WO2020038093A1 - 放射治疗设备、控制驱动方法及设备、系统 - Google Patents

放射治疗设备、控制驱动方法及设备、系统 Download PDF

Info

Publication number
WO2020038093A1
WO2020038093A1 PCT/CN2019/092506 CN2019092506W WO2020038093A1 WO 2020038093 A1 WO2020038093 A1 WO 2020038093A1 CN 2019092506 W CN2019092506 W CN 2019092506W WO 2020038093 A1 WO2020038093 A1 WO 2020038093A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
source
angle range
radiation
driving
Prior art date
Application number
PCT/CN2019/092506
Other languages
English (en)
French (fr)
Inventor
刘海峰
李大梁
Original Assignee
西安大医集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司 filed Critical 西安大医集团有限公司
Priority to JP2021510381A priority Critical patent/JP7330261B2/ja
Priority to EP19851334.3A priority patent/EP3827880B1/en
Publication of WO2020038093A1 publication Critical patent/WO2020038093A1/zh
Priority to US17/183,459 priority patent/US20210178190A1/en
Priority to US18/068,063 priority patent/US11759654B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1084Beam delivery systems for delivering multiple intersecting beams at the same time, e.g. gamma knives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1052Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using positron emission tomography [PET] single photon emission computer tomography [SPECT] imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1054Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a portal imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1058Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using ultrasound imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation

Definitions

  • Radiotherapy equipment for treating head tumors in the related art mainly includes a radiation source device and a treatment bed.
  • the radiation source arrangement in the radiation source device is shown in Fig. 1.
  • the radiation source 111 is divided into six groups, which are distributed in the Source body 11.
  • the collimator body 12 is provided with a plurality of collimation channels, and the rays emitted by the radiation source pass through the collimation channels and intersect at the focal point.
  • the treatment bed is used to carry the patient and move the patient to the interior of the treatment cabin of the source device, so that the patient's lesion is located at the above-mentioned focal point for radiotherapy.
  • Each of the collimating hole groups includes a plurality of collimating holes, and the beams emitted by the plurality of ray sources pass through the collimating holes of the collimating hole group and intersect at a common focus.
  • An embodiment of the present disclosure also provides a method for controlling and driving a radiotherapy apparatus.
  • the radiotherapy apparatus includes a plurality of ray sources, and the source points of the plurality of ray sources are within a preset angle range in a longitude direction; the method include:
  • the radiation therapy device is driven to emit a beam in the beam angle range and intersect at a common focus.
  • An embodiment of the present disclosure further provides a control driving device for a radiotherapy apparatus, including: a processor, where the processor is configured to execute the control driving method provided by the present disclosure.
  • FIG. 2 is a schematic plan view of a collimator in a related art according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an X-ray beam according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a radiation therapy device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another radiation therapy device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another source carrier according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another collimator according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another radiation therapy device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another collimator according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a control driving method according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a therapeutic irradiation provided by an embodiment of the present disclosure.
  • 16 is a schematic diagram of another control driving method according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of another control driving method according to an embodiment of the present disclosure.
  • 19 is a schematic diagram of another control driving method according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of another control driving method according to an embodiment of the present disclosure.
  • the source body of the radiotherapy equipment in the related art is bowl-shaped as shown in FIG. 1, and the radiation sources 111 are divided into six groups, each of which contains a total of 30 radiation sources, which are distributed on the source body 11.
  • the collimating body 12 is shown in FIG. 2.
  • the collimating body 12 is provided with six collimating channel groups.
  • the six collimating channel groups correspond to the positions of the six radiation sources.
  • Each collimating channel group includes four groups.
  • the collimation holes of one of the groups were filled with solid tungsten rods to achieve Guanyuan shielding.
  • the other groups included 5 collimation holes, and the collimation holes of different groups were different in size.
  • a radiation therapy apparatus includes a radiation source device.
  • the radiation source device includes a plurality of ray sources and a collimator, and the source points of the plurality of ray sources are within a preset included angle range in the longitude direction.
  • the collimating body is provided with a plurality of collimating hole groups, and an included angle of each collimating hole group in a longitude direction is within a preset included angle range; each collimating hole group includes a plurality of collimating holes and a plurality of ray sources The emitted beams pass through the collimating holes of the collimating hole group and intersect at a common focus.
  • the ray source may be an X-ray acceleration system, and the beam may be an X-ray beam; or the ray source may be a gamma radiation source (hereinafter also referred to as a radiation source), and the beam may be gamma Ray beam.
  • the beam is an X-ray beam, and the principle of generating an X-ray beam is that the electron beam is hit on the target to generate an X-ray beam
  • the source point of the ray source can be the reflection of X-ray beam 07 as shown in Figure 5 The intersection of the extension lines (ie, the source point 06 in FIG. 3).
  • the source point of the ray source may be an isotope radiation source, such as cobalt-60.
  • the radiation source is cobalt-60, that is, the radiation source is a gamma radiation source.
  • the radiation source device includes a carrier body, and a plurality of gamma radiation sources are arranged on the carrier body, and the plurality of gamma radiation sources are distributed in the longitude direction. Take the range of preset angles above as an example.
  • the carrier body 01 in the source device 4 may be as shown in FIG. 4.
  • the carrier body 01 is provided with a plurality of gamma radiation sources 011.
  • the beams emitted by the gamma radiation source 011 intersect at a common focus 012 in FIGS. 6 and 7.
  • the collimator 02 may be as shown in FIG. 5.
  • the longitude direction of the source body is shown by the arrow in FIG. 4, and the longitude direction is the direction of longitude 0 ° -360 °.
  • the radiation source device 04 may also have a cylindrical shape.
  • the source carrier 01 in the radiation therapy device may be shown in FIG. 8, and the collimator body 02 may be shown in FIG. 9. It is shown that the source body and the collimator are both cylindrical.
  • the longitude direction of the source body is shown by the arrow in FIG. 8, and the direction of longitude is from 0 ° to 360 °. In FIG.
  • the included angle of the collimation hole 021 in the longitude direction is an included angle formed by using the center of the collimation hole 021 as a reference. It should be particularly noted here that if the collimation holes 021 include a row, and the centers of multiple collimation holes 021 located in the same row are on the same longitude line, the angles of the multiple collimation holes 021 in the longitude direction are considered It is zero degrees. In the present disclosure, the preset included angle range is greater than or equal to zero degrees.
  • FIG. 4 shows a carrier body 01 provided by the present disclosure.
  • a plurality of radioactive sources 011 are disposed on the carrier body 01, and an included angle of the plurality of radioactive sources 011 in a longitude direction is A.
  • the range of the included angle A can be 15 ° -60 °, that is, 15 ° ⁇ A ⁇ 60 °, and the included angle A can be any included angle in the range of 15 ° -60 °.
  • the included angle The range of the angle A can be 5 ° -60 °, that is, 5 ° ⁇ A ⁇ 60 °, that is, the included angle A can be any included angle in the range of 5 ° -60 °.
  • the included angle A can be 5 °, 8 °, 10 °, 12 °, 18 °, 20 °, 25 °, 30 °, 40 °, 45 °, 50 ° or 60 °.
  • the number and arrangement of the radioactive sources 011 are not limited in the present disclosure, and the number of radioactive sources may be generally 20-180, for example, 30 or 180. Only the 24 radioactive sources shown in FIG. 4 are taken as an example for illustration.
  • the included angle of the collimation hole group 1, the collimation hole group 2, the collimation hole group 3, and the collimation hole group 4 in the longitude direction is within a preset angle range.
  • Figure 5 uses the 1 collimation hole group as an example.
  • the included angle of the 1 collimation hole group in the longitude direction (the direction of the arrow shown in FIG. 5) is A.
  • the included angle A is the same as that of the source body 01.
  • the included angle of the source 011 is 5 ° -60 °.
  • the source device may also be cylindrical.
  • the carrier body 01 may also be cylindrical as shown in FIG. 8, and its longitude direction is indicated by the arrow in FIG. Shown direction.
  • the size of the two ends of the cylindrical source body 01 is taken as an example.
  • the specific number and arrangement of the radioactive sources 011 are not limited in this disclosure, and only 20 radioactive sources 011 are taken as an example for illustration in FIG. 8.
  • the collimator body 02 may also have a cylindrical shape as shown in FIG. 9.
  • the plurality of collimation holes 021 correspond to the number and arrangement of the radiation sources 011, which are not described herein again.
  • the disclosure does not limit the number of collimating hole groups on the collimating body 02.
  • two collimating hole groups are provided on the collimating body 02 as an example, and each collimating hole group includes 20
  • the collimation hole 021 is taken as an example for illustration.
  • a radiation therapy device includes a radiation source device.
  • the radiation source device includes a plurality of ray sources and a collimator.
  • the source points of the plurality of ray sources are within a preset angle range in the longitude direction.
  • Multiple collimating hole groups are set, and the included angle of each collimating hole group in the longitude direction is within a preset included angle range; each collimating hole group includes a plurality of collimating holes and a beam emitted by a plurality of ray sources After passing through the collimating holes of the collimating hole group, they intersect at a common focus.
  • the radiotherapy equipment can drive multiple radiation sources to rotate along the central axis of the radiotherapy equipment through the source carrier, and turn off the radiation source when passing through sensitive tissues or organs; the radiation source can be open sourced when passing through normal tissues and organs, so that During the treatment of head tumors, the sensitive tissues and organs, such as the eyes, are protected from additional damage.
  • a plurality of radiation sources 011 are divided into multiple groups, and an included angle range of two adjacent radiation sources 011 is 2 ° -15 °.
  • the included angle of any two adjacent sets of radioactive sources 011 is the same, or the included angle of different adjacent two sets of radioactive sources 011 is different, which is not limited in this disclosure, FIG. 4 is shown as an example.
  • multiple radiation sources 011 are divided into 4 groups, and the included angle between adjacent two sets of radiation sources 011 is B (the illustrated two groups are taken as an example) as an example.
  • the included angle of the plurality of radiation sources 011 in the latitude direction is 20 ° -60 °.
  • the source body 01 is provided with a plurality of radiation sources 011 within an included angle C of the latitude direction.
  • the range of the included angle C may be 20 ° -60 °, that is, 20 ° ⁇ C ⁇ 60 °, and the included angle C may be any included angle within the range of 20 ° -60 °.
  • the included angle C may be It is 20 °, 25 °, 30 °, 38 °, 40 °, 45 °, 50 °, 53 ° or 60 °.
  • the source carrier provided in the present disclosure is further provided with a connection portion for replacing the source cassette on the source cassette.
  • the source box connecting portion may be a screw hole, which may be screwed with the source guide rod.
  • the source box connecting portion and the source guiding rod may be connected by magnet attraction.
  • the present disclosure is not limited to the connection between the source box and the source guide rod, and the way of replacing the source box, and only the above example is used as an example for illustration.
  • the source cassette provided by the present disclosure is different from the material of the source carrier.
  • the source box may be formed of a tungsten alloy, and the source carrier may be formed of cast iron.
  • a distance between two adjacent collimation holes 021 is larger than a size of the radiation source 011. Therefore, the radiation source 011 can also be shielded by making the collimator 02 and the radiation source 011 only misaligned by a small angle, so that the distance between the collimation holes 021 can be shielded, and the shielding bit 010 can be avoided because only a small angle of misalignment is required. Thereby, a fast switching source can be realized.
  • the included angle of the collimation hole group in the latitude direction is 20 ° -60 °.
  • the range of the included angle C may be 20 ° -60 °, that is, 20 ° ⁇ C ⁇ 60 °, and the included angle C may be any included angle in the range of 20 ° -60 °.
  • the included angle C may be 20 °, 25 °, 30 °, 38 °, 40 °, 45 °, 50 °, 53 °, or 60 °.
  • the included angle of the collimation body 02 provided by the present disclosure ranges from 1 ° to 10 ° between any two adjacent collimation holes 021.
  • the included angle of any two adjacent collimation holes 021 in the latitude direction is the same, or the included angle of any two adjacent collimation holes 021 in the latitude direction is different, this disclosure does not do this Limitation, shown in FIG. 5 is only an example.
  • FIG. 5 shows that as shown in FIG.
  • the angle between the two collimating holes in the latitude direction is D
  • the range of the included angle D may be 1 ° -10 °, that is, 1 ° ⁇ D ⁇ 10 °
  • the included angle D can be any included angle in the range of 1 ° -10 °, for example, the included angle D can be 1 °, 2 °, 3, 5 °, 6 °, 8 °, 9 ° or 10 °.
  • the collimation body 02 shown in FIG. 5 includes the collimation holes 021 of the collimation hole group including multiple rows in the longitude direction, and the radiation sources 011 located in the same row have the same longitude, and are also divided into multiple rows in the latitude direction, which are located in the same row
  • the radiation source 011 has the same latitude as an example. Further, as an example to realize non-coplanar irradiation and better protect normal tissues, the source body 01 and the collimation hole 021 provided in the present disclosure are in different positions in the latitude direction. That is, any two collimation holes 021 have different latitudes.
  • the collimator body 02 further includes a shielding bit 010 for shielding the beams of multiple radiation sources 011. That is, the radiation of the radiation source 011 can be shielded by the shielding bit 010 of the collimator 02 to realize the source off.
  • the present disclosure does not limit the specific position of the shielding bit 010. In FIG. 5, the shielding bit 010 is compared with the position of each collimation hole group as an example.
  • the shielding bit 010 is located between any two adjacent collimation hole groups in the plurality of collimation hole groups.
  • the shielding bit 010 is located between the collimation hole group 2 and the collimation hole group 3 as an example.
  • shield bit 010 can also be set between the collimation hole group 1 and the collimation hole group 2. It is also possible to set a shielding bit 010 between the collimation hole group No. 3 and the collimation hole group No. 4. It is also possible to set a shielding bit 010 between each adjacent two collimation hole groups.
  • the present disclosure does not limit the number and distribution of multiple mask bits 010, and only uses the above example as an example for illustration.
  • the collimator body 02 provided in the present disclosure is provided with a shield body 05 at a shield position 010, and a material density of the shield body 05 is greater than a material density of the collimator body 02.
  • the shield body 05 and the collimator body 02 are fixedly connected, and the shield body 05 may be composed of a tungsten block or lead or an alloy thereof.
  • the collimator body 02 may be composed of cast iron. Therefore, the shielding body 05 can achieve better shielding of the radiation source 011.
  • the present disclosure does not limit the position of the shielding bit 010. An example is shown in FIG. 12, which may also be located between different collimation hole groups.
  • the collimator body 01 includes an inner collimator body and an outer collimator body which are fixedly connected, and a collimation hole on the inner collimator body and a collimator hole on the outer collimator body are correspondingly arranged. That is, the collimating body may include a double layer, and the inner collimating body and the outer collimating body may be fixed by screw connection.
  • the collimator provided in the present disclosure includes an inner collimator and an outer collimator, and the inner collimator and the outer collimator can be relatively rotated. For example, during the treatment process, if an accident occurs, the source can be turned off quickly through the inner collimator, and then the outer collimator is rotated to align the shielding position with the radioactive source to shield the radioactive source. The shielding bit is aligned with the radioactive source to achieve complete off-source.
  • the collimation hole on the inner collimator body is a tapered hole
  • the collimation hole on the outer collimator body is a straight hole.
  • it can be a straight hole on the inner collimator and a straight hole on the outer collimator; or the inner collimator is a tapered hole and the outer collimator is a straight hole; it can also be an inner collimator and an outer collimator.
  • the collimators are all tapered.
  • the radiation source device further includes a switch body.
  • the switch body is located between the source body and the collimator body.
  • the switch body is provided with at least two sets of hole positions corresponding to the radiation source, one of which The hole positions are through holes, and the remaining groups of hole positions include through holes and shielding positions. As an example, as shown in FIG.
  • the switch body 018 is provided with 5 groups of hole positions, namely, ae group hole positions, where a hole positions are all through holes, and only one row of the b hole positions is through holes, and the remaining holes are Shielding position, two rows in hole c are through holes and the remaining holes are shielded, three rows in d hole are through holes and the remaining holes are shielded, and four rows in e are the remaining holes.
  • the shielding bit may be provided with no hole in the switch body, or may have a hole in the switch body, but the hole may be filled with a tungsten rod to shield the radiation source.
  • a distance between two adjacent collimation holes is larger than a size of a radiation source. Therefore, the radiation source can also be shielded by making the collimator and the radiation source only misaligned by a small angle, so that the space between the collimation holes is shielded, and avoid using shielding bits to shield, because only a small angle of misalignment is required, so that rapid switching can be achieved. source.
  • the radiation treatment apparatus is an X-ray beam.
  • the radiation treatment apparatus includes one or more X-ray acceleration systems; one X-ray acceleration system emits multiple X-ray beams in a range of exit angles; or, multiple X-ray beams
  • the ray acceleration system emits a plurality of X-ray beams in a range of exit angles.
  • the X-ray acceleration system generates an X-ray beam by hitting the target with an electron beam.
  • the source point 06 of the ray source may be the intersection of the reverse extension line of the X-ray beam 07 as shown in FIG. 3.
  • the X-ray beam 07 can be obtained by irradiating the target beam 09 with the electron beam 08.
  • the radiotherapy apparatus of the present disclosure may include an X-ray acceleration system that emits an electron beam, and the electron beam hits different targets or targets at different positions to emit multiple X-rays, respectively.
  • the radiotherapy equipment may include a plurality of X-ray acceleration systems, each X-ray acceleration system emits an electron beam, and the electron beam hits the target to emit a plurality of X-rays.
  • this disclosure will not repeat them here.
  • the patient's tumor needs to be precisely located at the common focus so that the radiation kills the tumor cells.
  • the radiation will shift, which is not only harmful to the treatment but also harmful to the patient's health.
  • the common focus of the radiotherapy equipment in the related technology is located in the cavity of the source device, the patient cannot be treated during the treatment. Monitor if your head moves.
  • the radiotherapy apparatus provided by the present disclosure has a common focus outside the end face of the radiation source device. For example, as shown in FIG. 7, FIG. 10, and FIG. 11, the common focus 012 is located outside the end surface of the source device 04, which is beneficial to observe and monitor whether the patient moves during the treatment process.
  • the radiation treatment apparatus provided by the present disclosure further includes an imaging device, the imaging device is disposed on one side of the radiation source device along a central axis direction of the radiation source device, and a common focus is located in an imaging area of the imaging device. That is, the tumor of the patient located in the imaging area can be imaged by the imaging device, and whether the patient has been displaced according to the image. The accuracy of displacement monitoring using images is high.
  • the imaging device is any one of X-ray imaging device, CT imaging device, ultrasound imaging device, DSA imaging device, MR imaging device, PET imaging device or any combination thereof.
  • the imaging device is an X-ray imaging device.
  • the imaging device 013 may include an X-ray tube 017 and a flat panel detection 016. Alternatively, it may also include two X-ray bulbs and two flat-plate detections, and the beams emitted by the two X-ray bulbs intersect.
  • the imaging device may also be a combination of any two or more different imaging devices, for example, the imaging device may be a combination of an X-ray imaging device and a DSA imaging device.
  • the present disclosure does not limit the specific setting manner of the imaging device, and only uses the above as an example for description.
  • the imaging device includes an imaging center point
  • the common focus 012 coincides with the imaging center point.
  • the imaging device includes two X-ray bulbs and two X-ray flat plates corresponding to receiving a beam emitted by each X-ray bulb, and the beams emitted by the two X-ray bulbs intersect at a common focus.
  • the imaging device is rotatable along the central axis of the radiation source device.
  • the imaging device 013 includes an X-ray tube 017 and an X-ray flat plate 016, if the patient moves in the up and down directions as shown in FIGS. 7, 10 and 11 , It cannot be judged based on the image. Therefore, if the imaging device rotates along the central axis of the source device, it can acquire patient images at different angles, so that it can be confirmed at each angle whether the patient issued a movement.
  • an imaging device is fixedly connected to a radiation source device.
  • the imaging device is fixedly connected to any one of the carrier body and the collimator body.
  • the ray tube 017 and the X-ray flat plate 016 may be fixedly connected to the source body, so that the rotation of the source body drives the imaging device to rotate, and a separate rotation driving device of the imaging device is avoided.
  • the imaging device may also be fixedly connected to the switch body or the collimator body, which is not limited in this disclosure.
  • the radiotherapy device further includes a shielding device.
  • the shielding device is located on one side of the radiation source device, and the beam emitted by the radiation source passes through the common focus and is shielded by the shielding device.
  • the shielding device 014 is located at one side of the common focus 012 of the source device 04, and the beam emitted by the radiation source 011 passes through the common focus 012 and is shielded by the shielding device 014.
  • the shielding device is a ring-shaped body, and all rays that the radiation source rotates around the central axis are received by the shielding device.
  • the shielding device is a shielding block that can be rotated along the central axis of the radiation source device to follow the rotation of the radiation source to receive the rays that have passed through the common focus. It should be noted that, when the treatment bed carries the patient's movement, a channel is opened on the shielding device to facilitate the movement of the treatment bed.
  • the present disclosure does not limit the location settings of the shielding device and the imaging device.
  • the imaging device may be separately fixed or may be provided inside the shielding device.
  • the radiation therapy device provided by the present disclosure further includes a shielding door, which can open or close the cavity of the radiation therapy device.
  • the shielding door 015 may be disposed outside the cavity of the source device 04, and may open or close the cavity of the source device 04. It may be opened and closed, and left and right. Therefore, during non-treatment time, the beam can be shielded through the shielding door.
  • the shielding door may be provided between the imaging device and the shielding device, or the shielding door may be provided outside the shielding door.
  • the present disclosure does not limit the specific setting position of the shielding door 015, and only uses the example shown in FIG. 7 as an example for illustration.
  • the radiotherapy apparatus is further provided with an anti-sinking component (not shown in the figure) between the collimator body 02 and the source body 01.
  • the source device further includes a shield body 05 located outside the source body 01, and a sink-proof component is further provided between the shield body 05 and the source body 01.
  • the anti-sinking component may be a bearing, so as to prevent the collimator body and the source body from driving at one end and the other end from sagging.
  • the disclosure provides a method for controlling and driving a radiotherapy apparatus.
  • the radiotherapy apparatus includes a plurality of ray sources, and the source points of the plurality of ray sources are within a preset included angle range in a longitude direction.
  • the ray source may be an X-ray acceleration system, and the beam is an X-ray beam; or, the ray source may be a ray source, and the beam is a ⁇ -ray beam. If the beam is an X-ray beam, the principle is that the electron beam hits the target to generate an X-ray beam.
  • the source point of the ray source can be the intersection of the opposite extension line of the X-beam 07 as shown in FIG. 14. If the beam is a ⁇ -ray beam, the source point of the ray source may be an isotope radiation source, such as cobalt-60.
  • control driving method includes:
  • Step S1 Acquire at least one beam exit angle range.
  • Step S2 The radiation therapy device is driven to emit a beam in a beam exit angle range and intersect at a common focus.
  • the beam angle range may be an angle range included in a corresponding treatment plan prepared by a treating physician based on a patient's tumor image, which requires a radiation therapy device to emit a beam for irradiation treatment, and the angle range is driven by a driving device Angle range. For example, as shown in FIG.
  • the radiation therapy equipment performs irradiation treatment in the B1 interval and does not perform irradiation treatment in the A1 interval (the A1 interval includes two eyes)
  • the beam angle range is the driving angle range where the driving device drives the ray source to irradiate in the B1 interval
  • the protective angle range is the driving angle range where the driving device drives the ray source to avoid irradiating in the A1 interval .
  • the driving angle range is the rotation angle of the motor.
  • the driving angle range also exceeds 360 °.
  • the number of rotations and the driving angle range corresponding to different numbers of rotations are calibrated.
  • the beam angle range is a driving angle range for irradiation in the A1 interval and the B1 area, for example, 360 °.
  • the sensitive tissues and organs can be protected by reducing the irradiation time to reduce the dose received by sensitive tissues such as the optic nerve.
  • the disclosure provides a method for controlling driving.
  • the radiation therapy device includes multiple ray sources, and the source points of the multiple ray sources are within a preset angle range in the longitude direction.
  • the method for controlling driving includes obtaining at least one beam angle range. , And drive the radiotherapy equipment to emit a beam in the range of the beam angle and intersect at a common focus, in order to protect the sensitive tissues and organs such as the eye during the treatment of head tumors to avoid additional damage.
  • a control driving method provided by the present disclosure, as shown in FIG. 16, further includes:
  • Step S3 Acquire at least one protection angle range. At least one protection angle range is less than 360 °.
  • the radiation therapy equipment performs irradiation treatment in the B1 and B2 intervals, and does not perform irradiation treatment in the A1 and A2 intervals (A1 corresponds to the area where one eye is located, and A2 corresponds to the area where the other eye is located.
  • the beam angle range is the driving angle range where the driving device drives the ray source to irradiate in the B1 and B2 intervals
  • the protective angle range is the driving device drives the ray source to avoid irradiation in the A1 and A2 sections.
  • Step S4 The radiation therapy device is driven so that the beam of the radiation source within the protection angle range is not emitted.
  • the disclosure provides a method for controlling driving.
  • the radiation therapy device includes multiple ray sources, and the source points of the multiple ray sources are within a preset angle range in the longitude direction.
  • the method for controlling driving includes obtaining at least one beam angle range. And at least one protection angle range, and drives the radiotherapy equipment to emit a beam in the exit angle range and intersect at a common focus, and the beam of the ray source within the protection angle range is not emitted. Therefore, during the treatment of head tumors, sensitive tissues and organs such as the eyes can be protected from additional damage.
  • At least one of the beam angle ranges and one of the protection angle ranges are adjacent.
  • the irradiation treatment is performed in the B1 and B2 sections, and the irradiation treatment is not performed in the A1 and A2 sections. Since the B1 section and the A1 section are adjacent, the beam exit angle range corresponding to the B1 section and the protection angle corresponding to the A1 section. The ranges are adjacent.
  • the control and driving method provided by the present disclosure acquires multiple beam exit angle ranges, and the speeds of the radiation therapy equipment are different in at least two beam exit angle ranges.
  • the beam exit angle range corresponding to the B1 section and the beam exit angle range corresponding to the B2 section are obtained, and the beam exit angle of the radiotherapy equipment in the corresponding B1 section is obtained.
  • the speed of the range is V1
  • the speed of the beam angle range corresponding to the B2 interval is V2, V1 ⁇ V2, so the speed can be used to adjust the irradiation time at different positions and thus the focus dose.
  • the beam angle range is the driving angle range of the irradiation in the A1 area and the B1 area. It may be that the speed in the range of the exit angle corresponding to the B1 section is V1, and the speed in the range of the exit angle corresponding to the A1 section is V2, and V1 ⁇ V2. Even if the speed in the A1 interval is greater than the speed in the B1 interval, the dose received by sensitive tissues in the A1 interval is reduced to protect sensitive tissues and organs.
  • the driving angle range is the rotation angle of the motor, so the driving angle range also exceeds 360 °.
  • the number of rotations is calibrated, and the driving angle range corresponding to different numbers of turns.
  • the speeds of the radiotherapy equipment are different in at least two beam exit angle ranges, and the driving speeds may be different for the same irradiation interval when the number of turns is different.
  • the treatment time of the radiation therapy plan is 2 minutes, and the motor drive requires 1 minute for one rotation.
  • the beam angle in the first circle is the driving speed of the irradiation in the B1 area is V1
  • the second circle is out.
  • the beam angle range is the driving speed of irradiation in the B1 region is V2, and V1 ⁇ V2.
  • the control driving method provided by the present disclosure has two beam exit angle ranges with different speeds adjacent to each other.
  • the control driving method provided by the present disclosure drives a radiotherapy apparatus to reciprocate within a beam exit angle range. For example, if only one beam exit angle range is acquired, the radiation therapy device may reciprocate within the beam exit angle range to increase the dose received by the tumor. Of course, if multiple beam exit angle ranges are acquired, the radiation therapy device may also reciprocate within the beam exit angle range to increase the dose received by the tumor.
  • the beam is a ⁇ -ray beam or an X-ray beam.
  • the two different beams are explained separately below.
  • the ray source is a gamma radiation source
  • the radiotherapy equipment includes a carrier body and a collimator body.
  • the carrier body is provided with a plurality of gamma radiation sources, and the plurality of gamma radiation sources are distributed in the longitudinal direction.
  • a plurality of collimated hole groups are arranged on the collimator body, and each collimated hole group is distributed within a preset included angle range in the longitude direction. That is, the radiation therapy equipment may be the radiation therapy equipment shown in FIGS. 6, 7, 10, and 11. Then, step S2 in FIG. 14 and FIG.
  • the source body and the collimator may be driven to rotate, so that the radiation source on the source body passes through the collimation hole in the collimator and emits and intersects at a common focus.
  • the ray source is a gamma radiation source
  • the radiotherapy equipment includes a carrier body and a collimator body.
  • the carrier body is provided with a plurality of gamma radiation sources, and the plurality of gamma radiation sources are distributed in the longitudinal direction.
  • a plurality of collimated hole groups are arranged on the collimator body, and each collimated hole group is distributed within a preset included angle range in the longitude direction.
  • the radiation therapy equipment may be the radiation therapy equipment shown in FIGS. 6, 7, 10, and 11. Then, as shown in step S4 in FIG.
  • the radiation therapy device is driven so that the beams emitted by the multiple gamma radiation sources are shielded by the collimator.
  • the displacement of the carrier body and the collimator can be driven so that the radiation source on the carrier body is shielded by the gap between the collimation holes on the collimator body.
  • the misalignment rotates by a small angle, so that the source can be switched on and off quickly; or the source body and the collimator can be driven to displace, so that the radiation source on the source body is shielded by the shielding position on the collimator body.
  • the radiotherapy apparatus further includes a source body, that is, the source body is used to switch the source. Then, as shown in step S4 in FIG. 16, the radiation therapy device is driven so that the beams emitted by the multiple gamma radiation sources are shielded by the source body. Further, the source body is disposed on the collimator body, that is, the source body can be located at the shielding position of the collimator body.
  • the radiation therapy device further includes a switch body, the switch body is located between the source body and the collimator body, and the switch body is provided with at least two sets of hole positions corresponding to the gamma radiation source, of which one set of holes The bits are all through holes, and the remaining groups of holes include through holes and shields.
  • the driving control method further includes:
  • Step S5 The switch body is driven so that part of the beams emitted by the plurality of gamma radiation sources are shielded by the shield position of the switch body.
  • the driving control method shown in FIG. 16 may also include step S5, and FIG. 18 only uses the driving control method shown in FIG. 14 including step S5 as an example.
  • the switch body is shown in FIG. 13, and the switch body 018 is driven so that part of the beams emitted by the multiple gamma radiation sources are shielded by the shield bit of the switch body, that is, the beam of some radiation sources can be shielded by the shield bits of the switch body, thereby To achieve the purpose of adjusting the dose.
  • the distance between two adjacent collimation holes in the same collimation hole group is larger than the size of the gamma radiation source. Then, as shown in step S4 in FIG. 16, the radiation therapy equipment is driven so that a plurality of gamma radiation sources are misaligned with the collimation hole. Some of the beams emitted by the gamma radiation source are shielded by the edge region of the collimation hole group, and the remaining gamma radiation sources are shielded. The emitted beam is shielded by the spaced areas between the collimation holes.
  • the displacement of the carrier body and the collimator can be driven so that the radiation source on the carrier body is shielded by the gap between the collimation holes on the collimator body.
  • the misalignment rotates at a smaller angle, so that the source can be switched on and off quickly.
  • the beam is an X-ray beam
  • the radiotherapy apparatus includes one or more X-ray acceleration systems.
  • step S2 shown in FIG. 14 or FIG. 16 is specifically: driving an X-ray acceleration system to emit a plurality of X-ray beams in a beam angle range.
  • step S4 shown in FIG. 16 is specifically: turning off all or part of the X-ray beam of an X-ray acceleration system.
  • turning off the X-ray acceleration system may be to turn off all or part of the X-ray beam by turning off the microwave device or turning off the acceleration tube.
  • step S2 shown in FIG. 14 or FIG. 16 is specifically: driving the multiple X-ray acceleration systems to emit multiple X-ray beams in a beam angle range.
  • step S4 shown in FIG. 16 is specifically: shutting down all or part of the X-ray acceleration systems among the plurality of X-ray acceleration systems.
  • turning off multiple X-ray acceleration systems may be to turn off all or part of the X-ray beam by turning off microwave devices of the multiple X-ray acceleration systems or turning off the acceleration tube.
  • the common focus lies outside the end face of the source device.
  • the radiotherapy apparatus further includes an imaging device, and a common focus is located in an imaging area of the imaging device.
  • the driving control method further includes:
  • Step S6 Control the imaging device to acquire an image of the patient.
  • Step S7 Confirm the beam angle range based on the patient's image.
  • the beam exit angle range in step S1 may be the beam exit angle range confirmed by the treating physician based on the patient's image before radiotherapy, and during the treatment, the beam exit angle range may be confirmed or adjusted based on the acquired image.
  • the radiation treatment apparatus further includes an imaging device, and a common focus is located in an imaging area of the imaging device; as shown in FIG. 20, the driving control method further includes:
  • Step S8 Control the imaging device to acquire an image of the patient.
  • Step S9 The protective angle range is confirmed based on the patient's image.
  • the protection angle range in step S3 can be the protection angle range confirmed by the treating physician based on the patient's image before the radiotherapy. During the treatment, the protection angle range can be confirmed or adjusted based on the acquired image.
  • control driving device corresponding to a control driving method of a radiation therapy device provided by the present disclosure.
  • control driving method for a part of the description of the driving device, reference may be made to the control driving method, which is not described in detail below.
  • a control driving device for a radiotherapy device provided by the present disclosure.
  • the radiotherapy device includes a plurality of ray sources, and the source points of the plurality of ray sources are within a preset angle range in the longitude direction;
  • the control driving device includes a processor and a processor.
  • the device is used for acquiring at least one beam exit angle range; and driving the radiotherapy apparatus to emit a beam in the beam exit angle range and intersect at a common focus.
  • control driving device provided by the present disclosure, the processor is further configured to acquire at least one protection angle range; and drive the radiation therapy device so that the beam of the radiation source within the protection angle range is not emitted.
  • the processor is further configured to acquire multiple beam exit angle ranges, and the speeds of the radiation therapy devices are different in at least two beam exit angle ranges.
  • control and driving device provided by the present disclosure, and the processor are further configured to drive the radiation therapy device to reciprocate within a beam exit angle range.
  • the control driving device provided by the present disclosure is a ⁇ -ray source.
  • the radiation therapy device includes a source body and a collimator.
  • the source body is provided with multiple gamma radiation sources, and the multiple gamma radiation sources are distributed in the longitude direction.
  • a plurality of collimation hole groups are arranged on the collimator body, and each collimated hole group is distributed within a preset included angle range in the longitude direction; the processor is used to drive the radiotherapy equipment, so that multiple The beam emitted by the gamma source is emitted after passing through a collimation hole in the collimator.
  • the control driving device provided by the present disclosure is a ⁇ -ray source.
  • the radiation therapy device includes a source body and a collimator.
  • the source body is provided with multiple gamma radiation sources, and the multiple gamma radiation sources are distributed in the longitude direction.
  • a plurality of collimation hole groups are arranged on the collimator body, and each collimated hole group is distributed within a preset included angle range in the longitude direction; the processor is used to drive the radiotherapy equipment, so that multiple The beam from the gamma source is shielded by the collimator.
  • the radiation therapy device further includes a source body
  • the processor is further configured to drive the radiation therapy device, so that the beams emitted by the plurality of gamma radiation sources are shielded by the source body.
  • the radiation therapy device further comprises a switch body, the switch body is located between the source body and the collimator body, and the switch body is provided with at least two sets of hole positions corresponding to the gamma radiation source, of which one set of holes
  • the bits are all through holes, and the remaining groups of holes include through holes and shields.
  • the processor is also used to drive the switch body, so that part of the beams emitted by multiple gamma radiation sources are shielded by the shields of the switch body.
  • the distance between two adjacent collimation holes in the same collimation hole group is larger than the size of the gamma radiation source; the processor is also used to drive the radiation therapy device so that multiple gamma radiations The source and the collimation hole are misaligned. Some of the beams emitted by the gamma radiation source are shielded by the edge area of the collimation hole group, and the beams emitted by the other gamma radiation sources are shielded by the space between the collimation holes.
  • the control driving device provided by the present disclosure is an X-ray beam
  • the radiation therapy device includes one or more X-ray acceleration systems
  • the processor is configured to drive one X-ray acceleration system to emit multiple X-ray beams in a range of exit angles; or , Driving multiple X-ray acceleration systems to emit multiple X-ray beams in a range of beam angles.
  • the beam is an X-ray beam
  • the radiation therapy device includes one or more X-ray acceleration systems
  • the processor is used to turn off all or a part of the X-ray acceleration system of the X-ray acceleration system; or, turn off multiple All or part of an X-ray acceleration system.
  • the radiation therapy device further includes an imaging device, and the common focus is located in the imaging area of the imaging device; the processor is also used to control the imaging device to acquire an image of the patient; and, according to the image of the patient, confirming the beam Angle range.
  • the radiation therapy device further includes an imaging device, and the common focus is located in the imaging area of the imaging device; the processor is also used to control the imaging device to acquire the image of the patient; range.
  • the present disclosure provides a radiation therapy system including the radiation therapy device provided by the present disclosure and a control driving device provided by the present disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

提供一种放射治疗设备、控制驱动方法及设备、放射治疗系统,其属于医疗技术领域。该放射治疗设备包括射源装置(04),射源装置(04)包括多个射线源(011)和准直体(02),多个射线源(011)的源点(06)在经度方向上的预设夹角范围内,准直体(02)上设置有多个准直孔组,每个准直孔组在经度方向的夹角在预设夹角范围内;每个准直孔组包括多个准直孔(021),多个射线源(011)发出的射束经过准直孔组的各准直孔(021)后相交于一个公共焦点(012)。

Description

放射治疗设备、控制驱动方法及设备、系统
相关申请的交叉引用
本公开要求于2018年08月24日提交、申请号为201810977446.8、发明名称为“一种放射治疗系统及其控制驱动方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及医疗技术领域,特别涉及一种放射治疗设备、控制驱动方法及设备、系统。
背景技术
随着医疗技术的发展,放射治疗越来越广泛的应用于对肿瘤的治疗。
相关技术中的用于治疗头部肿瘤的放射治疗设备主要包括射源装置和治疗床,射源装置中的放射源排布如图1所示,放射源111分为六组,其分布在载源体11上。参照图2,准直体12上设置有多个准直通道,放射源发出的射线穿过准直通道相交于焦点。治疗床用于承载患者,并将患者移动至射源装置的治疗舱内部,使得患者的病灶位于上述焦点处以进行放射治疗。
发明内容
本公开提供了一种放射治疗设备、控制驱动方法及设备、系统。
本公开实施例提供了一种放射治疗设备,所述放射治疗设备包括射源装置,所述射源装置包括多个射线源和准直体,所述多个射线源的源点在经度方向上的预设夹角范围内,所述准直体上设置有多个准直孔组,每个所述准直孔组在经度方向的夹角在预设夹角范围内;
每个所述准直孔组包括多个准直孔,所述多个射线源发出的射束经过所述准直孔组的各准直孔后相交于一个公共焦点。
本公开实施例还提供了一种放射治疗设备的控制驱动方法,所述放射治疗设备包括多个射线源,多个射线源的源点在经度方向上的预设夹角范围内;所 述方法包括:
获取至少一个出束角度范围。
驱动所述放射治疗设备在所述出束角度范围发出射束并相交于一个公共焦点。
本公开实施例还提供了一种放射治疗设备的控制驱动设备,包括:处理器,所述处理器用于执行本公开提供的控制驱动方法。
本公开实施例还提供了一种放射治疗系统,所述放射治疗系统包括:本公开提供的放射治疗设备,以及本公开提供的控制驱动设备。
附图说明
图1是本公开实施例提供的一种相关技术中载源体的俯视结构示意图;
图2是本公开实施例提供的一种相关技术中准直体的俯视结构示意图;
图3是本公开实施例提供的一种X射线束的原理示意图;
图4是本公开实施例提供的一种载源体示意图;
图5是本公开实施例提供的一种准直体示意图;
图6是本公开实施例提供的一种放射治疗设备示意图;
图7是本公开实施例提供的另一种放射治疗设备示意图;
图8是本公开实施例提供的另一种载源体示意图;
图9是本公开实施例提供的另一种准直体示意图;
图10是本公开实施例提供的另一种放射治疗设备示意图;
图11是本公开实施例提供的另一种放射治疗设备示意图;
图12是本公开实施例提供的另一种准直体示意图;
图13是本公开实施例提供的一种开关体示意图;
图14是本公开实施例提供的一种控制驱动方法示意图;
图15是本公开实施例提供的一种治疗照射示意图;
图16是本公开实施例提供的另一种控制驱动方法示意图;
图17是本公开实施例提供的另一种治疗照射示意图;
图18是本公开实施例提供的另一种控制驱动方法示意图;
图19是本公开实施例提供的另一种控制驱动方法示意图;
图20是本公开实施例提供的另一种控制驱动方法示意图。
具体实施方式
为使本公开的原理、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
相关技术中的放疗设备其载源体如图1所示为碗状,放射源111分为六组,每组五颗共计30颗放射源,其分布在载源体11上。准直体12如图2所示,准直体12上设置有六个准直通道组,六个准直通道组与六组放射源位置对应,每个准直通道组均包括四个小组,其中一个小组的准直孔内填充有实心钨棒以实现关源屏蔽,另外的各小组均包括5个准直孔,不同小组的准直孔大小不同。
在治疗时,可以驱动载源体11和准直体12相互旋转,来切换不同大小的准直孔以及通过准直体屏蔽放射源来实现开关源,但六组准直孔的大小切换和开关源同时切换,不能单独控制其中的一组。因此,在治疗过程中,要避开眼睛(敏感组织器官)只能通过调整伽玛角,以使得射线避开眼睛。
本公开提供的一种放射治疗设备,放射治疗设备包括射源装置。射源装置包括多个射线源和准直体,多个射线源的源点在经度方向上的预设夹角范围内。准直体上设置有多个准直孔组,每个准直孔组在经度方向的夹角在预设夹角范围内;每个准直孔组包括多个准直孔,多个射线源发出的射束经过准直孔组的各准直孔后相交于一个公共焦点。
需要说明的是,本公开中,射线源可以是X射线加速系统,则射束可以为X射线束;或者,射线源可以是γ放射源(以下也称放射源),则射束可以为γ射线束。若射束为X射线束,且产生X射线束的原理为电子束打在靶体上,以产生X射线束,则射线源的源点可以是如5图所示为X射束07的反向延长线的交点(也即图3中的源点06)。若射束为γ射线束,则射线源的源点为可以是同位素放射源,例如钴-60。
下面分别对射线源为X射线加速系统和γ放射源进行说明。
示例的,以射线源为放射源钴-60,即射线源为γ放射源,射源装置包括载源体,载源体上设置有多个γ放射源,多个γ放射源分布在经度方向上的预设夹角范围内为例。示例的,如图6、图7所示的放射治疗设备,射源装置4中的载源体01可以是如图4所示,载源体01上设置有多个γ放射源011,多个γ放射源011发出的射束相交于图6和图7中的一个公共焦点012。准直体02可以是如图5所示。图4中的载源体01和图5中的准直体02均为碗状,载源体的经度方向如图4中箭头所示,该经度方向为经度0°-360°的走向方向。或者, 如图10所示的放射治疗设备,射源装置04还可以是筒状,该放射治疗设备中的载源体01可以是如图8所示,准直体02可以是如图9所示,该载源体和该准直体均为筒状。载源体的经度方向如图8中箭头所示,为经度0°~360°的走向方向。图10中载源体两端大小一致(如两端的外径大小一致),且准直体的两端大小一致(如两端的外径大小一致)为例。当然也可以是大小不同,示例的如图11所示。本公开对于射源装置的具体形状不做限定,仅以上述为例。
以图6、图7所示的放射治疗设备为例,说明本公开的夹角范围。如图4所示,放射源011在经度方向的夹角为:以放射源011的中心为参考形成的夹角。这里需要特别说明的是,若放射源011包括一排,且位于同一排的多个放射源011的中心在同一经度线上,则认为该多个放射源011在经度方向的夹角为零度,本公开中,预设夹角范围大于或等于零度。如图5所示,准直孔021在经度方向的夹角为以准直孔021的中心为参考形成的夹角。这里需要特别说明的是,若准直孔021包括一排,且位于同一排的多个准直孔021的中心在同一经度线上,则认为该多个准直孔021在经度方向的夹角为零度,本公开中,预设夹角范围大于或等于零度。
如图4所示,图4示出了本公开提供的一种载源体01,载源体01上设置有多个放射源011,多个放射源011在经度方向的夹角为A。示例的,该夹角A的取值范围可以是15°-60°,即15°≤A≤60°,夹角A可以是15°-60°范围内的任意夹角,示例的,该夹角A的范围可以是5°-60°,即5°≤A≤60°,也即,夹角A可以是5°-60°范围内的任意夹角,示例的,夹角A可以是5°、8°、10°、12°、18°、20°、25°、30°、40°、45°、50°或60°。对于放射源011的个数和排布方式,本公开不做限定,放射源的个数一般可以是20-180个,例如可以是30个或180个。仅以图4所示的24个放射源为例进行示例说明。
示例的,如图5所示,为本公开提供的一种碗状的准直体02,图5以准直体02上设置有4个准直孔组为例,分别为①号准直孔组,②号准直孔组,③号准直孔组和④号准直孔组,每个准直孔组分别包括24个准直孔021,且与放射源的分布对应。以①号准直孔组为例,多个放射源发出的射束经过①号准直孔组的各准直孔021后相交于一个公共焦点。其中,①号准直孔组,②号准直孔组,③号准直孔组和④号准直孔组在经度方向的夹角在预设夹角范围内。图5以①号准直孔组为例,①号准直孔组在经度方向(图5所示的箭头方向)的夹 角为A,示例的,该夹角A同载源体01的放射源011的夹角,为5°-60°。
准直体02上设置有多个准直孔组,可以准直体02上设置有两个或两个以上准直孔组,图5仅以准直体02上设置4个准直孔组为例进行示例说明。每个准直孔组包括多个准直孔021,该多个准直孔021的个数和排布方式与载源体上的多个放射源011对应,以使得放射源011发出的射束穿过准直孔021后相交于一个公共焦点。
示例的,如图10所示,射源装置也可以是筒状,则如图8所示,载源体01也可以是如图8所示的筒状,其经度方向为图8中箭头所示的方向。图8中以筒状载源体01两端大小一致为例。对于放射源011的具体个数和排布方式,本公开不做限定,图8中仅以20个放射源011为例进行示例说明。准直体02也可以是如图9所示的筒状,该多个准直孔021对应放射源011的个数和排布方式,在此不做赘述。本公开对于准直体02上的准直孔组的个数不做限定,图9中以准直体02上设置有两个准直孔组为例,且每个准直孔组包括20个准直孔021为例进行示例说明。
本公开提供的一种放射治疗设备包括射源装置,射源装置包括多个射线源和准直体,多个射线源的源点在经度方向上的预设夹角范围内,准直体上设置有多个准直孔组,每个准直孔组在经度方向的夹角在预设夹角范围内;每个准直孔组包括多个准直孔,多个射线源发出的射束经过准直孔组的各准直孔后相交于一个公共焦点。则放射治疗设备可以通过载源体带动多个射线源沿放疗设备的中心轴旋转,在经过敏感组织或器官时,将射线源进行关源;在经过正常组织器官时射线源进行开源,从而可以在头部肿瘤治疗过程中,对眼睛等敏感组织器官进行保护,避免额外伤害。
本公开提供的放射治疗设备,放射治疗设备还包括驱动装置,用于驱动射源装置运动。示例的,驱动装置可以驱动射线源运动,和/或驱动准直体运动。
下面以图4所示,对本公开提供的载源体01进行具体的示例说明。
示例的,本公开提供的载源体01,在经度方向上,多个放射源011分为多组,相邻两组放射源011的夹角范围为2°-15°。示例的,多组放射源011中,任意相邻的两组放射源011的夹角均相同,或者,不同的相邻两组放射源011的夹角不同,本公开对此不做限定,图4所示仅为一种示例说明。如图4所示,多个放射源011分为4组,相邻的两组放射源011的夹角为B(图4以示意的两组为例)为例,该夹角B的范围可以是2°-15°,即2°≤B≤15°,夹角B可 以是2°-15°范围内的任意夹角,示例的,夹角B可以是2°、2.5°、3、5°、6°、8°、10°、12或15°。
本公开提供的载源体01,多个放射源011在纬度方向的夹角范围为20°-60°。示例的,如图4所示,载源体01在纬度方向的夹角C内设置有多个放射源011。示例的,该夹角C的范围可以是20°-60°,即20°≤C≤60°,夹角C可以是20°-60°范围内的任意夹角,示例的,夹角C可以是20°、25°、30°、38°、40°、45°、50°、53°或60°。
示例的,本公开提供的载源体01,在纬度方向上,任意相邻两个放射源011的夹角范围为1°-10°。示例的,多组放射源011中,在纬度方向上任意相邻的两组放射源011的夹角均相同,或者,在纬度方向上任意相邻的两组放射源011的夹角不同,本公开对此不做限定,图4所示仅为一种示例说明。示例的,如图4所示,以其中两个放射源011为例,该两个放射源011在纬度方向的夹角为D,该夹角D的范围可以是1°-10°,即1°≤D≤10°,夹角D可以是1°-10°范围内的任意夹角,示例的,夹角D可以是1°、2°、3°、5°、6°、8°、9°或10°。
图4所示的载源体01,以放射源011在经度方向包括多排,位于同一排的放射源011经度相同,在纬度方向上也分为多排,位于同一排的放射源011纬度相同为例。进一步的,为了实现非共面照射,更好的保护正常组织,本公开提供的载源体01,放射源011在纬度方向上,其位置各不相同。即每个放射源011其纬度均不同。
本公开提供的载源体,载源体上设置有多个放射源孔,放射源固定安装在放射源孔内。或者,载源体上设置有与源匣形状相匹配的源匣位,源匣可固定安装在源匣位处,源匣上安装有多个放射源。示例的,源匣位可以是通孔,也可以是盲孔,并在载源体上设置有多个准直孔,以使得放射源发出的射束可以穿过该准直孔发出。本公开对于源匣及源匣位的形状和结构不做限定。
载源体上还设置有源匣连接部,用于固定位于源匣位处的源匣。同理,源匣上也设置有用于与源匣位连接的连接部。示例的,载源体和源匣可以是通过螺钉连接,也可以是通过卡扣连接,对于源匣与源匣位的连接和固定方式,本公开不做限定,仅以上述为例进行示例说明。
本公开提供的载源体,源匣上还设置有取换源匣的连接部。示例的,源匣连接部可以是螺孔,其可以通过与导源杆螺纹连接。或者,源匣连接部与导源 杆可以是磁铁吸附连接。对于源匣与导源杆的连接,以及源匣的取换方式,本公开不做限定,仅以上述为例进行示例说明。
本公开提供的源匣与载源体的材料不同。示例的,源匣可以是由钨合金形成,载源体可以是由铸铁形成。
下面以图5所示,对本公开提供的准直体进行具体的示例说明。
本公开提供的准直体02,在经度方向上,相邻两个准直孔021的间距大于放射源011的尺寸。从而还可以通过使得准直体02和放射源011仅仅错位较小角度,使得准直孔021之间的间距来屏蔽放射源011,避免使用屏蔽位010来屏蔽,因为仅需要错位较小角度,从而可以实现快速开关源。
示例的,本公开提供的准直体02,在经度方向上,每个准直孔组包括多排,相邻两排放射源011的夹角范围为2°-15°。示例的,准直孔组中,任意相邻的两排的夹角均相同,或者,不同的相邻两排的夹角不同,本公开对此不做限定,图5所示仅为一种示例说明。如图5所示,多个放射源011分为4排,相邻的排准直孔的夹角为B(图9以示意的两排为例)为例,该夹角B的范围可以是2°-15°,即2°≤B≤15°,夹角B可以是2°-15°范围内的任意夹角,示例的,夹角B可以是2°、2.5°、3、5°、6°、8°、10°、12或15°。
本公开提供的准直体02,准直孔组在纬度方向的夹角范围为20°-60°。示例的,如图5所示,该夹角C的范围可以是20°-60°,即20°≤C≤60°,夹角C可以是20°-60°范围内的任意夹角,示例的,夹角C可以是20°、25°、30°、38°、40°、45°、50°、53°或60°。
示例的,本公开提供的准直体02,在纬度方向上,任意相邻两个准直孔021的夹角范围为1°-10°。示例的,在纬度方向上任意相邻的两个准直孔021的夹角均相同,或者,在纬度方向上任意相邻的两个准直孔021的夹角不同,本公开对此不做限定,图5所示仅为一种示例说明。示例的,如图5所示,以其中两个准直孔为例,该两个准直孔在纬度方向的夹角为D,该夹角D的范围可以是1°-10°,即1°≤D≤10°,夹角D可以是1°-10°范围内的任意夹角,示例的,夹角D可以是1°、2°、3、5°、6°、8°、9°或10°。
图5所示的准直体02,以准直孔组的准直孔021在经度方向包括多排,位于同一排的放射源011经度相同,在纬度方向上也分为多排,位于同一排的放射源011纬度相同为例。进一步的,为例实现非共面照射,更好的保护正常组织,本公开提供的载源体01,准直孔021在纬度方向上,其位置各不相同。即 任意两个准直孔021其纬度均不同。
本公开提供的准直体02,准直体02还包括屏蔽位010,用于屏蔽多个放射源011的射束。即可以通过准直体02的屏蔽位010屏蔽放射源011的射线,实现关源。本公开对于屏蔽位010的具体位置不做限定,图5中以屏蔽位010与各准直孔组位置相对为例进行示例说明。
示例的,本公开提供的准直体02,屏蔽位010位于多个准直孔组中任意相邻的两个准直孔组之间。示例的,如图12所示,以屏蔽位010位于②号准直孔组和③号准直孔组之间为例进行示例说明。
图12中仅以包括一个屏蔽位010为例,本公开提供的准直体02,准直体包括多个屏蔽位010。例如,还可以在①号准直孔组和②号准直孔组之间设置屏蔽位010。也可以是在③号准直孔组和④号准直孔组之间设置屏蔽位010。也可以是在各相邻的两个准直孔组之间均设置屏蔽位010。本公开对于多个屏蔽位010的个数和分布不做限定,仅以上述为例进行示例说明。
本公开提供的准直体02,在屏蔽位010设置有屏蔽体05,屏蔽体05的材料密度大于准直体02的材料密度。示例的,屏蔽体05与准直体02固定连接,屏蔽体05可以是由钨块或铅快或其合金组成。准直体02可以是由铸铁组成。从而屏蔽体05能够实现对放射源011的更好屏蔽。本公开对于屏蔽位010的位置不做限定,示例的如图12所示,其也可以是位于不同准直孔组之间。
本公开提供的准直体02,准直体01包括固定连接的内准直体和外准直体,内准直体上的准直孔和外准直体上的准直孔对应设置。即准直体可以是包括双层,该内准直体和外准直体可以是通过螺钉连接固定。
本公开提供的准直体,准直体包括内准直体和外准直体,内准直体和外准直体可相对旋转。示例的,在治疗过程中,若发生事故,可以通过内准直体实现快速关源,再旋转外准直体使得屏蔽位对准放射源,以屏蔽放射源,再进一步将内准直体的屏蔽位对准放射源以实现完全关源。
本公开提供的准直体,内准直体上的准直孔为锥孔,和/或,外准直体上的准直孔为直孔。示例的,可以是内准直体上为直孔,外准直体也为直孔;或者,内准直体为锥孔,外准直体为直孔;也可以是内准直体和外准直体均为锥孔。
本公开提供的一种放射治疗设备,射源装置还包括开关体,开关体位于载源体和准直体之间;开关体上设置有与放射源对应的至少两组孔位,其中一组孔位均为通孔,其余各组孔位包括通孔和屏蔽位。示例的,如图13所示,开关 体018上设置有5组孔位即a-e组孔位,其中a孔位均为通孔,b孔位中仅以一排为通孔其余各孔位为屏蔽位,c孔位中两排为通孔其余各孔位为屏蔽位,d孔位中三排为通孔其余各孔位为屏蔽位,e孔位中四排为通孔其余各孔位为屏蔽位。需要说明的是,屏蔽位可以是在开关体上不设置孔,也可以是开关体上开有孔但开孔内可以是填充有钨棒,以屏蔽放射源。
本公开提供的放射治疗设备,在经度方向上,相邻两个准直孔的间距大于放射源的尺寸。从而还可以通过使得准直体和放射源仅仅错位较小角度,使得准直孔之间的间距来屏蔽放射源,避免使用屏蔽位来屏蔽,因为仅需要错位较小角度,从而可以实现快速开关源。
本公开提供的放射治疗设备,射束为X射线束,放射治疗设备包括一个或多个X射线加速系统;一个X射线加速系统在出束角度范围发出多个X射线束;或者,多个X射线加速系统在出束角度范围发出多个X射线束。X射线加速系统是通过电子束打在靶体上产生X射线束,本公开中射线源的源点06可以是如图3所示为X射束07的反向延长线的交点。其中,该X射束07可以由电子束08照射在靶体09上而得到。则本公开放射治疗设备,可以是包括一个X射线加速系统,该一个X射线加速系统发出电子束,该电子束打在不同靶体或不同位置的靶体上,分别发出多个X射线。或者,放射治疗设备,可以是包括多个X射线加速系统,每个X射线加速系统分别发出电子束,该电子束打在靶体上发出多个X射线。有关加速器发出X射线束的具体结构,本公开在这边不做赘述。
在治疗过程中,需要将患者的肿瘤精确的位于公共焦点处,以使得放射线将肿瘤细胞杀死。但若治疗过程中患者发生移动,则放射线发生偏移,不仅不利于治疗还有害于患者健康,由于相关技术中的放疗设备其公共焦点位于射源装置的腔体内,则治疗过程中无法对患者的头部是否移动进行监控。本公开提供的放射治疗设备,公共焦点位于射源装置的端面之外。示例的,如图7、图10和图11所示,公共焦点012位于射源装置04的端面之外,则有利于观察和监测患者在治疗过程中是否发生移动。
本公开提供的放射治疗设备,放射治疗设备还包括成像装置,成像装置沿射源装置的中心轴方向设置在射源装置的一侧,公共焦点位于成像装置的成像区域内。即可以通过成像装置对位于成像区域内的患者肿瘤进行成像,根据图像确认患者是否发生位移。利用图像进行位移监控的精度高。
本公开的放射治疗设备,成像装置为X射线成像装置、CT成像装置、超声成像装置、DSA成像装置、MR成像装置、PET成像装置中的任意一种或其的任意组合。例如成像装置为X射线成像装置,示例的,如图7、图10和图11所示,成像装置013可以包括一个X射线球管017和一个平板探测016。或者也可以是包括两个X射线球管和两个平板探测,该两个X射线球管发出的射束相交。当然,成像装置也可以是任意两种或多种不同成像装置的组合,例如成像装置可以是X射线成像装置和DSA成像装置的组合。本公开对于成像装置的具体设置方式不做限定,仅以上述为例进行示例说明。
示例的,在成像装置包括成像中心点的情况下,公共焦点012与成像中心点重合。例如,成像装置包括两个X射线球管以及对应接收每个X射线球管发出的射束的两个X射线平板,两个X射线球管发出的射束相交于公共焦点。
本公开提供的放射治疗设备,成像装置沿射源装置中心轴可旋转。如图7、图10和图11所示,若成像装置013包括一个X射线球管017和一个X射线平板016,则若患者在如图7、图10和图11所示的上下方向发生移动,则根据图像无法判断。因此,若成像装置沿射源装置中心轴旋转,则其可以获取不同角度下的患者图像,从而可以在各角度下确认患者是否发出移动。
成像装置旋转,可以是通过成像装置安装旋转装置,例如可以是通过齿轮齿圈,也可以是通过滑环驱动等。本公开对于成像装置的驱动方式不做限定。
本公开提供的放射治疗设备,成像装置固定连接在射源装置上。示例的,成像装置与载源体或准直体的任一个固定连接。以图7所示的为例,射线球管017和X射线平板016可以是与载源体固定连接,从而,载源体旋转带动成像装置旋转,避免单独设置成像装置的旋转驱动装置。当然,成像装置也可以是固定连接在开关体或准直体上,本公开对此不做限定。
本公开提供的一种放射治疗设备,放疗设备还包括屏蔽装置,屏蔽装置位于射源装置的一侧,放射源发出的射束穿过公共焦点后被屏蔽装置屏蔽。示例的,如图7、图10和图11所示,屏蔽装置014位于射源装置04的公共焦点012的一侧,放射源011发出的射束穿过公共焦点012后被屏蔽装置014屏蔽,以避免治疗室内多余的辐射。示例的,屏蔽装置为环状体,则放射源绕中心轴旋转一周的射线均被屏蔽装置接收。或者,屏蔽装置为屏蔽块,其可沿射源装置中心轴旋转,以跟随放射源旋转接收穿过公共焦点后的射线。需要说明的是,治疗床承载患者移动,则屏蔽装置上开设有通道,以方便治疗床移动。
示例的,本公开对屏蔽装置和成像装置的位置设置不做限定,例如成像装置可以是单独固定设置,也可以是设置在屏蔽装置内部。
本公开提供的放射治疗设备,还包括屏蔽门,屏蔽门可打开或闭合放射治疗设备的腔体。以图7所示为例,屏蔽门015可以是设置在射源装置04的腔体外,可打开或闭合射源装置04的腔体,其可以是上下开合,也可以是左右开合。从而在非治疗时间内,可以通过屏蔽门屏蔽射束。当然,屏蔽门也可以是设置在成像装置和屏蔽装置之间,或者屏蔽门设置在屏蔽门的外侧。本公开对于屏蔽门015的具体设置位置不做限定,仅以图7所示的为例进行示例说明。
本公开提供的放射治疗设备,如图6所示,在准直体02和载源体01之间还设置有防下沉组件(图中未示出)。进一步的,射源装置还包括位于载源体01外部的屏蔽体05,在屏蔽体05和载源体01之间还设置有防下沉组件。示例的,防下沉组件可以为轴承,从而避免准直体和载源体在一端驱动旋转的情况下,另一端出现下垂。
本公开提供的一种放射治疗设备的控制驱动方法,放射治疗设备包括多个射线源,多个射线源的源点在经度方向上的预设夹角范围内。
需要说明的是,本公开中,射线源可以是X射线加速系统,则射束为X射线束;或者,射线源可以是射线源为γ放射源,则射束为γ射线束。若射束为X射线束,其原理为电子束打在靶体上,产生X射线束,则射线源的源点可以是如14图所示为X射束07的反向延长线的交点。若射束为γ射线束,则射线源的源点为可以是同位素放射源,例如钴-60。
如图14所示,控制驱动方法包括:
步骤S1:获取至少一个出束角度范围。
步骤S2:驱动放射治疗设备在出束角度范围发出射束并相交于一个公共焦点。
需要说明的是,由于放射治疗设备中的驱动装置一般设置预设的零位,在放射治疗过程中以该零位为参考,确认驱动角度范围进行驱动。本公开中,出束角度范围可以是治疗医师根据患者的肿瘤图像,制定的相应的治疗计划中包括的需要放射治疗设备发出射束进行照射治疗的角度范围,且该角度范围为驱动装置驱动的角度范围。示例的,如图15所示,治疗医师根据患者的肿瘤图像,制定的相应治疗计划中,放射治疗设备在B1区间进行照射治疗,并在A1区间 不进行照射治疗(A1区间为包括两只眼睛的照射区域,避免射线损伤视神经),则出束角度范围为驱动装置驱动射线源在B1区间进行照射的驱动角度范围,保护角度范围为驱动装置驱动射线源在A1区间避免进行照射的驱动角度范围。放射治疗时仅在B1区间进行照射的驱动角度范围内旋转照射即可,从而可以避免照射眼睛伤及敏感组织。示例的,驱动角度范围为电机的旋转角。且本公开中,若放射治疗设备旋转超过360°,则驱动角度范围也超过360°。或者,若放射治疗设备旋转超过360°,则标定旋转圈数,以及不同圈数对应的驱动角度范围。
当然,放射治疗时也可以是对应A1区域和B1区域均进行旋转照射,则出束角度范围为在A1区间和B1区域进行照射的驱动角度范围,例如可以是360°。此时,可以通过减少照射时间来减少敏感组织如视神经接收的剂量,来保护敏感组织器官。
本公开提供的一种控制驱动方法,放射治疗设备包括多个射线源,多个射线源的源点在经度方向上的预设夹角范围内,控制驱动方法包括:获取至少一个出束角度范围,并驱动放射治疗设备在出束角度范围发出射束并相交于一个公共焦点,以在头部肿瘤治疗过程中,对眼睛等敏感组织器官进行保护,避免额外伤害。
本公开提供的一种控制驱动方法,如图16所示,还包括:
步骤S3:获取至少一个保护角度范围。至少一个保护角度范围小于360°。
如图17所示,放射治疗设备在B1区间和B2区间进行照射治疗,并在A1区间和A2区间不进行照射治疗(A1区间对应一只眼睛所在的区域,A2区间对应另一只眼睛所在的区域,避免射线损伤视神经),则出束角度范围为驱动装置驱动射线源在B1区间和B2区间进行照射的驱动角度范围,保护角度范围为驱动装置驱动射线源在A1区间和A2区间避免进行照射的驱动角度范围。
步骤S4:驱动放射治疗设备,使得在保护角度范围内的射线源的射束不发出。
本公开提供的一种控制驱动方法,放射治疗设备包括多个射线源,多个射线源的源点在经度方向上的预设夹角范围内,控制驱动方法包括:获取至少一个出束角度范围以及至少一个保护角度范围,并驱动放射治疗设备在出束角度范围发出射束并相交于一个公共焦点,在保护角度范围内的射线源的射束不发出。从而可以在头部肿瘤治疗过程中,对眼睛等敏感组织器官进行保护,避免额外伤害。
示例的,至少其中一个出束角度范围和其中一个保护角度范围相邻。如图17所示,B1和B2区间进行照射治疗,并在A1和A2区间不进行照射治疗,由于B1区间和A1区间相邻,则对应B1区间的出束角度范围和对应A1区间的保护角度范围相邻。
本公开提供的控制驱动方法,获取多个出束角度范围,至少两个出束角度范围内放射治疗设备的速度不同。示例的,参照图17所示,B1和B2区间进行照射治疗,则获取对应B1区间的出束角度范围和对应B2区间的出束角度范围,且在放射治疗设备在对应B1区间的出束角度范围的速度为V1,在对应B2区间的出束角度范围的速度为V2,V1≠V2,从而可以通过速度来调节不同位置处的照射时间进而调节焦点的剂量。
示例的,如图15所示,当放射治疗时对应A1区域和B1区域均进行旋转照射,则出束角度范围为在A1区间和B1区域进行照射的驱动角度范围。可以是的,在对应B1区间的出束角度范围的速度为V1,在对应A1区间的出束角度范围的速度为V2,V1<V2。即使得在A1区间时的速度大于B1区间的速度,从而减少在A1区间内敏感组织接收的剂量,以保护敏感组织器官。
需要说明的是,本公开中驱动角度范围为电机的旋转角,则驱动角度范围也超过360°。例如电机超过360°,则标定旋转圈数,以及不同圈数对应的驱动角度范围。至少两个出束角度范围内放射治疗设备的速度不同,可以不同圈数时对应同一照射区间其驱动速度不同。例如,放射治疗计划治疗时间为2min,电机驱动旋转一圈需要1min,如图17所示,则在第一圈出束角度范围为在B1区域进行照射的驱动速度为V1,在第二圈出束角度范围为在B1区域进行照射的驱动速度为V2,V1≠V2。
本公开提供的控制驱动方法,示例的,如上所示的,速度不同的两个出束角度范围相邻。
本公开提供的控制驱动方法,驱动放射治疗设备在出束角度范围内往复运动。示例的,若仅获取一个出束角度范围,则放射治疗设备可以在该出束角度范围内往复运动,以增加肿瘤接收的剂量。当然,若获取多个出束角度范围时,放射治疗设备也可以通过在该出束角度范围内往复运动,来增加肿瘤接收的剂量。
本公开提供的控制驱动方法,射束为γ射线束,或X射线束。下面对两种不同射束分别进行说明。
本公开提供的控制驱动方法,射线源为γ放射源,放射治疗设备包括载源体和准直体,载源体上设置有多个γ放射源,多个γ放射源分布在经度方向上的预设夹角范围内,准直体上设置有多个准直孔组,每个准直孔组分布在经度方向上的预设夹角范围内。即放射治疗设备可以是如图6、图7、图10及图11所示的放射治疗设备。则如图14和图16中步骤S2具体为:驱动放射治疗设备,使得多个γ放射源发出的射束穿过准直体上的准直孔后发出并相交于一个公共焦点。示例的,可以是驱动载源体和准直体旋转,使得载源体上的放射源穿过准直体上的准直孔后发出并相交于一个公共焦点。
本公开提供的控制驱动方法,射线源为γ放射源,放射治疗设备包括载源体和准直体,载源体上设置有多个γ放射源,多个γ放射源分布在经度方向上的预设夹角范围内,准直体上设置有多个准直孔组,每个准直孔组分布在经度方向上的预设夹角范围内。同上所述,即放射治疗设备可以是如图6、图7、图10及图11所示的放射治疗设备。则如图16中步骤S4具体为:驱动放射治疗设备,使得多个γ放射源发出的射束被准直体屏蔽。示例的,可以是驱动载源体和准直体错位,使得载源体上的放射源被准直体上的准直孔之间的间隙屏蔽,由于错位时载源体和准直体仅需要错位旋转较小角度,因此可以实现快速开关源;或者也可以是驱动载源体和准直体错位,使得载源体上的放射源被准直体上的屏蔽位屏蔽。
本公开提供的控制驱动方法,放射治疗设备还包括关源体,即该关源体用于开关源。则如图16中步骤S4具体为:驱动放射治疗设备,使得多个γ放射源发出的射束被关源体屏蔽。进一步的关源体设置在准直体上,即关源体可以是位于准直体屏蔽位的位置处。
本公开提供的控制驱动方法,放射治疗设备还包括开关体,开关体位于载源体和准直体之间,开关体上设置有与γ放射源对应的至少两组孔位,其中一组孔位均为通孔,其余各组孔位包括通孔位和屏蔽位。以图14所示的为例,如图18所示,驱动控制方法还包括:
步骤S5:驱动开关体,使得多个γ放射源发出的部分射束被开关体的屏蔽位屏蔽。
当然,如图16所示的驱动控制方法也可以是包括步骤S5,图18仅以图14所示的驱动控制方法包括步骤S5为例。
开关体如图13所示,驱动开关体018,使得多个γ放射源发出的部分射束 被开关体的屏蔽位屏蔽,即可以通过开关体的屏蔽位来屏蔽部分放射源的射束,从而实现调节剂量的目的。
本公开提供的控制驱动方法,在经度方向上,同一准直孔组内相邻两个准直孔的间距大于γ放射源的尺寸。则如图16中步骤S4具体为:驱动放射治疗设备,使得多个γ放射源与准直孔错位,其中部分γ放射源发出的射束被准直孔组的边缘区域屏蔽,其余γ放射源发出的射束被准直孔之间的间距区域屏蔽。示例的,可以是驱动载源体和准直体错位,使得载源体上的放射源被准直体上的准直孔之间的间隙屏蔽,由于错位时载源体和准直体仅需要错位旋转较小角度,因此可以实现快速开关源。
本公开提供的控制驱动方法,射束为X射线束,放射治疗设备包括一个或多个X射线加速系统。
当放射治疗设备包括一个X射线加速系统,则如图14或图16所示的步骤S2具体为:驱动一个X射线加速系统在出束角度范围发出多个X射线束。
进一步的,如图16所示的步骤S4具体为:关闭一个X射线加速系统的全部或部分X射线束。示例的,关闭X射线加速系统可以是通过关闭微波装置或关闭加速管来关闭全部或部分X射线束。
或者,当放射治疗设备包括多个X射线加速系统,则如图14或图16所示的步骤S2具体为:驱动多个X射线加速系统在出束角度范围发出多个X射线束。
进一步的,如图16所示的步骤S4具体为:关闭多个X射线加速系统中的全部或部分X射线加速系统。示例的,关闭多个X射线加速系统可以是通过关闭多个X射线加速系统的微波装置或关闭加速管来关闭全部或部分X射线束。
示例的,如图7、图10和图11所示的放射治疗设备,公共焦点位于射源装置的端面之外。放射治疗设备还包括成像装置,公共焦点位于成像装置的成像区域内。如图19所示,驱动控制方法还包括:
步骤S6:控制成像装置以获取患者的图像。
步骤S7:根据患者的图像,确认出束角度范围。
需要说明的是,步骤S1中的出束角度范围可以是放射治疗前,治疗医师根据患者的图像确认的出束角度范围,治疗过程中,可以根据获取的图像确认或调整该出束角度范围。
示例的,如图7、图10和图11所示的放射治疗设备,放射治疗设备还包括 成像装置,公共焦点位于成像装置的成像区域内;如图20所示,驱动控制方法还包括:
步骤S8:控制成像装置以获取患者的图像。
步骤S9:根据患者的图像,确认保护角度范围。
同理,步骤S3中的保护角度范围可以是放射治疗前,治疗医师根据患者的图像确认的保护角度范围,治疗过程中,可以根据获取的图像确认或调整该保护角度范围。
需要说明的是,本公开提供的控制驱动方法,本公开对于以上各步骤的顺序不做限定,本公开仅以图示所示的为例进行示例说明。
以下,是本公开提供的一种对应放射治疗设备的控制驱动方法的控制驱动设备,有关该驱动装置的部分描述可参考控制驱动方法,在以下不做赘述。
本公开提供的一种放射治疗设备的控制驱动设备,放射治疗设备包括多个射线源,多个射线源的源点在经度方向上的预设夹角范围内;控制驱动设备包括处理器,处理器用于获取至少一个出束角度范围;以及,驱动放射治疗设备在出束角度范围发出射束并相交于一个公共焦点。
本公开提供的控制驱动设备,处理器还用于获取至少一个保护角度范围;以及,驱动放射治疗设备,使得在保护角度范围内的射线源的射束不发出。
本公开提供的控制驱动设备,处理器还用于获取多个出束角度范围,至少两个出束角度范围内放射治疗设备的速度不同。
本公开提供的控制驱动设备,处理器还用于驱动放射治疗设备在出束角度范围内往复运动。
本公开提供的控制驱动设备,射线源为γ放射源,放射治疗设备包括载源体和准直体,载源体上设置有多个γ放射源,多个γ放射源分布在经度方向上的预设夹角范围内,准直体上设置有多个准直孔组,每个准直孔组分布在经度方向上的预设夹角范围内;处理器用于驱动放射治疗设备,使得多个γ放射源发出的射束穿过准直体上的准直孔后发出。
本公开提供的控制驱动设备,射线源为γ放射源,放射治疗设备包括载源体和准直体,载源体上设置有多个γ放射源,多个γ放射源分布在经度方向上的预设夹角范围内,准直体上设置有多个准直孔组,每个准直孔组分布在经度方向上的预设夹角范围内;处理器用于驱动放射治疗设备,使得多个γ放射源发出的射束被准直体屏蔽。
本公开提供的控制驱动设备,放射治疗设备还包括关源体,处理器还用于驱动放射治疗设备,使得多个γ放射源发出的射束被关源体屏蔽。
本公开提供的控制驱动设备,放射治疗设备还包括开关体,开关体位于载源体和准直体之间,开关体上设置有与γ放射源对应的至少两组孔位,其中一组孔位均为通孔,其余各组孔位包括通孔位和屏蔽位;处理器还用于驱动开关体,使得多个γ放射源发出的部分射束被开关体的屏蔽位屏蔽。
本公开提供的控制驱动设备,在经度方向上,同一准直孔组内相邻两个准直孔的间距大于γ放射源的尺寸;处理器还用于驱动放射治疗设备,使得多个γ放射源与准直孔错位,其中部分γ放射源发出的射束被准直孔组的边缘区域屏蔽,其余γ放射源发出的射束被准直孔之间的间距区域屏蔽。
本公开提供的控制驱动设备,射束为X射线束,放射治疗设备包括一个或多个X射线加速系统;处理器用于驱动一个X射线加速系统在出束角度范围发出多个X射线束;或者,驱动多个X射线加速系统在出束角度范围发出多个X射线束。
本公开提供的控制驱动设备,射束为X射线束,放射治疗设备包括一个或多个X射线加速系统;处理器用于关闭一个X射线加速系统的全部或部分X射线束;或者,关闭多个X射线加速系统中的全部或部分X射线加速系统。
本公开提供的控制驱动设备,放射治疗设备还包括成像装置,公共焦点位于成像装置的成像区域内;处理器还用于控制成像装置以获取患者的图像;以及,根据患者的图像,确认出束角度范围。
本公开提供的控制驱动设备,放射治疗设备还包括成像装置,公共焦点位于成像装置的成像区域内;处理器还用于控制成像装置以获取患者的图像;以及,根据患者的图像,确认保护角度范围。
本公开提供了一种放射治疗系统,该放射治疗系统包括:本公开提供的放射治疗设备,以及本公开提供的控制驱动设备。
需要说明的是,本公开实施例中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的 保护范围之内。

Claims (31)

  1. 一种放射治疗设备,所述放射治疗设备包括射源装置,所述射源装置包括多个射线源和准直体,所述多个射线源的源点在经度方向上的预设夹角范围内,所述准直体上设置有多个准直孔组,每个所述准直孔组在经度方向的夹角在预设夹角范围内;
    每个所述准直孔组包括多个准直孔,所述多个射线源发出的射束经过所述准直孔组的各准直孔后相交于一个公共焦点。
  2. 根据权利要求1所述的放射治疗设备,所述预设夹角范围为5°-60°。
  3. 根据权利要求1所述的放射治疗设备,所述放射治疗设备还包括驱动装置,用于驱动射源装置运动。
  4. 根据权利要求1所述的放射治疗设备,所述射束为γ射线束或X射线束。
  5. 根据权利要求1所述的放射治疗设备,所述射线源为γ放射源,所述射源装置包括载源体,所述载源体上设置有多个γ放射源,所述多个γ放射源分布在经度方向上的预设夹角范围内。
  6. 根据权利要求5所述的放射治疗设备,所述准直体还包括屏蔽位,用于屏蔽所述多个放射源的射束。
  7. 根据权利要求5所述的放射治疗设备,所述射源装置还包括开关体,所述开关体位于所述载源体和准直体之间;
    所述开关体上设置有与所述放射源对应的至少两组孔位,其中一组孔位均为通孔,其余各组孔位均包括通孔和屏蔽位。
  8. 根据权利要求5所述的放射治疗设备,在经度方向上,同一准直孔组中相邻两个准直孔的间距大于放射源的尺寸。
  9. 根据权利要求1所述的放射治疗设备,所述射束为X射线束,所述放射治疗设备包括一个或多个X射线加速系统;一个X射线加速系统在出束角度范围发出多个X射线束;或者,多个X射线加速系统在所述出束角度范围发出多个X射线束。
  10. 根据权利要求1所述的放射治疗设备,所述公共焦点位于所述射源装置的端面之外。
  11. 根据权利要求10所述的放射治疗设备,所述放射治疗设备还包括成像装置,所述成像装置沿所述射源装置的中心轴方向设置在所述射源装置的一侧, 所述公共焦点位于所述成像装置的成像区域内。
  12. 一种放射治疗设备的控制驱动方法,所述放射治疗设备包括多个射线源,多个射线源的源点在经度方向上的预设夹角范围内;所述方法包括:
    获取至少一个出束角度范围;
    驱动所述放射治疗设备在所述出束角度范围发出射束并相交于一个公共焦点。
  13. 根据权利要求12所述的控制驱动方法,所述方法还包括:
    获取至少一个保护角度范围;
    驱动所述放射治疗设备,使得在所述保护角度范围内的所述射线源的射束不发出;
    所述至少一个保护角度范围小于360°。
  14. 根据权利要求13所述的控制驱动方法,至少其中一个出束角度范围和其中一个保护角度范围相邻。
  15. 根据权利要求12所述的控制驱动方法,所述获取至少一个出束角度范围,包括:获取多个出束角度范围,且至少两个所述出束角度范围内所述放射治疗设备的速度不同。
  16. 根据权利要求15所述的控制驱动方法,速度不同的两个出束角度范围相邻。
  17. 根据权利要求12所述的控制驱动方法,所述方法还包括:驱动所述放射治疗设备在所述出束角度范围内往复运动。
  18. 根据权利要求12所述的控制驱动方法,所述射束为γ射线束,或X射线束。
  19. 根据权利要求12所述的控制驱动方法,所述射线源为γ放射源,所述放射治疗设备包括载源体和准直体,所述载源体上设置有多个γ放射源,所述多个γ放射源分布在经度方向上的预设夹角范围内,所述准直体上设置有多个准直孔组,每个所述准直孔组分布在经度方向上的预设夹角范围内;
    所述驱动所述放射治疗设备在所述出束角度范围发出射束,包括:驱动所述放射治疗设备,使得所述多个γ放射源发出的射束穿过准直体上的准直孔后发出。
  20. 根据权利要求13所述的控制驱动方法,所述射线源为γ放射源,所述 放射治疗设备包括载源体和准直体,所述载源体上设置有多个γ放射源,所述多个γ放射源分布在经度方向上的预设夹角范围内,所述准直体上设置有多个准直孔组,每个所述准直孔组分布在经度方向上的预设夹角范围内;
    所述驱动所述放射治疗设备,使得在所述保护角度范围内的所述射线源的射束不发出,具体包括:驱动所述放射治疗设备,使得所述多个γ放射源发出的射束被所述准直体屏蔽。
  21. 根据权利要求20所述的控制驱动方法,所述放射治疗设备还包括关源体,所述驱动所述放射治疗设备,使得在所述保护角度范围内的所述射线源的射束不发出,包括:驱动所述放射治疗设备,使得所述多个γ放射源发出的射束被所述关源体屏蔽。
  22. 根据权利要求21所述的控制驱动方法,所述关源体设置在所述准直体上。
  23. 根据权利要求19所述的控制驱动方法,所述放射治疗设备还包括开关体,所述开关体位于所述载源体和准直体之间,所述开关体上设置有与所述γ放射源对应的至少两组孔位,其中一组孔位均为通孔,其余各组孔位包括通孔位和屏蔽位;
    所述方法还包括:驱动所述开关体,使得所述多个γ放射源发出的部分射束被所述开关体的屏蔽位屏蔽。
  24. 根据权利要求20所述的控制驱动方法,在经度方向上,所述同一准直孔组内相邻两个准直孔的间距大于γ放射源的尺寸;
    所述驱动所述放射治疗设备,使得在所述保护角度范围内的所述射线源的射束不发出,包括:驱动所述放射治疗设备,使得所述多个γ放射源与准直孔错位,其中部分γ放射源发出的射束被所述准直孔组的边缘区域屏蔽,其余γ放射源发出的射束被所述准直孔之间的间距区域屏蔽。
  25. 根据权利要求12所述的控制驱动方法,所述射束为X射线束,所述放射治疗设备包括一个或多个X射线加速系统;
    所述驱动所述放射治疗设备在所述出束角度范围发出射束,具体包括:驱动一个X射线加速系统在所述出束角度范围发出多个X射线束;或者,驱动多个X射线加速系统在所述出束角度范围发出多个X射线束。
  26. 根据权利要求13所述的控制驱动方法,所述射束为X射线束,所述放 射治疗设备包括一个或多个X射线加速系统;
    所述驱动所述放射治疗设备,使得在所述保护角度范围内的所述射线源的射束不发出,包括:
    关闭一个X射线加速系统的全部或部分X射线束;或者,关闭多个X射线加速系统中的全部或部分X射线加速系统。
  27. 根据权利要求13所述的控制驱动方法,所述公共焦点位于所述射源装置的端面之外。
  28. 根据权利要求27所述的控制驱动方法,所述放射治疗设备还包括成像装置,所述公共焦点位于所述成像装置的成像区域内;所述方法还包括:
    控制所述成像装置以获取患者的图像;
    根据所述患者的图像,确认所述出束角度范围。
  29. 根据权利要求27所述的控制驱动方法,所述放射治疗设备还包括成像装置,所述公共焦点位于所述成像装置的成像区域内;所述方法还包括:
    控制所述成像装置以获取患者的图像;
    根据所述患者的图像,确认所述保护角度范围。
  30. 一种放射治疗设备的控制驱动设备,包括:处理器,所述处理器用于执行权利要求12至29任一所述的控制驱动方法。
  31. 一种放射治疗系统,所述放射治疗系统包括:权利要求1至11任一所述的放射治疗设备,以及权利要求30所述的控制驱动设备。
PCT/CN2019/092506 2018-08-24 2019-06-24 放射治疗设备、控制驱动方法及设备、系统 WO2020038093A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021510381A JP7330261B2 (ja) 2018-08-24 2019-06-24 放射線治療装置
EP19851334.3A EP3827880B1 (en) 2018-08-24 2019-06-24 Radiotherapy apparatus
US17/183,459 US20210178190A1 (en) 2018-08-24 2021-02-24 Radiotherapy device and control driving method thereof
US18/068,063 US11759654B2 (en) 2018-08-24 2022-12-19 Radiotherapy device and control driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810977446.8 2018-08-24
CN201810977446.8A CN109011219B (zh) 2018-08-24 2018-08-24 一种放射治疗系统及其控制驱动方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/183,459 Continuation US20210178190A1 (en) 2018-08-24 2021-02-24 Radiotherapy device and control driving method thereof

Publications (1)

Publication Number Publication Date
WO2020038093A1 true WO2020038093A1 (zh) 2020-02-27

Family

ID=64627907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092506 WO2020038093A1 (zh) 2018-08-24 2019-06-24 放射治疗设备、控制驱动方法及设备、系统

Country Status (5)

Country Link
US (2) US20210178190A1 (zh)
EP (1) EP3827880B1 (zh)
JP (1) JP7330261B2 (zh)
CN (1) CN109011219B (zh)
WO (1) WO2020038093A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109011217A (zh) * 2018-08-24 2018-12-18 西安大医集团有限公司 一种放射治疗系统及其控制驱动方法
CN109157762B (zh) 2018-08-24 2023-12-08 西安大医集团股份有限公司 准直体、放疗设备及其驱动控制方法
CN109011219B (zh) 2018-08-24 2023-11-17 西安大医集团股份有限公司 一种放射治疗系统及其控制驱动方法
CN114390936A (zh) * 2019-09-11 2022-04-22 西安大医集团股份有限公司 医疗设备
CN113546330A (zh) * 2020-04-26 2021-10-26 西安大医集团股份有限公司 一种放射治疗设备
CN114177542A (zh) 2020-09-15 2022-03-15 西安大医集团股份有限公司 放射治疗中的剂量控制方法、装置、控制器、系统
CN115350410B (zh) * 2022-10-24 2022-12-30 四川省中能医疗科技发展有限公司 准直系统及放疗系统
CN116650851A (zh) * 2023-06-21 2023-08-29 北京华科先锋医疗器械有限公司 一种基于机械臂的房颤放射治疗系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448611A (en) * 1992-08-04 1995-09-05 Framatome Societe Anonyme Process and apparatus for the treatment of lesions by high frequency radiation
CN2258407Y (zh) * 1996-11-25 1997-07-30 郑铁 钴-60可旋式立体定向头部放疗机的准直聚焦及屏蔽装置
CN1275410A (zh) * 1999-05-31 2000-12-06 深圳奥沃国际科技发展有限公司 多源放射线全身治疗装置
CN101961530A (zh) * 2010-10-27 2011-02-02 玛西普医学科技发展(深圳)有限公司 一种影像引导下的放射治疗设备
CN104837523A (zh) * 2012-12-14 2015-08-12 伊利克塔股份有限公司 放射治疗设备
CN109011219A (zh) * 2018-08-24 2018-12-18 西安大医集团有限公司 一种放射治疗系统及其控制驱动方法
CN109011217A (zh) * 2018-08-24 2018-12-18 西安大医集团有限公司 一种放射治疗系统及其控制驱动方法
CN109011218A (zh) * 2018-08-24 2018-12-18 西安大医集团有限公司 载源体、放疗设备及其控制驱动方法
CN109157762A (zh) * 2018-08-24 2019-01-08 西安大医集团有限公司 准直体、放疗设备及其驱动控制方法
CN109157761A (zh) * 2018-08-24 2019-01-08 西安大医集团有限公司 一种放射治疗系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537452A (en) * 1994-05-10 1996-07-16 Shepherd; Joseph S. Radiation therapy and radiation surgery treatment system and methods of use of same
DE19604789C2 (de) 1996-02-09 1999-08-05 Gks Gmbh Vorrichtung zur radiochirurgischen Behandlung eines Patienten im Kopfbereich
CN1050062C (zh) * 1996-12-17 2000-03-08 深圳奥沃国际科技发展有限公司 旋转式伽玛射线辐射单元
JP2003205042A (ja) * 2002-01-16 2003-07-22 Mitsubishi Heavy Ind Ltd 放射線治療装置及びその制御方法
US20050276377A1 (en) * 2004-06-10 2005-12-15 Carol Mark P Kilovoltage delivery system for radiation therapy
CN100574827C (zh) 2005-08-25 2009-12-30 深圳市海博科技有限公司 放射治疗装置
EP2124742B1 (en) * 2007-02-28 2012-10-24 University of Maryland, Baltimore Equipment for image-guided stereotactic radiosurgery of breast cancer and a method of tumor localisation in a breast
CN101195058B (zh) * 2007-11-27 2010-05-26 深圳市海博科技有限公司 多准直体放射治疗装置
US8641592B2 (en) * 2009-03-23 2014-02-04 Xinsheng Yu Method and device for image guided dynamic radiation treatment of prostate cancer and other pelvic lesions
JP5403605B2 (ja) * 2009-06-29 2014-01-29 独立行政法人日本原子力研究開発機構 放射線照射装置
CN102430206A (zh) 2010-09-29 2012-05-02 上海世鹏实验室科技发展有限公司 集影像与放射治疗于一体的治疗系统
US9555264B1 (en) * 2011-02-15 2017-01-31 Velayudhan Sahadevan MEMS based parallel microbeam radiosurgery without adaptive resistance to radiation
CN203647890U (zh) 2013-12-25 2014-06-18 深圳市奥沃医学新技术发展有限公司 一种用于多源放射治疗设备的局部关源装置
GB201405862D0 (en) 2014-04-01 2014-05-14 Johnson Matthey Plc Apparatus and method for scanning a structure and collimator therefor
WO2015176265A1 (zh) 2014-05-22 2015-11-26 数码医疗集团 多源聚焦治疗和适形调强治疗放疗设备及其准直器组合
US9694210B2 (en) * 2015-04-21 2017-07-04 Cybermed Technologies (Xi'an) Co., Ltd. Multi-purpose radiation therapy system
CN106456991B (zh) 2015-08-04 2019-03-19 西安大医集团有限公司 聚焦放疗装置及放射治疗设备
CN209984816U (zh) * 2017-04-01 2020-01-24 西安大医集团有限公司 多源聚焦放射治疗头及治疗设备
CN209645666U (zh) * 2018-08-24 2019-11-19 西安大医集团有限公司 一种放射治疗系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448611A (en) * 1992-08-04 1995-09-05 Framatome Societe Anonyme Process and apparatus for the treatment of lesions by high frequency radiation
CN2258407Y (zh) * 1996-11-25 1997-07-30 郑铁 钴-60可旋式立体定向头部放疗机的准直聚焦及屏蔽装置
CN1275410A (zh) * 1999-05-31 2000-12-06 深圳奥沃国际科技发展有限公司 多源放射线全身治疗装置
CN101961530A (zh) * 2010-10-27 2011-02-02 玛西普医学科技发展(深圳)有限公司 一种影像引导下的放射治疗设备
CN104837523A (zh) * 2012-12-14 2015-08-12 伊利克塔股份有限公司 放射治疗设备
CN109011219A (zh) * 2018-08-24 2018-12-18 西安大医集团有限公司 一种放射治疗系统及其控制驱动方法
CN109011217A (zh) * 2018-08-24 2018-12-18 西安大医集团有限公司 一种放射治疗系统及其控制驱动方法
CN109011218A (zh) * 2018-08-24 2018-12-18 西安大医集团有限公司 载源体、放疗设备及其控制驱动方法
CN109157762A (zh) * 2018-08-24 2019-01-08 西安大医集团有限公司 准直体、放疗设备及其驱动控制方法
CN109157761A (zh) * 2018-08-24 2019-01-08 西安大医集团有限公司 一种放射治疗系统

Also Published As

Publication number Publication date
US20210178190A1 (en) 2021-06-17
EP3827880A1 (en) 2021-06-02
CN109011219B (zh) 2023-11-17
US11759654B2 (en) 2023-09-19
EP3827880B1 (en) 2024-05-08
JP7330261B2 (ja) 2023-08-21
EP3827880A4 (en) 2021-09-22
CN109011219A (zh) 2018-12-18
US20230117277A1 (en) 2023-04-20
JP2021534882A (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2020038093A1 (zh) 放射治疗设备、控制驱动方法及设备、系统
WO2020038225A1 (zh) 准直体、放疗设备及其驱动控制方法
WO2020038226A1 (zh) 放射治疗设备及系统、控制驱动方法及设备
WO2020038073A1 (zh) 一种放射治疗设备及系统
US10953243B2 (en) Radiation treatment device
JP7315659B2 (ja) 放射線治療装置
CN209790634U (zh) 准直体及放疗设备
CN210057171U (zh) 一种放射治疗系统
US20210187325A1 (en) Control driving method for a radiotherapy device
CN210131261U (zh) 载源体及放疗设备
CN209645666U (zh) 一种放射治疗系统
US20240091561A1 (en) Radiation therapy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021510381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851334

Country of ref document: EP

Effective date: 20210223