括基板(120)和设于所述基板(120)同一侧并用于接收所述光信号的多个透镜球面(121),各所述透镜球面(121)等间距布置。
  3. 如权利要求2所述的用于将电转换为光的光学器件,其特征在于:各所述透镜球面(121)的焦点位于同一水平面内。
  4. 如权利要求2所述的用于将电转换为光的光学器件,其特征在于:所述激光器阵列(20)包括多个激光器,所述激光器与所述透镜球面(121)数量相同且一一对应布置。
  5. 如权利要求1所述的用于将电转换为光的光学器件,其特征在于,所述连接器(10)包括:
    连接器外壳(100);
    套筒(101),所述套筒(101)插接于所述连接器外壳(100)内;
    插芯尾座(102),所述插芯尾座(102)一端插接于所述连接器外壳(100)内并与所述套筒(101)接触;
    插芯(103),所述插芯(103)一端穿过所述插芯尾座(102)并插接于所述套筒(101)内,且另一端与所述阵列波导光栅(11)连接。
  6. 如权利要求5所述的用于将电转换为光的光学器件,其特征在于:所述插芯(103)位于所述套筒(101)内的一端端面为与所述插芯(103)长度延伸方向大致垂直的第一平面,所述插芯(103)与所述阵列波导光栅(11)相连的一端端面为与所述第一平面之间夹角为θ的第二平面。
  7. 如权利要求6所述的用于将电转换为光的光学器件,其特征在于:0°≤θ≤12°。
  8. 如权利要求1所述的用于将电转换为光的光学器件,其特征在于,所述连接器(10)包括:
    连接器外壳(100);
    抗弯光纤(105),所述抗弯光纤(105)一端与所述连接器外壳(100)相连;
    单芯光纤阵列(106),所述单芯光纤阵列(106)两端分别与所述抗弯光纤(105)另一端和所述阵列波导光栅(11)连接。
  9. 如权利要求8所述的用于将电转换为光的光学器件,其特征在于:所述单芯光纤阵列(106)与所述抗弯光纤(105)相连的一端端面为与所述单芯光纤阵列(106)长度延伸方向大致垂直的第三平面,所述单芯光纤阵列(106)与所述阵列波导光栅(11)相连的一端端面为与所述第三平面之间夹角为β的第四平面。
  10. 如权利要求9所述的用于将电转换为光的光学器件,其特征在于:0°≤β≤12°。
PCT/CN2019/092037 2018-07-06 2019-06-20 一种用于将电转换为光的光学器件 WO2020007197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810737382.4A CN108983372A (zh) 2018-07-06 2018-07-06 一种用于将电转换为光的光学器件
CN201810737382.4 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020007197A1 true WO2020007197A1 (zh) 2020-01-09

Family

ID=64536415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092037 WO2020007197A1 (zh) 2018-07-06 2019-06-20 一种用于将电转换为光的光学器件

Country Status (2)

Country Link
CN (1) CN108983372A (zh)
WO (1) WO2020007197A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983372A (zh) * 2018-07-06 2018-12-11 烽火通信科技股份有限公司 一种用于将电转换为光的光学器件
CN113448011B (zh) * 2021-06-29 2022-07-05 武汉光迅科技股份有限公司 一种无热awg的设计方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188951A1 (en) * 2012-01-24 2013-07-25 Applied Optoelectronics, Inc. Optically matched laser array coupling assembly for coupling laser array to arrayed waveguide grating
CN105278056A (zh) * 2015-11-06 2016-01-27 武汉电信器件有限公司 一种波分复用/解复用光组件
CN105866904A (zh) * 2016-05-23 2016-08-17 宁波环球广电科技有限公司 多通道并行的光接收器件
CN106338799A (zh) * 2016-03-25 2017-01-18 武汉电信器件有限公司 光发射组件
CN106646784A (zh) * 2017-02-20 2017-05-10 众瑞速联(武汉)科技有限公司 一种基于阵列波导光栅的波分复用光发射器件
CN107329206A (zh) * 2017-08-31 2017-11-07 武汉光迅科技股份有限公司 一种多通道eml集成组件及其awg制作方法
CN107367791A (zh) * 2017-08-31 2017-11-21 武汉光迅科技股份有限公司 一种多通道eml集成组件及其awg制作方法
CN107479144A (zh) * 2016-06-08 2017-12-15 祥茂光电科技股份有限公司 具有直接对准光复用器输入端的光发射子组件(tosa)模块的光发射器或收发器
CN207601363U (zh) * 2017-11-15 2018-07-10 烽火通信科技股份有限公司 一种波分复用光学组件
CN108983372A (zh) * 2018-07-06 2018-12-11 烽火通信科技股份有限公司 一种用于将电转换为光的光学器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9229169B2 (en) * 2011-08-16 2016-01-05 International Business Machines Corporation Lens array optical coupling to photonic chip

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188951A1 (en) * 2012-01-24 2013-07-25 Applied Optoelectronics, Inc. Optically matched laser array coupling assembly for coupling laser array to arrayed waveguide grating
CN105278056A (zh) * 2015-11-06 2016-01-27 武汉电信器件有限公司 一种波分复用/解复用光组件
CN106338799A (zh) * 2016-03-25 2017-01-18 武汉电信器件有限公司 光发射组件
CN105866904A (zh) * 2016-05-23 2016-08-17 宁波环球广电科技有限公司 多通道并行的光接收器件
CN107479144A (zh) * 2016-06-08 2017-12-15 祥茂光电科技股份有限公司 具有直接对准光复用器输入端的光发射子组件(tosa)模块的光发射器或收发器
CN106646784A (zh) * 2017-02-20 2017-05-10 众瑞速联(武汉)科技有限公司 一种基于阵列波导光栅的波分复用光发射器件
CN107329206A (zh) * 2017-08-31 2017-11-07 武汉光迅科技股份有限公司 一种多通道eml集成组件及其awg制作方法
CN107367791A (zh) * 2017-08-31 2017-11-21 武汉光迅科技股份有限公司 一种多通道eml集成组件及其awg制作方法
CN207601363U (zh) * 2017-11-15 2018-07-10 烽火通信科技股份有限公司 一种波分复用光学组件
CN108983372A (zh) * 2018-07-06 2018-12-11 烽火通信科技股份有限公司 一种用于将电转换为光的光学器件

Also Published As

Publication number Publication date
CN108983372A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN212031792U (zh) 用于在光学连接器与光电基板之间提供接口的光子适配器及用于安装到载体基板的光电组件
US9341786B1 (en) Optomechanical assembly for a photonic chip
US9322987B2 (en) Multicore fiber coupler between multicore fibers and optical waveguides
EP3063574B1 (en) Multiplexed optoelectronic engines
CN209858779U (zh) 一种小型化波分解复用光接收组件
US6741776B2 (en) Optical waveguide module optically connected with an optical fiber
US8615149B2 (en) Photonics chip with efficient optical alignment and bonding and optical apparatus including the same
JPH07104146A (ja) 光部品の製造方法
CN102890313A (zh) Cwdm多工/解多工器系统及其制造方法
CN210864119U (zh) 多通道并行光模块
JP2015114548A (ja) 光合分波器および光通信システム
JPH10104463A (ja) 光導波路デバイスの製造方法
WO2020007197A1 (zh) 一种用于将电转换为光的光学器件
JP2005173043A (ja) 多チャンネル光モジュール
Amano et al. Polymer waveguide-coupled co-packaged silicon photonics-die embedded package substrate
US20020136504A1 (en) Opto-electronic interface module for high-speed communication systems and method of assembling thereof
JP2018084778A (ja) 光モジュール、光送受信装置及び光モジュールの実装方法
CN112305678B (zh) 光学连接器
WO2020253534A1 (zh) 一种小型化波分解复用光接收组件及其装配方法
WO2018117316A1 (ko) 광결합장치 및 그 제조방법
CN216052307U (zh) 一种光接收装置
JP2006010891A (ja) 光結合装置及びその実装構造
CN108345065B (zh) 光信号处理装置以及制备方法
Zhou et al. A novel assembling technique for fiber collimator arrays using UV-curable adhesives
US10162118B2 (en) Optical coupling element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831106

Country of ref document: EP

Kind code of ref document: A1