WO2020038086A1 - 生化分析仪检测系统 - Google Patents

生化分析仪检测系统 Download PDF

Info

Publication number
WO2020038086A1
WO2020038086A1 PCT/CN2019/091419 CN2019091419W WO2020038086A1 WO 2020038086 A1 WO2020038086 A1 WO 2020038086A1 CN 2019091419 W CN2019091419 W CN 2019091419W WO 2020038086 A1 WO2020038086 A1 WO 2020038086A1
Authority
WO
WIPO (PCT)
Prior art keywords
biochemical analyzer
host computer
data
sample disc
photocoupler
Prior art date
Application number
PCT/CN2019/091419
Other languages
English (en)
French (fr)
Inventor
贾岱岩
张小三
许德晨
景宏维
孙家振
张国秀
Original Assignee
基蛋生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 基蛋生物科技股份有限公司 filed Critical 基蛋生物科技股份有限公司
Publication of WO2020038086A1 publication Critical patent/WO2020038086A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • the present application relates to the technical field of medical automatic detection equipment, and in particular, to a biochemical analyzer detection system.
  • dry biochemical analyzers have developed rapidly due to their fast and convenient operation, such as Roche's ReflotronPlus dry biochemical analyzer and FUJIFILM's 4000ie automatic dry biochemical analyzer.
  • Such instruments use the dry chemical method. Simply add the sample to the solid-phase carrier dry reagent strip for subsequent measurements, eliminating the need for traditional tubing systems.
  • the dry biochemical analyzer using multi-channel dynamic detection can collect multiple reagent strip samples at the same time, which can improve the detection. Efficiency, but the control requirements for dry biochemical multi-channel dynamic detection are relatively high. How to accurately control the multi-channel dynamic detection of dry biochemical analyzer is very important.
  • the purpose of this application is to provide a biochemical analyzer detection system that can accurately control a dry biochemical analyzer for multi-channel dynamic detection.
  • a biochemical analyzer detection system includes a biochemical analyzer and a host computer.
  • the biochemical analyzer includes a mechanical arm sample adding device and a rotating sample disc provided with a plurality of clamping positions, wherein the card Bits are used to clip reagent strips;
  • the host computer is used for storing control parameters of the robot arm sample adding device and the rotating sample disc, and controlling the biochemical analyzer for data collection according to a preset arrangement process and the control parameters;
  • the biochemical analyzer is used to collect multiple reagent strip data and send multiple reagent strip data to the host computer, so that the upper computer performs queue data storage and processing on the multiple reagent strip data. .
  • the host computer uses a synchronous write instruction to store the control parameters in a file, and stores a plurality of detection results obtained by processing a plurality of the reagent strip data into a database.
  • the biochemical analyzer includes an anti-optocoupler disposed on the rotating sample disc, and the anti-optocoupler is used to detect whether a reagent strip is stuck on the card position.
  • the biochemical analyzer further includes a number grid photocoupler and a out-of-step detection photocoupler arranged on the rotating sample disc;
  • the biochemical analyzer collects data of the reagent strip on the corresponding card position
  • the out-of-step detection photocoupler is used to detect whether the rotating sample disc is out of step.
  • the biochemical analyzer further includes a reset photocoupler disposed on the rotating sample disc, and the reset photocoupler is configured to reset the rotating sample disc.
  • biochemical analyzer is further configured to send detection data of the optocoupler, the digital lattice photocoupler, the out-of-step detection photocoupler, and the reset photocoupler to the host computer; the The host computer controls the biochemical analyzer to perform data collection according to the detection data.
  • the biochemical analyzer includes a processing module and a multi-channel acquisition module connected to the processing module;
  • the processing module controls the multi-channel acquisition module to collect data of a plurality of reagent strips on the card position on the rotating sample disc, and sends the collected data to the host computer.
  • the biochemical analyzer further includes a motor driving module and a motor, and the motor is connected to the rotating sample disc;
  • the motor driving module drives the motor to drive the rotating sample disc to rotate and the card slot in and out control.
  • the biochemical analyzer further includes a temperature control device connected to the host computer, and the temperature control device is used to control the internal temperature of the reaction disk of the rotating sample disc.
  • the host computer is further configured to control the sample loading device of the mechanical arm sampling device in a time slice rotation manner and control the rotating sample disc to work through the detection device;
  • the host computer divides the time slice into two time stamps for management, one of which is the time stamp of the robotic arm sample adding device, and the other is the time stamp of the rotating sample disc.
  • a biochemical analyzer detection system includes a biochemical analyzer and a host computer.
  • the biochemical analyzer includes a robotic arm sample adding device and a rotating sample disc provided with a plurality of card positions.
  • the reagent strip is connected to the card;
  • the upper computer is used to store the control parameters of the robot arm loading device and the rotating sample disc, and controls the biochemical analyzer for data collection according to the preset programming process and control parameters;
  • the biochemical analyzer is used to collect multiple Each reagent bar data, and send multiple reagent bar data to the host computer, so that the host computer can store and process queue data of multiple reagent bar data.
  • the host computer can accurately control the dry biochemical analyzer for multi-channel dynamic detection.
  • FIG. 1 is a schematic structural diagram of a biochemical analyzer according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a rotating sample disc and a pushing mechanism of a biochemical analyzer according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a detection system of a biochemical analyzer according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a pushing mechanism of a biochemical analyzer according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of an execution unit on a pushing mechanism of a biochemical analyzer according to an embodiment of the present application.
  • Icons 100-table; 200-rotating sample disc; 300-detection mechanism; 400-number grid photocoupler; 500-out-of-step detection photocoupler; 600-reset photocoupler; 700-pushing mechanism; 800-positioning mechanism 900-mechanical arm sample adding device; 1000-biochemical analyzer; 2000- upper computer; 210-card position; 710-drive section; 720-guide section; 730-executive section; 740-transmission section; 731-slider; 732-return spring; 733-executive board; 734-extension board; 735-positioning plate; 736-clamping plate; 7340-card slot.
  • FIG. 1 is a schematic structural diagram of a biochemical analyzer provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a rotating sample disc 200 and a pushing mechanism of the biochemical analyzer provided in an embodiment of the present application.
  • the biochemical analyzer includes: a workbench 100 and a rotating sample disc 200; the rotating sample disc 200 is rotatably provided on the workbench 100, and the rotating sample disc 200 is provided with A plurality of card slots 210 for snapping reagent strips, and the number of card slots 210 can be 12, 16, or more. In this embodiment, 16 card slots 210 are used, which can also be adjusted according to the specific use situation. .
  • the detection mechanism 300 is disposed on the workbench 100, and one end of the detection mechanism 300 is disposed on the rotating sample disc 200.
  • the detection mechanism 300 is used to collect data on a reagent strip provided on the card holder 210.
  • the detection mechanism 300 is an optical path.
  • the biochemical analyzer is provided with a detection mechanism 300 above the rotating sample disc 200, and the rotating sample disc 200 can rotate, so that the detection of the reagent in the position 210 of the rotating sample disc 200 can be performed continuously. Test.
  • the biochemical analyzer of this embodiment is based on dynamic multi-channel detection. There are multiple card positions on the rotating pattern disk. As long as the disk rotates once, multiple sets of detection data of multiple reagent strips corresponding to the multiple card positions can be collected. Thus improving the efficiency of detection.
  • the biochemical analyzer detection system includes the above-mentioned biochemical analyzer 1000 and the host computer 2000; the biochemical analyzer 1000 further includes a robotic arm sample adding device, and the sample adding operation is performed by the robotic arm sample adding device. ;
  • the host computer 2000 is used to store the control parameters of the robot arm sample loading device and the rotating sample disc, and to control the biochemical analyzer for data collection according to the preset programming process and control parameters;
  • the biochemical analyzer 1000 is configured to collect a plurality of reagent strip data and send the plurality of reagent strip data to the host computer 2000, so that the host computer 2000 performs queue data storage and processing on the plurality of reagent strip data.
  • the host computer 2000 performs queue data storage and processing on the collected sets of data to ensure data accuracy.
  • the upper computer can adopt an Android upper computer, and store the core data of the biochemical analyzer through the Android file, Sharepreference mechanism and database storage, including control parameters such as the position of the robot arm, various sensor settings, and measurement result data.
  • the host computer 2000 can accurately control the biochemical analyzer 1000 for multi-channel dynamic detection.
  • the preset orchestration process is set by the host computer 2000 according to the detection items of the biochemical analyzer 1000.
  • Each item has a fixed measurement time, a fixed sample type, and a sample amount, which are all known. Specific testing items can be scheduled.
  • the software schedules different modules to cooperate according to the time slice principle, and then samples the data, and the data is processed into concentration, such as Ng / L.
  • the host computer 2000 uses synchronous write instructions to store control parameters in a file, and stores multiple detection results obtained by processing multiple reagent strip data into a database.
  • the Android sharedPreference storage technology is used to store the control parameters in the file, and a synchronous write instruction is used to ensure that the control parameters are 100% written. It can avoid data loss caused by power failure, and at the same time use double files to protect this information to ensure the reliability of the data, thereby improving the security and stability of the biochemical analyzer 1000.
  • the detection results (converted into the required concentration information) are obtained by software processing on the data of multiple reagent strips collected dynamically, and the concentration information and the relevant information of the detector are stored in the memory through the Android SQlite database storage method.
  • the biochemical analyzer 1000 includes a photocoupler disposed on the rotating sample disc 200, and the photocoupler is used to detect whether a reagent strip is stuck on the card position.
  • the opposite photocoupler is fixedly disposed on the workbench 100, and one end of the symmetrical photocoupler is disposed above the rotating sample disc 200, and the other end of the opposite photocoupler is disposed below the rotating sample disc 200.
  • the photocoupler is fixedly installed.
  • the card position 210 passes through the photocoupler.
  • the photocoupler can detect whether there is a reagent strip on the card position 210, and in each case, When the reagent strip is installed at the card position 210, the rotating sample disc 200 is rotated, so that the card position 210 where the reagent strip is installed passes through the photocoupler, thereby detecting whether the reagent strip is successfully installed.
  • the optocoupler further includes a number lattice photocoupler and a out-of-step detection photocoupler provided on the rotating sample disc 200;
  • the number-lattice photocoupler 400 and the out-of-step detection photocoupler 500 are both set on the workbench 100, and the number-lattice photocoupler 400 and the out-of-step detection photocoupler 500 are both set at the bottom of the rotating sample disc 200.
  • the coupling 400 detects the reagent strip on one of the card positions 210
  • the photocoupler collects the data of the reagent strip on the card position 210 through the detection mechanism 300;
  • the out-of-step detection photocoupler 500 is used to detect whether the rotating sample disc 200 is out of step.
  • the digital grid photocoupler 400 and the out-of-step detection photocoupler 500 are arranged on the same mounting base.
  • the digital grid photocoupler 400 and the detection mechanism 300 work synchronously.
  • the detection mechanism 300 detects one card position 210, and several photocouplers sense the same time as the detection mechanism 300 detects the photocoupler, thereby ensuring that the detection mechanism 300 can hold the card on the rotating sample disc 200.
  • Bits 210 are all detected to improve the accuracy of the overall device.
  • the out-of-step detection optical coupler 500 can detect the out-of-step condition of the rotating sample disc 200 so as to facilitate subsequent adjustment of the driving mechanism that drives the rotating sample disc 200.
  • the biochemical analyzer 1000 further includes a reset photocoupler 600.
  • the reset photocoupler 600 is disposed on a side of the workbench 100 near the out-of-step detection photocoupler 500.
  • the reset photocoupler 600 is used for The rotating sample disc 200 is reset.
  • a reset photocoupler 600 is provided on the workbench 100.
  • the reset photocoupler 600 can detect whether the rotating sample disc 200 is accurately reset to ensure that the rotating sample disc 200 and the detection mechanism 300 work next time. Degree of precision.
  • biochemical analyzer 1000 is further configured to send detection data of the optocoupler, the digital lattice photocoupler, the out-of-step detection photocoupler, and the reset photocoupler to the host computer 2000; the host computer 2000 controls the biochemical analyzer 1000 to perform data collection.
  • the biochemical analyzer detection system of this embodiment can detect multiple card positions at the same time.
  • an optocoupler is set on the rotating sample disc 200 to calibrate whether the card access is successful.
  • the steps for entering the card of the rotating sample disc 200 are as follows: first reset the rotating sample disc 200, reset the optocoupler 600 to work, and the calibration reset is successful; rotate the rotating sample disc 200 once (the out-of-step detection optocoupler 500 and Number grid photocoupler 400 detection), according to the different optocoupler status of the card position (optocoupler status 1 means the card has a card, 0 means no card), record the presence or absence of a reagent card; Automatically exit the reaction disk; the upper computer 2000 issues a task, starts to enter the card, one card at a time, after the card is inserted, rotate the disc, use the optocoupler to confirm whether the card is successfully inserted; after successful, if it is successfully transferred to the loading position, Wait for the sample loading by the robotic sample adding
  • the corresponding card slot starts to enter the response waiting state, and a set of data is detected every preset time, put into the data queue, and when the reaction time is up, the multiple detection data is uploaded to the host computer 2000, the detection data is saved and analyzed, and the concentration is calculated Wait.
  • the host computer 2000 saves the corresponding queue data according to the card slot (card slots 1-16).
  • the data is acquired using the CAN communication method from the motor control board of the biochemical analyzer 1000.
  • the motor control board Realize the control of discs, access cards, motors and real-time acquisition of multi-channel data.
  • the protection uses a number grid and out-of-step detection method.
  • the biochemical analyzer 1000 includes a processing module and a multi-channel acquisition module connected to the processing module; the processing module controls the multi-channel acquisition module to collect data of reagent strips on a plurality of positions on the rotating sample disc 200 and collect the The data is sent to the upper computer 2000.
  • the processing module may use a single-chip microcomputer, such as STM32F303ZET6; the multi-channel acquisition module may use an analog-to-digital converter, such as AD7699.
  • the analog-to-digital converter receives the analog signals collected by the detection mechanism and converts them into digital signals, and then passes the serial peripheral interface
  • the SPI is connected to the single-chip microcomputer, and sends the detection data to the single-chip microcomputer, which is then sent to the host computer 2000.
  • the biochemical analyzer 1000 further includes a motor driving module and a motor, and the motor is connected to the rotating sample disc 200; the motor driving module drives the motor to drive the rotating sample disc 200 to rotate and control the in and out of the card position.
  • the motor drive module drives the motor to realize the control of the transmission equipment, such as: the control of the access card, the rotation required for the dynamic acquisition of the disc, the switch of the reserved temperature control structure, and the acquisition of dynamic data (16-bit 8-channel ADC acquisition—AD7699), acquisition of optocoupler signals, such as reset optocoupler 600, number grid optocoupler 400 (positioning card position), out-of-step detection optocoupler 500 (to prevent the structure from being blocked by foreign objects, stalling, etc.).
  • the transmission equipment such as: the control of the access card, the rotation required for the dynamic acquisition of the disc, the switch of the reserved temperature control structure, and the acquisition of dynamic data (16-bit 8-channel ADC acquisition—AD7699), acquisition of optocoupler signals, such as reset optocoupler 600, number grid optocoupler 400 (positioning card position), out-of-step detection optocoupler 500 (to prevent the structure from being blocked by foreign objects, stalling, etc.).
  • the biochemical analyzer 1000 further includes a temperature control device connected to the host computer 2000.
  • the temperature control device is used to control the internal temperature of the reaction disk of the rotating sample disk 200. Specifically, the temperature can be detected by the temperature sensor PT1000, and the heating wire can be controlled by the PWM and the like.
  • the upper computer 2000 can adopt the Android core board.
  • the Android core board mainly implements the hardware platform required for the Android system transplantation and the interfaces required for communication with the lower computer such as the motor control board, temperature control device, and robotic arm loading device 900, such as serial port 2 control.
  • Robotic arm sample adding device 900, serial port 3 controls external serial port printing and prints information.
  • the Android board supports USB communication and Ethernet communication, and realizes human-machine UI interface through LVDS touch screen interface. CAN communication between Android and motor control board and temperature control board.
  • the biochemical analyzer 1000 performs sample loading on the reagent strip through the robotic arm sampling device 900, and the host computer 2000 is connected to the robotic arm sampling device 900; the host computer 2000 is also used to control the robotic arm sampling by using the time slice rotation method.
  • the device 900 and the rotating sample disc 200 are controlled to work by the detection device 900;
  • Time slice rotation scheduling means that each process is assigned a time period, called its time slice, that is, the time allowed for the process to run. If the process is still running at the end of the time slice, the CPU will be deprived and assigned to another process. If the process blocks or ends before the time slice ends, the CPU switches immediately. All the scheduler has to do is maintain a list of ready processes, and when the process runs out of its time slice, it is moved to the end of the queue.
  • the host computer 2000 software adopts the time slice rotation method.
  • Each rotation of the rotating sample disc 200 and the data processing and status judgment require a preset time (such as 25s), and strictly follow the time slice rotation.
  • Scheduling algorithm, the time ticK in the host computer 2000 (such as the Android core board) can ensure the accuracy of the time, the error is small, and the error is less than 1s per minute.
  • the host computer 2000 divides the overall time slice into two timestamps for management, and one is the timestamp of the robotic arm sample adding device 900 (mainly completes the task sample addition, sampling, and dilution) , Mixing, etc.), a 200 timestamp of the rotating sample disc (mainly completes the card's entering, dynamic detection, card exit, etc.)
  • the host computer 2000 includes a touch screen, and the touch screen is used for data display and human-computer interaction.
  • the biochemical analyzer 1000 further includes a plurality of pushing mechanisms 700;
  • a plurality of pushing mechanisms 700 are arranged on the workbench 100.
  • the plurality of pushing mechanisms 700 are arranged in a fan shape, and an interval between two adjacent pushing mechanisms 700 is the same as an interval between two adjacent card slots 210.
  • the plurality of pushing mechanisms 700 are arranged in a fan shape, so that the pushing mechanism 700 and the rotating sample disc 200 are adapted, and the distance between two adjacent pushing mechanisms 700 and the two adjacent clamping positions 210 The interval is the same, so that multiple pushing mechanisms 700 can work at the same time, which improves the speed of installing the reagent strip into the card position 210.
  • FIG. 4 is a schematic structural diagram of a pushing mechanism of a biochemical analyzer according to an embodiment of the present application.
  • the pushing mechanism 700 includes a driving portion 710, a guiding portion 720, an executing portion 730, and a transmission portion;
  • the driving portion 710 and the guiding portion 720 are both provided on the workbench 100, and the execution portion 730 is provided on the guiding portion 720.
  • the driving portion 710 and the execution portion 730 are connected by a transmission portion, and the driving portion 710 drives the execution portion 730 to extend along the guiding portion 720. Reciprocate in the direction to push the reagent strip into the card position 210.
  • the transmission part is a belt
  • the driving part 710 includes a driving wheel and a driven wheel. Both ends of the driving wheel and the driven wheel are respectively disposed at both ends of the guide part 720.
  • the belt is used to connect the driving wheel and the driven wheel, and the belt is also
  • the execution unit 730 is connected to drive the execution unit 730 to move along the guide portion 720.
  • one end of the guide portion 720 is close to the edge of the table 100, and the other end of the guide portion 720 extends to the intersection of the work table in the center of the rotating sample disc 200, and the execution portion 730 can move relative to the guide portion 720 In this way, the execution unit 730 can push the reagent strip into the card position 210.
  • FIG. 5 is a schematic structural diagram of an execution unit on a pushing mechanism of a biochemical analyzer according to an embodiment of the present application.
  • the execution unit 730 includes a slider, a return spring, and an execution board;
  • the slider is slidably provided on the guide portion 720.
  • the other end of the slider is provided with an extension plate 734.
  • the extension plate 734 is provided at one end near the center of the rotating sample disc 200.
  • the extension plate 734 is provided with a through hole and A slot 7340 is provided on the side near the center of the rotating sample disc 200.
  • the slot 7340 communicates with a through hole.
  • Two sides of the extension plate 734 are also provided with mounting holes. The mounting holes pass through the through holes and the bolts pass through.
  • the return spring is installed in the through hole through the mounting hole, and one end of the return spring is in contact with the side wall of the through hole, and the other end of the return spring is disposed above the card slot 7340;
  • the execution board is connected to the return spring.
  • One side of the execution board extends away from the slot 7340 and abuts the extension plate 734.
  • the end of the execution board away from the return spring is arranged in an arc shape, and the end of the execution board is arranged away from the arc. Rotate the center side of the sample disc 200.
  • the execution board when the through hole of the slot 7340 is set far away from the center of the rotating sample disc 200, the end of the execution board extending away from the slot 7340 and abuts on the extension plate 734. In this way, the execution board will move the Remove the reagent strip from the holder 210.
  • the return spring is a torsion spring.
  • an extension plate 734 is provided on the slider.
  • the extension plate 734 is provided with a through hole and a mounting hole.
  • the execution board is connected to the return spring.
  • the bolt passes through the installation hole and the return spring, and the return spring is installed in the through hole.
  • one end of the return spring is provided above the card slot 7340, so that there is a gap between the service spring and the card slot 7340, and the other end is provided on the inner wall near the through hole.
  • one side of the execution board extends toward the end away from the slot 7340 and abuts on the extension plate 734.
  • the execution board moves toward the end near the rotating sample disc 200, the execution board That is, the reagent strip is pushed into the card position 210 from the outside.
  • the execution board When the execution board is pushed out, the execution board will be turned toward the end of the card when it is subjected to a force, so that the execution board will exit smoothly. After the exit, it will be reset by the reset spring.
  • the guide portion 720 is a slide rail, and one end of the slider near the slide rail is provided with a slide groove matching the slide rail, and one side of the slider is provided with a latch for cooperation with the transmission portion.
  • the plate 736 and the clamping plate 736 are fixed on the slider by bolts, and the transmission portion is disposed between the clamping plate 736 and the slider.
  • the guide portion 720 is a slide rail, and a slide groove is provided at the bottom end of the slider, so that the slider can slide on the guide portion 720, and a clamping plate 736 is provided on one side of the slider.
  • the connecting plate 736 fixes the belt and the slider by bolts, so that the belt drives the slider to move.
  • a positioning mechanism 800 is provided at an end of the workbench 100 near the guide portion 720 away from the rotating sample disc 200, and the positioning mechanism 800 is electrically connected to the driving portion 710;
  • a positioning plate 735 is provided at an end of the slider away from the center of the rotating sample disc 200. When the positioning plate 735 is used to cooperate with the positioning mechanism 800, the driving portion 710 stops working.
  • the positioning plate 735 is L-shaped
  • the positioning mechanism 800 is a positioning photocoupler
  • the positioning photocoupler is U-shaped.
  • a positioning mechanism 800 is further provided on the workbench 100.
  • the positioning mechanism 800 is a U-shaped positioning optocoupler, a positioning plate 735 is provided on the slider, the positioning plate 735 is L-shaped, and the positioning plate 735
  • the slider is moved to a predetermined position.
  • the driving unit 710 stops working to ensure that the position of the slider is relatively stable.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本申请涉及医疗自动化检测设备技术领域,尤其是涉及一种生化分析仪检测系统,包括生化分析仪以及上位机,生化分析仪包括机械臂加样装置以及设置有多个卡位的旋转试样圆盘,其中,卡位用于卡接试剂条;上位机用于存储机械臂加样装置以及旋转试样圆盘的控制参数,并根据预设编排流程以及控制参数控制生化分析仪进行数据采集;生化分析仪用于采集多个试剂条数据,并将多个试剂条数据发送给上位机,以使上位机对多个试剂条数据进行队列数据存储以及处理。通过上位机可以准确控制干式生化仪进行多通道动态检测。

Description

生化分析仪检测系统
本申请要求在2018年8月20日提交中国专利局、申请号为2018109506727、发明名称为“生化分析仪检测系统”一件中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗自动化检测设备技术领域,尤其是涉及一种生化分析仪检测系统。
背景技术
近年来,干式生化仪由于操作快速便捷等特点得到了快速发展,如Roche的ReflotronPlus型干式生化仪,FUJIFILM的4000ie全自动干式生化分析仪,此类仪器采用干化学的方法,使用时只需将样品加到固相载体干试剂条上即可进行后续测定,无需传统的管路系统。
在临床实践中,一个患者往往需要做几个干式生化的检测,同时,要做检测的患者数量巨大,采用多通道动态检测的干式生化仪可以同时采集多个试剂条样本,可以提高检测效率,但是对干式生化多通道动态检测的控制要求比较高。如何准确控制干式生化仪的多通道动态检测是非常重要的。
发明内容
本申请的目的在于提供生化分析仪检测系统,可以准确控制干式生化仪进行多通道动态检测。
本申请提供的一种生化分析仪检测系统,包括生化分析仪以及上位机,所述生化分析仪包括机械臂加样装置以及设置有多个卡位的旋转试样圆盘,其中,所述卡位用于卡接试剂条;
所述上位机用于存储所述机械臂加样装置以及所述旋转试样圆盘的控制参数,并根据预设编排流程以及所述控制参数控制所述生化分析仪进行数据采集;
所述生化分析仪用于采集多个试剂条数据,并将多个所述试剂条数据发送给所述上位机,以使所述上位机对多个所述试剂条数据进行队列数据存储以及处理。
进一步地,所述上位机采用同步写指令将所述控制参数存储到文件中,并将对多个所述试剂条数据进行处理得到的多个检测结果存储到数据库。
进一步地,所述生化分析仪包括设置在所述旋转试样圆盘上的对射光耦,所述对射光耦用于检测所述卡位上是否卡设有试剂条。
进一步地,所述生化分析仪还包括设置在所述旋转试样圆盘上的数格子光耦和失步检测光耦;
当所述数格子光耦检测到对应的卡位上的试剂条时,所述所述生化分析仪采集所述对应的卡位上的试剂条的数据;
所述失步检测光耦用于对旋转试样圆盘是否失步进行检测。
进一步地,所述生化分析仪还包括设置在所述旋转试样圆盘上的复位光耦,所述复位光耦用于使所述旋转试样圆盘复位。
进一步地,所述生化分析仪还用于将所述对射光耦、所述数格子光耦、所述失步检测光耦和所述复位光耦的检测数据发送给所述上位机;所述上位机根据所述检测数据控制所述生化分析仪进行数据采集。
进一步地,所述生化分析仪包括处理模块以及与所述处理模块相连接的多通道采集模块;
所述处理模块控制所述多通道采集模块采集所述旋转试样圆盘上的多个所述卡位上的试剂条的数据,并将采集到的数据发送给所述上位机。
进一步地,所述生化分析仪还包括电机驱动模块以及电机,所述电机与所述旋转试样圆盘相连接;
所述电机驱动模块驱动所述电机带动所述旋转试样圆盘转动以及所述卡位的进出控制。
进一步地,所述生化分析仪还包括与所述上位机相连接的温控装置,所述温控装置用于对所述旋转试样圆盘的反应盘的内部温度进行控制。
进一步地,所述上位机还用于采用时间片轮转方式控制所述机械臂加样装置加样装置以及通过所述检测装置控制所述旋转试样圆盘进行工作;
所述上位机将时间片分为两块时间戳进行管理,其中一块为所述机械臂加样装置的时间戳,另一块为所述旋转试样圆盘的时间戳。
本申请实施例提供的一种生化分析仪检测系统,包括生化分析仪以及上位机,生化分析仪包括机械臂加样装置以及设置有多个卡位的旋转试样圆盘,其中,卡位用于卡接试剂条;上位机用于存储机械臂加样装置以及旋转试样圆盘的控制参数,并根据预设编排流程以及控制参数控制生化分析仪进行数据采集;生化分析仪用于采集多个试剂条数据,并将多个试剂条数据发送给上位机,以使上位机对多个试剂条数据进行队列数据存储以及处理。通过上位机可以准确控制干式生化仪进行多通道动态检 测。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的生化分析仪的结构示意图;
图2为本申请实施例提供的生化分析仪旋转试样圆盘及推送机构的结构示意图;
图3为本申请实施例提供的生化分析仪检测系统示意图;
图4为本申请实施例提供的生化分析仪推送机构的结构示意图;
图5为本申请实施例提供的生化分析仪推送机构上执行部的结构示意图。
图标:100-工作台;200-旋转试样圆盘;300-检测机构;400-数格子光耦;500-失步检测光耦;600-复位光耦;700-推送机构;800-定位机构;900-机械臂加样装置;1000-生化分析仪;2000-上位机;210-卡位;710-驱动部;720-导向部;730-执行部;740-传动部;731-滑块;732-复位弹簧;733-执行板;734-延伸板;735-定位板;736-卡接板;7340-卡槽。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可 以具体情况理解上述术语在本申请中的具体含义。
图1为本申请实施例提供的生化分析仪的结构示意图;图2为本申请实施例提供的生化分析仪旋转试样圆盘200及推送机构的结构示意图。
如图1和图2所示,生化分析仪包括:工作台100、旋转试样圆盘200;旋转试样圆盘200可转动地设置在工作台100上,旋转试样圆盘200上设置有多个用于卡接试剂条的卡位210,卡位210的数量可为12个、16个或者更多,本实施例中的卡位210采用16个,还可根据具体的使用情况进行调整。
检测机构300设置在工作台100上,且检测机构300的一端设置在旋转试样圆盘200上,检测机构300用于采集卡位210上设置的试剂条上的数据。其中,检测机构300为光路通道。
该生化分析仪在旋转试样圆盘200的上方设置有检测机构300,并且旋转试样圆盘200能够转动,这样检测即可持续不断的对旋转试样圆盘200上卡位210中的试剂条进行检测。本实施例的生化分析仪基于动态多通道检测,旋转式样圆盘上有多个卡位,只要圆盘转动一圈,即可以采集多个卡位对应的多个试剂条的多组检测数据,从而提高检测的效率。
如图3所示,本实施例提供的生化分析仪检测系统,包括上述生化分析仪1000以及上位机2000;生化分析仪1000还包括机械臂加样装置,通过机械臂加样装置进行加样操作;
上位机2000用于存储机械臂加样装置以及旋转试样圆盘的控制参数,并根据预设编排流程以及控制参数控制生化分析仪进行数据采集;
生化分析仪1000用于采集多个试剂条数据,并将多个试剂条数据发送给上位机2000,以使上位机2000对多个试剂条数据进行队列数据存储以及处理。上位机2000对采集到的多组数据进行队列数据存储以及处理,确保数据准确性。
具体地,上位机可以采用安卓上位机,通过安卓文件、Sharepreference机制以及数据库存储对生化分析仪的核心数据,包括机械臂位置、各种传感器设置等控制参数以及测量结果数据等进行存储。通过上位机2000可以准确控制生化分析仪1000进行多通道动态检测。
其中,预设编排流程为上位机2000根据生化分析仪1000的检测项目进行设定的,每个项目有固定的测量时间,固定的样本类型,加样量等,这些都是已知的,根据具体的检测项目就可以编排任务,运行的时候是软件根据时间片原理去调度不同的模块配合,然后采样数据,数据要处理成浓度,比如Ng/L。
上位机2000采用同步写指令将控制参数存储到文件中,并将对多个试剂条数据进行处理得到的多个检测结果存储到数据库。
具体地,采用安卓sharedPreference存储技术将控制参数存储到文件中,存储时采用同步写指令,以保证控制参数百分之百写入。可以避免断电带来的数据丢失,同时使用双份文件对这些信息进行保护,保证数据的可靠性,从而提升生化分析仪1000的安全性和稳定性。对动态采集的多个试剂条数据通过软件处理得到检测结果(换算成需要的浓度信息),将浓度信息及检测者的相关信息通过安卓SQlite数据库存储方式存入存储器中。
在上述实施例的基础上,进一步地,生化分析仪1000包括设置在旋转试样圆盘200上的对射光耦,对射光耦用于检测卡位上是否卡设有试剂条。对射光耦固定设置在工作台100上,且对称光耦的一端设置在旋转试样圆盘200上方,对射光耦的另一端设置在旋转试样圆盘200下方。
本实施例中,对射光耦固定设置,在旋转试样圆盘200转动时,卡位210经过对射光耦,对射光耦即可检测到卡位210上是否存在有试剂条,而且在每个卡位210安装试剂条时,旋转试样圆盘200均会转动,以使安装试剂条的卡位210经过对射光耦,从而检测试剂条是否安装成功。
在上述实施例的基础上,进一步地,对射光耦还包括设置在旋转试样圆盘200上的数格子光耦和失步检测光耦;
数格子光耦400和失步检测光耦500均设置在工作台100上,且数格子光耦400和失步检测光耦500均设置在旋转试样圆盘200的底端,当数格子光耦400检测到其中一个卡位210上的试剂条时,对射光耦通过检测机构300采集这个卡位210上的试剂条的数据;
失步检测光耦500用于对旋转试样圆盘200是否失步进行检测。
本实施例中,数格子光耦400和失步检测光耦500设置在同一安装座上,数格子光耦400和检测机构300同步工作,当数格子光耦400检测的一个卡位210上有试剂条时,检测机构300对一个卡位210进行检测,而且数个光耦感应到和检测机构300检测到光耦的时间相同,进而保障检测机构300能够将旋转试样圆盘200上的卡位210全部检测,以提高整体装置的精度。同时失步检测光耦500能够检测出旋转试样圆盘200失步的情况,以便于后续对驱动旋转试样圆盘200的驱动机构进行调整。
在上述实施例的基础上,进一步地,生化分析仪1000还包括复位光耦600,复位光耦600设置在工作台100上靠近失步检测光耦500的一侧,复位光耦600用于使旋转试样圆盘200复位。
本实施例中,在工作台100上设置有复位光耦600,复位光耦600能够使检测到旋转试样圆盘200是否复位精确,以保障旋转试样圆盘200及检测机构300下一次工作的精确程度。
进一步地,生化分析仪1000还用于将对射光耦、数格子光耦、失步检测光耦和 复位光耦的检测数据发送给上位机2000;上位机2000根据检测数据控制生化分析仪1000进行数据采集。
本实施例的生化分析仪检测系统可以同时检测多个卡位,为了解决动态数据采集过程中进出卡异常问题,在旋转试样圆盘200上设置对射光耦,用来校准进出卡是否成功。旋转试样圆盘200进卡流程步骤为:先复位旋转试样圆盘200,复位光耦600工作,校准复位成功;旋转试样圆盘200转动一圈(期间开启失步检测光耦500和数格子光耦400检测),根据不同卡位的对射光耦状态(对射光耦状态1代表此卡位有卡,0代表无卡),记录有无试剂卡;将所有有卡的位置的卡自动退出反应盘;上位机2000下发任务,开始进卡,一次进一个卡,进卡后,旋转圆盘,使用对射光耦确认进卡是否成功;成功后,如果成功转至加样位置,等待机械臂加样装置900加样处理;机械臂加样装置900加样完,改变对应卡位的状态。对应卡位开始进入反应等待状态,每隔预设时间检测一组数据,放入数据队列,等反应时间到,将多次检测数据上传给上位机2000,对检测数据进行保存和分析,计算浓度等。
为了解决数据存储问题,上位机2000对数据按照卡位(1-16号卡位),进行对应的队列数据保存,数据获取采用CAN通信方式从生化分析仪1000的电机控制板获得,电机控制板实现圆盘、进出卡、电机的控制以及多通道数据的实时采集等。在数据保存过程中,为了防止数据保存位置和实际位置不同,需要对数据进行保护和检验,保护采用数格子和失步检测方式,下位机数据采集过程中,每次一次采集之前(25s时间片),都会复位到机械O点,复位光耦600工作,且码盘失步检测正常(码盘有2个光耦,一个是定位卡位的数格子光耦400,一个是检测圆盘是否失步的失步检测光耦500,配合对射光耦的使用,确保卡位的信息不会错误)。然后再启动动态检测指令,动态检测过程中,会根据圆盘上卡位的状态对有卡且有效的试剂调进行数据采集并保存到安卓上位机2000,进行数据分析处理。
生化分析仪1000包括处理模块以及与处理模块相连接的多通道采集模块;处理模块控制多通道采集模块采集旋转试样圆盘200上的多个卡位上的试剂条的数据,并将采集到的数据发送给上位机2000。具体地,处理模块可以采用单片机,例如STM32F303ZET6;多通道采集模块可以采用模数转换器,例如AD7699,模数转换器接收检测机构采集的模拟信号并转换成数字信号,然后经串行外设接口SPI与单片机相连接,将检测数据发送给单片机,单片机再发送给上位机2000。
生化分析仪1000还包括电机驱动模块以及电机,电机与旋转试样圆盘200相连接;电机驱动模块驱动电机带动旋转试样圆盘200转动以及卡位的进出控制。
具体地,电机驱动模块驱动电机实现传动设备的控制,如:进出卡的控制、圆盘的动态采集所需的转动,预留的温控结构的开关、动态数据的采集(16位的8通道ADC采集—AD7699)、光耦信号的采集,如:复位光耦600,数格子光耦400(定位卡位),失步检测光耦500(防止结构被异物卡主,堵转等)等。
进一步地,生化分析仪1000还包括与上位机2000相连接的温控装置,温控装置用于对旋转试样圆盘200的反应盘的内部温度进行控制。具体地,可以通过温度传感器PT1000对温度进行检测,通过PWM对加热丝进行控制等。
上位机2000可以采用安卓核心板,安卓核心板主要实现安卓系统移植需要的硬件平台及和电机控制板、温控装置、机械臂加样装置900等下位机通信需要的接口,如:串口2控制机械臂加样装置900,串口3控制外置串口打印,打印信息。安卓板支持USB通信、以太网通信,通过LVDS触摸屏接口实现人机UI界面。安卓和电机控制板、温控板之间采用CAN通信。
进一步地,生化分析仪1000通过机械臂加样装置900对试剂条进行加样,上位机2000与机械臂加样装置900相连接;上位机2000还用于采用时间片轮转方式控制机械臂加样装置900以及通过检测装置900控制旋转试样圆盘200进行工作;
时间片轮转调度是指每个进程被分配一个时间段,称作它的时间片,即该进程允许运行的时间。如果在时间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。调度程序所要做的就是维护一张就绪进程列表,当进程用完它的时间片后,它被移到队列的末尾。
为了保证控制时间的准确性,上位机2000软件采用时间片轮转方式,旋转试样圆盘200每转动一圈及数据处理、状态判断等需要预设时间(例如25s)一次,严格遵循时间片轮转调度算法,上位机2000(例如安卓核心板)内部的时间ticK可以保证时间的准确性,误差很小,1分钟误差小于1s。为了便于流程的调度、时间片的管理,上位机2000将整体时间片分为2块时间戳进行管理,一块为机械臂加样装置900的时间戳(主要完成任务样本的加样,取样,稀释,混匀等),一块为旋转试样圆盘200时间戳(主要完成圆盘的进卡,动态检测,出卡等)
进一步地,上位机2000包括触摸屏,触摸屏用于进行数据显示以及人机交互。
在上述实施例的基础上,进一步地,如图2所示,生化分析仪1000还包括多个推送机构700;
多个推送机构700均设置在工作台100上,多个推送机构700呈扇形排布,且相邻的两个推送机构700的间隔与相邻的两个卡位210的间隔相同。
其中,推送机构700为四个。
本实施例中,多个推送机构700呈扇形排布,以使推送机构700和旋转试样圆盘200相适应,且相邻的两个推送机构700的间距和相邻的两个卡位210的间隔相同,这样多个推送机构700能够同时工作,提高试剂条安装到卡位210中的速度。
图4为本申请实施例提供的生化分析仪推送机构的结构示意图。如图4所示,在上述实施例的基础上,进一步地,推送机构700包括驱动部710、导向部720、执行 部730和传动部;
驱动部710和导向部720均设在工作台100上,执行部730设置在导向部720上,驱动部710与执行部730通过传动部连接,驱动部710带动执行部730沿导向部720的延伸方向往复运动,以将试剂条推送至卡位210中。
其中,传动部为皮带,驱动部710包括主动轮和从动轮,主动轮和从动轮的两端分别设置在导向部720的两端,皮带用于将主动轮和从动轮连接,且皮带还和执行部730连接,带动执行部730沿导向部720移动。
本实施例中,导向部720的一端靠近工作台100的边沿,导向部720的另一端向旋转试样圆盘200的中心有工作的台的交叉处延伸,执行部730能够相对导向部720移动,这样执行部730即可将试剂条推送到卡位210中。
图5为本申请实施例提供的生化分析仪推送机构上执行部的结构示意图。如图5所示,在上述实施例的基础上,进一步地,执行部730包括滑块、复位弹簧和执行板;
滑块的一端可滑动地设置在导向部720上,滑块的另一端设置有延伸板734,延伸板734设置在靠近旋转试样圆盘200中心的一端,延伸板734上设置有通孔和卡槽7340,卡槽7340设置在靠近旋转试样圆盘200中心的一侧,卡槽7340和通孔连通,延伸板734的两侧还设置有安装孔,安装孔穿过通孔,螺栓穿过安装孔将复位弹簧安装在通孔中,且复位弹簧的一端与通孔的侧壁抵接,复位弹簧的另一端设置在卡槽7340的上方;
执行板与复位弹簧连接,执行板的一侧向远离卡槽7340的一端延伸并与延伸板734抵接,执行板远离复位弹簧的一端呈弧形设置,执行板呈弧形的一端设置在远离旋转试样圆盘200中心一侧。
其中,当卡槽7340设置通孔远离旋转试样圆盘200中心一侧时,执行板远离卡槽7340的一端延伸并与延伸板734抵接,这样,执行板在移动的过程中即会将卡位210中的试剂条取出。
其中,复位弹簧为扭簧。
本实施例中,在滑块上设置有一延伸板734,延伸板734上设有通孔及安装孔,执行板与复位弹簧连接,螺栓穿过安装孔及复位弹簧,将复位弹簧安装在通孔中,而且复位弹簧的一端设置在卡槽7340的上方,这样,服务弹簧即会与卡槽7340之间存在间隙,另一端设置在靠近通孔的内壁上,由于执行板呈弧形的一端设置在远离旋转试样圆盘200中心一侧,执行板的一侧向远离卡槽7340的一端延伸并与延伸板734抵接,在执行板向靠近旋转试样圆盘200一端移动时,执行板即会将试剂条从外侧推送至卡位210中,在执行板推出时,执行板受到作用力即会朝向卡擦的一端转动,以使执行板顺利的退出,退出后通过复位弹簧进行复位。
在上述实施例的基础上,进一步地,导向部720为滑轨,滑块靠近滑轨的一端设置有与滑轨配合的滑槽,滑块的一侧设置有用于和传动部配合的卡接板736,卡接板736通过螺栓固定在滑块上,传动部设置在卡接板736和滑块之间。
本实施例中,导向部720为滑轨,滑块的底端设置有滑槽,以使滑块能够在导向部720上滑动,并且在滑块的一侧还设置有卡接板736,卡接板736通过螺栓将皮带与滑块固定,从而使皮带带动滑块移动。
在上述实施例的基础上,进一步地,在工作台100边沿靠近导向部720远离旋转试样圆盘200的一端设置有定位机构800,定位机构800与驱动部710电连接;
滑块远离旋转试样圆盘200中心的一端设置有定位板735,当定位板735用于与定位机构800配合,驱动部710停止工作。
进一步地,定位板735呈L型设置,定位机构800为定位光耦,定位光耦呈U型设置。
本实施例中,在工作台100上还设置有定位机构800,定位机构800为呈U型的定位光耦,在滑块上设置有定位板735,定位板735呈L型设置,定位板735与定位光耦配合时,即为滑块移动到预定的位置,此时驱动部710停止工作,以保障滑块的位置相对稳定。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种生化分析仪检测系统,其特征在于,包括生化分析仪以及上位机,所述生化分析仪包括机械臂加样装置以及设置有多个卡位的旋转试样圆盘,其中,所述卡位用于卡接试剂条;
    所述上位机用于存储所述机械臂加样装置以及所述旋转试样圆盘的控制参数,并根据预设编排流程以及所述控制参数控制所述生化分析仪进行数据采集;
    所述生化分析仪用于采集多个试剂条数据,并将多个所述试剂条数据发送给所述上位机,以使所述上位机对多个所述试剂条数据进行队列数据存储以及处理。
  2. 根据权利要求1所述的生化分析仪检测系统,其特征在于,所述上位机采用同步写指令将所述控制参数存储到文件中,并将对多个所述试剂条数据进行处理得到的多个检测结果存储到数据库。
  3. 根据权利要求1所述的生化分析仪检测系统,其特征在于,所述生化分析仪包括设置在所述旋转试样圆盘上的对射光耦,所述对射光耦用于检测所述卡位上是否卡设有试剂条。
  4. 根据权利要求3所述的生化分析仪检测系统,其特征在于,所述生化分析仪还包括设置在所述旋转试样圆盘上的数格子光耦和失步检测光耦;
    当所述数格子光耦检测到对应的卡位上的试剂条时,所述所述生化分析仪采集所述对应的卡位上的试剂条的数据;
    所述失步检测光耦用于对旋转试样圆盘是否失步进行检测。
  5. 根据权利要求4所述的生化分析仪检测系统,其特征在于,所述生化分析仪还包括设置在所述旋转试样圆盘上的复位光耦,所述复位光耦用于使所述旋转试样圆盘复位。
  6. 根据权利要求5所述的生化分析仪检测系统,其特征在于,所述生化分析仪还用于将所述对射光耦、所述数格子光耦、所述失步检测光耦和所述复位光耦的检测数据发送给所述上位机;所述上位机根据所述检测数据控制所述生化分析仪进行数据采集。
  7. 根据权利要求1所述的生化分析仪检测系统,其特征在于,所述生化分析仪包括处理模块以及与所述处理模块相连接的多通道采集模块;
    所述处理模块控制所述多通道采集模块采集所述旋转试样圆盘上的多个所述卡位上的试剂条的数据,并将采集到的数据发送给所述上位机。
  8. 根据权利要求7所述的生化分析仪检测系统,其特征在于,所述生化分 析仪还包括电机驱动模块以及电机,所述电机与所述旋转试样圆盘相连接;
    所述电机驱动模块驱动所述电机带动所述旋转试样圆盘转动以及所述卡位的进出控制。
  9. 根据权利要求1所述的生化分析仪检测系统,其特征在于,所述生化分析仪还包括与所述上位机相连接的温控装置,所述温控装置用于对所述旋转试样圆盘的反应盘的内部温度进行控制。
  10. 根据权利要求1所述的生化分析仪检测系统,其特征在于,所述上位机还用于采用时间片轮转方式控制所述机械臂加样装置以及所述旋转试样圆盘进行工作;
    所述上位机将时间片分为两块时间戳进行管理,其中一块为所述机械臂加样装置的时间戳,另一块为所述旋转试样圆盘的时间戳。
PCT/CN2019/091419 2018-08-20 2019-06-14 生化分析仪检测系统 WO2020038086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810950672.7A CN108896778B (zh) 2018-08-20 2018-08-20 生化分析仪检测系统
CN201810950672.7 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020038086A1 true WO2020038086A1 (zh) 2020-02-27

Family

ID=64354796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091419 WO2020038086A1 (zh) 2018-08-20 2019-06-14 生化分析仪检测系统

Country Status (2)

Country Link
CN (1) CN108896778B (zh)
WO (1) WO2020038086A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896778B (zh) * 2018-08-20 2021-02-02 基蛋生物科技股份有限公司 生化分析仪检测系统
CN108896777A (zh) * 2018-08-20 2018-11-27 基蛋生物科技股份有限公司 生化分析仪
CN110057808A (zh) 2019-05-27 2019-07-26 中国人民解放军军事科学院军事医学研究院 样本旋转架及拉曼光谱检测仪
CN110794152A (zh) * 2019-11-04 2020-02-14 广州科方生物技术股份有限公司 试剂卡供卡机构
CN110794153A (zh) * 2019-11-04 2020-02-14 广州科方生物技术股份有限公司 自动干式荧光免疫分析仪
CN111965375B (zh) * 2020-10-21 2020-12-29 中国科学院苏州生物医学工程技术研究所 一种基于时间片的高通量进样检测调度管理方法
CN113391058A (zh) * 2021-05-25 2021-09-14 安徽惠邦生物工程有限公司 一种干式尿液分析仪的智能上加热模块
CN114778867A (zh) * 2022-06-13 2022-07-22 深圳市帝迈生物技术有限公司 一种样本检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205539016U (zh) * 2016-04-08 2016-08-31 北京德鲁伊医疗器材有限公司 一种多用途医疗检测仪及检测系统
CN206038535U (zh) * 2016-08-30 2017-03-22 广州蓝勃生物科技有限公司 一种自动干式荧光检测仪
CN106950389A (zh) * 2017-04-27 2017-07-14 珠海科域生物工程股份有限公司 粪便分析装置
CN107356775A (zh) * 2017-07-03 2017-11-17 苏州卫宁精密仪器设备有限公司 一种用于化学发光免疫分析的测试任务规划方法
CN108896778A (zh) * 2018-08-20 2018-11-27 基蛋生物科技股份有限公司 生化分析仪检测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116771B (zh) * 2010-01-04 2013-12-04 深圳市亚辉龙生物科技有限公司 一种全自动酶联免疫分析仪
CN104597260B (zh) * 2014-11-17 2016-10-26 基蛋生物科技股份有限公司 一种试剂条存储及自动弹出装置
CN104535782B (zh) * 2014-12-29 2017-01-25 基蛋生物科技股份有限公司 一种全自动荧光免疫定量分析装置及实现方法
CN106153964A (zh) * 2016-08-26 2016-11-23 梅州康立高科技有限公司 一种电解质分析仪及自动采样方法
CN107389959B (zh) * 2017-01-05 2020-05-15 上海艾瑞德生物科技有限公司 一种可自动纠错的转盘定位装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205539016U (zh) * 2016-04-08 2016-08-31 北京德鲁伊医疗器材有限公司 一种多用途医疗检测仪及检测系统
CN206038535U (zh) * 2016-08-30 2017-03-22 广州蓝勃生物科技有限公司 一种自动干式荧光检测仪
CN106950389A (zh) * 2017-04-27 2017-07-14 珠海科域生物工程股份有限公司 粪便分析装置
CN107356775A (zh) * 2017-07-03 2017-11-17 苏州卫宁精密仪器设备有限公司 一种用于化学发光免疫分析的测试任务规划方法
CN108896778A (zh) * 2018-08-20 2018-11-27 基蛋生物科技股份有限公司 生化分析仪检测系统

Also Published As

Publication number Publication date
CN108896778B (zh) 2021-02-02
CN108896778A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2020038086A1 (zh) 生化分析仪检测系统
Angel et al. SINGLE: a program to control single-crystal diffractometers
US8758684B2 (en) Automatic analyzer
US8883078B2 (en) Sample testing system and transporting apparatus
US7826978B2 (en) Blood image analyzer
US4931402A (en) Photometric analysis equipment
EP1867997B1 (en) Specimen analyzing method and specimen analyzing device
US8956569B2 (en) Sample testing system with automated control of sample retesting
CN101275966B (zh) 自动分析装置
US8425839B2 (en) Sample analyzer
US20130260414A1 (en) Sample analyzing system, sample analyzer, and management method of sample analyzing system
JP2010133920A (ja) 検体分析装置および検体分析方法
JP4925768B2 (ja) 検体分析装置
WO2020038085A1 (zh) 生化分析仪
CN211043417U (zh) 一种分析仪及其独立自动急诊进样机构
US8594836B2 (en) Sample processing system, sample processing method, and computer program product
WO2016017291A1 (ja) 自動分析装置
CN108508193A (zh) 一种全自动干式生化检测装置
CN103048286B (zh) 糖尿病检测分析仪
CN116643058A (zh) 盘式分析仪、急诊进样调度方法和计算机可读存储介质
CN205910205U (zh) 自动取样装置及全自动免疫荧光分析仪
EP4184172A1 (en) Biochemical analyzer
CN214374679U (zh) 一种高通量多种卡食品安全检测设备进样装置
CN208506062U (zh) 进样装置及具有该装置的检测分析仪
US8741219B2 (en) Sample processing system, base for sample processing system, and sample processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852255

Country of ref document: EP

Kind code of ref document: A1