WO2020038112A1 - 一种高效铁氧体聚磁同步电机 - Google Patents

一种高效铁氧体聚磁同步电机 Download PDF

Info

Publication number
WO2020038112A1
WO2020038112A1 PCT/CN2019/093717 CN2019093717W WO2020038112A1 WO 2020038112 A1 WO2020038112 A1 WO 2020038112A1 CN 2019093717 W CN2019093717 W CN 2019093717W WO 2020038112 A1 WO2020038112 A1 WO 2020038112A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator core
ferrite
stator
synchronous motor
Prior art date
Application number
PCT/CN2019/093717
Other languages
English (en)
French (fr)
Inventor
何林
Original Assignee
重庆力华自动化技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆力华自动化技术有限责任公司 filed Critical 重庆力华自动化技术有限责任公司
Publication of WO2020038112A1 publication Critical patent/WO2020038112A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to the technical field of electric machines, and in particular to a high-efficiency ferrite-focusing synchronous motor.
  • Permanent magnet synchronous motors are divided into rare earth permanent magnet synchronous motors and ferrite permanent magnet synchronous motors. Compared to ferrites, rare earths have a larger difference in magnetic field strength. Rare earth is 3 to 5 times that of ferrites, so rare earth permanent magnets
  • the air gap magnetic flux density of a synchronous motor can generally be above 1.0 Tesla, while the air gap magnetic flux density of a ferrite permanent magnet synchronous motor can generally only achieve 0.3 to 0.6 Tesla, so the efficiency of a rare earth permanent magnet synchronous motor With higher power density than ferrite permanent magnet synchronous motors.
  • the inventors of the present invention have found through research that there are fewer rare earth resources, higher production costs of rare earth permanent magnet synchronous motors, and poor high temperature characteristics, and there is a risk of demagnetization at high temperatures, while ferrite materials are rich in resources and have good high temperature characteristics.
  • the air gap magnetic density of the motor can be made higher than 1.0 Tesla with ferrite material, then the motor efficiency can also be made high, and the cost is low, and the market prospect is huge.
  • the present invention provides a new type of high efficiency ferrite magnetic synchronous motor.
  • the present invention adopts the following technical solutions:
  • a high-efficiency ferrite magnetic-gathering synchronous motor includes a stator component, a rotor component, a housing, a front cover, and a rear cover.
  • the stator component includes a stator core and an armature winding embedded in a slot of the stator core.
  • the rotor assembly adopts a tangential magnetizing structure.
  • the rotor assembly includes a main shaft, a rotor, a front baffle, and a back baffle.
  • the rotor includes a rotor magnet, a tangential magnetized ferrite magnetic steel, and a connection base.
  • the sleeve is fixed on the main shaft, and the rotor guide magnets are fixedly connected to the circumferential surface of the connection seat.
  • the tangential magnetized ferrite magnetic steel is fixedly locked between adjacent rotor guides and the bottom part is in contact with the surface of the connection seat.
  • the front baffle plate and the back baffle plate are respectively installed at two ends of the connection base and are used to lock and fix the rotor magnet and the tangential magnetized ferrite magnetic steel to the peripheral surface of the connection base.
  • the stator assembly and the rotor assembly The front cover and the back cover are respectively installed at two ends of the housing and mounted on the main shaft through bearings, and the length of the magnetic pole of the rotor is longer than the stack thickness of the stator core.
  • the high-efficiency ferrite-focusing synchronous motor includes a stator assembly including a stator core and an armature winding embedded in a slot of the stator core.
  • the rotor assembly adopts a tangential magnetic structure.
  • the assembly includes a main shaft, a rotor, a front baffle, and a back baffle.
  • the rotor includes a rotor magnet, a tangential magnetized ferrite magnetic steel, and a connection seat.
  • the length of the magnetic pole of the rotor is longer than the stack thickness of the stator core, and thus longer than the stator core.
  • Stacked tangentially magnetized ferrite magnetic steel can form an axial magnetic circuit through a rotor magnet that is longer than the stacked stack of the stator core, and then the opposite part of the rotor and the stator core can be integrated into a radial magnetic circuit to provide air-gap magnetism.
  • the air gap magnetic density of the stator and rotor can be more than 1.0 Tesla, and the motor has high efficiency.
  • the motor provided in this application is a permanent magnet synchronous motor using ferrite magnetic steel.
  • the ferrite material is rich in resources, so the cost of the motor is low, and the ferrite material has good high-temperature characteristics, and there is no risk of demagnetization at high temperatures.
  • the magnetic pole length of the rotor is 1.2 to 2.5 times the thickness of the stator core stack.
  • connection seat is a hollow cylindrical structure, and a plurality of dovetail grooves are evenly spaced on the circumferential surface of the connection seat.
  • the rotor magnet is fixed in the dovetail groove, and the tangential magnetized ferrite is provided.
  • the magnetic steel is fixedly clamped between adjacent rotor magnets and the surface of the connection seat between the bottom and the adjacent dovetail groove is in contact.
  • the connecting base and the rotor magnet are formed separately, the connecting base is made of a non-magnetic material, and the rotor magnet is formed by stamping and laminating steel plates.
  • the connecting seat is made of magnesium aluminum alloy.
  • the slot width of the dovetail slot of the connection base is greater than 4mm
  • the slot depth of the dovetail slot of the connection base is greater than 3.5mm
  • the length of the magnetic pole of the rotor is 1.7 times the stack thickness of the stator core.
  • the connecting seat and the rotor magnet are integrally formed by pressing a steel plate into a laminated riveting punch and formed by overlapping riveting, and the length of the magnetic pole of the rotor is 2.0 to 2.5 times the thickness of the stator core.
  • FIG. 1 is a schematic structural diagram of a high-efficiency ferrite-focusing synchronous motor provided by the present invention.
  • FIG. 2 is a schematic structural diagram of a rotor assembly provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a rotor provided by the present invention.
  • FIG. 4 is a schematic structural diagram of a connecting base provided by the present invention.
  • FIG. 5 is a schematic structural diagram of an integrated magnetic pole rotor provided by the present invention.
  • the present invention provides a high-efficiency ferrite-focusing synchronous motor, which includes a stator assembly 1, a rotor assembly 2, a housing 3, a front cover 4 and a rear cover 5; the stator assembly 1 includes The stator core 11 and the armature winding 12 embedded in the slots of the stator core 11.
  • the rotor assembly 2 adopts a tangential magnetizing structure.
  • the rotor assembly 2 includes a main shaft 21, a rotor 22, a front baffle 23, and a rear.
  • the rotor 22 includes a rotor magnet 221, a tangential magnetized ferrite magnetic steel 222, and a connection base 223, the connection base 223 is fixedly mounted on the main shaft 21, and the rotor magnet 221 is engaged with the spaced interval
  • the circumferential surface of the connecting seat 223, that is, a plurality of rotor magnets 221 are clamped at intervals on the circumferential surface of the connecting seat 223, and the tangential magnetized ferrite steel 222 is fixedly clamped to an adjacent rotor magnet 221.
  • connection seat 223 that is, a plurality of the tangential magnetized ferrite magnetic steel 222 is fixedly locked in a groove formed by the surface of the rotor magnet 221 and the connection seat 223, the front baffle 23 and The tailgate 24 is respectively installed at two ends of the connecting seat 223 and is used to connect the rotor magnet 221 and the tangential direction
  • the ferrite magnetic steel 222 is fastened and fixed on the peripheral surface of the connecting seat 223.
  • the stator assembly 1 and the rotor assembly 2 are installed in the housing 3, and the front cover 4 and the rear cover 5 are respectively installed on the two parts of the housing 3.
  • the magnetic pole length H of the rotor 22 is longer than the stacked thickness L of the stator core 11.
  • the magnetic pole length H of the rotor 22 is the length of the rotor magnet 221.
  • the high-efficiency ferrite-focusing synchronous motor includes a stator assembly including a stator core and an armature winding embedded in a slot of the stator core.
  • the rotor assembly adopts a tangential magnetic structure.
  • the assembly includes a main shaft, a rotor, a front baffle, and a back baffle.
  • the rotor includes a rotor magnet, a tangential magnetized ferrite magnetic steel, and a connection seat.
  • the length of the magnetic pole of the rotor is longer than the stack thickness of the stator core, and thus longer than the stator core.
  • Stacked tangentially magnetized ferrite magnetic steel can form an axial magnetic circuit through a rotor magnet that is longer than the stacked stack of the stator core, and then the opposite part of the rotor and the stator core can be integrated into a radial magnetic circuit to provide air-gap magnetism.
  • the air gap magnetic density of the stator and rotor can be more than 1.0 Tesla, and the motor has high efficiency.
  • the motor provided in this application is a permanent magnet synchronous motor using ferrite magnetic steel.
  • the ferrite material is rich in resources, so the cost of the motor is low, and the ferrite material has good high-temperature characteristics, and there is no risk of demagnetization at high temperatures.
  • the magnetic pole length H of the rotor 22 is 1.2 to 2.5 times the stacking thickness L of the stator core 11, thereby making the air gap magnetic density of the stator and rotor more than 1.0 Tesla.
  • the air gap is The magnetic density control is more suitable between 1 and 1.2 Tesla.
  • the air-gap magnetic density of the motor can be obtained through simulation. If the magnetic pole length H of the rotor 22 is longer than the stack thickness L of the stator core 11, the air-gap magnetic density of the stator and rotor increases, but the air-gap magnetic density It should not be too large. If the air gap magnetic density is too large, the stator core is likely to saturate. Therefore, it is appropriate to select the magnetic pole length H of the rotor 22 to be 1.2 to 2.5 times the thickness L of the stator core 11; otherwise, the less the The smaller the gap magnetic density, the stator core cannot reach saturation.
  • the connecting seat 223 is a hollow cylindrical structure, a plurality of dovetail grooves are evenly spaced on the circumferential surface of the connecting seat 223, and the rotor magnet 221 is fixed in the dovetail groove.
  • the tangential magnetized ferrite magnet 222 is fixedly clamped between adjacent rotor magnets 221 and the bottom of the connection seat 223 between adjacent dovetail grooves is in surface contact, thereby realizing the rotor magnets 221 and tangential magnetization
  • the ferrite magnetic steel 222 and the connection seat 223 are fixedly engaged.
  • the connecting seat 223 and the rotor magnet 221 are separately formed, that is, the connecting seat 223 and the rotor magnet 221 are separately formed, and then the rotor is formed.
  • the magnet guide 221 is snap-fixed in the dovetail groove of the connection base 223.
  • the connection base 223 is made of a non-magnetic material, and the rotor magnet 221 is stamped and laminated by a steel plate.
  • the slot width C of the dovetail groove of the connection seat 223 is greater than 4mm, and the slot depth D of the dovetail groove of the connection seat 223 is greater than 3.5mm.
  • the connecting base 223 is made of magnesium aluminum alloy material to ensure the strength of the connecting base 223. At this time, the thickness A and length B of the tangential magnetized ferrite magnetic steel 222 should also be made as large as possible.
  • the rotor magnet 221 is stamped and laminated by steel plate, so the rotor magnet 221 located in the dovetail groove will not leak magnetic flux to the connection seat 223, so this connection seat 223 and
  • the rotor structure formed by the rotor magnets 221 has the smallest magnetic leakage, and the ratio of the magnetic pole length H of the rotor to the stacking thickness L of the stator core is also small.
  • H: L the magnetic pole length of the rotor is By stacking the stator core 1.7 times thicker, the air gap magnetic density can be greater than 1.0 Tesla, which meets the air gap magnetic density requirements.
  • the connecting seat 223 and the rotor magnet 221 are integrally formed by pressing a steel plate into a stacked riveting punch 7, and the overlapping riveting punch 7 is superposed and passed through the stacked riveting punch 7
  • the punching holes on 7 are riveted to form an integrated magnetic pole rotor structure. Because the connection seat 223 and the rotor magnet 221 in this integrated magnetic pole rotor structure are integrally formed, the structure is relatively simple and easy to manufacture; however, because the connection seat The 223 and the rotor magnet 221 are integrally formed.
  • the rotor magnet 221 located in the dovetail groove is easy to leak magnetic flux to the connection seat 223.
  • the overall magnetic pole rotor structure has a large magnetic leakage, which must reach an air gap magnetic density of 1.0 Tesla. It is required that the ratio of the magnetic pole length H of the rotor to the laminated thickness L of the stator core should be increased. At this time, H: L is 2.0 to 2.5, that is, the magnetic pole length of the rotor is 2.0 to 2.5 times the laminated thickness of the stator core. It can reach the air gap magnetic density requirement of 1.0 Tesla, but more rotor material is required at this time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明提供一种高效铁氧体聚磁同步电机,包括定子组件、转子组件、外壳、前盖和后盖,定子组件包括定子铁芯及嵌绕于定子铁芯槽内的电枢绕组,转子组件包括主轴、转子、前挡板和后挡板,转子包括转子导磁体、切向磁化铁氧体磁钢和连接座,连接座固定套装于主轴上,转子导磁体间隔卡接于连接座的周向表面,切向磁化铁氧体磁钢固定卡接在相邻转子导磁体之间,前后挡板分别安装于连接座的两端并用于将转子导磁体和切向磁化铁氧体磁钢锁紧固定于连接座周向表面,定转子组件安装于外壳内,前后盖分别安装于外壳的两端并通过轴承安装于主轴上,转子的磁极长度长于定子铁芯的叠厚。本电机定转子的气隙磁密能做到1.0特斯拉以上,成本低,效率高。

Description

一种高效铁氧体聚磁同步电机 技术领域
本发明涉及电机技术领域,具体涉及一种高效铁氧体聚磁同步电机。
背景技术
永磁同步电机分为稀土永磁同步电机和铁氧体永磁同步电机,而稀土与铁氧体相比,磁场强度差异较大,稀土是铁氧体的3~5倍,所以稀土永磁同步电机的气隙磁密一般可以做到1.0特斯拉以上,而铁氧体永磁同步电机的气隙磁密一般只能做到0.3~0.6特斯拉,所以稀土永磁同步电机的效率与功率密度比铁氧体永磁同步电机高。但是,本发明的发明人经过研究发现,稀土资源较少,稀土永磁同步电机制作成本高,并且高温特性较差,高温下有退磁风险,而铁氧体材料资源丰富,高温特性好,如果能用铁氧体材质把电机的气隙磁密做到1.0特斯拉以上,那电机效率也可以做高,并且成本低,市场前景巨大。
发明内容
针对现有稀土资源较少,稀土永磁同步电机制作成本高,并且高温特性较差,高温下有退磁风险的技术问题,本发明提供一种新型高效铁氧体聚磁同步电机。
为了解决上述技术问题,本发明采用了如下的技术方案:
一种高效铁氧体聚磁同步电机,包括定子组件、转子组件、外壳、前盖和后盖;所述定子组件包括定子铁芯及嵌绕于定子铁芯槽内的电枢绕组,所述转子组件采用切向充磁结构,所述转子组件包括主轴、转子、前挡板和后挡板,所述转子包括转子导磁体、切向磁化铁氧体磁钢和连接座,所述连接座固定套 装于主轴上,所述转子导磁体间隔卡接于连接座的周向表面,所述切向磁化铁氧体磁钢固定卡接在相邻转子导磁体之间且底部与连接座表面接触,所述前挡板和后挡板分别安装于连接座的两端并用于将转子导磁体和切向磁化铁氧体磁钢锁紧固定于连接座周向表面,所述定子组件和转子组件安装于外壳内,所述前盖和后盖分别配合安装于外壳的两端并通过轴承安装于主轴上,所述转子的磁极长度长于定子铁芯的叠厚。
与现有技术相比,本发明提供的高效铁氧体聚磁同步电机,定子组件包括定子铁芯及嵌绕于定子铁芯槽内的电枢绕组,转子组件采用切向充磁结构,转子组件包括主轴、转子、前挡板和后挡板,转子包括转子导磁体、切向磁化铁氧体磁钢和连接座,转子的磁极长度长于定子铁芯的叠厚,由此长于定子铁芯叠厚的切向磁化铁氧体磁钢可以通过长于定子铁芯叠厚的转子导磁体形成轴向磁路,再到转子与定子铁芯相对部分聚集成径向磁路,从而提供气隙磁通,进一步增大气隙磁密,其定转子的气隙磁密能做到1.0特斯拉以上,电机效率高;同时,本申请提供的电机为采用铁氧体磁钢的永磁同步电机,而铁氧体材料资源丰富,因而电机成本低,并且铁氧体材料高温特性好,高温下不会存在退磁风险。
进一步,所述转子的磁极长度是定子铁芯叠厚的1.2~2.5倍。
进一步,所述连接座为中空圆柱形结构,所述连接座的周向表面均匀间隔设有多个燕尾槽,所述转子导磁体卡接固定于燕尾槽中,所述切向磁化铁氧体磁钢固定卡接在相邻转子导磁体之间且底部与相邻燕尾槽之间的连接座表面接触。
进一步,所述连接座和转子导磁体分别成型制成,所述连接座采用非导磁材料制成,所述转子导磁体采用钢板冲压叠合而成。
进一步,所述连接座采用镁铝合金制成。
进一步,所述连接座的燕尾槽的槽口宽度大于4mm,所述连接座的燕尾槽的槽口深度大于3.5mm,且所述转子的磁极长度是定子铁芯叠厚的1.7倍。
进一步,所述连接座和转子导磁体采用钢板冲压一体成型为叠铆冲片并通过叠铆而成,且所述转子的磁极长度是定子铁芯叠厚的2.0~2.5倍。
附图说明
图1是本发明提供的高效铁氧体聚磁同步电机结构示意图。
图2是本发明提供的转子组件结构示意图。
图3是本发明提供的转子结构示意图。
图4是本发明提供的连接座结构示意图。
图5是本发明提供的整体磁极转子结构示意图。
图中,1、定子组件;11、定子铁芯;12、电枢绕组;2、转子组件;21、主轴;22、转子;221、转子导磁体;222、切向磁化铁氧体磁钢;223、连接座;23、前挡板;24、后挡板;3、外壳;4、前盖;5、后盖;6、轴承;7、叠铆冲片。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
在本发明的描述中,需要理解的是,术语“纵向”、“径向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可 以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请参考图1至图5所示,本发明提供一种高效铁氧体聚磁同步电机,包括定子组件1、转子组件2、外壳3、前盖4和后盖5;所述定子组件1包括定子铁芯11及嵌绕于定子铁芯11槽内的电枢绕组12,所述转子组件2采用切向充磁结构,所述转子组件2包括主轴21、转子22、前挡板23和后挡板24,所述转子22包括转子导磁体221、切向磁化铁氧体磁钢222和连接座223,所述连接座223固定套装于主轴21上,所述转子导磁体221间隔卡接于连接座223的周向表面,即在所述连接座223的周向表面间隔卡接有若干转子导磁体221,所述切向磁化铁氧体磁钢222固定卡接在相邻转子导磁体221之间且底部与连接座223表面接触,即若干所述切向磁化铁氧体磁钢222固定卡接在转子导磁体221和连接座223表面构成的凹槽中,所述前挡板23和后挡板24分别安装于连接座223的两端并用于将转子导磁体221和切向磁化铁氧体磁钢222锁紧固定于连接座223周向表面,所述定子组件1和转子组件2安装于外壳3内,所述前盖4和后盖5分别配合安装于外壳3的两端并通过轴承6安装于主轴21上,所述转子22的磁极长度H长于定子铁芯11的叠厚L;其中,所述转子22的磁极长度H即是转子导磁体221的长度。
与现有技术相比,本发明提供的高效铁氧体聚磁同步电机,定子组件包括定子铁芯及嵌绕于定子铁芯槽内的电枢绕组,转子组件采用切向充磁结构,转子组件包括主轴、转子、前挡板和后挡板,转子包括转子导磁体、切向磁化铁氧体磁钢和连接座,转子的磁极长度长于定子铁芯的叠厚,由此长于定子铁芯叠厚的切向磁化铁氧体磁钢可以通过长于定子铁芯叠厚的转子导磁体形成轴向磁路,再到转子与定子铁芯相对部分聚集成径向磁路,从而提供气隙磁通,进一步增大气隙磁密,其定转子的气隙磁密能做到1.0特斯拉以上,电机效率 高;同时,本申请提供的电机为采用铁氧体磁钢的永磁同步电机,而铁氧体材料资源丰富,因而电机成本低,并且铁氧体材料高温特性好,高温下不会存在退磁风险。
作为具体实施例,所述转子22的磁极长度H是定子铁芯11叠厚L的1.2~2.5倍,由此可使定转子的气隙磁密做到1.0特斯拉以上,一般以气隙磁密控制在1~1.2特斯拉较为合适。而电机的气隙磁密可以通过仿真得到,如果所述转子22的磁极长度H比定子铁芯11的叠厚L长得越多,定转子的气隙磁密越大,但是气隙磁密也不能过大,如果气隙磁密太大,定子铁芯容易饱和,因而选转子22的磁极长度H是定子铁芯11叠厚L的1.2~2.5倍为合适;反之长得越少,气隙磁密也越小,定子铁芯还不能达到饱和。
作为具体实施例,所述连接座223为中空圆柱形结构,所述连接座223的周向表面均匀间隔设有多个燕尾槽,所述转子导磁体221卡接固定于燕尾槽中,所述切向磁化铁氧体磁钢222固定卡接在相邻转子导磁体221之间且底部与相邻燕尾槽之间的连接座223表面接触,由此实现所述转子导磁体221和切向磁化铁氧体磁钢222与连接座223之间的固定卡接。
作为具体实施例,请参考图3和图4所示,所述连接座223和转子导磁体221分别成型制成,即所述连接座223和转子导磁体221各自独立成型,然后将所述转子导磁体221卡接固定于连接座223的燕尾槽中,所述连接座223采用非导磁材料制成,所述转子导磁体221采用钢板冲压叠合而成。
作为具体实施例,请参考图3和图4所示,所述连接座223的燕尾槽的槽口宽度C大于4mm,所述连接座223的燕尾槽的槽口深度D大于3.5mm,所述连接座223采用镁铝合金材料制成就可以保证连接座223的强度,此时切向磁化铁氧体磁钢222的厚度A和长度B也应尽可能做大些,由于所述连接座223采用非导磁材料镁铝合金制成,而转子导磁体221采用钢板冲压叠合而成,因此位于燕尾槽内的转子导磁体221不会向连接座223漏磁,因而这种连接座223和转子导磁体221分别成型的转子结构漏磁最小,并且转子的磁极长 度H与定子铁芯的叠厚L之比也是较小的,此时取H:L为1.7即所述转子的磁极长度是定子铁芯叠厚的1.7倍,就可以使气隙磁密大于1.0特斯拉,满足气隙磁密的要求。
作为具体实施例,请参考图5所示,所述连接座223和转子导磁体221采用钢板冲压一体成型为叠铆冲片7,并对叠铆冲片7进行叠合和通过叠铆冲片7上的冲孔进行铆接组成整体磁极转子结构,由于这种整体磁极转子结构中的所述连接座223和转子导磁体221一体成型,因此结构相对简单,制作容易;但是,由于所述连接座223和转子导磁体221是一体成型,位于燕尾槽内的转子导磁体221容易向连接座223漏磁,因而这种整体磁极转子结构漏磁较大,要达到1.0特斯拉的气隙磁密要求,转子的磁极长度H与定子铁芯的叠厚L之比要加大,此时取H:L为2.0~2.5即所述转子的磁极长度是定子铁芯叠厚的2.0~2.5倍,就可以达到1.0特斯拉的气隙磁密要求,但此时需要较多的转子材料。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

  1. 一种高效铁氧体聚磁同步电机,其特征在于,包括定子组件、转子组件、外壳、前盖和后盖;所述定子组件包括定子铁芯及嵌绕于定子铁芯槽内的电枢绕组,所述转子组件采用切向充磁结构,所述转子组件包括主轴、转子、前挡板和后挡板,所述转子包括转子导磁体、切向磁化铁氧体磁钢和连接座,所述连接座固定套装于主轴上,所述转子导磁体间隔卡接于连接座的周向表面,所述切向磁化铁氧体磁钢固定卡接在相邻转子导磁体之间且底部与连接座表面接触,所述前挡板和后挡板分别安装于连接座的两端并用于将转子导磁体和切向磁化铁氧体磁钢锁紧固定于连接座周向表面,所述定子组件和转子组件安装于外壳内,所述前盖和后盖分别配合安装于外壳的两端并通过轴承安装于主轴上,所述转子的磁极长度长于定子铁芯的叠厚。
  2. 根据权利要求1所述的高效铁氧体聚磁同步电机,其特征在于,所述转子的磁极长度是定子铁芯叠厚的1.2~2.5倍。
  3. 根据权利要求1或2所述的高效铁氧体聚磁同步电机,其特征在于,所述连接座为中空圆柱形结构,所述连接座的周向表面均匀间隔设有多个燕尾槽,所述转子导磁体卡接固定于燕尾槽中,所述切向磁化铁氧体磁钢固定卡接在相邻转子导磁体之间且底部与相邻燕尾槽之间的连接座表面接触。
  4. 根据权利要求3所述的高效铁氧体聚磁同步电机,其特征在于,所述连接座和转子导磁体分别成型制成,所述连接座采用非导磁材料制成,所述转子导磁体采用钢板冲压叠合而成。
  5. 根据权利要求4所述的高效铁氧体聚磁同步电机,其特征在于,所述连接座采用镁铝合金制成。
  6. 根据权利要求4所述的高效铁氧体聚磁同步电机,其特征在于,所述连接座的燕尾槽的槽口宽度大于4mm,所述连接座的燕尾槽的槽口深度大于3.5mm,且所述转子的磁极长度是定子铁芯叠厚的1.7倍。
  7. 根据权利要求3所述的高效铁氧体聚磁同步电机,其特征在于,所述连接座和转子导磁体采用钢板冲压一体成型为叠铆冲片并通过叠铆而成,且所述转子的磁极长度是定子铁芯叠厚的2.0~2.5倍。
PCT/CN2019/093717 2018-08-20 2019-06-28 一种高效铁氧体聚磁同步电机 WO2020038112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810948785.3 2018-08-20
CN201810948785.3A CN109038880A (zh) 2018-08-20 2018-08-20 一种高效铁氧体聚磁同步电机

Publications (1)

Publication Number Publication Date
WO2020038112A1 true WO2020038112A1 (zh) 2020-02-27

Family

ID=64631549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093717 WO2020038112A1 (zh) 2018-08-20 2019-06-28 一种高效铁氧体聚磁同步电机

Country Status (2)

Country Link
CN (1) CN109038880A (zh)
WO (1) WO2020038112A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109038880A (zh) * 2018-08-20 2018-12-18 重庆力华自动化技术有限责任公司 一种高效铁氧体聚磁同步电机
TW202131601A (zh) * 2020-02-05 2021-08-16 綠達光電股份有限公司 馬達總成及馬達轉子
CN116163975A (zh) * 2023-04-26 2023-05-26 苏州睿动电气科技有限公司 一种无刷鼓风机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2072294U (zh) * 1990-04-13 1991-02-27 内蒙古包头市永磁电机研究所 永磁同步发电机
CN202475206U (zh) * 2011-11-11 2012-10-03 德昌电机(深圳)有限公司 永磁电机及应用该永磁电机的电动工具和割草机
CN109038880A (zh) * 2018-08-20 2018-12-18 重庆力华自动化技术有限责任公司 一种高效铁氧体聚磁同步电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211581C (zh) * 2000-12-28 2005-07-20 科西亚数码电气(深圳)有限公司 一种制冷压缩机
US7148598B2 (en) * 2003-10-23 2006-12-12 A.O. Smith Corporation Spoke permanent magnet rotors for electrical machines and methods of manufacturing same
CN101123386B (zh) * 2007-09-24 2010-12-29 南京航空航天大学 切向磁钢永磁同步电机
WO2011012131A2 (de) * 2009-07-29 2011-02-03 Joachim Sabinski Hochpoliger permanentmagnetläufer für rotierende elektrische maschinen und verfahren zur ausrichtung und befestigung der läuferpole auf einem läufergrundkörper des permanentmagnetläufers
EP2814141A1 (en) * 2013-06-11 2014-12-17 Robert Bosch GmbH Rotor for an electronically-commutated motor
DE102014018309A1 (de) * 2014-12-10 2016-06-16 eMoSys GmbH Permanenterregte elektrische Maschine
CN105226858A (zh) * 2015-10-26 2016-01-06 珠海格力节能环保制冷技术研究中心有限公司 一种电机转子及具有其的电机
CN106712345A (zh) * 2016-11-09 2017-05-24 常州雷利电机科技有限公司 电机转子以及应用其的电机
CN208423960U (zh) * 2018-08-20 2019-01-22 重庆力华自动化技术有限责任公司 一种高效铁氧体聚磁同步电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2072294U (zh) * 1990-04-13 1991-02-27 内蒙古包头市永磁电机研究所 永磁同步发电机
CN202475206U (zh) * 2011-11-11 2012-10-03 德昌电机(深圳)有限公司 永磁电机及应用该永磁电机的电动工具和割草机
CN109038880A (zh) * 2018-08-20 2018-12-18 重庆力华自动化技术有限责任公司 一种高效铁氧体聚磁同步电机

Also Published As

Publication number Publication date
CN109038880A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020038112A1 (zh) 一种高效铁氧体聚磁同步电机
CN104184234A (zh) 一种混合励磁双气隙爪极电机
CN209282957U (zh) 一种电机转子及具有其的电动机
CN106026593B (zh) 外置式混合励磁永磁同步发电机
CN203193469U (zh) 无铁芯盘式直流无刷电机
CN202424335U (zh) 一种紧凑型轻量化的四极方形永磁直流电机
CN102820715B (zh) 一种减小磁通切换永磁电机定位力矩的方法
CN214255894U (zh) 一种模块化爪极永磁电机的核心部件
CN112821591B (zh) 一种模块化爪极永磁电机的核心部件
CN114243970A (zh) 轴向磁场电机转子、轴向磁场电机及制作方法
CN210518083U (zh) 马蹄铁型绕组直线永磁电机
KR20080061037A (ko) 방향성 전기강판의 자기이방특성을 이용한 릴럭턴스 모터용회전자 제조방법
CN113224879A (zh) 一种永不退磁的压缩机专用电机
CN202586676U (zh) 用于混合式步进电机的转子
CN112953043A (zh) 一种定子组件、转子组件及中心盘轴芯双转子电机
JP2011172432A (ja) 埋込磁石同期モータのロータ
CN218771472U (zh) 一种高功率电机的磁极结构
CN110797993A (zh) 一种定子轭分段拼块式电机
CN210780276U (zh) 一种混合励磁电机新型转子结构
CN216599168U (zh) 一种铁氧体电机
CN103618391A (zh) 一种十极十二槽的永磁无刷电动机
CN215646411U (zh) 一种永磁辅助同步磁阻电机转子和电机
CN211456832U (zh) 永磁电机
CN203660681U (zh) 一种十极十二槽的永磁无刷电动机
US11936257B2 (en) Transverse magnetic flux motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853009

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19853009

Country of ref document: EP

Kind code of ref document: A1