WO2020038073A1 - 一种放射治疗设备及系统 - Google Patents

一种放射治疗设备及系统 Download PDF

Info

Publication number
WO2020038073A1
WO2020038073A1 PCT/CN2019/090579 CN2019090579W WO2020038073A1 WO 2020038073 A1 WO2020038073 A1 WO 2020038073A1 CN 2019090579 W CN2019090579 W CN 2019090579W WO 2020038073 A1 WO2020038073 A1 WO 2020038073A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
radiation
collimator
imaging device
radiotherapy apparatus
Prior art date
Application number
PCT/CN2019/090579
Other languages
English (en)
French (fr)
Inventor
刘海峰
李大梁
Original Assignee
西安大医集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司 filed Critical 西安大医集团有限公司
Publication of WO2020038073A1 publication Critical patent/WO2020038073A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head

Definitions

  • the present disclosure relates to the field of medical technology, and in particular, to a radiation therapy device and system.
  • radiotherapy equipment for treating head tumors mainly includes a head gamma knife, which uses a natural isotope radioactive source, cobalt-60, to emit gamma rays, and utilizes the radioactivity of gamma rays to kill tumor cells.
  • the current head gamma knife includes 30 or 180 radioactive sources. Multiple radioactive sources emit beams from different directions and focus on them. A common focus, the radiation dose rate at the common focus is the largest, and the beam emitted by each radiation source has less damage to normal tissues or cells, thereby killing tumor cells and reducing the damage to normal tissues or cells. Damage to achieve tumor treatment effect.
  • the radiation dose rate refers to the radiation dose received by the tumor target area per unit time.
  • Embodiments of the present disclosure provide a radiation therapy device and system.
  • the technical solution is as follows:
  • a radiation therapy device including a radiation source device and an imaging device;
  • the imaging device is disposed on one side of the source device in a direction of a rotation axis of the source device, and a common focus of the source device is located outside an end surface of the source device, and the common focus is located at Within the imaging area of the imaging device.
  • a radiotherapy system which includes the radiotherapy apparatus according to the above aspect.
  • FIG. 1 is a schematic structural diagram of an existing radiation therapy device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an existing radio source device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic plan view of a conventional source carrier according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic plan view of a conventional collimator according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a source carrier according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a collimator according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a collimator according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another radiation therapy device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another source carrier according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another collimator according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another radiation therapy device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another radiation therapy device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another switch body according to an embodiment of the present disclosure.
  • the radiotherapy apparatus can be used to treat a head tumor.
  • the radiotherapy apparatus includes a radiation source device 01 and a treatment bed 02.
  • the source device 01 includes a carrier body 011, a collimator body 012, and a shield body 013.
  • the carrier body 011 is installed with multiple radioactive sources (not shown in FIG. 2). After the beam passes through the collimation hole in the collimator 012, the beams intersect in a common focus, and the common focus is located in the cavity of the source device 01.
  • the treatment bed 02 is used to carry the patient, and the patient is moved to the inside of the treatment cabin of the radiation source device 01, so that the patient's lesion is located at the common focus for radiotherapy.
  • the source body 011 can be as shown in FIG. 3.
  • the source body 011 has a bowl shape.
  • Six groups of radioactive sources 0111 are distributed on the source body 011, and each group includes five radioactive sources 0111 and a total of 30 radioactive sources 0111.
  • the collimating body 012 can be shown in FIG. 4.
  • Six collimating channel groups are arranged on the collimating body 012.
  • the six collimating channel groups can correspond to the six radiation source 0111 positions.
  • Each collimating channel group includes four Group, one of the group's collimation holes is filled with solid tungsten rods to achieve Guanyuan shielding.
  • Each other group includes 5 collimation holes 0121, and the size of 5 collimation holes 0121 of the same group (such as aperture) It can be the same, the collimation holes 0121 of different groups have different sizes.
  • the treatment space (such as a cavity) of the radiation source device 01 is small, and can only accommodate the patient's head, and an imaging device cannot be installed inside the treatment space.
  • an imaging device When monitoring whether the patient has moved during the treatment, it is monitored by setting a reflection device on the patient's surface and using infrared.
  • the accuracy of the treatment of head tumors is very high, generally around 0.1mm (mm), and the error of body surface monitoring is large, which is difficult to meet the high-precision clinical treatment requirements.
  • the source source 011 and / or the collimator 012 are driven to rotate to switch the collimation holes of different sizes and the collimator 012 shields the radiation source 0111 to realize the switching source.
  • the source body 011 and / or the collimator body 012 are rotated, the sizes of the six groups of collimation holes 0121 are switched at the same time, and the switching sources of the six groups of collimation holes 0121 are switched at the same time. Therefore, in the course of treatment, the rays can only be avoided from the patient's eyes (sensitive tissues and organs) by adjusting the gamma angle.
  • a radiation therapy apparatus includes a radiation source device and an imaging device.
  • the imaging device is disposed on one side of the radiation source device along a rotation axis direction of the radiation source device, and a common focus of the radiation source device is located on the radiation source device. Outside the end surface, and the common focus is within the imaging area of the imaging device.
  • the source device includes a source body and a collimator body; a plurality of radiation sources are arranged on the source body, and the included angles of the multiple sources in the longitude direction are within a preset included angle range; the collimator body is provided with Multiple collimation hole groups, the included angle of each collimation hole group in the longitude direction is within a preset included angle range, each collimation hole group includes multiple collimation holes, multiple ray sources and collimation hole groups The multiple collimation holes correspond one-to-one, and the beams emitted by the multiple radiation sources pass through the collimation holes of the collimation hole group and intersect at the common focus.
  • the radiation treatment apparatus provided by the embodiment of the present disclosure may be as shown in FIG. 8, FIG. 11, and FIG. 12.
  • the radiation treatment apparatus includes a radiation source device 11 and an imaging device 12, and the imaging device 12 is along a rotation axis direction of the radiation source device 11 (FIG. (8, neither shown in FIG. 11 and FIG.
  • the common focus Q of the source device 11 is located outside the end face of the source device 11, and the common focus Q is located in the imaging device 12
  • the imaging area (not shown in Figures 8, 11, and 12)
  • the patient's tumor located in the imaging area can be imaged by the imaging device 12, and it can be accurately confirmed whether the patient has moved based on the imaged image, and In the case where the patient moves, the direction and distance of the patient's movement are determined so as to reposition by moving the treatment bed 13 so that the patient's tumor is located at the common focus Q.
  • the radiation source device 11 includes a carrier body 111 and a collimator body 112.
  • the carrier body 111 is provided with a plurality of radiation sources 1111.
  • the angles between the plurality of radiation sources 1111 in the longitude direction are within the preset included angle range; a plurality of collimation hole groups are provided on the collimator body 112 (none are shown in Figs.
  • each collimation hole group is The included angle in the longitude direction (not shown in Figures 8, 11 and 12) is within the preset included angle range; each collimating hole group includes multiple collimating holes, and beams from multiple radiation sources 1111 After passing through the collimating holes of the collimating hole group, they intersect at the common focus Q. Since multiple radiation sources 1111 are distributed within a preset angle range in the longitude direction, the source body 111 can be used to drive the multiple radiation sources 1111 to rotate along the central axis (that is, the rotation axis) of the radiotherapy equipment. For organs, the radiation source 1111 is turned off, and the radiation source 1111 is open sourced when passing through normal tissues and organs. This can protect the eyes and other sensitive tissues and organs from additional damage during the treatment of head tumors.
  • the source device 11 may be bowl-shaped, and accordingly, both the source body 111 and the collimator body 112 may be bowl-shaped, and the source body 111 may be As shown in FIG. 5, the longitude direction of the source body 111 is shown by the double-headed arrow in FIG. 5. It is a direction of longitude 0 ° -360 °.
  • the collimator 112 may be shown in FIG. 6, and the longitude of the collimator 112 The direction is shown by the double-headed arrow in FIG. 6 and is the direction of longitude 0 ° -360 °.
  • FIG. 6 the longitude direction of the source body 111
  • FIG. 6 the longitude of the collimator 112
  • the direction is shown by the double-headed arrow in FIG. 6 and is the direction of longitude 0 ° -360 °.
  • the radiation source device 11 may be cylindrical, and accordingly, both the carrier body 111 and the collimator body 112 may be cylindrical, and the carrier body 111 may be as shown in FIG. 9.
  • the longitude direction of 111 is shown by the double-headed arrow in FIG. 9, which is the direction of longitude 0 ° -360 °.
  • the collimator 112 can be shown in FIG. 10, and the longitude direction of the collimator 112 is shown by the double-headed arrow in FIG. 10. Shown is the direction of longitude 0 ° -360 °. Among them, in FIG.
  • the two ends of the source body 111 have the same size (for example, the outer diameters of the two ends are the same), and the collimator 112 has the same size (for example, the outer diameters of the two ends are the same).
  • the two ends of the source body 111 can also be different in size
  • the two ends of the collimator body 112 can also be different in size.
  • An example is shown in FIG. 12. The embodiment of the present disclosure does not limit the specific shape of the radiation source device, and only uses the foregoing as an example.
  • the included angle of the radiation source 1111 in the longitude direction is an included angle formed by using the center of the source body 111 as a reference. It should be particularly noted here that if the radiation sources 1111 include a row, and the centers of multiple radiation sources 1111 located in the same row are on the same longitude line, the angle between the multiple radiation sources 1111 in the longitude direction is considered to be zero degrees, In the embodiment of the present disclosure, the preset included angle range is greater than or equal to zero degrees. As shown in FIG.
  • the included angle of the collimation hole 1121 in the longitude direction is an included angle formed by using the center of the collimated body 112 as a reference. It should be particularly noted here that if the collimation holes 1121 include a row, and the centers of multiple collimation holes 1121 located in the same row are on the same longitude line, the angle between the multiple collimation holes 1121 in the longitude direction is considered It is zero degrees. In the embodiment of the present disclosure, the preset included angle range is greater than or equal to zero degrees.
  • a source carrier 111 As shown in FIG. 5, a source carrier 111 according to an embodiment of the present disclosure is provided.
  • the carrier source 111 is provided with a plurality of radiation sources 1111.
  • the angle between the plurality of radiation sources 1111 in the longitude direction is A, and the angle A is within the preset included angle.
  • the preset included angle range may be 15 ° -60 °, then 15 ° ⁇ A ⁇ 60 °, and the included angle A may be any included angle within the range of 15 ° -60 °.
  • the preset included angle range may be 5 ° -60 °, then 5 ° ⁇ A ⁇ 60 °, and the included angle A may be any included angle in the range of 5 ° -60 °.
  • the included angle A can be 5 °, 8 °, 10 °, 12 °, 18 °, 20 °, 25 °, 30 °, 40 °, 45 °, 50 °, 60 °, and the like.
  • the number and arrangement of the radioactive sources 1111 are not limited in the embodiments of the present disclosure.
  • the number of the radioactive sources 1111 may be generally 20-180, for example, 30 or 180. As shown in FIG. 5, Take 24 radioactive sources 1111 as an example for illustration.
  • each collimation hole group includes 24 collimation holes 1121 respectively, combining FIG. 5 and FIG. 6, multiple radiation sources 1111 and The collimation holes 1121 of each collimation hole group correspond one-to-one.
  • the beams emitted by multiple radiation sources 1111 pass through the collimation holes 1111 of the collimation hole group and intersect at a common focus (for example, the common focus Q in FIG. 8).
  • the beams emitted by multiple radiation sources 1111 pass through the collimation holes 1121 of the 1 collimation hole group and intersect at a common focus.
  • the collimation hole group of No. 1, No. 2 Collimation hole group, No. 3 Collimation hole group and No. 4 Collimation hole group, each included in the longitude direction within a preset angle range Fig. 6 uses the 1 collimation hole group as an example.
  • the angle of the 1 collimation hole group in the longitude direction (the direction of the bidirectional arrow shown in Fig. 6) is A.
  • the included angle A is the same as that of the source body 111.
  • the included angle A of the radiation source 1111 can range from 5 ° to 60 °.
  • the collimation body 112 is provided with multiple collimation hole groups. Two or more collimation hole groups may be provided on the collimation body 112. In FIG. 6, only four collimation hole groups are provided on the collimation body 112. Take the example as an example.
  • Each collimation hole group includes a plurality of collimation holes, and the number and arrangement of the plurality of collimation holes correspond to the number and arrangement of the plurality of radiation sources 1111 on the carrier body 111 so that the radiation is emitted.
  • the beam emitted by the source 1111 passes through the collimation hole 1121 and intersects with a common focus.
  • the radiation source device 11 may be cylindrical, and the source body 111 may be cylindrical as shown in FIG. 9, and the longitude direction of the source body 111 is shown by a double-headed arrow in FIG. 9. Direction.
  • the size of the two ends of the cylindrical source body is taken as an example.
  • the specific number and arrangement of the radiation sources 1111 are not limited in the embodiment of the present disclosure, and FIG. 9 only uses 20 radiation sources 1111 as an example for description.
  • the collimating body 112 may have a cylindrical shape as shown in FIG. 10.
  • the plurality of collimating holes 1121 correspond to the number and arrangement of the radiation sources 1111, which are not described herein again.
  • the number of collimating hole groups on the collimating body 112 is not limited.
  • two collimating hole groups are provided on the collimating body 112, and each collimating hole group includes 20
  • the collimation hole 1121 is taken as an example for illustration.
  • the source device 11 may also be as shown in FIG. 12, the source device 11 may be cylindrical, and the source body 111 and the collimator body 112 may be cylindrical. In FIG. 12, the ends of the cylindrical source body are sized. Different, and the size of the ends of the cylindrical collimator 112 are different as an example.
  • the imaging device is disposed on one side of the radiation source device along the rotation axis direction of the radiation source device, and the common focus of the radiation source device is outside the end face of the radiation source device, and the common The focus is located in the imaging area of the imaging device. Therefore, the tumor of the patient located in the imaging area can be imaged by the imaging device, the patient's movement can be accurately confirmed based on the image, and the specific movement of the patient can be determined in the case of confirming the movement of the patient.
  • a plurality of radiation sources are provided on the radiotherapy equipment, and a plurality of collimation hole groups are provided on the collimator body.
  • the included angle in the longitudinal direction of the radiation source is within a preset included angle range.
  • the radiation source is distributed within a preset angle range in the longitude direction, then the radiation therapy device can drive multiple radiation sources around the central axis of the radiation therapy device through the source carrier, and turn off the radiation source when passing through sensitive tissues or organs.
  • Source; the radioactive source is open sourced when passing through normal tissues and organs, so that during the treatment of head tumors, sensitive eyes and other tissues and organs can be protected from additional damage.
  • a plurality of radioactive sources 1111 are provided on the carrier body 111 provided in the embodiment of the present disclosure.
  • the plurality of radioactive sources 1111 are divided into multiple groups, and the included angle range of two adjacent radioactive sources 1111 is 2 ° -15 °.
  • the included angle of any two adjacent sets of radiation sources 1111 is the same, or the included angle of different adjacent two sets of radiation sources 1111 is different, which is not limited in the embodiment of the present disclosure.
  • Figure 5 shows only an example. As shown in FIG. 5, a plurality of radiation sources 1111 are divided into four groups, and the included angle of two adjacent radiation sources 1111 is B (the two groups shown in FIG. 5 are taken as an example) as an example.
  • the range of the included angle B can be It is 2 ° -15 °, that is, 2 ° ⁇ B ⁇ 15 °.
  • the included angle B can be any included angle in the range of 2 ° -15 °.
  • the included angle B can be 2 °, 2.5 °, 3 °, 5 °, 6 °, 8 °, 10 °, 12 °, or 15 °.
  • the included angle of the plurality of radiation sources 1111 in the latitude direction is 20 ° -60 °.
  • the source body 111 is provided with a plurality of radiation sources 1111 within an included angle C of the latitude direction.
  • the range of the included angle C may be 20 ° -60 °, that is, 20 ° ⁇ C ⁇ 60 °, and the included angle C may be any included angle in the range of 20 ° -60 °.
  • the included angle C can be 20 °, 25 °, 30 °, 38 °, 40 °, 45 °, 50 °, 53 °, or 60 °.
  • the included angle range of any two adjacent radiation sources 1111 in the source carrier 111 provided by the embodiment of the present disclosure is 1 ° -10 °.
  • the included angle of any two adjacent sets of radioactive sources 1111 in the latitudinal direction is the same, or the included angle of any two adjacent sets of radioactive sources 1111 in the latitudinal direction is different.
  • FIG. 5 is only an example illustration. For example, as shown in FIG.
  • the included angle between the two radioactive sources in the latitude direction is D
  • the included angle D can range from 1 ° to 10 °, that is, 1 ° ⁇ D ⁇ 10 °
  • the included angle D can be any included angle in the range of 1 ° -10 °.
  • the included angle D can be 1 °, 2 °, 3, 5 °, 6 °, 8 °, 9 ° or 10 °.
  • the source body 111 shown in FIG. 5 includes multiple rows of the radiation source 1111 in the longitude direction.
  • the longitudes of the radioactive sources 1111 located in the same row are the same. They are also divided into multiple rows in the latitude direction. Take the same latitude as an example. It is easy to understand that the positions of the source body 111 and the radiation source 1111 provided in the embodiment of the present disclosure in the latitude direction may be different, that is, the latitudes of the multiple radiation sources 1111 are different to achieve non-coplanar irradiation and better protection. Normal organization.
  • the carrier body 111 provided in the embodiment of the present disclosure is provided with a plurality of radiation source holes, and the radiation source 1111 is fixedly installed in the radiation source hole.
  • a plurality of radioactive sources 1111 are fixedly arranged on the source box, and a source box 111 matching the shape of the source box is provided on the carrier body 111, and the source box is fixedly installed at the source box, so that the plurality of radioactive sources are arranged on the source box.
  • Load carrier 111 may be a through hole or a blind hole, and a plurality of collimating holes are provided on the source body 111 so that the beam emitted by the radiation source 1111 can be emitted through the collimating holes.
  • the embodiment of the present disclosure does not limit the shape and structure of the source cassette and the source cassette.
  • the carrier body 111 is further provided with an active cassette connecting portion for fixing the source cassette at the source cassette position.
  • the source box is also provided with a connection portion for connecting with the source box.
  • the source carrier 111 and the source box may be connected by screws or by snaps.
  • the connection and fixing method of the source box and the source box is not limited in the embodiments of the present disclosure, and only the above is taken as an example. Let's take an example.
  • the source carrier 111 provided in the embodiment of the present disclosure is further provided with a connecting portion for replacing the source cassette on the source cassette.
  • the source box connecting portion may be a screw hole, which may be screw-connected with the source guide rod.
  • the source box connecting portion and the source guiding rod may be connected by magnet attraction.
  • the embodiment of the present disclosure does not limit the connection between the source box and the source guide rod, and the way of replacing the source box, and only uses the above example as an example for illustration.
  • the source carrier 111 provided in the embodiment of the present disclosure has a different material from the source cassette and the source carrier 111.
  • the source box may be formed of a tungsten alloy, and the source body 111 may be formed of cast iron.
  • the distance between two adjacent collimation holes 1121 is larger than the size of the radiation source 1111, so that the collimation holes 1121 and the radiation source 1111 can only be displaced
  • the space between the collimation holes 1121 is used to shield the radioactive source, and shielding is not used for shielding. Therefore, only small angles of misalignment are needed, so that the source can be quickly switched on and off.
  • each collimating hole group includes multiple rows of collimating holes 1121, and the included angle of two adjacent rows of collimating holes 1121 is 2 ° -15 °.
  • the included angles of any two adjacent rows of collimation holes 1121 are the same, or the included angles of different adjacent two rows of collimation holes 1121 are different. This embodiment of the present disclosure does not do this. Limitation, shown in FIG. 6 is only an example. As shown in FIG.
  • each collimation hole group a plurality of collimation holes 1121 are divided into 4 rows, and the included angle of two adjacent rows of collimation holes 1121 is B (the two rows shown in FIG. 6 are taken as an example)
  • the range of the included angle B can be 2 ° -15 °, that is, 2 ° ⁇ B ⁇ 15 °
  • the included angle B can be any included angle in the range of 2 ° -15 °.
  • the included angle B can be 2 °, 2.5 °, 3 °, 5 °, 6 °, 8 °, 10 °, 12 °, or 15 °.
  • the included angle of the collimating hole group in the latitude direction is 20 ° -60 °.
  • the included angle of the collimation hole group in the latitude direction is C
  • the included angle C can range from 20 ° -60 °, that is, 20 ° ⁇ C ⁇ 60 °
  • the included angle C can be It is an arbitrary included angle in the range of 20 ° -60 °.
  • the included angle C may be 20 °, 25 °, 30 °, 38 °, 40 °, 45 °, 50 °, 53 °, or 60 °.
  • the included angle of the collimating body 112 provided by the embodiment of the present disclosure ranges from 1 ° to 10 °.
  • the included angle of any two adjacent collimation holes 1121 in the latitude direction is the same, or the included angle of any two adjacent collimation holes 1121 in the latitude direction is different.
  • FIG. 6 is only an example illustration.
  • the angle between the two collimation holes 1121 in the latitude direction is D, and the range of the included angle D may be 1 ° -10 °.
  • the included angle D can be any included angle in the range of 1 ° -10 °.
  • the included angle D can be 1 °, 2 °, 3 °, 5 °, 6 ° , 8 °, 9 °, or 10 °.
  • the collimation body 112 shown in FIG. 6 includes a plurality of rows of collimation holes 1121 in a collimation hole group. Collimation holes 1121 in the same row have the same longitude, and are also divided into multiple rows in the latitude direction. Rows of collimating holes 1121 have the same latitude as an example. It is easy to understand that the positions of the collimating bodies 112 and the collimating holes 1121 in the latitude direction provided by the embodiments of the present disclosure may be different, that is, the latitudes of the plurality of collimating holes 1121 are different to achieve non-coplanar irradiation, which is better. Protection of normal tissues.
  • the collimator body 112 provided in the embodiment of the present disclosure further includes a shielding position 1122.
  • the shielding position 1122 is used to shield the beams of multiple radiation sources 1111.
  • the shielding bit 1122 shields the radiation of the radiation source 1111 to realize the source turning off.
  • the embodiment of the present disclosure does not limit the specific position of the shielding bit 1122 in the collimating body 112. In FIG. 6, the position of the shielding bit 1122 and the position of each collimating hole group is taken as an example for illustration.
  • the shielding position 1122 is located between any two adjacent collimation hole groups in the plurality of collimation hole groups.
  • the shielding position 1122 is located between the collimation hole group No. 2 and the collimation hole group No. 3 as an example.
  • the collimator body 112 includes one shielding bit 1122 as an example.
  • the collimator body 112 provided in the embodiment of the present disclosure may include multiple shielding bits 1122.
  • a shielding position can also be set between the collimation hole group 1 and the collimation hole group 2. It is also possible to set a shielding position between the collimation hole group No.
  • the collimator body 112 may include an inner collimator body and an outer collimator body that are fixedly connected, and the collimation holes on the inner collimator body and the collimator holes on the outer collimator body correspond to each other.
  • the collimating body may include a double layer, and the inner collimating body and the outer collimating body may be fixed by screw connection.
  • the collimator body 112 provided in the embodiment of the present disclosure includes an inner collimator body and an outer collimator body, and the inner collimator body and the outer collimator body can be relatively rotated. For example, during the treatment process, if an accident occurs, the source can be turned off quickly through the inner collimator, and then the outer collimator is rotated to align the shielding position with the radioactive source to shield the radioactive source. The shielding bit is aligned with the radioactive source to achieve complete off-source.
  • the collimating hole on the inner collimating body is a straight hole
  • / or the collimating hole on the outer collimating body is a tapered hole.
  • it can be a straight hole on the inner collimator body and a straight hole on the outer collimator body; or the inner collimator body is a straight hole and the outer collimator body is a tapered hole; it can also be an inner collimator body and an outer collimator body.
  • the collimators are all tapered.
  • the collimator body 112 provided in the embodiment of the present disclosure is provided with a shield body at the shield position 1122, and a material density of the shield body is greater than a material density of the collimator body 112.
  • the shield body is fixedly connected to the collimator body 112, and the shield body may be composed of a tungsten block or lead alloy or an alloy thereof.
  • the collimator body 112 may be composed of cast iron.
  • the shield can achieve better shielding of the radiation source.
  • the description of the source carrier and the collimator is only based on the above example.
  • the arrangement method of the source carrier and the collimator can also be used in the cylindrical source rotation shaft, and will not be repeated here.
  • the radiation source device 11 further includes a switch body.
  • the switch body is located between the carrier body 111 and the collimator body 112.
  • the switch body is provided with at least two sets of holes corresponding to the radiation source.
  • One set of hole positions are through holes, and the remaining set of hole positions include through holes and shield bits.
  • the switch body 113 is provided with 5 groups of hole positions, that is, the group of ae holes. Among them, the a hole positions are through holes, and only one row of the b hole positions is through holes.
  • the remaining holes are Shielding position, two rows in hole c are through holes and the remaining holes are shielded, three rows in d hole are through holes and the remaining holes are shielded, and four rows in e are the remaining holes.
  • the shielding bit may be provided with no hole in the switch body, or may have a hole in the switch body, but the hole may be filled with a tungsten rod to shield the radiation source.
  • different hole positions are provided on the switch body 113, and the number of openings in different hole positions is different. Then, by making the different hole positions of the switch body 113 correspond to the radiation source, the selective Shield some radioactive sources to adjust the dose at the common focus.
  • the source carrier 111 and the collimator 112 can rotate 360 ° around the central axis of the radiation source device 11 or reciprocate.
  • the carrier body 111 and the collimator body 112 rotate reciprocally around the central axis of the radiation source device 11.
  • the source body 111 and the collimator body 112 may reciprocate within a range of 270 °.
  • the angle of the reciprocating rotation is not limited in the embodiment of the present disclosure, and the above description is used as an example for illustration.
  • the source body 111 and / or the collimator body 112 can move along a preset trajectory.
  • the source body 111 and / or the collimator body 112 can be moved in the direction of the central axis (not shown in FIG. 11) of the source device 11.
  • the source body 111 and / or the collimator body 112 may be moved in the direction S.
  • the carrier body 111 moves in the direction of the central axis of the source device 11 and the collimator 112 is fixed; or the collimator 112 moves in the direction of the central axis of the source device 11 and the source body 111 is fixed; or, the source body 111 and the collimator body 112 can both move in the direction of the central axis of the source device 11.
  • the source body 111 and / or the collimator body 112 are moved along a preset trajectory, so that the source can be switched.
  • the source body 111 and / or the collimator body 112 are composed of multiple fragments (that is, parts).
  • the radiation source 1111 may be located on one segment of the source body 111, or the segment may be moved in the direction of the central axis of the radiation source device 11.
  • the collimator body 112 may also be composed of multiple fragments (that is, parts).
  • the collimator body 112 may include multiple collimation hole groups, and each collimation hole group is correspondingly arranged on one fragment, or on one fragment. Multiple collimation hole groups.
  • the source position can be set on the collimator body 112, and a collimation hole group and a source close position can be set on the same segment.
  • the source body 111 may also be in a sheet shape, that is, it may be one of the foregoing multiple fragments.
  • the specific shape of the carrier body 111 is not limited in the embodiment of the present disclosure.
  • the tumor of the patient needs to be accurately located at the common focus of the radiation source device 11 so that the radiation emitted by the radiation source of the radiation source device 11 kills the tumor cells.
  • the radiation will be shifted relative to the tumor, so that the radiation is irradiated to the patient's normal tissues or cells, which is not only harmful to the tumor treatment but also damages the normal tissues or cells, which is harmful to the patient's health.
  • the common focus of some radiotherapy equipment is located in the cavity of the source device, and it is impossible to monitor whether the patient's head moves during the treatment.
  • the common focus of the radiotherapy apparatus is located outside the end face of the radiation source device, and the common focus is located in the imaging area of the imaging device, so that the imaging device can be used to image the patient's tumor to accurately Confirm the patient's movement to drive the treatment table to realign the patient's tumor with the common focus.
  • the imaging device 12 may be an X-ray imaging device, a CT (Computed Tomography) imaging device, an ultrasound imaging device, or a DSA (Digital Subtraction Angiography) imaging device. Or a combination of one or more of MR (Magnetic Resonance, nuclear magnetic resonance) imaging devices, and PET (Positron, Computed Tomography, positron emission computed tomography) imaging devices.
  • the imaging device 12 is an X-ray imaging device.
  • the imaging device 12 may include an X-ray tube 121 and an X-ray flat plate 122.
  • the imaging device 12 may also include two X-ray tubes and two X-ray flat plates.
  • the two X-ray tubes correspond one-to-one with the two X-ray flat plates, and each X-ray flat plate is used to receive the corresponding X-ray tube.
  • the emitted beams, the beams emitted by the two X-ray tubes intersect at the common focus of the source device 11.
  • the imaging device 12 may also be a combination of any two or more different imaging devices.
  • the imaging device 12 may be a combination of an X-ray imaging device and a DSA imaging device.
  • the specific setting manner of the imaging device 12 is not limited in the embodiment of the present disclosure, and the above description is used as an example for illustration.
  • the imaging device 12 includes an imaging center point
  • the common focus of the radiation source device 11 coincides with the imaging center point.
  • the imaging device 12 includes two X-ray tubes and two X-ray flat plates. The beams emitted by the two X-ray tubes intersect at the common focus of the source device 11, and the common focus of the source device 11 and the imaging center point. coincide.
  • the imaging device 12 can rotate along the central axis of the radiation source device 11. As shown in FIGS. 8, 11, and 12, in a case where the imaging device 12 includes an X-ray tube 121 and an X-ray flat plate 122, if the patient moves in the up-down direction shown in FIGS. 8, 11, and 12 , It is impossible to confirm whether the patient moves based on the image formed by the imaging device 12.
  • the imaging device 12 is rotated around the central axis of the radiation source device, so that the imaging device 12 can obtain patient images at different angles, so that it can be confirmed from various angles whether the patient has moved, and the confirmation is improved. Accuracy of whether the patient has moved.
  • the imaging device 12 can be rotated around the central axis of the radiation source device 11 by installing a rotation device (such as a gear ring gear) on the imaging device 12, or the imaging device 12 can be rotated around the central axis of the radiation source device 11 through a slip ring.
  • a rotation device such as a gear ring gear
  • the embodiment of the present disclosure does not limit the driving manner of the imaging device 12 to rotate.
  • the imaging device 12 is fixedly connected to the radiation source device 11.
  • the imaging device 12 may be fixedly connected to the source body 111 or the collimator body 112.
  • both the X-ray tube 121 and the X-ray flat plate 122 can be fixedly connected to the source body 111, so that the rotation of the source body 111 drives the imaging device 12 to rotate, avoiding setting a rotation drive for the imaging device alone Device.
  • the imaging device 12 may also be fixedly connected to the switch body 113 or the collimator body 112, which is not limited in the embodiment of the present disclosure.
  • a radiation therapy device provided by an embodiment of the present disclosure further includes a shielding device 14, the shielding device 14 is located on a side of the radiation source device 11, and the radiation source 1111 emits After passing through the common focus of the source device 11, the beam is shielded by the shielding device 14.
  • the shielding device 14 is located on the side of the common focus of the source device 11, and the beam emitted by the radiation source 1111 passes through the common focus of the source device 11 and is shielded. 14 Shielding to avoid excess radiation from the treatment room caused by the beam from the radiotherapy equipment.
  • the shielding device 14 may be an annular body, and the radiation emitted by the radiation source 1111 during one revolution around the central axis of the radiation source device 11 can be received by the shielding device 14.
  • the shielding device 14 is a shielding block, and the shielding device 14 can be rotated around the central axis of the radiation source device 11 to follow the radiation source 1111 to receive the radiation that has passed through the common focus.
  • a channel (not shown in the figure) is provided on the shielding device 14 to facilitate the movement of the treatment bed 13.
  • the embodiments of the present disclosure do not limit the position settings of the shielding device 14 and the imaging device 12.
  • the imaging device 12 may be separately fixed or may be disposed inside the shielding device 14.
  • the radiation therapy device provided by the embodiment of the present disclosure further includes a shielding door, which can open or close the cavity of the radiation therapy device.
  • the shielding door 15 may be disposed outside the cavity of the source device 11 to open or close the cavity of the source device 11, and the shielding door 15 may be opened and closed, and left and right may be opened and closed. . Therefore, during non-treatment time, the beam can be shielded by the shield door 15.
  • the shielding door 15 may also be provided between the imaging device 12 and the shielding device 14, or the shielding door 15 may be provided outside the shielding device 14.
  • the embodiment of the present disclosure does not limit the specific setting position of the shielding door, and only uses the example shown in FIG. 8 as an example for description.
  • the radiation therapy device provided by the embodiment of the present disclosure is further provided with an anti-sinking component (not shown in the figure) between the collimator body 112 and the source body 111.
  • the radiation source device 11 further includes a shielding body (not shown in the figure) located outside the source body 111, and a sink-proof component is provided between the shield body and the source body 111.
  • the anti-sinking component may be a bearing, so as to prevent the collimating body 112 and the source body 111 from rotating at one end, the other end may sag.
  • An embodiment of the present disclosure provides a radiotherapy apparatus, and the radiotherapy system includes the radiotherapy apparatus shown in FIG. 8, 11, or 12.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种放射治疗设备及系统,属于医疗技术领域。放射治疗设备包括射源装置(01,11)和成像装置(12),成像装置(12)沿射源装置(01,11)的旋转轴方向设置在射源装置(01,11)的一侧,射源装置(01,11)的公共焦点(Q)位于射源装置(01,11)的端面之外,且公共焦点(Q)位于成像装置(12)的成像区域内。此外,射源装置(01,11)包括载源体(011,111)及准直体(012,112),载源体(011,111)上设置有多个放射源(0111,1111),多个放射源(0111,1111)在经度方向的夹角(A)在预设夹角范围内;准直体(012,112)上设置有多个准直孔组,每个准直孔组在经度方向的夹角(A)在预设夹角范围内,每个准直孔组包括多个准直孔(0121,1121),多个放射源(0111,1111)与准直孔组的多个准直孔(0121,1121)一一对应,多个放射源(0111,1111)发出的射束经过准直孔组的各准直孔(0121,1121)后相交于公共焦点(Q)。放射治疗设备及系统可以精确确认患者是否发生移动,且可以避免额外伤害。

Description

一种放射治疗设备及系统
本公开要求于2018年8月24日提交的申请号为201810971119.1、发明名称为“一种放射治疗系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开实施例中。
技术领域
本公开涉及医疗技术领域,特别涉及一种放射治疗设备及系统。
背景技术
随着医疗技术的发展,放射治疗越来越广泛的应用于对肿瘤的治疗,特别是用于对头部肿瘤的治疗。
目前,用于治疗头部肿瘤的放射治疗设备主要包括头部伽玛刀,其利用天然同位素放射源钴-60发出γ射线,利用γ射线的放射性,将肿瘤细胞杀死。但是,由于γ射线在杀死肿瘤细胞的同时也会损伤正常组织或细胞,因此目前的头部伽玛刀包括30或180个放射源,多个放射源从不同方向分别发出射束并聚焦在一个公共焦点,则公共焦点处的射线剂量率最大,而每个放射源发出的射束对正常组织或细胞的损伤较小,从而起到杀死肿瘤细胞的同时,降低对正常组织或细胞的损伤,实现肿瘤治疗效果。其中,射线剂量率指的是肿瘤靶区单位时间内接受的射线剂量。
发明内容
本公开实施例提供了一种放射治疗设备及系统。所述技术方案如下:
一方面,提供了一种放射治疗设备,包括射源装置和成像装置;
所述成像装置沿所述射源装置的旋转轴方向设置在所述射源装置的一侧,所述射源装置的公共焦点位于所述射源装置的端面之外,且所述公共焦点位于所述成像装置的成像区域内。
另一方面,提供了一种放射治疗系统,包括上述一方面所述的放射治疗设备。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种现有放射治疗设备的结构示意图;
图2是本公开实施例提供的一种现有射源装置的结构示意图;
图3是本公开实施例提供的一种现有载源体的俯视结构示意图;
图4是本公开实施例提供的一种现有准直体的俯视结构示意图;
图5是本公开实施例提供的一种载源体的结构示意图;
图6是本公开实施例提供的一种准直体的结构示意图;
图7是本公开实施例提供的一种准直体的结构示意图;
图8是本公开实施例提供的另一种放射治疗设备的结构示意图;
图9是本公开实施例提供的另一种载源体的结构示意图;
图10是本公开实施例提供的另一种准直体的结构示意图;
图11是本公开实施例提供的另一种放射治疗设备的结构示意图;
图12是本公开实施例提供的另一种放射治疗设备的结构示意图;
图13是本公开实施例提供的另一种开关体的结构示意图。
具体实施方式
为使本公开的原理、技术方案和优点更加清楚,下面将结合附图对本公开实施例实施方式作进一步的详细描述。
本公开实施例提供的一种现有的放射治疗设备如图1所示,该放射治疗设备可以用于治疗头部肿瘤,该放射治疗设备包括射源装置01和治疗床02。如图2所示,射源装置01包括载源体011、准直体012和屏蔽体013,载源体011安装有多个放射源(图2中未示出),多个放射源发出的射束经过准直体012上的准直孔后相交于一个公共焦点,且该公共焦点位于射源装置01的腔体内。治疗床02用于承载患者,并将患者移动至射源装置01的治疗舱内部,使得患者病灶位于该公共焦点处以进行放射治疗。
其中,载源体011可以如图3所示,载源体011为碗状,载源体011上分布有六组放射源0111,每组包括五颗放射源0111共计30颗放射源0111。准直体 012可以如图4所示,准直体012上设置有六组准直通道组,六组准直通道组可以与六组放射源0111位置对应,每组准直通道组包括四个小组,其中一个小组的准直孔内填充有实心钨棒以实现关源屏蔽,另外的每个小组均包括5个准直孔0121,同一小组的5个准直孔0121的大小(例如孔径)可以相同,不同小组的准直孔0121的大小不同。
在现有的如图1所示的放射治疗设备中,一方面,射源装置01的治疗空间(例如腔体)较小,仅可容纳患者头部,无法在治疗空间内部安装成像装置,因此,在监测治疗过程中患者是否发生移动时,是通过在患者体表设置反射装置,利用红外来进行监测。但是头部肿瘤治疗的精度要求非常高,一般在0.1mm(毫米)左右,体表监测的误差较大,难以满足临床的高精度治疗要求。另一方面,在治疗过程中,通过驱动载源体011和/或准直体012旋转,来切换不同大小的准直孔以及通过准直体012屏蔽放射源0111来实现开关源,但是,载源体011和/或准直体012旋转时,六组准直孔0121的大小同时切换,且六组准直孔0121的开关源同时切换,不能单独控制其中一组切换。因此,在治疗过程中,只能通过调整伽玛角使射线避开患者眼睛(敏感组织器官)。
本公开实施例提供的一种放射治疗设备,包括射源装置和成像装置,成像装置沿射源装置的旋转轴方向设置在射源装置的一侧,射源装置的公共焦点位于射源装置的端面之外,且该公共焦点位于成像装置的成像区域内。此外,射源装置包括载源体及准直体;载源体上设置有多个放射源,该多个放射源在经度方向的夹角在预设夹角范围内;准直体上设置有多个准直孔组,每个准直孔组在经度方向的夹角在预设夹角范围内,每个准直孔组包括多个准直孔,多个射线源与准直孔组的多个准直孔一一对应,多个放射源发出的射束经过准直孔组的各准直孔后相交于上述公共焦点。
本公开实施例提供的放射治疗设备可以如图8、图11和图12所示,该放射治疗设备包括射源装置11和成像装置12,成像装置12沿射源装置11的旋转轴方向(图8、图11和图12中均未标出)设置在射源装置11的一侧,射源装置11的公共焦点Q位于射源装置11的端面之外,且该公共焦点Q位于成像装置12的成像区域(图8、图11和图12中均未标出)内,可以通过成像装置12对位于成像区域内的患者肿瘤进行成像,根据成像的图像精确确认患者是否发生移动,以及在确认患者发生移动的情况下,确定患者移动的方向和距离,以便通过移动治疗床13来重新定位使得患者肿瘤位于公共焦点Q处。
此外,射源装置11包括载源体111及准直体112,载源体111上设置有多个放射源1111,多个放射源1111在经度方向的夹角(图8、图11和图12中均未标出)在预设夹角范围内;准直体112上设置有多个准直孔组(图8、图11和图12中均未标出),每个准直孔组在经度方向的夹角(图8、图11和图12中均未标出)在预设夹角范围内;每个准直孔组包括多个准直孔,多个放射源1111发出的射束经过准直孔组的各准直孔后相交于公共焦点Q。由于多个放射源1111分布在经度方向的预设夹角范围内,因此可以通过载源体111带动多个放射源1111沿放射治疗设备的中心轴(即旋转轴)旋转,在经过敏感组织或器官时,将放射源1111进行关源,在经过正常组织器官时放射源1111进行开源,从而可以在头部肿瘤治疗过程中,保护眼睛等敏感组织器官,避免额外伤害。
以下分别对射源装置和成像装置进行详细说明。
在本公开实施例中,示例的,如图8所示,射源装置11可以是碗状,则相应的,载源体111和准直体112均可以为碗状,载源体111可以如图5所示,载源体111的经度方向如图5中的双向箭头所示,为经度0°-360°的走向方向,准直体112可以如图6所示,准直体112的经度方向如图6中的双向箭头所示,为经度0°-360°的走向方向。或者,如图11所示,射源装置11可以是筒状,则相应的,载源体111和准直体112均可以为筒状,载源体111可以如图9所示,载源体111的经度方向如图9中的双向箭头所示,为经度0°-360°的走向方向,准直体112可以如图10所示,准直体112的经度方向如图10中的双向箭头所示,为经度0°-360°的走向方向。其中,图11中载源体111两端大小一致(如两端的外径大小一致),且准直体112的两端大小一致(如两端的外径大小一致)为例。当然载源体111两端也可以大小不同,准直体112的两端也可以大小不同,示例的如图12所示。本公开实施例对于射源装置的具体形状不做限定,仅以上述为例。
以图8所示的放射治疗设备为例,说明本公开实施例的预设夹角范围。如图5所示,放射源1111在经度方向的夹角为以载源体111的中心为参考形成的夹角。这里需要特别说明的是,若放射源1111包括一排,且位于同一排的多个放射源1111的中心在同一经度线上,则认为该多个放射源1111在经度方向的夹角为零度,在本公开实施例中,预设夹角范围大于或等于零度。如图6所示,准直孔1121在经度方向的夹角为以准直体112的中心为参考形成的夹角。这里需要特别说明的是,若准直孔1121包括一排,且位于同一排的多个准直孔1121 的中心在同一经度线上,则认为该多个准直孔1121在经度方向的夹角为零度,在本公开实施例中,预设夹角范围大于或等于零度。
如图5所示,为本公开实施例提供的一种载源体111,载源体111上设置有多个放射源1111,多个放射源1111在经度方向的夹角为A,该夹角A在预设夹角范围内。示例的,该预设夹角范围可以是15°-60°,则15°≤A≤60°,夹角A可以是15°-60°范围内的任意夹角。或者,示例的,该预设夹角范围可以是5°-60°,则5°≤A≤60°,夹角A可以是5°-60°范围内的任意夹角,示例的,夹角A可以是5°、8°、10°、12°、18°、20°、25°、30°、40°、45°、50°或60°等。对于放射源1111的个数和排布方式,本公开实施例不做限定,对应放射源1111的个数,一般可以是20-180个,例如可以是30个或180个,图5所示仅以24个放射源1111为例进行示例说明。
如图6所示,为本公开实施例提供的一种碗状的准直体112,图6以准直体112上设置有4个准直孔组为例,分别为①号准直孔组,②号准直孔组,③号准直孔组和④号准直孔组,每个准直孔组分别包括24个准直孔1121,结合图5和图6,多个放射源1111与每个准直孔组的准直孔1121一一对应,多个放射源1111发出的射束经过准直孔组的各准直孔1111后相交于一个公共焦点(例如图8中的公共焦点Q)。以①号准直孔组为例,多个放射源1111发出的射束经过①号准直孔组的各准直孔1121后相交于一个公共焦点。其中,①号准直孔组,②号准直孔组,③号准直孔组和④号准直孔组中的每个准直孔组在经度方向的夹角在预设夹角范围内,图6以①号准直孔组为例,①号准直孔组在经度方向(图6所示的双向箭头方向)的夹角为A,示例的,该夹角A同载源体111的放射源1111的夹角A,范围可以为5°-60°。
准直体112上设置有多个准直孔组,可以在准直体112上设置有两个或两个以上准直孔组,图6仅以准直体112上设置4个准直孔组为例进行示例说明。每个准直孔组包括多个准直孔,该多个准直孔的个数和排布方式与载源体111上的多个放射源1111的个数和排布方式对应,以使得放射源1111发出的射束穿过准直孔1121后相交于一个公共焦点。
示例的,如图11所示,射源装置11可以是筒状,则载源体111可以是如图9所示的筒状,载源体111的经度方向为图9中的双向箭头所示的方向。图9中以筒状载源体的两端大小一致为例。对于放射源1111的具体个数和排布方式,本公开实施例不做限定,图9中仅以包括20个放射源1111为例进行示例说明。 准直体112可以是如图10所示的筒状,多个准直孔1121对应放射源1111的个数和排布方式,在此不做赘述。本公开实施例对于准直体112上的准直孔组的个数不做限定,图10中以准直体112上设置有两个准直孔组,且每个准直孔组包括20个准直孔1121为例进行示例说明。
当然,射源装置11也可以如图12所示,射源装置11可以是筒状,载源体111和准直体112均可以是筒状,图12中以筒状载源体两端大小不同,且筒状准直体112两端大小不同为例。
一方面,本公开实施例提供的放射治疗设备,成像装置沿射源装置的旋转轴方向设置在射源装置的一侧,射源装置的公共焦点位于射源装置的端面之外,且该公共焦点位于成像装置的成像区域内,因此,可以通过成像装置对位于成像区域内的患者肿瘤进行成像,根据图像精确确认患者是否发生移动,以及在确认患者发生移动的情况下,确定患者移动的具体方向和距离,以便通过移动治疗床来重新定位使得患者肿瘤位于公共焦点处。另一方面,放射治疗设备上设置有多个放射源,准直体上设置有多个准直孔组,放射源经度方向的夹角在预设夹角范围内,载源体上的多个放射源分布在经度方向的预设夹角范围内,则放射治疗设备可以通过载源体带动多个放射源绕放射治疗设备的中心轴旋转,在经过敏感组织或器官时,将放射源进行关源;在经过正常组织器官时放射源进行开源,从而可以在头部肿瘤治疗过程中,保护眼睛等敏感组织器官,避免额外伤害。
下面以图5所示,对本公开实施例提供的载源体进行具体的示例说明。
示例的,本公开实施例提供的载源体111上设置有多个放射源1111,在经度方向上,多个放射源1111分为多组,相邻两组放射源1111的夹角范围为2°-15°。示例的,多组放射源1111中,任意相邻的两组放射源1111的夹角均相同,或者,不同的相邻两组放射源1111的夹角不同,本公开实施例对此不做限定,图5所示仅为一种示例说明。如图5所示,多个放射源1111分为4组,相邻的两组放射源1111的夹角为B(图5以示意的两组为例)为例,该夹角B的范围可以是2°-15°,即2°≤B≤15°,该夹角B可以是2°-15°范围内的任意夹角,示例的,该夹角B可以是2°、2.5°、3°、5°、6°、8°、10°、12°或15°等。
本公开实施例提供的载源体111,多个放射源1111在纬度方向的夹角范围为20°-60°。示例的,如图5所示,载源体111在纬度方向的夹角C内设置有 多个放射源1111。示例的,该夹角C的范围可以是20°-60°,即20°≤C≤60°,该夹角C可以是20°-60°范围内的任意夹角,示例的,该夹角C可以是20°、25°、30°、38°、40°、45°、50°、53°或60°等。
示例的,本公开实施例提供的载源体111,在纬度方向上,任意相邻两个放射源1111的夹角范围为1°-10°。示例的,多组放射源1111中,在纬度方向上任意相邻的两组放射源1111的夹角均相同,或者,在纬度方向上任意相邻的两组放射源1111的夹角不同,本公开实施例对此不做限定,图5所示仅为一种示例说明。示例的,如图5所示,以其中两个放射源为例,该两个放射源在纬度方向的夹角为D,该夹角D的范围可以是1°-10°,即1°≤D≤10°,该夹角D可以是1°-10°范围内的任意夹角,示例的,该夹角D可以是1°、2°、3、5°、6°、8°、9°或10°等。
图5所示的载源体111,以放射源1111在经度方向包括多排,位于同一排的放射源1111的经度相同,在纬度方向上也分为多排,位于同一排的放射源1111的纬度相同为例。容易理解,本公开实施例提供的载源体111,放射源1111在纬度方向上的位置可以各不相同,即多个放射源1111的纬度均不同,以实现非共面照射,更好的保护正常组织。
本公开实施例提供的载源体111,载源体111上设置有多个放射源孔,放射源1111固定安装在放射源孔内。或者,多个放射源1111固定设置在源匣上,载源体111上设置有与源匣形状相匹配的源匣位,源匣固定安装在源匣位处,以使得多个放射源设置在载源体111上。示例的,源匣位可以是通孔,也可以是盲孔,并在载源体111上设置有多个准直孔,以使得放射源1111发出的射束可以穿过该准直孔发出。本公开实施例对于源匣及源匣位的形状和结构不做限定。
载源体111上还设置有源匣连接部,用于固定位于源匣位处的源匣。同理,源匣上也设置有用于与源匣位连接的连接部。示例的,载源体111和源匣可以是通过螺钉连接,也可以是通过卡扣连接,对于源匣与源匣位的连接和固定方式,本公开实施例不做限定,仅以上述为例进行示例说明。
本公开实施例提供的载源体111,源匣上还设置有取换源匣的连接部。示例的,源匣连接部可以是螺孔,其可以与导源杆螺纹连接。或者,源匣连接部与导源杆可以是磁铁吸附连接。对于源匣与导源杆的连接,和源匣的取换方式,本公开实施例不做限定,仅以上述为例进行示例说明。
本公开实施例提供的载源体111,源匣与载源体111的材料不同。示例的, 源匣可以是由钨合金形成,载源体111可以是由铸铁形成。
下面以图6所示,对本公开实施例提供的准直体进行具体的示例说明。
示例的,本公开实施例提供的准直体112,在经度方向上,相邻两个准直孔1121的间距大于放射源1111的尺寸,从而可以通过使准直孔1121和放射源1111仅仅错位较小角度,利用准直孔1121之间的间距来屏蔽放射源,避免使用屏蔽位来屏蔽,因此仅需要错位较小角度,从而可以实现快速开关源。
示例的,本公开实施例提供的准直体112,在经度方向上,每个准直孔组包括多排准直孔1121,相邻两排准直孔1121的夹角范围为2°-15°。示例的,准直孔组中,任意相邻的两排准直孔1121的夹角均相同,或者,不同的相邻两排准直孔1121的夹角不同,本公开实施例对此不做限定,图6所示仅为一种示例说明。如图6所示,每个准直孔组中,多个准直孔1121分为4排,相邻的两排准直孔1121的夹角为B(图6以示意的两排为例)为例,该夹角B的范围可以是2°-15°,即2°≤B≤15°,该夹角B可以是2°-15°范围内的任意夹角,示例的,该夹角B可以是2°、2.5°、3°、5°、6°、8°、10°、12°或15°等。
本公开实施例提供的准直体112,准直孔组在纬度方向的夹角范围为20°-60°。示例的,如图6所示,准直孔组在纬度方向的夹角为C,该夹角C的范围可以是20°-60°,即20°≤C≤60°,该夹角C可以是20°-60°范围内的任意夹角,示例的,该夹角C可以是20°、25°、30°、38°、40°、45°、50°、53°或60°等。
示例的,本公开实施例提供的准直体112,在纬度方向上,任意相邻两个准直孔1121的夹角范围为1°-10°。示例的,在纬度方向上任意相邻的两个准直孔1121的夹角均相同,或者,在纬度方向上任意相邻的两个准直孔1121的夹角不同,本公开实施例对此不做限定,图6所示仅为一种示例说明。示例的,如图6所示,以其中两个准直孔1121为例,该两个准直孔1121在纬度方向的夹角为D,该夹角D的范围可以是1°-10°,即1°≤D≤10°,该夹角D可以是1°-10°范围内的任意夹角,示例的,该夹角D可以是1°、2°、3°、5°、6°、8°、9°或10°等。
图6所示的准直体112,以准直孔组的准直孔1121在经度方向包括多排,位于同一排的准直孔1121经度相同,在纬度方向上也分为多排,位于同一排的准直孔1121纬度相同为例。容易理解,本公开实施例提供的准直体112,准直 孔1121在纬度方向上的位置可以各不相同,即多个准直孔1121的纬度均不同,以实现非共面照射,更好的保护正常组织。
本公开实施例提供的准直体112,如图6所示,该准直体112还包括屏蔽位1122,屏蔽位1122用于屏蔽多个放射源1111的射束,可以通过准直体112的屏蔽位1122屏蔽放射源1111的射线,实现关源。本公开实施例对于屏蔽位1122在该准直体112的具体位置不做限定,图6中以屏蔽位1122与各准直孔组位置相对为例进行示例说明。
示例的,本公开实施例提供的准直体112,屏蔽位1122位于多个准直孔组中任意相邻的两个准直孔组之间。示例的,如图7所示,以屏蔽位1122位于②号准直孔组和③号准直孔组之间为例进行示例说明。图7中仅以准直体112包括一个屏蔽位1122为例,本公开实施例提供的准直体112可以包括多个屏蔽位1122。例如,还可以在①号准直孔组和②号准直孔组之间设置屏蔽位。也可以是在③号准直孔组和④号准直孔组之间设置屏蔽位。也可以是在每相邻的两个准直孔组之间均设置屏蔽位。本公开实施例对于多个屏蔽位的个数和分布不做限定,仅以上述为例进行示例说明。
本公开实施例提供的准直体112,准直体112可以包括固定连接的内准直体和外准直体,内准直体上的准直孔和外准直体上的准直孔对应设置。即准直体可以包括双层,该内准直体和外准直体可以通过螺钉连接固定。
本公开实施例提供的准直体112,准直体112包括内准直体和外准直体,内准直体和外准直体可相对旋转。示例的,在治疗过程中,若发生事故,可以通过内准直体实现快速关源,再旋转外准直体使得屏蔽位对准放射源,以屏蔽放射源,再进一步将内准直体的屏蔽位对准放射源以实现完全关源。
本公开实施例提供的准直体112,内准直体上的准直孔为直孔,和/或,外准直体上的准直孔为锥孔。示例的,可以是内准直体上为直孔,外准直体也为直孔;或者,内准直体为直孔,外准直体为锥孔;也可以是内准直体和外准直体均为锥孔。
本公开实施例提供的准直体112,在屏蔽位1122设置有屏蔽体,屏蔽体的材料密度大于准直体112的材料密度。示例的,屏蔽体与准直体112固定连接,屏蔽体可以是由钨块或铅快或其合金组成。准直体112可以是由铸铁组成。从而屏蔽体能够实现对放射源的更好屏蔽。
有关载源体和准直体的描述,仅以上述为例,载源体和准直体的设置方式 也可以用于筒状射源转轴中,这里不做赘述。
本公开实施例提供的一种放射治疗设备,射源装置11还包括开关体,开关体位于载源体111和准直体112之间;开关体上设置有与放射源对应的至少两组孔位,其中一组孔位均为通孔,其余各组孔位包括通孔和屏蔽位。示例的,如图13所示,开关体113上设置有5组孔位即a-e组孔位,其中a孔位均为通孔,b孔位中仅以一排为通孔其余各孔位为屏蔽位,c孔位中两排为通孔其余各孔位为屏蔽位,d孔位中三排为通孔其余各孔位为屏蔽位,e孔位中四排为通孔其余各孔位为屏蔽位。需要说明的是,屏蔽位可以是在开关体上不设置孔,也可以是开关体上开有孔但开孔内可以是填充有钨棒,以屏蔽放射源。
本公开实施例提供的放射治疗设备,开关体113上设置有不同的孔位,不同孔位的开孔个数不同,则可以通过使得开关体113的不同孔位对应放射源,以选择性的屏蔽部分放射源,以调节公共焦点处的剂量。
本公开实施例提供的一种放射治疗设备,载源体111和准直体112可绕射源装置11的中心轴360°圆周旋转或往复旋转。载源体111和准直体112绕射源装置11的中心轴往复旋转,可以是载源体111和准直体112在270°范围内往复旋转。对于其往复旋转的角度,本公开实施例不做限定,仅以上述为例进行示例说明。
本公开实施例提供的一种放射治疗设备,载源体111和/或准直体112可沿预设轨迹移动。示例的,如图11所示,载源体111和/或准直体112可沿射源装置11的中心轴(图11中未标出)的方向移动。或者,如图12所示,载源体111和/或准直体112可以沿方向S移动。示例的,可以是载源体111沿射源装置11的中心轴的方向移动,准直体112固定不动;或者,准直体112沿射源装置11的中心轴的方向移动,载源体111固定不动;或者,载源体111和准直体112均可以沿射源装置11的中心轴的方向移动。载源体111和/或准直体112沿预设轨迹移动,可以实现开关源。
本公开实施例提供的放射治疗设备,载源体111和/或准直体112由多个片段(也即是部分)组成。示例的,放射源1111可以位于载源体111的其中一个片段上,或者,该片段可以沿射源装置11的中心轴的方向移动。准直体112也可以由多个片段(也即是部分)组成,准直体112可以包括多个准直孔组,每个准直孔组对应设置在一个片段上,或者,一个片段上设置多个准直孔组。再或者,准直体112上还可以设置有关源位,一个准直孔组和一个关源位可以是 设置在同一个片段上。本公开实施例提供的放射治疗设备,载源体111也可以是片状,即可以是上述多个片段中的一个片段。对于载源体111的具体形状,本公开实施例不做限定。
在治疗过程中,需要使患者的肿瘤精确的位于射源装置11的公共焦点处,以使得射源装置11的放射源发出的放射线将肿瘤细胞杀死。但是,若治疗过程中患者发生移动,则放射线会相对肿瘤发生偏移,使得放射线照射至患者的正常组织或细胞,不仅不利于肿瘤治疗还会损伤正常组织或细胞,有害于患者健康,由于现有的放射治疗设备的公共焦点位于射源装置的腔体内,治疗过程中无法对患者的头部是否移动进行图像监控。本公开实施例提供的放射治疗设备,放射治疗设备的公共焦点位于射源装置的端面之外,且该公共焦点位于成像装置的成像区域内,从而可以利用成像装置对患者肿瘤进行成像,以精确确认患者的移动情况,以便驱动治疗床将患者的肿瘤重新与公共焦点对位。
本公开实施例的放射治疗设备,成像装置12可以为X射线成像装置、CT(电子计算机断层扫描,Computed Tomography)成像装置、超声成像装置、DSA(数字减影血管造影,Digital Subtraction Angiography)成像装置、MR(Magnetic Resonance,核磁共振)成像装置、PET(Positron Emssion Computed Tomography,正电子发射型机断层扫描)成像装置中的一种或多种的组合。例如成像装置12为X射线成像装置,示例的,如图8、图11和图12所示,成像装置12可以包括一个X射线球管121和一个X射线平板122。或者成像装置12也可以包括两个X射线球管和两个X射线平板,两个X射线球管与两个X射线平板一一对应,每个X射线平板用于接收对应的X射线球管发出的射束,该两个X射线球管发出的射束相交于射源装置11的公共焦点。当然,成像装置12也可以是任意两种或多种不同成像装置的组合,例如成像装置12可以是X射线成像装置和DSA成像装置的组合。本公开实施例对于成像装置12的具体设置方式不做限定,仅以上述为例进行示例说明。
示例的,在成像装置12包括成像中心点的情况下,射源装置11的公共焦点与成像中心点重合。例如,成像装置12包括两个X射线球管和两个X射线平板,两个X射线球管发出的射束相交于射源装置11的公共焦点,射源装置11的公共焦点与成像中心点重合。
本公开实施例提供的放射治疗设备,成像装置12能够沿射源装置11的中心轴旋转。如图8、图11和图12所示,在成像装置12包括一个X射线球管121 和一个X射线平板122的情况下,若患者在图8、图11和图12所示的上下方向移动,则根据成像装置12成像的图像无法确认患者是否移动。本公开实施例提供的放射治疗设备中,成像装置12绕射源装置的中心轴旋转,可以使成像装置12获取不同角度下的患者图像,从而可以从各角度下确认患者是否发生移动,提高确认患者是否发生移动的准确性。其中,可以通过在成像装置12安装旋转装置(例如齿轮齿圈)使成像装置12绕射源装置11的中心轴旋转,也可以是通过滑环驱动成像装置12绕射源装置11的中心轴旋转。本公开实施例对于成像装置12旋转的驱动方式不做限定。
本公开实施例提供的放射治疗设备,成像装置12固定连接在射源装置11上。示例的,成像装置12可以与载源体111或准直体112固定连接。以图8所示为例,X射线球管121和X射线平板122均可以与载源体111固定连接,从而,通过载源体111旋转带动成像装置12旋转,避免单独为成像装置设置旋转驱动装置。当然,成像装置12也可以固定连接在开关体113或准直体112上,本公开实施例对此不做限定。
本公开实施例提供的一种放射治疗设备,如图8、图11和图12所示,该放射治疗设备还包括屏蔽装置14,屏蔽装置14位于射源装置11的一侧,放射源1111发出的射束穿过射源装置11的公共焦点后被屏蔽装置14屏蔽。示例的,如图8、图11和图12所示,屏蔽装置14位于射源装置11的公共焦点的一侧,放射源1111发出的射束穿过射源装置11的公共焦点后被屏蔽装置14屏蔽,以避免射束从放射治疗设备射出引起治疗室内多余的辐射。示例的,屏蔽装置14可以为环状体,则放射源1111绕射源装置11的中心轴旋转一周的过程发出的射线均可以被屏蔽装置14接收。或者,屏蔽装置14为屏蔽块,屏蔽装置14可绕射源装置11的中心轴旋转,以跟随放射源1111旋转接收穿过公共焦点后的射线。需要说明的是,治疗床13承载患者移动,则屏蔽装置14上开设有通道(图中未示出),以方便治疗床13移动。
示例的,本公开实施例对屏蔽装置14和成像装置12的位置设置不做限定,例如成像装置12可以是单独固定设置,也可以是设置在屏蔽装置14内部。
本公开实施例提供的放射治疗设备还包括屏蔽门,屏蔽门可打开或闭合放射治疗设备的腔体。以图8所示为例,屏蔽门15可以设置在射源装置11的腔体外,以可打开或闭合射源装置11的腔体,屏蔽门15可以是上下开合,也可以是左右开合。从而在非治疗时间内,可以通过屏蔽门15来屏蔽射束。当然, 屏蔽门15也可以设置在成像装置12和屏蔽装置14之间,或者屏蔽门15设置在屏蔽装置14的外侧。本公开实施例对于屏蔽门的具体设置位置不做限定,仅以图8所示的为例进行示例说明。
本公开实施例提供的放射治疗设备,如图8所示,在准直体112和载源体111之间还设置有防下沉组件(图中未示出)。射源装置11还包括位于载源体111外部的屏蔽体(图中未示出),在屏蔽体和载源体111之间设置有防下沉组件。示例的,防下沉组件可以为轴承,从而避免准直体112和载源体111在一端驱动旋转的情况下,另一端出现下垂。
本公开实施例提供了一种放射治疗设备,该放射治疗系统包括图8、图11或图12所示的放射治疗设备。
需要说明的是,本公开实施例中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (24)

  1. 一种放射治疗设备,包括射源装置和成像装置;
    所述成像装置沿所述射源装置的旋转轴方向设置在所述射源装置的一侧,所述射源装置的公共焦点位于所述射源装置的端面之外,且所述公共焦点位于所述成像装置的成像区域内。
  2. 根据权利要求1所述的放射治疗设备,其中,
    所述射源装置包括载源体及准直体,所述载源体上设置有多个放射源,所述多个放射源在经度方向的夹角在预设夹角范围内;
    所述准直体上设置有多个准直孔组,每个所述准直孔组在经度方向的夹角在预设夹角范围内,每个所述准直孔组包括多个准直孔,所述多个射线源与所述准直孔组的所述多个准直孔一一对应,所述多个放射源发出的射束经过所述准直孔组的各准直孔后相交于所述公共焦点。
  3. 根据权利要求2所述的放射治疗设备,其中,所述成像装置为X射线成像装置、CT成像装置、超声成像装置、DSA成像装置、MR成像装置、PET成像装置中的一种或多种的组合。
  4. 根据权利要求3所述的放射治疗设备,其中,在所述成像装置包括成像中心点的情况下,所述公共焦点与所述成像中心点重合。
  5. 根据权利要求2所述的放射治疗设备,其中,所述成像装置包括两个X射线球管和两个X射线平板,所述两个X射线球管与所述两个X射线平板一一对应,每个所述X射线平板用于接收对应的所述X射线球管发出的射束,所述两个X射线球管发出的射束相交于所述公共焦点。
  6. 根据权利要求2所述的放射治疗设备,其中,所述成像装置包括一个X射线球管和一个X射线平板,所述X射线平板用于接收所述X射线球管发出的射束。
  7. 根据权利要求2所述的放射治疗设备,其中,所述成像装置能够绕所述射源装置的中心轴旋转。
  8. 根据权利要求7所述的放射治疗设备,其中,所述成像装置固定连接在所述射源装置上。
  9. 根据权利要求8所述的放射治疗设备,其中,所述成像装置与所述载源体或所述准直体固定连接。
  10. 根据权利要求2所述的放射治疗设备,其中,所述放射治疗设备还包括屏蔽装置,所述屏蔽装置位于所述射源装置的一侧,所述放射源发出的射束穿过所述公共焦点后被所述屏蔽装置屏蔽。
  11. 根据权利要求10所述的放射治疗设备,其中,所述屏蔽装置为环状体,或者,所述屏蔽装置为屏蔽块,所述屏蔽装置能够绕所述射源装置的中心轴旋转。
  12. 根据权利要求2所述的放射治疗设备,其中,所述放射治疗设备还包括屏蔽门,所述屏蔽门能够打开或闭合所述放射治疗设备的腔体。
  13. 根据权利要求2所述的放射治疗设备,其中,所述准直体和所述载源体之间设置有防下沉组件。
  14. 根据权利要求2所述的放射治疗设备,其中,所述射源装置还包括屏蔽体,所述屏蔽体和所述载源体之间设置有防下沉组件。
  15. 根据权利要求2所述的放射治疗设备,其中,所述预设夹角范围为5°-60°。
  16. 根据权利要求2所述的放射治疗设备,其中,在经度方向上,相邻两 个所述准直孔的间距大于所述放射源的尺寸。
  17. 根据权利要求2所述的放射治疗设备,其中,所述射源装置还包括开关体,所述开关体位于所述载源体和准直体之间;
    所述开关体上设置有与所述放射源对应的至少两组孔位,其中一组孔位均为通孔,其余各组孔位包括通孔和屏蔽位。
  18. 根据权利要求2所述的放射治疗设备,其中,所述载源体和所述准直体能够绕所述射源装置的中心轴360°圆周旋转或往复旋转。
  19. 根据权利要求2所述的放射治疗设备,其中,所述载源体和/或所述准直体能够沿预设轨迹移动。
  20. 根据权利要求19所述的放射治疗设备,其中,所述载源体和/或所述准直体能够沿所述射源装置的中心轴的方向移动。
  21. 根据权利要求2所述的放射治疗设备,其中,所述射源装置还包括源匣,所述源匣上固定设置有所述多个放射源;
    在所述载源体在经度方向的预设夹角范围内设置有源匣位,所述源匣位与所述源匣的形状相匹配,所述源匣设置在所述源匣位处。
  22. 根据权利要求2所述的放射治疗设备,其中,所述载源体和/或准直体包括多个片段。
  23. 根据权利要求22所述的放射治疗设备,其中,在所述载源体包括多个片段的情况下,所述多个放射源分布在所述载源体的其中一个所述片段上。
  24. 一种放射治疗系统,包括权利要1至23任一所述的放射治疗设备。
PCT/CN2019/090579 2018-08-24 2019-06-10 一种放射治疗设备及系统 WO2020038073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810971119.1A CN109157761B (zh) 2018-08-24 2018-08-24 一种放射治疗系统
CN201810971119.1 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020038073A1 true WO2020038073A1 (zh) 2020-02-27

Family

ID=64896650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090579 WO2020038073A1 (zh) 2018-08-24 2019-06-10 一种放射治疗设备及系统

Country Status (2)

Country Link
CN (5) CN113144442B (zh)
WO (1) WO2020038073A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112295117A (zh) * 2020-11-11 2021-02-02 陈继红 一种钴60伽马射线放射治疗装置
CN114177542A (zh) * 2020-09-15 2022-03-15 西安大医集团股份有限公司 放射治疗中的剂量控制方法、装置、控制器、系统
CN114306958A (zh) * 2021-12-31 2022-04-12 西安大医集团股份有限公司 射源控制系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109011219B (zh) * 2018-08-24 2023-11-17 西安大医集团股份有限公司 一种放射治疗系统及其控制驱动方法
CN113144442B (zh) * 2018-08-24 2023-07-18 西安大医集团股份有限公司 一种准直体、射源装置及放射治疗系统
CN110432920A (zh) * 2019-07-09 2019-11-12 苏州雷泰智能科技有限公司 一种放射治疗cbct的成像方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442675A (en) * 1992-03-19 1995-08-15 Wisconsin Alumni Research Foundation Dynamic collimator for radiation therapy
CN1919373A (zh) * 2005-08-25 2007-02-28 惠小兵 放射治疗装置
CN101195058A (zh) * 2007-11-27 2008-06-11 深圳市海博科技有限公司 多准直体放射治疗装置
CN101961530A (zh) * 2010-10-27 2011-02-02 玛西普医学科技发展(深圳)有限公司 一种影像引导下的放射治疗设备
CN102430206A (zh) * 2010-09-29 2012-05-02 上海世鹏实验室科技发展有限公司 集影像与放射治疗于一体的治疗系统
CN108175958A (zh) * 2018-03-16 2018-06-19 西安大医数码科技有限公司 聚焦头、准直器及伽玛刀
CN109157761A (zh) * 2018-08-24 2019-01-08 西安大医集团有限公司 一种放射治疗系统

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798039B2 (ja) * 1988-07-20 1995-10-25 三菱電機株式会社 コンピュータ断層撮影装置
CN1046859C (zh) * 1994-08-29 1999-12-01 宋世鹏 单源体回转辐射装置
CN1049841C (zh) * 1996-11-25 2000-03-01 郑铁 2π/4π非等距中心聚焦式全身光子刀
CN1050062C (zh) * 1996-12-17 2000-03-08 深圳奥沃国际科技发展有限公司 旋转式伽玛射线辐射单元
JP3340949B2 (ja) * 1997-11-21 2002-11-05 関西電力株式会社 コリメーター及びγ線検出装置
JPH11304999A (ja) * 1998-04-22 1999-11-05 Rigaku Denki Kk X線結晶構造解析装置のための試料保持用ゴニオメータ
DE19845133A1 (de) * 1998-10-01 2000-04-06 Philips Corp Intellectual Pty Computertomographie-Verfahren mit kegelförmigem Strahlenbündel
CN1137739C (zh) * 1999-05-31 2004-02-11 深圳市海博科技有限公司 多源放射线全身治疗装置
CN1583195A (zh) * 2004-06-02 2005-02-23 杭州华源伽玛医疗设备投资有限公司 放疗设备的单排直线排列放射源
CN1714884A (zh) * 2004-06-28 2006-01-04 宋世鹏 一种多源放射治疗装置
CN1270326C (zh) * 2004-07-15 2006-08-16 杭州华源伽玛医疗设备投资有限公司 放疗设备的交叉排列双排孔准直器
CN1586671A (zh) * 2004-09-15 2005-03-02 杭州华源伽玛医疗设备投资有限公司 折线排列伽玛射线放射源
CN2790509Y (zh) * 2005-01-28 2006-06-28 惠小兵 一种放射治疗的辐射装置
CN100563751C (zh) * 2007-01-04 2009-12-02 吕风华 伽玛射线聚焦辐照单元
CN201058183Y (zh) * 2007-07-16 2008-05-14 深圳市海博科技有限公司 升降源匣装置
CN101850156B (zh) * 2009-04-01 2013-03-20 西安航天动力机械厂 一种全身伽玛刀准直体
ATE536203T1 (de) * 2010-02-12 2011-12-15 Eckert & Ziegler Bebig Gmbh Gerät und system zum zusammenfügen von kettenbestandteilen zu einer kette umfassend radioaktive strahlenquellen
CN102441238A (zh) * 2010-09-30 2012-05-09 上海世鹏实验室科技发展有限公司 放射治疗装置、辐射装置及准直装置
CN202770788U (zh) * 2012-06-11 2013-03-06 北京华力兴科技发展有限责任公司 一种基于伽马射线的双视角辐射成像系统
CN104338241A (zh) * 2013-07-26 2015-02-11 苏州雷泰医疗科技有限公司 一种放射治疗装置用限光装置及放射治疗装置
US9526919B2 (en) * 2013-11-01 2016-12-27 Cybermed Technologies (Xi'an) Co., Ltd. Multi-purpose radiation therapy system
CN203644405U (zh) * 2013-12-30 2014-06-11 郑晓天 一种伽玛刀的装取源装置
US9155912B2 (en) * 2014-01-05 2015-10-13 Xinsheng Cedric Yu Method and system for stereotactic intensity-modulated arc therapy
CN106163613B (zh) * 2014-05-22 2019-01-08 深圳市奥沃医学新技术发展有限公司 多源聚焦治疗和适形调强治疗放疗设备及其准直器组合
CN104955520A (zh) * 2014-08-19 2015-09-30 深圳市奥沃医学新技术发展有限公司 一种用于多源放射治疗设备的局部关源装置与放疗设备
CN104597068A (zh) * 2015-01-08 2015-05-06 中国科学院高能物理研究所 一种空间主动激发x荧光谱仪的准直结构
DE102015101847B4 (de) * 2015-02-10 2017-11-02 Eyesense Gmbh Strahlteiler und Anordnung zur Untersuchung einer mittels elektromagnetischer Strahlung anregbaren Probe
WO2017020244A1 (zh) * 2015-08-04 2017-02-09 西安大医数码技术有限公司 聚焦放疗装置及放射治疗设备
JP6475138B2 (ja) * 2015-09-30 2019-02-27 富士フイルム株式会社 制御装置、放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影プログラム
WO2017197557A1 (zh) * 2016-05-16 2017-11-23 深圳市医科信医疗技术有限公司 用于放疗设备的装源装置及装源方法
CN106110516A (zh) * 2016-06-17 2016-11-16 深圳市奥沃医学新技术发展有限公司 一种成像准直体、治疗头及治疗设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442675A (en) * 1992-03-19 1995-08-15 Wisconsin Alumni Research Foundation Dynamic collimator for radiation therapy
CN1919373A (zh) * 2005-08-25 2007-02-28 惠小兵 放射治疗装置
CN101195058A (zh) * 2007-11-27 2008-06-11 深圳市海博科技有限公司 多准直体放射治疗装置
CN102430206A (zh) * 2010-09-29 2012-05-02 上海世鹏实验室科技发展有限公司 集影像与放射治疗于一体的治疗系统
CN101961530A (zh) * 2010-10-27 2011-02-02 玛西普医学科技发展(深圳)有限公司 一种影像引导下的放射治疗设备
CN108175958A (zh) * 2018-03-16 2018-06-19 西安大医数码科技有限公司 聚焦头、准直器及伽玛刀
CN109157761A (zh) * 2018-08-24 2019-01-08 西安大医集团有限公司 一种放射治疗系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177542A (zh) * 2020-09-15 2022-03-15 西安大医集团股份有限公司 放射治疗中的剂量控制方法、装置、控制器、系统
US11918829B2 (en) 2020-09-15 2024-03-05 Our United Corporation Method, controller and system for controlling dose in radiotherapy
CN114177542B (zh) * 2020-09-15 2024-06-11 西安大医集团股份有限公司 放射治疗中的剂量控制方法、装置、控制器、系统
CN112295117A (zh) * 2020-11-11 2021-02-02 陈继红 一种钴60伽马射线放射治疗装置
CN114306958A (zh) * 2021-12-31 2022-04-12 西安大医集团股份有限公司 射源控制系统及方法

Also Published As

Publication number Publication date
CN113082559A (zh) 2021-07-09
CN113144442A (zh) 2021-07-23
CN113082558A (zh) 2021-07-09
CN113230547B (zh) 2023-02-21
CN109157761A (zh) 2019-01-08
CN113082559B (zh) 2023-07-18
CN109157761B (zh) 2021-06-04
CN113082558B (zh) 2023-02-21
CN113144442B (zh) 2023-07-18
CN113230547A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2020038073A1 (zh) 一种放射治疗设备及系统
WO2020038093A1 (zh) 放射治疗设备、控制驱动方法及设备、系统
WO2020038225A1 (zh) 准直体、放疗设备及其驱动控制方法
WO2020038226A1 (zh) 放射治疗设备及系统、控制驱动方法及设备
US20070221869A1 (en) Radiotherapy apparatus
US11759657B2 (en) Radiation treatment device
WO2019137295A1 (zh) 放疗设备及放疗系统
US10953244B2 (en) Control driving method for radiotherapy device
CN210057171U (zh) 一种放射治疗系统
US20210187325A1 (en) Control driving method for a radiotherapy device
CN209790634U (zh) 准直体及放疗设备
CN209790635U (zh) 一种放射治疗设备
CN210131261U (zh) 载源体及放疗设备
CN219089326U (zh) 放射治疗系统
CN117770844A (zh) 放射治疗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852247

Country of ref document: EP

Kind code of ref document: A1