WO2020038078A1 - 光电模组、深度撷取装置和电子设备 - Google Patents

光电模组、深度撷取装置和电子设备 Download PDF

Info

Publication number
WO2020038078A1
WO2020038078A1 PCT/CN2019/090827 CN2019090827W WO2020038078A1 WO 2020038078 A1 WO2020038078 A1 WO 2020038078A1 CN 2019090827 W CN2019090827 W CN 2019090827W WO 2020038078 A1 WO2020038078 A1 WO 2020038078A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
optical element
heat conducting
substrate
disposed
Prior art date
Application number
PCT/CN2019/090827
Other languages
English (en)
French (fr)
Inventor
苏志仁
肖德塘
李宗政
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810967880.8A external-priority patent/CN110858053A/zh
Priority claimed from CN201821368174.3U external-priority patent/CN208569286U/zh
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Publication of WO2020038078A1 publication Critical patent/WO2020038078A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present application relates to the field of consumer electronics, and more specifically, to an optoelectronic module, a deep capture device, and an electronic device.
  • the existing projection module uses a laser transmitter as a light source to project a laser pattern onto a target object.
  • the laser emitter is a high-energy light-emitting element, not only its own power is high, but also the emitted laser energy is also high. Therefore, when the laser emitter is working, when the heat inside the projection module cannot be dissipated in time, the internal When the temperature is high, the laser power emitted by the laser transmitter is easily attenuated, and more seriously, the laser transmitter is burned out.
  • the embodiments of the present application provide a photoelectric module, a depth capturing device and an electronic device.
  • the optoelectronic module includes a substrate, a thermally conductive member, a light source, and an optical element.
  • the substrate includes an integrally formed body portion and an extension portion, the body portion includes a first surface and a second surface opposite to each other, and a through hole penetrating the first surface and the second surface, and the extension portion Combined with the first side.
  • the heat conducting member is filled in the through hole.
  • the light source is used for emitting laser light, and the light source is carried on the heat conducting member to make the heat conducting member dissipate the light source.
  • the optical element is disposed on the extension portion and is used to expand the laser beam to form a laser pattern; wherein the extension portion extends along the first surface toward the emission direction of the light source.
  • the light source is disposed on the main body of the substrate, and a thermally conductive member is disposed on the main body.
  • the thermally conductive member can dissipate the light source.
  • the laser power is attenuated or the light source burns out; on the other hand, the temperature inside the optoelectronic module is too high to affect the optical effect of the optical element.
  • the photoelectric module since the main body portion of the substrate is integrally formed with the extension portion, and the optical element is directly disposed on the extension portion, the photoelectric module does not need to be provided with another lens barrel to install the optical element, which reduces the manufacturing cost of the photoelectric module.
  • the heat conducting member includes a first heat conducting surface and a second heat conducting surface opposite to each other.
  • the second heat conducting surface is farther from the light source than the first heat conducting surface.
  • the area is larger than the area of the first heat conducting surface.
  • the area on the second heat conducting surface is larger than the area of the first heat conducting surface.
  • the area of the second heat conducting surface is larger, which is beneficial to the second heat conducting surface to quickly export the heat conducted by the first heat conducting surface to the outside of the photovoltaic module, thereby improving the heat dissipation efficiency of the heat conducting member.
  • the light source is carried on the first thermally conductive surface.
  • the light source is directly combined with the first heat-conducting surface. In this way, the heat generated by the light source can be directly transmitted to the first heat-conducting surface and be conducted to the outside of the photovoltaic module through the first heat-conducting surface.
  • the first heat conducting surface is provided with a groove, and the light source is received in the groove.
  • the light source is contained in the groove.
  • the relative position of the light source and the substrate is not easily changed under the restrictions of the side wall and the bottom of the groove, which ensures that the position of the laser light emitted by the light source will not change;
  • the contact area between the light source and the heat-conducting member is improved, thereby improving the heat dissipation efficiency; on the other hand, the height of the photoelectric module is reduced.
  • the extension includes a top surface remote from the first surface, and the optical element is disposed on the top surface.
  • the incident surface portion of the optical element is combined with the top surface of the extension portion.
  • the optical element can be arranged on the photoelectric module and expands the laser light emitted by the light source to form a laser pattern.
  • the extension portion and the main body portion jointly form a receiving space
  • the top surface is provided with a mounting groove recessed into the receiving space
  • the optical element is at least partially provided in the mounting groove.
  • the top surface is provided with a mounting groove
  • the optical element interferes with the bottom of the mounting groove and the side wall (that is, the side wall of the extension portion), indicating that the optical element is installed in place in the extension portion.
  • the optical element is housed in the mounting groove. Under the restriction of the side wall of the mounting groove, the optical element is stably housed in the containing space, and the height of the photoelectric module can be reduced.
  • the photovoltaic module further includes a substrate circuit.
  • the substrate circuit is distributed in multiple layers between the first surface and the second surface, and the substrate circuit runs from the first surface.
  • the substrate line is exposed for connection with the light source, and the substrate wiring is exposed from the second side for connection with an external circuit.
  • the substrate circuit has a multilayer distribution structure, compared with a method with only one substrate circuit, on the one hand, the substrate of the embodiment of the present application can design more and tighter circuit structures, for example, a photovoltaic module can be provided with more circuits. It is connected to external components such as capacitors and resistors, and then, for example, a light sensor is added inside the photoelectric module to detect whether the laser light emitted by the light source is within a preset range.
  • the photovoltaic module further includes a conductive film and a conductive member, the conductive film is disposed on the optical element, the conductive member is disposed on the substrate, and the conductive film, the The conductive member, the substrate circuit, and the light source are electrically connected to form a detection circuit together.
  • the conductive film, the conductive member, the substrate circuit, and the light source are electrically connected to form a detection circuit.
  • the photoelectric module can detect whether the optical element is installed on the extension part intact by judging the electric signal output from the detection circuit. When it is detected that the optical element is not installed on the extension intact, the optoelectronic module turns off the light source in time to prevent the laser light emitted by the light source from being emitted without expanding the intact optical element, which can burn the user's eyes.
  • the substrate includes opposite inner and outer surfaces
  • the optical element includes opposite incident surfaces and outgoing surfaces
  • the conductive film is disposed on the outgoing surface
  • the conductive member is disposed On the outer surface
  • the conductive film is disposed on the exit surface, which can avoid the diffractive microstructure provided on the incident surface, so that the laser light passing through the diffractive microstructure is not affected by the conductive film.
  • the production process of forming a conductive member on the outer surface of the substrate is relatively simple and easy to manufacture, and the conductive member can be used to prevent external radiation from generating electromagnetic interference to the photovoltaic module.
  • the substrate includes opposite inner and outer surfaces
  • the optical element includes opposite incident surfaces and outgoing surfaces
  • the conductive film is disposed on the incident surface
  • the conductive member is disposed On the inner surface
  • the detection circuit is arranged inside the photoelectric module, so that the detection circuit is not easily affected by external interference.
  • the optical element is a diffractive optical element
  • a Fresnel microstructure is provided on an incident surface of the diffractive optical element
  • a diffractive microstructure is provided on an exit surface of the diffractive optical element.
  • the Fresnel microstructure is used to collimate the laser light emitted by the light source
  • the diffractive microstructure is used to expand the collimated laser beam to form a laser pattern.
  • Fresnel microstructure can realize laser alignment adjustment.
  • the photoelectric module can achieve laser collimation without setting additional collimating optical elements on the optical path of the light source, which not only reduces the manufacturing cost of the photoelectric module, but also further
  • the optical distance of the photoelectric module in the light emitting direction is reduced, and the height of the photoelectric module in the light emitting direction is shortened, which is beneficial to the miniaturization of the photoelectric module.
  • the depth acquisition device includes the photoelectric module and the camera module according to any one of the foregoing embodiments.
  • the photoelectric module is used to emit a laser pattern toward a target object.
  • the photovoltaic module includes a substrate, a thermally conductive member, a light source, and an optical element.
  • the substrate includes an integrally formed body portion and an extension portion, the body portion includes a first surface and a second surface opposite to each other, and a through hole penetrating the first surface and the second surface, and the extension portion Combined with the first side.
  • the heat conducting member is filled in the through hole.
  • the light source is used for emitting laser light, and the light source is carried on the heat conducting member to make the heat conducting member dissipate the light source.
  • the optical element is disposed on the extension portion and is used to expand the laser beam to form a laser pattern; wherein the extension portion extends along the first surface toward the emission direction of the light source; the camera module And used for receiving a laser pattern modulated by the target object
  • the light source of the photoelectric module is disposed on the main body portion of the substrate, and a thermally conductive member is disposed on the main body portion.
  • the thermally conductive member can dissipate the light source. High, to avoid the attenuation of the laser power emitted by the light source or the phenomenon of light source burnout; on the other hand, to avoid the temperature inside the photoelectric module being too high and affecting the optical effect of the optical element.
  • the main body portion of the substrate is integrally formed with the extension portion, and the optical element is directly disposed on the extension portion, the photoelectric module does not need to be provided with another lens barrel to install the optical element, which reduces the production cost of the photoelectric module.
  • An electronic device includes a casing and the depth capturing device according to any one of the foregoing embodiments.
  • the depth capturing device is disposed on the casing.
  • the depth capturing device includes a photoelectric module and a camera module; the photoelectric module is used to emit a laser pattern toward a target object; the photoelectric module includes a substrate, a thermally conductive member, a light source, and an optical element.
  • the substrate includes an integrally formed body portion and an extension portion, the body portion includes a first surface and a second surface opposite to each other, and a through hole penetrating the first surface and the second surface, and the extension portion Combined with the first side.
  • the heat conducting member is filled in the through hole.
  • the light source is used for emitting laser light, and the light source is carried on the heat conducting member to make the heat conducting member dissipate the light source.
  • the optical element is disposed on the extension portion and is used to expand the laser beam to form a laser pattern; wherein the extension portion extends along the first surface toward the emission direction of the light source; the camera module And used for receiving a laser pattern modulated by the target object.
  • the light source of the photoelectric module is disposed on the main body portion of the substrate, and a thermally conductive member is disposed on the main body portion.
  • the thermally conductive member can dissipate the light source.
  • the temperature of the light source is not excessively high. Avoid attenuation of the laser power emitted by the light source or burnout of the light source; on the other hand, avoid that the temperature inside the photoelectric module is too high to affect the optical effect of the optical element.
  • the photoelectric module since the main body portion of the substrate is integrally formed with the extension portion, and the optical element is directly disposed on the extension portion, the photoelectric module does not need to be provided with another lens barrel to install the optical element, which reduces the production cost of the photoelectric module.
  • FIG. 1 is a schematic structural diagram of an electronic device according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a depth acquisition device according to some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a photovoltaic module according to some embodiments of the present application.
  • FIG. 11 is a schematic plan view of an optical element according to some embodiments of the present application.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.
  • an electronic device 1000 includes a housing 200 and a depth capturing device 100.
  • the electronic device 1000 may be a surveillance camera, a mobile phone, a tablet computer, a laptop computer, a game console, a headset device, an access control system, a teller machine, etc.
  • the embodiment of the present application is described using the electronic device 1000 as a mobile phone. It can be understood that the electronic device 1000 The specific form may be other, and is not limited herein.
  • the depth extraction device 100 is disposed on the casing 200 to obtain depth information. Specifically, the depth extraction device 100 may be disposed in the casing 200 and exposed from the casing 200.
  • the casing 200 may provide protection for the depth extraction device 100. Protection against dust, water, and fall.
  • a hole corresponding to the depth capturing device 100 is defined in the casing 200 to allow light to pass through the hole or enter the casing 200.
  • a depth capture device 100 includes a photoelectric module 10, a camera module 20, and a processor 30.
  • the photoelectric module 10 is configured to emit a laser pattern toward a target object.
  • the camera module 20 is configured to receive a laser pattern modulated by a target object.
  • the processor 30 is used for imaging (depth image) according to the laser pattern received by the camera module 20.
  • the processor 30 is connected to both the camera module 20 and the photoelectric module 10, and the processor 30 is configured to process the laser pattern to obtain a depth image.
  • the depth acquisition device 100 may further include a projection window 40 corresponding to the photoelectric module 10 and an acquisition window 50 corresponding to the camera module 20.
  • the photoelectric module 10 can project a laser pattern onto the target space through the projection window 40, and the camera module 20 can receive the laser pattern modulated by the target object through the acquisition window 50.
  • the photoelectric module 10 emits a laser pattern toward the target object, and the laser pattern is a speckle pattern.
  • the camera module 20 collects the speckle pattern reflected and modulated by the target object through the acquisition window 50.
  • the processor 30 compares the speckle pattern with a reference pattern, and generates a depth image according to a difference between the speckle pattern and the reference pattern.
  • the reference pattern is a plurality of speckle images that are acquired in advance and projected on the acquisition model at different distances.
  • the laser pattern is a coded structured light image with a specific pattern, that is, a specific code
  • the processor 30 obtains a depth image by extracting the coded structured light image in the laser pattern and comparing it with a reference pattern.
  • the reference pattern is a coding pattern composed of a set of unique sub-patterns, that is, the position of each sub-pattern in the reference image is predetermined.
  • the depth capture device 100 of the present application can be applied to the fields of face recognition, 3D modeling, and the like.
  • the optoelectronic module 10 includes a substrate 11, a heat conducting member 12, a light source 13, and an optical element 14.
  • the substrate 11 includes a body portion 111 and an extension portion 112 that are integrally formed.
  • the main body portion 111 includes a first surface 1111 and a second surface 1112 opposite to each other, and a through hole 1113 penetrating the first surface 1111 and the second surface 1112.
  • the extending portion 112 is combined with the first surface 1111.
  • the heat conducting member 12 is filled in the through hole 1113.
  • the light source 13 is used for emitting laser light, and the light source 13 is carried on the heat conducting member 12 so that the heat conducting member 12 can dissipate the light source 13.
  • the optical element 14 is disposed on the extension portion 112 and is used to expand a laser beam to form a laser pattern.
  • the extension portion 112 extends along the first surface 1111 toward the emission direction of the light source 13.
  • the heat conducting member 12 when the light source 13 is working, since the heat conducting member 12 has good heat conducting performance, the heat conducting member 12 quickly conducts the heat generated by the light source 13 to the outside of the photovoltaic module 10. On the one hand, the temperature of the light source 13 is not excessively high. Avoid attenuation of the laser power emitted by the light source 13 or burnout of the light source 13; on the other hand, avoid that the temperature inside the photoelectric module 10 is too high to affect the optical effect of the optical element 14. In addition, since the optical element 14 is disposed on the extension portion 112 of the substrate 11, the photoelectric module 10 does not need to provide another lens barrel to install the optical element 14, which reduces the production cost of the photoelectric module 10.
  • the light source 13 is disposed on the main body portion 111 of the substrate 11, and a heat conducting member 12 is provided on the main body portion 111. 13 to dissipate heat.
  • the temperature of the light source 13 will not be too high, to avoid the attenuation of the laser power emitted by the light source 13 or the phenomenon of the light source 13 being burned out; on the other hand, to avoid the temperature inside the photovoltaic module 10 from affecting the optical components. 14 optical effects.
  • the photovoltaic module 10 does not need to be provided with another lens barrel to mount the optical element 14, thereby reducing the Cost of production.
  • the photovoltaic module 10 includes a substrate 11, a thermally conductive member 12, a light source 13, and an optical element 14.
  • the substrate 11 can be used to carry the light source 13 and the optical element 14.
  • the substrate 11 includes a main body portion 111 and an extension portion 112.
  • the main body portion 111 and the extension portion 112 are integrally formed.
  • the material of the substrate 11 may be plastic.
  • the substrate 11 is lightweight and has sufficient support strength.
  • the material of the substrate 11 may be ceramic. In this way, not only the main body portion 111 can better dissipate the light source 13, but also the extension portion 112 can conduct the heat inside the photovoltaic module 10 to the outside of the photovoltaic module 10. .
  • the substrate 11 is made of ceramic.
  • the main body portion 111 is used to carry the light source 13.
  • the main body portion 111 includes a first surface 1111 and a second surface 1112 opposite to each other.
  • the light source 13 is carried on the first surface 1111.
  • the main body portion 111 further includes a through hole 1113 penetrating the first surface 1111 and the second surface 1112.
  • the number of the through holes 1113 may be one or multiple, such as two, three, four, and the like.
  • the position of the through hole 1113 corresponds to the position of the light source 13.
  • the extension portion 112 is used to carry the optical element 14.
  • the extending portion 112 extends along the first surface 1111 toward the emission direction of the light source 13.
  • the extension 112 includes two openings opposite to each other. One of the openings is combined with the first surface 1111. The other opening is an exit for the laser light projected by the photovoltaic module 10.
  • the heat in the photovoltaic module 10 can also be conducted to the photovoltaic module through the opening.
  • the extending portion 112 is a hollow cylindrical structure.
  • the extending portion 112 further includes a top surface 1121 far from the first surface 1111, and the top surface 1121 may be used to be combined with the optical element 14.
  • the extension portion 112 and the main body portion 111 together form a receiving space 113.
  • the light source 13 is housed in a storage space 113, and the storage space 113 forms a part of a laser light path.
  • the heat conducting member 12 is filled in the through hole 1113.
  • the number of the heat conducting members 12 corresponds to the number of the through holes 1113.
  • the number of the through holes 1113 is one, and the number of the heat conducting members 12 is also one.
  • the number of the through holes 1113 is plural, and the number of the heat conducting members 12 is also plural.
  • a part of the through hole 1113 may be filled with the heat conducting member 12, and another part of the through hole 1113 may not be filled with the heat conducting member 12.
  • the cross-sectional area of the through hole 1113 corresponds to the cross-sectional area of the heat conducting member 12.
  • the cross-sectional area of the heat conducting member 12 is slightly larger than the area of the bottom of the light source 13, and the cross-sectional area of the through hole 1113 is also slightly larger than the area of the bottom of the light source 13. In this way, the contact area between the heat conducting member 12 and the light source 13 is large, and the heat conducting member 12 can quickly dissipate the heat generated by the light source 13.
  • the material of the heat conducting member 12 may be a metal, such as at least one of copper, aluminum, copper alloy, aluminum alloy, and stainless steel.
  • the heat conducting member 12 is made of pure copper. Due to the excellent heat dissipation performance of pure copper, the heat dissipation performance inside the photovoltaic module 10 is better.
  • the heat conducting member 12 may be co-sintered with the substrate 11.
  • the light source 13 is used to emit laser light.
  • the light source 13 may be provided on the main body portion 111. Further, the light source 13 is carried on the heat conducting member 12 so that the heat conducting member 12 can dissipate the light source 13.
  • the light source 13 may be a Vertical-Cavity Surface-Emitting Laser (VCSEL) or an edge-emitting laser.
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • the cross-sectional area of the heat-conducting member 12 corresponds to the area of the bottom of the light source 13. When the light source 13 is a vertical cavity surface emitter, the area of the bottom of the light source 13 is large. Correspondingly, the cross-sectional area of the heat-conducting member 12 can also be set to be relatively small. Big.
  • the light source 13 is an edge-emitting laser
  • the area of the bottom of the light source 13 is small, and accordingly, the cross-sectional area of the heat conducting member 12 can be set to be small.
  • the substrate 11 and the heat conducting member 12 with different thicknesses may be adopted according to the light emitting power of the light source 13.
  • the thickness of the main body portion 111 and the heat conducting member 12 may be larger, and the thickness of the extension portion 112 may be smaller.
  • the light emitting surface 131 of the light source 13 is closer to the projection window 40 shown in FIG. 2. Therefore, it is ensured that the laser pattern emitted from the projection window 40 is not too weak.
  • the optical element 14 is used for expanding a laser beam emitted from the light source 13 to form a laser pattern.
  • the optical element 14 includes an incident surface 141 and an exit surface 142 opposite to each other.
  • the light emitting surface 131 of the light source 13 faces the incident surface 141.
  • the optical element 14 is disposed on the top surface 1121 of the extension portion 112.
  • the incident surface 141 may be partially combined with the top surface 1121.
  • the combination of the incident surface 141 and the top surface 1121 includes gluing, engaging, and the like.
  • the optical element 14 can be disposed on the photoelectric module 10 and expands the laser light emitted by the light source 13 to form a laser pattern.
  • the top surface 1121 is provided with a mounting groove 1122 recessed into the receiving space 113, and the optical element 14 is at least partially disposed in the mounting groove 1122.
  • the optical element 14 is combined with the mounting groove 1122 in a manner of bonding, such as gluing or engaging.
  • the optical element 14 and the bottom of the mounting groove 1122 and the side wall are in conflict, indicating that the optical element 14 is in the extension 112 Installed in place.
  • the optical element 14 is housed in the mounting groove 1122.
  • the optical element 14 is stably housed in the housing space 113 under the restriction of the side wall of the mounting groove 1122, and the height of the photoelectric module 10 can be reduced.
  • the optical element 14 is a diffractive optical element (Diffractive Optical Elements) (DOE) 143.
  • DOE diffractive Optical Elements
  • a diffraction microstructure 144 is provided on the incident surface 141 or the exit surface 142 of the diffractive optical element 143.
  • the diffractive microstructure 144 is used to expand the laser light emitted from the light source 13 to form a laser pattern. Because the diffractive microstructure 144 is based on the principle of light diffraction, it uses computer-aided design and a stepped or continuous relief structure (generally a grating structure) generated by etching on a substrate or the surface of a traditional optical device through a semiconductor chip manufacturing process. Therefore, the diffractive optical element 143 is a type of optical element having coaxial reproduction and extremely high diffraction efficiency.
  • the diffractive microstructure 144 when the laser light passes through the diffractive microstructure 144, different optical path differences are generated, which satisfy the Bragg diffraction conditions.
  • different diffractive microstructures 144 it is also possible to control the divergence angle of the laser and the morphology of the formation of the light spot, so as to achieve the function of the laser to form a specific pattern.
  • the optical element 14 may be a Diffuser.
  • the light source 13 is disposed on the main body portion 111 of the substrate 11, and the main body portion 111 is provided with a thermally conductive member 12 that dissipates the light source 13.
  • the light source 13 The temperature of 13 will not be too high to avoid the attenuation of the laser power emitted by the light source 13 or the phenomenon that the light source 13 is burned out.
  • the temperature inside the photoelectric module 10 is prevented from being too high, which affects the optical effect of the optical element 14.
  • the circuit board and the heat dissipation substrate are attached to the circuit board opening, and the light source is directly disposed in the heat dissipation method of the heat dissipation substrate.
  • the photovoltaic module 10 according to the embodiment of the present application does not need to package the circuit board and the heat dissipation substrate. The phenomenon that the circuit board insulation paint is damaged or discolored during the high-temperature packaging process is avoided, and the main body portion 111 and the extension portion 112 of the photovoltaic module 10 according to the embodiment of the present application are integrally formed, and the problem of the heat dissipation substrate falling off is also avoided. .
  • the heat conducting member 12 includes a first heat conducting surface 121 and a second heat conducting surface 122 opposite to each other.
  • the first heat-conducting surface 121 is an end surface of the heat-conducting member 12 carrying the light source 13
  • the second heat-conducting surface 122 is an end surface of the heat-conducting member 12 away from the light source 13, that is, the second heat-conducting surface 122 is farther from the light source 13 than the first heat-conducting surface 121.
  • the cross-sectional area of each of the heat conducting members 12 may be equal. As shown in the embodiments of FIG. 3 and FIG.
  • the area is equal to the area of the second heat conducting surface 122.
  • the cross-sectional areas of each of the heat conducting members 12 may be different. As shown in the embodiments of FIGS. 5 and 6, the area of the second heat conducting surface 122 is larger than the area of the first heat conducting surface 121.
  • the area of the second thermally conductive surface 122 is larger than the first In the embodiment of the area of the thermally conductive surface 121, the area of the second thermally conductive surface 122 is larger, which is beneficial to the second thermally conductive surface 122 to quickly export the heat conducted by the first thermally conductive surface 121 to the outside of the photovoltaic module 10, thereby improving the thermally conductive member. 12; in another aspect, the height of the photovoltaic module 10 is reduced.
  • the heat conducting member 12 is an integrated structure.
  • the heat conducting member 12 further includes a side surface 123, and the side surface 123 is connected to the first heat conducting surface 121 and the second heat conducting surface 122.
  • the side surface 123 may be a stepped surface, for example, the side surface 123 and the first heat conductive surface 121, and the side surface 123 and the second heat conductive surface 122 together form two stepped surfaces.
  • the side surface 123 may also be an inclined surface, and the cross section of the corresponding heat conducting member 12 is trapezoidal.
  • the heat conducting member 12 is a split structure, and the heat conducting member 12 may be formed by stacking at least two sub heat conducting members 124.
  • each of the sub-heat conducting members 124 may be consistent, for example, they are all cylindrical, rectangular parallelepiped, and the like.
  • the material of each of the sub-heat conducting members 124 may be the same, for example, they are all made of copper.
  • the material of each of the sub-heat conducting members 124 may be inconsistent.
  • the sub-thermal conductive member 124 near the light source 13 is made of a material with a large thermal conductivity
  • the sub-thermal conductive member 124 far from the light source 13 is made of a material with a low thermal conductivity
  • the top sub-thermal conductive member 124 is made of copper
  • the bottom The sub-heat conducting member 124 is made of aluminum.
  • the sub-heat conducting members 124 which are made of a material with a low thermal conductivity and a low cost
  • a multi-material mixed method is adopted, that is, a material with a large thermal conductivity and a material with a large thermal conductivity are used at the same time.
  • the sub-heat conducting member 124 has a higher heat dissipation efficiency as a whole; in addition, compared with all the sub-heat conducting members 124, the heat conducting member 124 is made of a material with a large thermal conductivity and a high cost.
  • the sub-heat conducting member 124 made of a high material and a low-cost material has a lower overall manufacturing cost of the heat conducting member 12.
  • the light source 13 is directly carried on the first heat-conducting surface 121 and can be fixed on the first heat-conducting surface 121 by gluing, welding, or the like.
  • the first thermally conductive surface 121 may be flush with the first surface 1111 or may not be flush with the first surface 1111.
  • the first thermally conductive surface 121 may be higher than the first surface 1111 or lower than the first surface 1111.
  • the light source 13 is directly combined with the first heat-conducting surface 121. In this way, the heat generated by the light source 13 can be directly transmitted to the first heat-conducting surface 121 and be conducted to the outside of the photovoltaic module 10 through the first heat-conducting surface 121. Referring to FIG.
  • the first heat-conducting surface 121 is provided with a groove 125, and the light source 13 is received in the groove 125.
  • the combination of the light source 13 and the bottom of the groove 125 may be gluing, welding, or the like.
  • the light emitting surface 131 of the light source 13 may be flush with the first surface 1111 or may be flush with the first surface 1111.
  • the light source 13 is contained in the groove 125.
  • the relative position of the light source 13 and the substrate 11 is not easily changed under the restrictions of the side wall and the bottom of the groove 125, which ensures that the position of the laser light emitted by the light source 13 will not change;
  • the contact area between the light source 13 and the heat conducting member 12 is increased, thereby improving heat dissipation efficiency.
  • the photovoltaic module 10 further includes a substrate circuit 15.
  • the substrate line 15 is distributed in multiple layers between the first surface 1111 and the second surface 1112 of the substrate 11.
  • the substrate circuit 15 is exposed from the first surface 1111 for connection with the light source 13, and the substrate circuit 15 is exposed from the second surface 1112 for connection with an external circuit.
  • the light source 13 is connected to the substrate line 15 on the first surface 1111 by wiring.
  • Pads are formed on the second surface 1112, and the substrate circuit 15 can be connected to an external circuit (for example, a motherboard of the electronic device 1000) through the pads.
  • the substrate circuit 15 has a multilayer distribution structure, as compared with a method having only one substrate circuit, on the one hand, the substrate 11 according to the embodiment of the present application can design more and tighter circuit structures.
  • the photovoltaic module 10 can be provided More lines are connected with external capacitors, resistors, and other components, and then, for example, a light sensor is added inside the photoelectric module 10 to detect whether the laser light emitted by the light source 13 is within a preset range.
  • the photovoltaic module 10 further includes a conductive film 16 and a conductive member 17.
  • a conductive film 16 is provided on the optical element 14, and a conductive member 17 is provided on the substrate 11.
  • the conductive film 16, the conductive member 17, the substrate circuit 15, and the light source 13 are electrically connected to form a detection circuit together.
  • the detection circuit is used to detect whether the optical element 14 is perfectly mounted on the extension 112.
  • a conductive film 16 is formed on the surface of the optical element 14.
  • One end (the left end shown in FIG. 8) of the conductive film 16 is electrically connected to one end of the left conductive member 17, the other end of the left conductive member 17 is electrically connected to one end of the substrate circuit 15, and the light source 13 is connected to the substrate circuit 15.
  • the other end of the substrate circuit 15 is connected to one end of the conductive member 17 on the right side, and the other end of the conductive member 17 on the right side is electrically connected to the other end of the conductive film 16 (right end shown in FIG. 8), and finally forms a detection circuit .
  • the photoelectric module 10 can detect whether the optical element 14 is mounted on the extension portion 112 intact by judging the electric signal output from the detection circuit.
  • the photoelectric module 10 turns off the light source 13 in time, in order to prevent the laser light emitted by the light source 13 from being emitted without expanding the intact optical element 14, which burns the user's eye.
  • the conductive film 16 may be any one of indium tin oxide (ITO), nano-silver wire, and metallic silver wire. Indium tin oxide, nano-silver wire, and metallic silver wire all have good light transmittance and electrical conductivity, and can realize the output of electrical signals after being energized without blocking the light path of the optical element 14.
  • the substrate 11 includes an inner surface 114 and an outer surface 115 opposite to each other.
  • the optical element 14 includes an entrance surface 141 and an exit surface 142 opposite to each other.
  • the conductive film 16 is provided on the emission surface 142, and the conductive member 17 is provided on the outer surface 115.
  • the conductive film 16 covers the emission surface 142, and the conductive member 17 is disposed on the outer surface 115.
  • the substrate circuit 15 is formed on the substrate 11.
  • the substrate circuit 15 protrudes from the substrate 11 and is electrically connected to the conductive member 17, thereby forming a detection circuit of the conductive film 16, the conductive member 17, the light source 13, and the substrate circuit 15;
  • the substrate 11 is electrically connected to the substrate line 15.
  • the conductive member 17 is provided only on the outer surface 115 of the extension portion 112, and the substrate circuit 15 protrudes from the extension portion 112 to connect with the conductive member 17.
  • the first surface 1111 to which the portion 111 is coupled is extended to be connected to the conductive member 17.
  • the conductive member 17 may be disposed on the outer surface 115 of the main body portion 111, and the substrate circuit 15 extends from the main body portion 111 to connect with the conductive member 17.
  • the substrate circuit 15 extends from the second surface 1112.
  • the outlet is connected to the conductive member 17.
  • the conductive film 16 is disposed on the emission surface 142, and can avoid the diffractive microstructure 144 disposed on the incident surface 141, so that the laser light passing through the diffractive microstructure 144 is not affected by the conductive film 16.
  • the production process of forming the conductive member 17 on the outer surface 115 of the substrate 11 is relatively simple and easy to manufacture, and the conductive member 17 can be used to prevent external radiation from causing electromagnetic interference to the photovoltaic module 10, that is, the conductive member 17 has electromagnetic shielding. effect.
  • the substrate 11 includes an inner surface 114 and an outer surface 115 opposite to each other.
  • the optical element 14 includes an entrance surface 141 and an exit surface 142 opposite to each other.
  • the conductive film 16 is disposed on the incident surface 142, and the conductive member 17 is disposed on the inner surface 114.
  • the conductive film 16 covers the diffractive microstructure 144.
  • the conductive member 17 extends along the inner surface 114 of the extension portion 112 so as to form a detection circuit provided inside the photovoltaic module 10 together with the conductive film 16, the substrate circuit 15 inside the photovoltaic module 10, and the light source 13.
  • the detection circuit is arranged inside the photoelectric module 10, so that the detection circuit is not easily interfered by the outside.
  • the conductive member 17 may be a conductive electrode.
  • the number of conductive electrodes is plural.
  • a plurality of conductive electrodes are distributed on the extending portion 112 at intervals.
  • the plurality of conductive electrodes form a plurality of detection circuits with the conductive film 16, the substrate circuit 15, and the light source 13, thereby improving the accuracy of detection.
  • the conductive member 17 is a conductive layer.
  • the conductive layer is made of metal.
  • the conductive layer is covered on the inner surface 114 or the outer surface 115 of the substrate 11. In this way, not only the detection accuracy can be improved, but also the light source 13 and the optical element 14 inside the photoelectric module 10 can function to prevent water and electromagnetic interference. .
  • the optical element 14 is a diffractive optical element 143.
  • a Fresnel microstructure 145 is disposed on an incident surface 141 of the diffractive optical element 143, and a diffractive microstructure 144 is disposed on an exit surface 142.
  • the Fresnel microstructure 145 can be used to collimate the laser light emitted by the light source 13, and the diffractive microstructure 144 is used to expand the collimated laser beam to form a laser pattern. Fresnel microstructure 145 can achieve laser alignment adjustment.
  • the photovoltaic module 10 can achieve the collimated laser without installing additional collimating optical elements on the optical path of the light source 13, which not only reduces the manufacturing cost of the photovoltaic module 10
  • the optical distance of the photoelectric module 10 in the light emitting direction is further reduced, the height of the photoelectric module 10 in the light emitting direction is shortened, and the miniaturization of the photoelectric module 10 is facilitated.
  • the diffractive microstructure 144 is a nanoscale diffractive microstructure
  • the Fresnel microstructure 145 is a nanoscale Fresnel microstructure.
  • the diffractive microstructure 144 in the embodiment of the present application is a nano-level diffractive microstructure, compared with the micron-level diffractive microstructure of a general diffractive optical structure, the nano-level diffractive microstructure can more accurately control the divergence angle and The shape of the light spot is formed to expand the laser beam to form a specific laser pattern.
  • the grating structure of the nano-level diffractive microstructure has a higher density. Compared with a general micro-level diffractive structure, a laser beam can be expanded into more laser beams to form a finer laser pattern.
  • the Fresnel microstructure 145 is a nano-level Fresnel microstructure
  • the nano-level Fresnel microstructure is more fine-grained, more accurate, and optical than the ordinary Fresnel structure. Performance (e.g., light condensing) is better.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "plurality” is at least two, for example, two, three, unless specifically defined otherwise.

Abstract

一种光电模组(10),包括基板(11)、导热件(12)、光源(13)和光学元件(14),基板(11)包括一体成型主体部(111)和延伸部(112),主体部(111)包括相背的第一面(1111)和第二面(1112)及贯通第一面(1111)和第二面(1112)的通孔(1113),延伸部(112)与第一面(1111)结合,导热件(12)填充在通孔(1113)内,光源(13)承载在导热件(12)上,光学元件(14)设置在延伸部(112)上。还提供一种深度撷取装置(100)和电子设备(1000)。

Description

光电模组、深度撷取装置和电子设备
优先权信息
本申请请求2018年8月23日向中国国家知识产权局提交的专利申请号为201810967880.8的专利申请、及专利申请号为201821368174.3的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及消费性电子领域,更具体而言,涉及一种光电模组、深度撷取装置及电子设备。
背景技术
现有的投影模组是采用激光发射器作为光源,以向目标物体投射出激光图案。然而,由于激光发射器为高能量发光元件,不仅本身的功率较高,而且发射的激光能量也较高,因此,激光发射器在工作时,当投影模组内部的热量无法及时消散,使得内部温度较高时,容易导致激光发射器发射的激光功率衰减,更严重地,出现激光发射器烧毁的现象。
发明内容
本申请实施方式提供一种光电模组、深度撷取装置及电子设备。
本申请实施方式的光电模组包括基板、导热件、光源和光学元件。所述基板包括一体成型的主体部和延伸部,所述主体部包括相背的第一面和第二面、以及贯通所述第一面和所述第二面的通孔,所述延伸部与所述第一面结合。所述导热件填充在所述通孔内。所述光源用于发射激光,所述光源承载在所述导热件上以使所述导热件对所述光源进行散热。所述光学元件设置在所述延伸部上并用于将所述激光扩束以形成激光图案;其中,所述延伸部沿所述第一面朝向所述光源的发射方向延伸。
本申请实施方式的光电模组中,光源设置在基板的主体部上,并且主体部上设置有导热件,导热件能够对光源进行散热,一方面,光源的温度不会过高,避免光源发射的激光功率衰减或出现光源烧毁的现象;另一方面,避免光电模组内部的温度过高而影响光学元件的光学效果。此外,由于基板的主体部与延伸部一体成型,光学元件直接设置在延伸部上,因此光电模组无需设置另外的镜筒来安装光学元件,降低光电模组的制造成本。
在某些实施方式中,所述导热件包括相背的第一导热面和第二导热面,所述第二导热面较所述第一导热面远离所述光源,所述第二导热面的面积大于所述第一导热面的面积。
相较于导热件每一处的横截面积都相等的实施方式,即第二导热面的面积等于第一导热面的面积的实施方式,在第二导热面的面积大于第一导热面的面积的实施方式中,第二导热面的面积更大,有利于第二导热面快速将第一导热面传导的热量导出到光电模组的外部,提高了导热件的散热效率。
在某些实施方式中,所述光源承载在所述第一导热面上。
光源直接与第一导热面结合,如此,光源产生的热量可以直接传导到第一导热面,并经第一导热面传导到光电模组的外部。
在某些实施方式中,所述第一导热面开设有凹槽,所述光源收容在所述凹槽内。
光源收容在凹槽内,一方面,在凹槽的侧壁和底部的限制下,光源与基板的相对位置不容易发生改变,保证了光源发射的激光位置不会改变;另一方面,增大了光源与导热件的接触面积,从而提高了散热效率;再一方面,降低了光电模组的高度。
在某些实施方式中,所述延伸部包括远离所述第一面的顶面,所述光学元件设置在所述顶面上。
光学元件的入射面部分与延伸部的顶面结合,光学元件可以设置在光电模组上并将光源发射的激光扩束以形成激光图案。
在某些实施方式中,所述延伸部与所述主体部共同形成收容空间,所述顶面开设有向所述收容空间内凹陷的安装槽,所述光学元件至少部分设置在所述安装槽内。
由于顶面开设有安装槽,在组装光电模组时,光学元件与安装槽的底部和侧壁(即延伸部的侧壁)相抵触,表示光学元件在延伸部内安装到位。光学元件收容在安装槽内,在安装槽的侧壁的限制下,光学元件稳定地收容在收容空间内,而且光电模组的高度也能得到降低。
在某些实施方式中,所述光电模组还包括基板线路,所述基板线路在所述第一面及所述第二面之间呈多层分布,所述基板线路从所述第一面暴露以用于与所述光源连接,所述基板线路从所述第二面暴露以与外部电路连接。
由于基板线路为多层分布结构,相较于只有一层基板线路的方式,一方面,本申请实施方式的基板可以设计更多、更加紧密的电路结构,例如,光电模组可以设置更多线路以与外部的电容、电阻等元器件连接,再例如在光电模组的内部增加光感元件,以检测光源发射的激光是否处于预设的范围内。
在某些实施方式中,所述光电模组还包括导电膜和导电件,所述导电膜设置在所 述光学元件上,所述导电件设置在所述基板上,所述导电膜、所述导电件、所述基板线路、和所述光源电连接以共同形成检测回路。
导电膜、导电件、基板线路、光源电连接以形成检测回路。光电模组通过判断检测回路输出的电信号,可以检测到光学元件是否完好地安装在延伸部上。当检测到光学元件没有完好地安装在延伸部上时,光电模组及时关闭光源,以防光源发射的激光在未经完好的光学元件扩束就发射出去,灼伤用户的眼睛。
在某些实施方式中,所述基板包括相背的内表面和外表面,所述光学元件包括相背的入射面和出射面,所述导电膜设置在所述出射面,所述导电件设置在所述外表面。
导电膜设置在出射面,可以避开设置在入射面上的衍射微结构,使穿过衍射微结构的激光不受导电膜的影响。而且,在基板的外表面形成导电件的生产工艺比较简单,便于制造,且导电件可以用于防止外部的辐射对光电模组产生电磁干扰。
在某些实施方式中,所述基板包括相背的内表面和外表面,所述光学元件包括相背的入射面和出射面,所述导电膜设置在所述入射面,所述导电件设置在所述内表面。
检测回路设置在光电模组的内部,使得检测回路不容易受到外界的干扰。
在某些实施方式中,所述光学元件为衍射光学元件,所述衍射光学元件的入射面上设置有菲涅尔微结构,所述衍射光学元件的出射面上设置有衍射微结构,所述菲涅尔微结构用于准直所述光源发射的激光,所述衍射微结构用于将准直后的激光扩束以形成激光图案。
菲涅尔微结构能够实现激光的准直调整,如此,光电模组无需在光源的光路上设置额外的准直光学元件就能实现准直激光,不仅降低光电模组的制造成本,还进一步地减少了光电模组在出光方向上的光学路程,缩短了光电模组在出光方向上的高度,有利于光电模组的小型化。
本申请实施方式的深度撷取装置包括上述任一实施方式所述的光电模组和相机模组。所述光电模组用于朝目标物体发射激光图案。所述光电模组包括基板、导热件、光源和光学元件。所述基板包括一体成型的主体部和延伸部,所述主体部包括相背的第一面和第二面、以及贯通所述第一面和所述第二面的通孔,所述延伸部与所述第一面结合。所述导热件填充在所述通孔内。所述光源用于发射激光,所述光源承载在所述导热件上以使所述导热件对所述光源进行散热。所述光学元件设置在所述延伸部上并用于将所述激光扩束以形成激光图案;其中,所述延伸部沿所述第一面朝向所述光源的发射方向延伸;所述相机模组用于接收经所述目标物体调制后的激光图案。
本申请实施方式的深度撷取装置中,光电模组的光源设置在基板的主体部上,并且主体部上设置有导热件,导热件能够对光源进行散热,一方面,光源的温度不会过 高,避免光源发射的激光功率衰减或出现光源烧毁的现象;另一方面,避免光电模组内部的温度过高而影响光学元件的光学效果。此外,由于基板的主体部与延伸部一体成型,光学元件直接设置在延伸部上,因此光电模组无需设置另外的镜筒来安装光学元件,降低光电模组的生产成本。
本申请实施方式的电子设备包括壳体和上述任一实施方式所述的深度撷取装置。所述深度撷取装置设置在所述壳体上。所述深度撷取装置包括光电模组和相机模组;所述光电模组用于朝目标物体发射激光图案;所述光电模组包括基板、导热件、光源和光学元件。所述基板包括一体成型的主体部和延伸部,所述主体部包括相背的第一面和第二面、以及贯通所述第一面和所述第二面的通孔,所述延伸部与所述第一面结合。所述导热件填充在所述通孔内。所述光源用于发射激光,所述光源承载在所述导热件上以使所述导热件对所述光源进行散热。所述光学元件设置在所述延伸部上并用于将所述激光扩束以形成激光图案;其中,所述延伸部沿所述第一面朝向所述光源的发射方向延伸;所述相机模组用于接收经所述目标物体调制后的激光图案。
本申请实施方式的电子设备中,光电模组的光源设置在基板的主体部上,并且主体部上设置有导热件,导热件能够对光源进行散热,一方面,光源的温度不会过高,避免光源发射的激光功率衰减或出现光源烧毁的现象;另一方面,避免光电模组内部的温度过高而影响光学元件的光学效果。此外,由于基板的主体部与延伸部一体成型,光学元件直接设置在延伸部上,因此光电模组无需设置另外的镜筒来安装光学元件,降低光电模组的生产成本。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1为本申请某些实施方式的电子设备的结构示意图;
图2为本申请某些实施方式的深度撷取装置的结构示意图;
图3为本申请某些实施方式的光电模组的结构示意图;
图4至图10为本申请其他实施方式的光电模组的结构示意图;和
图11为本申请某些实施方式的光学元件的平面示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1,本申请实施方式的电子设备1000包括壳体200和深度撷取装置100。电子设备1000可以是监控相机、手机、平板电脑、手提电脑、游戏机、头显设备、门禁系统、柜员机等,本申请实施例以电子设备1000是手机为例进行说明,可以理解,电子设备1000的具体形式可以是其他,在此不作限制。深度撷取装置100设置在壳体200上以获取深度信息,具体地,深度撷取装置100可以设置在壳体200内并从壳体200暴露,壳体200可以给深度撷取装置100提供防尘、防水、防摔等保护。在一个例子中,壳体200上开设有与深度撷取装置100对应的孔,以使光线从孔中穿出或穿入壳体200。
请参阅图2,本申请实施方式的深度撷取装置100包括光电模组10、相机模组20和处理器30。光电模组10用于朝目标物体发射激光图案。相机模组20用于接收经目标物体调制后的激光图案。处理器30用于根据相机模组20接收的激光图案以成像(深度图像)。具体地,处理器30与相机模组20及光电模组10均连接,处理器30用于处理上述激光图案以获得深度图像。深度撷取装置100上还可以形成有与光电模组10对应的投射窗口40和与相机模组20对应的采集窗口50。光电模组10可以通过投射窗口40向目标空间投射激光图案,相机模组20可以通过采集窗口50接收经过目标物体调制后的激光图案。在一个例子中,光电模组10朝目标物体发射激光图案,该激光图案为散斑图案。相机模组20通过采集窗口50采集经目标物体调制反射回来的散斑图案。具体地,处理器30通过将散斑图案与参考图案进行比对,根据该散斑图案和参考图案的差异以生成深度图像。其中,参考图案为预先采集的在不同距离下对采集模型投射的多幅散斑图像。在另一个例子中,该激光图案为具有特定的图案即具有特定编码的编码结构光图像,处理器30通过提取激光图案中的编码结构光图像,与参考图案进行对比从而获取深度图像。其中,参考图案是由有限个具有唯一性的子 图案的集合组成的编码图案,即每个子图案在参考图像中的位置都是预先确定的。本申请的深度撷取装置100可应用于人脸识别、3D建模等领域。
请参阅图3,本申请实施方式的光电模组10包括基板11、导热件12、光源13和光学元件14。基板11包括一体成型的主体部111和延伸部112。主体部111包括相背的第一面1111和第二面1112、以及贯通第一面1111和第二面1112的通孔1113。延伸部112与第一面1111结合。导热件12填充在通孔1113内。光源13用于发射激光,光源13承载在导热件12上以使导热件12对光源13进行散热。光学元件14设置在延伸部112上并用于将激光扩束以形成激光图案;其中,延伸部112沿第一面1111朝向光源13的发射方向延伸。
具体地,在光源13工作时,由于导热件12具有良好的导热性能,导热件12将光源13产生的热量快速传导到光电模组10的外部,一方面,光源13的温度不会过高,避免光源13发射的激光功率衰减或出现光源13烧毁的现象;另一方面,避免光电模组10内部的温度过高而影响光学元件14的光学效果。此外,由于光学元件14是设置在基板11的延伸部112上,因此光电模组10无需设置另外的镜筒来安装光学元件14,降低光电模组10的生产成本。
本申请实施方式的电子设备1000、深度撷取装置100和光电模组10中,光源13设置在基板11的主体部111上,并且主体部111上设置有导热件12,导热件12能够对光源13进行散热,一方面,光源13的温度不会过高,避免光源13发射的激光功率衰减或出现光源13烧毁的现象;另一方面,避免光电模组10内部的温度过高而影响光学元件14的光学效果。此外,由于基板11的主体部111与延伸部112一体成型,光学元件14直接设置在延伸部112上,因此光电模组10无需设置另外的镜筒来安装光学元件14,降低光电模组10的生产成本。
请参阅图3,更具体地,光电模组10包括基板11、导热件12、光源13和光学元件14。
基板11可以用于承载光源13和光学元件14。具体地,基板11包括主体部111和延伸部112。主体部111和延伸部112一体成型。在一个例子中,基板11的材料可以是塑料,如此,基板11质量较轻且具有足够的支撑强度。在另一个例子中,基板11的材料可以是陶瓷,如此,不仅主体部111能够较好地对光源13散热,延伸部112也能将光电模组10内部的热量传导到光电模组10的外部。在本申请实施例中,基板11采用陶瓷制成。
主体部111用于承载光源13。主体部111包括相背的第一面1111和第二面1112。光源13承载在第一面1111上。主体部111还包括贯通第一面1111和第二面1112的 通孔1113。通孔1113的数量可以为一个,也可以为多个,例如两个、三个、四个等。通孔1113的位置与光源13的位置对应。
延伸部112用于承载光学元件14。延伸部112沿第一面1111朝向光源13的发射方向延伸。延伸部112包括相背的两个开口,其中一个开口与第一面1111结合,另外一个开口为光电模组10投射激光的出口,光电模组10内的热量也可以通过该开口传导到光电模组10的外部。具体地,延伸部112为中空的筒状结构。延伸部112还包括远离第一面1111的顶面1121,顶面1121可以用于与光学元件14结合。延伸部112与主体部111共同形成收容空间113。光源13收容在收容空间113内,收容空间113形成激光光路的一部分。
导热件12填充在通孔1113内。导热件12的数量与通孔1113的数量对应。例如,通孔1113的数量为一个,导热件12的数量也为一个。通孔1113的数量为多个,导热件12的数量也为多个。当然,也可以是一部分通孔1113内填充有导热件12,另一部分通孔1113未填充导热件12。另外,通孔1113的横截面积与导热件12的横截面积对应。在一个例子中,导热件12的横截面积略大于光源13底部的面积,通孔1113的横截面积也略大于光源13底部的面积。如此,导热件12与光源13的接触面积较大,导热件12能快速地将光源13产生的热量导出。在本实施例中,导热件12的材料可以是金属,例如铜、铝、铜合金、铝合金、及不锈钢中的至少一种。本申请实施例中,导热件12采用纯铜制成,由于纯铜的散热性能优异,对光电模组10内部的散热性能更好。在一个例子中,导热件12可以与基板11共同烧结成型。
光源13用于发射激光。光源13可以设置在主体部111上。进一步地,光源13承载在导热件12上以使导热件12对光源13进行散热。光源13可以为垂直腔面发射器(Vertical-Cavity Surface-Emitting Laser,VCSEL)或边发射型激光器。导热件12的横截面积与光源13底部的面积对应,当光源13为垂直腔面发射器时,光源13的底部的面积较大,对应地,导热件12的横截面积也可以设置得较大。当光源13为边发射型激光器时,光源13的底部的面积较小,对应地,导热件12的横截面积也可以设置得较小。在一个例子中,可以根据光源13的发光功率采用不同厚度的基板11和导热件12。例如,当光源13的发光功率较小时,主体部111和导热件12的厚度可以较大,延伸部112的厚度可以较小,则光源13的发光面131更接近图2所示的投射窗口40,从而保证从投射窗口40发出的激光图案不会太弱。
光学元件14用于将光源13发射的激光扩束以形成激光图案。具体地,光学元件14包括相背的入射面141和出射面142。当光学元件14设置在延伸部112上时,光源13的发光面131朝向入射面141。请参阅图3,在一个例子中,光学元件14设置 在延伸部112的顶面1121上,具体地,入射面141可以部分与顶面1121结合。入射面141与顶面1121结合的方式包括胶合、卡合等。如此,光学元件14可以设置在光电模组10上并将光源13发射的激光扩束以形成激光图案。请参阅图4,在另一个例子中,顶面1121开设有向收容空间113内凹陷的安装槽1122,光学元件14至少部分设置在安装槽1122内。光学元件14部分与安装槽1122结合,结合的方式包括胶合、卡合等。由于顶面1121开设有安装槽1122,在组装光电模组10时,光学元件14与安装槽1122的底部和侧壁(即延伸部112的侧壁)相抵触,表示光学元件14在延伸部112内安装到位。光学元件14收容在安装槽1122内,在安装槽1122的侧壁的限制下,光学元件14稳定地收容在收容空间113内,而且光电模组10的高度也能得到降低。在一个例子中,光学元件14为衍射光学元件(Diffractive Optical Elements,DOE)143。衍射光学元件143的入射面141或出射面142上设置有衍射微结构144。衍射微结构144用于将光源13发射的激光扩束以形成激光图案。由于衍射微结构144是基于光的衍射原理,利用计算机辅助设计,并通过半导体芯片制造工艺,在基片上或传统光学器件表面刻蚀产生的台阶型或连续浮雕结构(一般为光栅结构)。因此,衍射光学元件143是具有同轴再现和极高衍射效率的一类光学元件。在本实施例中,激光在通过衍射微结构144时产生不同的光程差,满足布拉格衍射条件。此外,设计不同的衍射微结构144,还能控制激光的发散角和形成光斑的形貌,以实现激光形成特定图案的功能。在另一个例子中,光学元件14还可以为光扩束器(Diffuser)。
综上,本申请实施方式的光电模组10中,光源13设置在基板11的主体部111上,并且主体部111上设置有导热件12,导热件12对光源13进行散热,一方面,光源13的温度不会过高,避免光源13发射的激光功率衰减或出现光源13烧毁的现象,另一方面,避免光电模组10内部的温度过高,影响光学元件14的光学效果。此外,相较于现有技术中,电路板与散热基板贴合并在电路板开孔,光源直接设置在散热基板的散热方式,本申请实施方式的光电模组10不用封装电路板和散热基板,避免了在高温封装过程中出现电路板绝缘漆被破坏或者变色的现象,而且本申请实施方式的光电模组10的主体部111和延伸部112一体成型,也避免了出现散热基板掉落的问题。
请参阅图3,在某些实施方式中,导热件12包括相背的第一导热面121和第二导热面122。第一导热面121为导热件12承载光源13的端面,第二导热面122为导热件12远离光源13的端面,即第二导热面122较第一导热面121远离光源13。在一个例子中,在沿第二面1112指向第一面1111的方向上,导热件12每一处的横截面积都可以相等,如图3和图4的实施例,第一导热面121的面积等于第二导热面122的 面积。在另一个例子中,导热件12每一处的横截面积也可以不相等,如图5和图6的实施例,第二导热面122的面积大于第一导热面121的面积。相较于导热件12每一处的横截面积都相等的实施方式,即第二导热面122的面积等于第一导热面121的面积的实施方式,在第二导热面122的面积大于第一导热面121的面积的实施方式中,第二导热面122的面积更大,有利于第二导热面122快速将第一导热面121传导的热量导出到光电模组10的外部,提高了导热件12的散热效率;再一方面,降低了光电模组10的高度。
请参阅图5,在某些实施方式中,导热件12为一体结构,导热件12还包括侧面123,侧面123连接第一导热面121和第二导热面122。侧面123可以为阶梯面,例如侧面123与第一导热面121、侧面123与第二导热面122共同形成两个阶梯面。当然,侧面123也可以为倾斜面,对应的导热件12的剖面为梯形。请参阅图6,在其他实施方式中,导热件12为分体结构,导热件12可以由至少两个子导热件124堆叠而成。每个子导热件124的形状可以一致,例如均为圆柱状、长方体等。在一个例子中,每个子导热件124的材料可以一致,例如均由铜制成。在另一个例子中,每个子导热件124的材料也可以不一致。例如靠近光源13的子导热件124由导热系数大的材料制成,远离光源13的子导热件124由导热系数较小的材料制成,例如,顶部的子导热件124由铜制成,底部的子导热件124由铝制成。如此,相较于所有的子导热件124均由导热系数较小、成本较低的材料制成,采用多材料混用的方式,即同时采用导热系数大的材料和导热系数大的材料制成的子导热件124,导热件12整体的散热效率更高;另外,相较于所有的子导热件124均由导热系数大、成本高的材料制成,采用多材料混用的方式,即同时采用成本高的材料和成本低的材料制成的子导热件124,导热件12整体的制造成本更低。
请参阅图5,在某些实施方式中,光源13直接承载在第一导热面121上,并可以通过胶合、焊接等方式固定在第一导热面121上。第一导热面121可以与第一面1111齐平,也可以与第一面1111不齐平,例如第一导热面121可以高于第一面1111,也可以低于第一面1111。光源13直接与第一导热面121结合,如此,光源13产生的热量可以直接传导到第一导热面121,并经第一导热面121传导到光电模组10的外部。请参阅图7,在其他实施例中,第一导热面121开设有凹槽125,光源13收容在凹槽125内。光源13与凹槽125的底部结合的方式可以为胶合、焊接等。光源13的发光面131可以与第一面1111齐平,也可以与第一面1111不齐平。光源13收容在凹槽125内,一方面,在凹槽125的侧壁和底部的限制下,光源13与基板11的相对位置不容易发生改变,保证了光源13发射的激光位置不会改变;另一方面,增大了光源 13与导热件12的接触面积,从而提高了散热效率。
请参阅图3,在某些实施方式中,光电模组10还包括基板线路15。基板线路15在基板11的第一面1111及第二面1112之间呈多层分布。基板线路15从第一面1111暴露以用于与光源13连接,基板线路15从第二面1112暴露以与外部电路连接。光源13通过打线与第一面1111上的基板线路15连接。第二面1112上形成有焊盘,基板线路15可以通过焊盘与外部电路(例如电子设备1000的主板)连接。由于基板线路15为多层分布结构,相较于只有一层基板线路的方式,一方面,本申请实施方式的基板11可以设计更多、更加紧密的电路结构,例如,光电模组10可以设置更多线路以与外部的电容、电阻等元器件连接,再例如在光电模组10的内部增加光感元件,以检测光源13发射的激光是否处于预设的范围内。
请参阅图8,在某些实施方式中,光电模组10还包括导电膜16和导电件17。导电膜16设置在光学元件14上,导电件17设置在基板11上。导电膜16、导电件17、基板线路15、和光源13电连接并共同形成检测回路。检测回路用于检测光学元件14是否完好地安装在延伸部112上。
具体地,光学元件14的表面形成有导电膜16。导电膜16的一端(图8所示的左端)与左侧的导电件17的一端电连接,左侧的导电件17的另一端与基板线路15的一端电连接,光源13连接在基板线路15上,基板线路15的另一端与右侧的导电件17的一端连接,右侧的导电件17的另一端与导电膜16的另一端(图8所示的右端)电连接,最终形成检测回路。当光学元件14为完好状态时,导电膜16的电阻较小,则检测回路输出的电信号较强,比如电流较大。当光学元件14破裂时,导电膜16也会破裂,此时导电膜16的电阻较大,则检测回路输出的电信号较弱,比如电流较小。此外,当光学元件14从延伸部112上脱落时,检测回路也会断开,则检测回路输出的电信号也较弱,比如电流也较小或为零。因此,光电模组10通过判断检测回路输出的电信号,可以检测到光学元件14是否完好地安装在延伸部112上。当检测到光学元件14没有完好地安装在延伸部112上时,光电模组10及时关闭光源13,以防光源13发射的激光在未经完好的光学元件14扩束就发射出去,灼伤用户的眼睛。在本实施例中,导电膜16可以为氧化铟锡(Indium tin oxide,ITO)、纳米银丝、金属银线中的任意一种。氧化铟锡、纳米银丝、金属银线均具有良好的透光率及导电性能,可实现通电后的电信号输出,同时不会对光学元件14的出光光路产生遮挡。
请继续参阅图8,在某些实施方式中,基板11包括相背的内表面114和外表面115。光学元件14包括相背的入射面141和出射面142。导电膜16设置在出射面142,导电件17设置在外表面115。
具体地,导电膜16覆盖在出射面142上,导电件17设置在外表面115上。基板11形成有基板线路15,基板线路15从基板11内伸出与导电件17电连接,从而形成导电膜16、导电件17、光源13、基板线路15的检测回路;或者导电件17穿入基板11内与基板线路15电连接。在图8所示的实施例中,导电件17仅设置在延伸部112的外表面115,基板线路15从延伸部112伸出以与导电件17连接,例如基板线路15从延伸部112与主体部111结合的第一面1111伸出与导电件17连接。在图9所示的实施例中,导电件17可以设置在主体部111的外表面115,基板线路15从主体部111伸出以与导电件17连接,例如基板线路15从第二面1112伸出与导电件17连接。导电膜16设置在出射面142上,可以避开设置在入射面141上的衍射微结构144,使穿过衍射微结构144的激光不受导电膜16的影响。而且,在基板11的外表面115形成导电件17的生产工艺比较简单,便于制造,且导电件17可以用于防止外部的辐射对光电模组10产生电磁干扰,即导电件17具有电磁屏蔽的作用。
请参阅图10,在某些实施方式中,基板11包括相背的内表面114和外表面115。光学元件14包括相背的入射面141和出射面142。导电膜16设置在入射面142,导电件17设置在内表面114上。具体地,在形成衍射微结构144后,导电膜16覆盖在衍射微结构144上。导电件17沿着延伸部112的内表面114延伸,从而与导电膜16、光电模组10内部的基板线路15、光源13共同形成设置在光电模组10内部的检测回路。检测回路设置在光电模组10的内部,使得检测回路不容易受到外界的干扰。
在某些实施方式中,导电件17可以为导电电极。导电电极的数量为多个。多个导电电极间隔分布在延伸部112上。多个导电电极与导电膜16、基板线路15、光源13形成多个检测回路,提高检测的准确性。在其他实施方式中,导电件17为导电层。导电层由金属制成。导电层覆盖在基板11的内表面114或外表面115上,如此,不仅能提高检测的准确性,还能对光电模组10内部的光源13和光学元件14起到防水和防电磁干扰的功能。
请参阅图11,在某些实施方式中,光学元件14为衍射光学元件143,衍射光学元件143的入射面141上设置菲涅尔微结构145,出射面142上设置衍射微结构144。菲涅尔微结构145能够用于准直光源13发射的激光,衍射微结构144用于将准直后的激光扩束以形成激光图案。菲涅尔微结构145能够实现激光的准直调整,如此,光电模组10无需在光源13的光路上设置额外的准直光学元件就能实现准直激光,不仅降低光电模组10的制造成本,还进一步地减少了光电模组10在出光方向上的光学路程,缩短了光电模组10在出光方向上的高度,有利于光电模组10的小型化。在一个例子中,衍射微结构144为纳米级衍射微结构,菲涅尔微结构145为纳米级菲涅尔微 结构。由于本申请实施方式的衍射微结构144为纳米级的衍射微结构,相比于一般衍射光学结构的微米级别的衍射微结构而言,纳米级衍射微结构可以更加精确的控制激光的发散角和形成光斑的形貌,以将激光扩束以形成特定的激光图案。而且,纳米级别的衍射微结构的光栅结构的密度更大,相较于一般的微米级别的衍射结构,可以将一束激光扩束为更多束激光以形成更为精细的激光图案。此外,由于本申请实施方式的菲涅尔微结构145为纳米级的菲涅尔微结构,纳米级的菲涅尔微结构比普通的菲涅尔结构的结构更为精细,精度更高,光学性能(例如聚光性)更好。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (24)

  1. 一种光电模组,其特征在于,包括:
    基板,所述基板包括一体成型的主体部和延伸部,所述主体部包括相背的第一面和第二面、以及贯通所述第一面和所述第二面的通孔,所述延伸部与所述第一面结合;
    导热件,所述导热件填充在所述通孔内;
    光源,所述光源用于发射激光,所述光源承载在所述导热件上以使所述导热件对所述光源进行散热;和
    光学元件,所述光学元件设置在所述延伸部上并用于将所述激光扩束以形成激光图案;其中,所述延伸部沿所述第一面朝向所述光源的发射方向延伸。
  2. 根据权利要求1所述的光电模组,其特征在于,所述导热件包括相背的第一导热面和第二导热面,所述第二导热面较所述第一导热面远离所述光源,所述第二导热面的面积大于所述第一导热面的面积。
  3. 根据权利要求2所述的光电模组,其特征在于,所述光源承载在所述第一导热面上;或
    所述第一导热面开设有凹槽,所述光源收容在所述凹槽内。
  4. 根据权利要求1所述的光电模组,其特征在于,所述延伸部包括远离所述第一面的顶面,所述光学元件设置在所述顶面上;或
    所述延伸部与所述主体部共同形成收容空间,所述顶面开设有向所述收容空间内凹陷的安装槽,所述光学元件至少部分设置在所述安装槽内。
  5. 根据权利要求1所述的光电模组,其特征在于,所述光电模组还包括基板线路,所述基板线路在所述第一面及所述第二面之间呈多层分布,所述基板线路从所述第一面暴露以用于与所述光源连接,所述基板线路从所述第二面暴露以与外部电路连接。
  6. 根据权利要求5所述的光电模组,其特征在于,所述光电模组还包括导电膜和导电件,所述导电膜设置在所述光学元件上,所述导电件设置在所述基板上,所述导电膜、所述导电件、所述基板线路、和所述光源电连接以共同形成检测回路。
  7. 根据权利要求6所述的光电模组,其特征在于,所述基板包括相背的内表面和 外表面,所述光学元件包括相背的入射面和出射面,所述导电膜设置在所述出射面,所述导电件设置在所述外表面;或
    所述导电膜设置在所述入射面,所述导电件设置在所述内表面。
  8. 根据权利要求1所述的光电模组,其特征在于,所述光学元件为衍射光学元件,所述衍射光学元件的入射面上设置有菲涅尔微结构,所述衍射光学元件的出射面上设置有衍射微结构,所述菲涅尔微结构用于准直所述光源发射的激光,所述衍射微结构用于将准直后的激光扩束以形成激光图案。
  9. 一种深度撷取装置,其特征在于,包括:
    光电模组,所述光电模组用于朝目标物体发射激光图案;所述光电模组包括基板、导热件、光源和光学元件;所述基板包括一体成型的主体部和延伸部,所述主体部包括相背的第一面和第二面、以及贯通所述第一面和所述第二面的通孔,所述延伸部与所述第一面结合;所述导热件填充在所述通孔内;所述光源用于发射激光,所述光源承载在所述导热件上以使所述导热件对所述光源进行散热;所述光学元件设置在所述延伸部上并用于将所述激光扩束以形成激光图案;其中,所述延伸部沿所述第一面朝向所述光源的发射方向延伸;和
    相机模组,所述相机模组用于接收经所述目标物体调制后的激光图案。
  10. 根据权利要求9所述的深度撷取装置,其特征在于,所述导热件包括相背的第一导热面和第二导热面,所述第二导热面较所述第一导热面远离所述光源,所述第二导热面的面积大于所述第一导热面的面积。
  11. 根据权利要求10所述的深度撷取装置,其特征在于,所述光源承载在所述第一导热面上;或
    所述第一导热面开设有凹槽,所述光源收容在所述凹槽内。
  12. 根据权利要求9所述的深度撷取装置,其特征在于,所述延伸部包括远离所述第一面的顶面,所述光学元件设置在所述顶面上;或
    所述延伸部与所述主体部共同形成收容空间,所述顶面开设有向所述收容空间内凹陷的安装槽,所述光学元件至少部分设置在所述安装槽内。
  13. 根据权利要求9所述的深度撷取装置,其特征在于,所述光电模组还包括基板线路,所述基板线路在所述第一面及所述第二面之间呈多层分布,所述基板线路从所述第一面暴露以用于与所述光源连接,所述基板线路从所述第二面暴露以与外部电路连接。
  14. 根据权利要求13所述的深度撷取装置,其特征在于,所述光电模组还包括导电膜和导电件,所述导电膜设置在所述光学元件上,所述导电件设置在所述基板上,所述导电膜、所述导电件、所述基板线路、和所述光源电连接以共同形成检测回路。
  15. 根据权利要求14所述的深度撷取装置,其特征在于,所述基板包括相背的内表面和外表面,所述光学元件包括相背的入射面和出射面,所述导电膜设置在所述出射面,所述导电件设置在所述外表面;或
    所述导电膜设置在所述入射面,所述导电件设置在所述内表面。
  16. 根据权利要求9所述的深度撷取装置,其特征在于,所述光学元件为衍射光学元件,所述衍射光学元件的入射面上设置有菲涅尔微结构,所述衍射光学元件的出射面上设置有衍射微结构,所述菲涅尔微结构用于准直所述光源发射的激光,所述衍射微结构用于将准直后的激光扩束以形成激光图案。
  17. 一种电子设备,其特征在于,包括:
    壳体;和
    深度撷取装置,所述深度撷取装置设置在所述壳体上;所述深度撷取装置包括光电模组和相机模组;所述光电模组用于朝目标物体发射激光图案;所述光电模组包括基板、导热件、光源和光学元件;所述基板包括一体成型的主体部和延伸部,所述主体部包括相背的第一面和第二面、以及贯通所述第一面和所述第二面的通孔,所述延伸部与所述第一面结合;所述导热件填充在所述通孔内;所述光源用于发射激光,所述光源承载在所述导热件上以使所述导热件对所述光源进行散热;所述光学元件设置在所述延伸部上并用于将所述激光扩束以形成激光图案;其中,所述延伸部沿所述第一面朝向所述光源的发射方向延伸;所述相机模组用于接收经所述目标物体调制后的激光图案。
  18. 根据权利要求17所述的电子设备,其特征在于,所述导热件包括相背的第一 导热面和第二导热面,所述第二导热面较所述第一导热面远离所述光源,所述第二导热面的面积大于所述第一导热面的面积。
  19. 根据权利要求18所述的电子设备,其特征在于,所述光源承载在所述第一导热面上;或
    所述第一导热面开设有凹槽,所述光源收容在所述凹槽内。
  20. 根据权利要求17所述的电子设备,其特征在于,所述延伸部包括远离所述第一面的顶面,所述光学元件设置在所述顶面上;或
    所述延伸部与所述主体部共同形成收容空间,所述顶面开设有向所述收容空间内凹陷的安装槽,所述光学元件至少部分设置在所述安装槽内。
  21. 根据权利要求17所述的电子设备,其特征在于,所述光电模组还包括基板线路,所述基板线路在所述第一面及所述第二面之间呈多层分布,所述基板线路从所述第一面暴露以用于与所述光源连接,所述基板线路从所述第二面暴露以与外部电路连接。
  22. 根据权利要求21所述的电子设备,其特征在于,所述光电模组还包括导电膜和导电件,所述导电膜设置在所述光学元件上,所述导电件设置在所述基板上,所述导电膜、所述导电件、所述基板线路、和所述光源电连接以共同形成检测回路。
  23. 根据权利要求22所述的电子设备,其特征在于,所述基板包括相背的内表面和外表面,所述光学元件包括相背的入射面和出射面,所述导电膜设置在所述出射面,所述导电件设置在所述外表面;或
    所述导电膜设置在所述入射面,所述导电件设置在所述内表面。
  24. 根据权利要求17所述的电子设备,其特征在于,所述光学元件为衍射光学元件,所述衍射光学元件的入射面上设置有菲涅尔微结构,所述衍射光学元件的出射面上设置有衍射微结构,所述菲涅尔微结构用于准直所述光源发射的激光,所述衍射微结构用于将准直后的激光扩束以形成激光图案。
PCT/CN2019/090827 2018-08-23 2019-06-12 光电模组、深度撷取装置和电子设备 WO2020038078A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810967880.8 2018-08-23
CN201810967880.8A CN110858053A (zh) 2018-08-23 2018-08-23 光电模组、深度撷取装置及电子设备
CN201821368174.3 2018-08-23
CN201821368174.3U CN208569286U (zh) 2018-08-23 2018-08-23 光电模组、深度撷取装置及电子设备

Publications (1)

Publication Number Publication Date
WO2020038078A1 true WO2020038078A1 (zh) 2020-02-27

Family

ID=69592359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090827 WO2020038078A1 (zh) 2018-08-23 2019-06-12 光电模组、深度撷取装置和电子设备

Country Status (1)

Country Link
WO (1) WO2020038078A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170159926A1 (en) * 2012-09-26 2017-06-08 Sony Corporation Light source apparatus and projector apparatus
CN207133560U (zh) * 2017-08-02 2018-03-23 深圳奥比中光科技有限公司 具有高散热性能的光学模组
CN108196418A (zh) * 2018-02-27 2018-06-22 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN108333850A (zh) * 2018-02-27 2018-07-27 广东欧珀移动通信有限公司 激光投射模组及其损坏的检测方法、深度相机和电子装置
CN108415209A (zh) * 2018-04-03 2018-08-17 Oppo广东移动通信有限公司 结构光投射模组、摄像组件和电子装置
CN208569286U (zh) * 2018-08-23 2019-03-01 南昌欧菲生物识别技术有限公司 光电模组、深度撷取装置及电子设备
CN208654455U (zh) * 2018-09-25 2019-03-26 南昌欧菲生物识别技术有限公司 光电模组、深度获取装置及终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170159926A1 (en) * 2012-09-26 2017-06-08 Sony Corporation Light source apparatus and projector apparatus
CN207133560U (zh) * 2017-08-02 2018-03-23 深圳奥比中光科技有限公司 具有高散热性能的光学模组
CN108196418A (zh) * 2018-02-27 2018-06-22 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN108333850A (zh) * 2018-02-27 2018-07-27 广东欧珀移动通信有限公司 激光投射模组及其损坏的检测方法、深度相机和电子装置
CN108415209A (zh) * 2018-04-03 2018-08-17 Oppo广东移动通信有限公司 结构光投射模组、摄像组件和电子装置
CN208569286U (zh) * 2018-08-23 2019-03-01 南昌欧菲生物识别技术有限公司 光电模组、深度撷取装置及电子设备
CN208654455U (zh) * 2018-09-25 2019-03-26 南昌欧菲生物识别技术有限公司 光电模组、深度获取装置及终端

Similar Documents

Publication Publication Date Title
WO2020038067A1 (zh) 激光投射模组及控制方法、深度图像获取设备和电子装置
US10566363B2 (en) Light emitter and light detector modules including vertical alignment features
WO2020125388A1 (zh) 飞行时间模组及电子设备
WO2020038060A1 (zh) 激光投射模组及其控制方法、图像获取设备和电子装置
TW201841445A (zh) 人眼安全vcsel照明器封裝
CN208569274U (zh) 投影模组、深度撷取装置及终端
TW201925755A (zh) 光學檢測元件
CN210923959U (zh) 飞行时间投射器、飞行时间深度模组和电子设备
CN109061879A (zh) 光投射器及其破裂的检测方法、深度相机和电子装置
WO2017098584A1 (ja) フォトリフレクタ
TWI696000B (zh) 鐳射投射模組及其破裂的檢測方法、深度相機和電子裝置
CN110398876A (zh) 承载结构及其形成方法及光学投影模组
CN208569286U (zh) 光电模组、深度撷取装置及电子设备
WO2020038078A1 (zh) 光电模组、深度撷取装置和电子设备
US20220236381A1 (en) Light emitting module combining enhanced safety features and thermal management
WO2023173885A1 (zh) 光学组件、光发射模组、深度相机及电子设备
TWI694296B (zh) 光學投射裝置
CN111665511A (zh) 测距装置
CN110858053A (zh) 光电模组、深度撷取装置及电子设备
WO2020253686A1 (zh) 激光投射模组、深度相机和电子装置
CN215599370U (zh) 飞行时间摄像模组和电子设备
WO2020082876A1 (zh) 光学组件、光电模组、深度获取装置及电子设备
CN114706092A (zh) 飞行时间模组及其组装方法、拍摄组件和终端
CN212301894U (zh) 发射模组、摄像头及电子装置
US20170354026A1 (en) Flex-less multilayer ceramic substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852250

Country of ref document: EP

Kind code of ref document: A1