WO2020034991A1 - 一种3d打印装置以及其脱膜方法和盛液机构 - Google Patents
一种3d打印装置以及其脱膜方法和盛液机构 Download PDFInfo
- Publication number
- WO2020034991A1 WO2020034991A1 PCT/CN2019/100567 CN2019100567W WO2020034991A1 WO 2020034991 A1 WO2020034991 A1 WO 2020034991A1 CN 2019100567 W CN2019100567 W CN 2019100567W WO 2020034991 A1 WO2020034991 A1 WO 2020034991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- material box
- spring
- film
- printing
- adjusting member
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/255—Enclosures for the building material, e.g. powder containers
- B29C64/259—Interchangeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present application relates to the technical field of 3D printing, and in particular, to a 3D printing device, a film removing method and a liquid holding mechanism thereof.
- 3D printing is a kind of rapid prototyping technology. It is a technology based on digital model files, using powder-like metals or plastics and other adhesive materials to construct objects by printing layer by layer. 3D printing usually uses Digital technology material printer to achieve. It is often used to make models in the fields of mold manufacturing and industrial design, and then gradually used in the direct manufacturing of some products. There are already parts printed using this technology.
- 3D printing is not only different from the printing of text on a paper plane, but also different from the traditional method of manufacturing products by milling and other methods. It is a series of technologies and methods for completing the manufacture of articles in a three-dimensional layer-by-layer printing method.
- the specific implementation method is based on the computer three-dimensional design model, layered discrete and numerical control molding system through software, using laser beams, hot-melt nozzles and other methods to layer metal powder, ceramic powder, plastic, cell tissue and other special materials layer by layer. Stacking and bonding, and finally superimposed molding, to produce a solid product.
- 3D printing Compared with the traditional manufacturing method, 3D printing has many advantages, such as simplifying the process flow, making more complicated space shapes, and saving raw materials. Therefore, in recent years, 3D printing technology has developed rapidly and has been applied in many fields. The technology is used in jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industries, education, geographic information systems. , Civil engineering, firearms, and other fields have applications, 3D printed items have penetrated into all areas of people's lives.
- a 3D printer using photosensitive resin as a printing material requires a resin box to contain the photosensitive resin.
- Chinese Patent Publication No. CN205685751U discloses a 3D printer.
- the 3D printer includes a frame 10 and a device.
- a resin box 20 on the frame 10 is provided with an optical system and a light source under the resin box 20, and the light emitted by the light source is transmitted to the bottom of the resin box 20 through the optical system, and the top of the resin box 20 is provided with a print head.
- the resin box 20 includes a bottom plate 201 made of an aluminum plate and a box body 202 provided at the top of the bottom plate 201.
- Four nut posts are provided at the four corners of the lower end of the box body 202, and a countersunk hole 2011 is provided on the bottom plate 201 for the nut post to be inserted.
- the lower end of the bottom plate 201 is provided with a screw 203 that is inserted into the nut post after passing through the countersunk hole 2011 from the bottom to the top.
- the screw 203 is screwed into the nut post to fix the resin box 20 on the frame 10.
- a transparent projection glass is placed in the resin box 20, and the printed film is placed in the box body 202.
- the projection glass may not be fixed tightly, and the position may be easily moved, causing problems such as changes in distance / focal distance, resulting in low printing accuracy.
- the existing resin box has a monolithic design and is poor in versatility
- the resin box needs to be replaced in time after damage, which not only increases the use cost, but also requires calibration after replacing the new resin box, which is time-consuming and labor-intensive. Installation operations require advanced issues.
- the technical problems to be solved in this application include at least one of the following: poor 3D printing quality, easy deformation of the film, high cost, and high installation operation requirements.
- an aspect of the present application provides a 3D printing device including a base, a printing mechanism, a liquid holding mechanism, and an exposure mechanism, wherein the printing mechanism is located above the liquid holding mechanism and the exposure mechanism is located at the Under the liquid holding mechanism;
- the liquid holding mechanism includes a material box base, a material box, and a plurality of guide moving parts.
- the material box is detachably mounted on the material box base through the plurality of guide moving parts.
- the upper part of the material box faces the printing mechanism through a space. ;
- the liquid holding mechanism further includes a light-transmitting glass plate.
- the base of the material box is a rigid annular plate with a mounting groove, and is detachably mounted on the base.
- the mounting groove of the base of the material box is covered by the glass plate.
- the glass plate is fixed on the upper surface of the base of the material box;
- the plurality of guide moving parts are fixed to the peripheral edge of the material box, they are detachably fixed on the material box base and the material box is placed on the glass plate;
- the glass plate is used for placing a film on the upper surface of the glass plate
- Each of the guide moving parts is a follower with an upper limit structure and a lower limit structure
- the printing mechanism is used for upward movement when the film is removed and pulling the printing object through the adsorption force between the film and the printing object to drive the material box to move together;
- the plurality of guide moving parts are used to make the material box follow the printing mechanism for a certain distance between the upper limit structure and the lower limit structure to realize the film release.
- each guide movement component includes a guide rod, an upper spring, a lower spring, an upper spring adjusting member, and a lower spring adjusting member.
- the upper spring adjusting member is the upper limit position structure
- the lower spring adjusting member is the lower limit position. structure
- the guide rod passes through the peripheral edge of the material box and is fixed on the material box base;
- the upper spring is sleeved on a portion of the guide rod above the upper surface of the material box, the upper spring adjusting member is adjustably fixed with the guide rod, and the upper spring adjusting member is located above the upper spring, and the upper spring passes The upper spring adjusting member is abutted against the upper surface of the material box;
- the lower spring is sleeved on a portion of the guide rod located below the lower surface of the material box, the lower spring adjusting member is adjustably fixed with the guide rod, and the lower spring adjusting member is located below the lower spring, and the lower spring passes The lower spring adjusting member is abutted against the lower surface of the material box.
- a convex stop structure is further provided on the guide rod and above the upper spring adjusting member.
- the 3D printing device further includes an adjustment lever and an adjustment spring.
- the upper surface of the base is provided with a plurality of support posts.
- the material box base is detachably fixed to the support post through the adjustment lever.
- the adjusting spring is sleeved, and two ends of the adjusting spring respectively abut the upper surface of the support column and the lower surface of the base of the material box.
- the top surface of the support column and the bottom end of the material box base are respectively provided with an adjustment hole that cooperates with the adjustment rod, wherein the adjustment hole of the material box base is a through hole, and the adjustment hole on the top surface of the support column is The inner surface has threads, and the adjusting rod passes through the through hole and is then fixed with the adjusting hole of the support post.
- the guide moving part is a pneumatic part, a hydraulic part or an electric part.
- Another aspect of the present application provides a liquid holding mechanism in a 3D printing device, the liquid holding mechanism is located on a base included in the 3D printing device and under a printing mechanism included in the 3D printing device;
- the liquid holding mechanism includes a material box base, a material box, and a plurality of guide moving parts.
- the material box is detachably mounted on the material box base through the plurality of guide moving parts.
- the upper part of the material box faces the printing mechanism through a space. ;
- the liquid holding mechanism further includes a light-transmitting glass plate.
- the base of the material box is a rigid annular plate with a mounting groove, and is detachably mounted on the base.
- the mounting groove of the base of the material box is covered by the glass plate.
- the glass plate is fixed on the upper surface of the base of the material box;
- the plurality of guide moving parts are fixed to the peripheral edge of the material box, they are detachably fixed on the material box base and the material box is placed on the glass plate;
- the glass plate is used for placing a film on the upper surface of the glass plate
- Each of the guide moving parts is a follower with an upper limit structure and a lower limit structure
- the printing mechanism is used for upward movement when the film is removed and pulling the printing object through the adsorption force between the film and the printing object to drive the material box to move together;
- the plurality of guide moving parts are used to make the material box follow the printing mechanism for a certain distance between the upper limit structure and the lower limit structure to realize the film release.
- each guide movement component includes a guide rod, an upper spring, a lower spring, an upper spring adjusting member, and a lower spring adjusting member.
- the upper spring adjusting member is the upper limit position structure
- the lower spring adjusting member is the lower limit position. structure
- the guide rod passes through the peripheral edge of the material box and is fixed on the material box base;
- the upper spring is sleeved on a portion of the guide rod above the upper surface of the material box, the upper spring adjusting member is adjustably fixed with the guide rod, and the upper spring adjusting member is located above the upper spring, and the upper spring passes The upper spring adjusting member is abutted against the upper surface of the material box;
- the lower spring is sleeved on a portion of the guide rod located below the lower surface of the material box, the lower spring adjusting member is adjustably fixed with the guide rod, and the lower spring adjusting member is located below the lower spring, and the lower spring passes The lower spring adjusting member is abutted against the lower surface of the material box.
- a convex stop structure is further provided on the guide rod and above the upper spring adjusting member.
- the upper surface of the base is provided with a plurality of support columns, and the base of the material box is detachably fixed to the support columns through an adjustment rod included in the 3D printing device, and an adjustment spring is sleeved on the outside of the adjustment rod.
- the two ends of the adjusting spring respectively abut the upper surface of the support column and the lower surface of the material box base.
- the top surface of the support column and the bottom end of the material box base are respectively provided with an adjustment hole that cooperates with the adjustment rod, wherein the adjustment hole of the material box base is a through hole, and the adjustment hole on the top surface of the support column is The inner surface has threads, and the adjusting rod passes through the through hole and is then fixed with the adjusting hole of the support post.
- the guide moving part is a pneumatic part, a hydraulic part or an electric part.
- the 3D printing device includes a base, a printing mechanism, a liquid holding mechanism, and an exposure mechanism.
- the printing mechanism is located on the liquid holding mechanism and the exposure is performed.
- the institution is located under the liquid holding institution;
- the liquid holding mechanism includes a material box base, a material box, and a plurality of guide moving parts.
- the material box is detachably mounted on the material box base through the plurality of guide moving parts.
- the upper part of the material box faces the printing mechanism through a space. ;
- the liquid holding mechanism further includes a light-transmitting glass plate.
- the base of the material box is a rigid annular plate with a mounting groove, and is detachably mounted on the base.
- the mounting groove of the base of the material box is covered by the glass plate.
- the glass plate is fixed on the upper surface of the base of the material box;
- the plurality of guide moving parts are fixed to the peripheral edge of the material box, they are detachably fixed on the material box base and the material box is placed on the glass plate;
- Each of the guide moving parts is a follower with an upper limit structure and a lower limit structure
- the glass plate is used for placing a film on the upper surface of the glass plate
- the stripping method includes:
- the printing mechanism moves upward and pulls the printing object through the adsorption force between the film and the printing object to drive the material box to move together;
- the plurality of guide moving parts enable the material box to follow the printing mechanism for a certain distance between the upper limit structure and the lower limit structure to realize the film release.
- each guide movement component includes a guide rod, an upper spring, a lower spring, an upper spring adjusting member, and a lower spring adjusting member.
- the upper spring adjusting member is the upper limit position structure
- the lower spring adjusting member is the lower limit position. structure
- the guide rod passes through the peripheral edge of the material box and is fixed on the material box base;
- the upper spring is sleeved on a portion of the guide rod above the upper surface of the material box, the upper spring adjusting member is adjustably fixed with the guide rod, and the upper spring adjusting member is located above the upper spring, and the upper spring passes The upper spring adjusting member is abutted against the upper surface of the material box;
- the lower spring is sleeved on a portion of the guide rod located below the lower surface of the material box, the lower spring adjusting member is adjustably fixed with the guide rod, and the lower spring adjusting member is located below the lower spring, and the lower spring passes The lower spring adjusting member is abutted against the lower surface of the material box.
- the film removing method further includes:
- the printing mechanism moves upward to overcome the adsorption force.
- the film and the glass plate are slowly separated, and oxygen is entered between the film and the glass plate to realize the film in the first stage.
- the glass plate at this time, there is an adsorption force between the film and the printed object, the downward spring force of the upper spring + the gravity of the material box + the expected gravity of the material ⁇ the upward spring force of the lower spring + Upward force of the printing mechanism;
- the upper spring and the lower spring drive the material box to follow the printing mechanism to move upward for a distance until the upper spring's downward elastic force + the material box's gravity + the expected material's gravity> the lower spring's upward elastic force + the printing mechanism upwards
- the force is applied, the film is completely separated from the glass plate, and the film is released from the printed object in the second stage.
- the 3D printing device described above, its film-removing method, and liquid holding mechanism adopt a separate setting of the material box and the base of the material box, which will not affect the installation size of the design projection surface when the material box is replaced, and the material box is guaranteed.
- the universality can reduce the manufacturing cost of replacing the material box.
- the material box is connected to the base of the material box by a guide moving part, and the guide moving part enables the material box to follow the printing mechanism for a certain distance between the upper limit structure and the lower limit structure, which can realize segmented film release and reduce
- the deformation of the film during the film removal process is reduced, the sound during the film removal is reduced, and the service life of the film is improved.
- FIG. 1 is a schematic structural diagram of a 3D printer in the prior art
- FIG. 2 is a schematic structural diagram of a resin box of the 3D printer of FIG. 1 in the prior art
- FIG. 3 is a schematic structural diagram of a 3D printing device according to an embodiment of the present application.
- FIG. 4 is a schematic cross-sectional view of a liquid holding mechanism of the 3D printing device of FIG. 3;
- FIG. 5 is a schematic cross-sectional structure diagram of a combination of a material box base and a material box of another 3D printing device according to another embodiment of the present application;
- FIG. 6 is a schematic structural diagram of another 3D printing device according to another embodiment of the present application.
- FIG. 7 is a top view of a printing arm of the 3D printing device of FIG. 6;
- FIG. 8 is a cross-sectional view taken along A-A in FIG. 7;
- FIG. 9 is a schematic diagram of a three-dimensional structure of a printing arm of the 3D printing device of FIG. 6; FIG.
- FIG. 10 is an exploded view of a magnetic component structure in the print arm of FIG. 9;
- FIG. 11 is a coordinated installation diagram of a rotating shaft, an electromagnetic cover plate, and a limit rod in the printing arm of FIG. 9;
- FIG. 12 is a schematic diagram of the three-dimensional structure of the platform component of the 3D printing device of FIG. 6; FIG.
- FIG. 13 is an enlarged partial structural schematic view of the material box base combined with the base and the material box in FIG. 6 respectively;
- FIG. 14 is an enlarged view of a region B in FIG. 6;
- FIG. 15 is a schematic process diagram of a 3D printing device film removing method according to another embodiment of the present application.
- the 3D printing device includes a printing mechanism 36 and a liquid holding mechanism 37 mounted on a base 35, wherein the printing mechanism 36 is located in the The liquid holding mechanism 37 is located on the base 35.
- the liquid holding mechanism 37 includes a material box base 371 and a material box 372.
- the material box 372 is a bottomless basin, and the shape may be a circular basin, a square basin, or a rectangular basin. This application is not limited.
- a plurality of guide moving parts 38 are detachably mounted on the material box base 371, and the upper part of the material box 372 faces the printing mechanism 36 through a space.
- the base 35 has a plurality of upwardly-supporting support columns 350, and the material box base 371 is detachably fixed to the support column 350 through an adjusting rod 351, and an adjusting spring 352 is sleeved on the outside of the adjusting rod 351. Two ends of the adjusting spring 352 abut against the upper surface of the support post 350 and the lower surface of the material box base 371, respectively.
- the adjusting rod 351 may be a screw or a bolt.
- the top surface of the support column 350 and the bottom end of the material box base 371 are respectively provided with adjustment holes (not shown) that cooperate with the adjustment rod 351, wherein the adjustment holes of the material box base 371 are through holes, and the support column 350
- the inner surface of the adjustment hole on the top surface has threads, and the adjustment rod 351 passes through the through hole and then is fixed to the adjustment hole of the support post 350.
- the liquid holding mechanism 37 further includes a light-transmitting glass plate.
- the material box base 371 is a rigid annular plate with a mounting groove. The mounting groove of the material box base 371 is covered by the glass plate, and the glass plate is fixed to the material.
- the upper surface of the box base 371 is the material box 372 on the glass plate.
- the glass plate is fixed on the upper surface of the material box base 371 by a fixing glue around the glass plate.
- the fixing glue may be AB glue.
- the size and shape of the glass plate can be determined according to the size and shape of the material box 372.
- each guide movement component 38 is a following component with an upper limit structure and optionally a lower limit structure, and the following component is fixed to the peripheral edge of the material box 372.
- the printing mechanism 36 is used for upward movement when the film is removed, and the printed object is pulled by the adsorption force between the film and the printed object to drive the material box 372 to move together; the plurality of guide movement parts 38 are used to make the material box 372 follows the printing mechanism a certain distance between the upper limit structure and the lower limit structure to realize the film release.
- the plurality of guide movement components 38 are spring components, pneumatic components, hydraulic components, or electric components with an upper limit structure and optionally a lower limit structure.
- the plurality of guide movement members 38 include a guide rod 381, an upper spring 382, a lower spring 383, and an upper spring adjusting member.
- the upper limit structure is the upper spring adjusting member.
- the upper spring adjusting member may be a nut.
- the lower limit structure can be the base 371 of the material box directly, or a lower spring adjusting member, such as a nut.
- the guide rod 381 passes through the peripheral edge of the material box 372 and is fixed on the material box base 371.
- the upper spring 382 is sleeved on a portion of the guide rod 381 above the upper surface of the material box 372.
- the upper spring adjustment member is fixedly adjustable with the guide rod 381 and the upper spring adjustment member is located on the upper spring 382.
- the upper spring 382 is abutted against the upper surface of the material box 372 through the upper spring adjusting member.
- the lower spring 383 is sleeved on a portion of the guide rod 381 below the lower surface of the material box 372.
- the lower spring adjusting member is fixedly adjustable with the guide rod 381.
- the lower spring adjusting member is located below the lower spring 383, and the lower spring 383 is abutted against the lower surface of the material box 372 through the lower spring adjusting member; when the lower limit structure is the material box base 371 directly, the The lower spring 383 abuts between the upper surface of the material box base 371 and the lower surface of the material box 372.
- a convex stop structure (not shown) is also provided on the guide rod 381 and above the upper spring adjusting member.
- the film 39 is placed on the upper surface of the glass plate in the material box 372 by using a film stretching tool and a compression ring 373.
- the film 39 may be a Teflon film, and the film 39 and the glass plate generate an adsorption force to be adsorbed. Together.
- the upward spring force of the lower spring 383 + the weight of the material box 372 + the weight of the expected material the downward spring force of the upper spring 382, so that the film 39
- the printing platform moves upward to overcome the adsorption force.
- the upper spring 382 is compressed to generate downward stress, and the lower spring 383 is stretched to reduce the upward spring force, that is, the above equation The balance will be broken, causing the film 39 and the glass plate to begin to slowly separate, and oxygen enters between the film 39 and the glass plate, so that the first stage of the film is removed from the glass plate.
- the material box 372 will follow the printing platform to move upward for a distance until the upper spring 382 downward elastic force + the material box 372 gravity + the expected material gravity> the lower spring 383 upward elastic force + the printing platform upward force
- the film 39 is completely separated from the glass plate, and the film is released from the printed object in the second stage. After the second stage of film release is completed, the printing platform continues to move up to a preset film height (for example, 6-10 millimeters (mm), such as 8 millimeters) to complete a layer of printing process.
- a preset film height for example, 6-10 millimeters (mm), such as 8 millimeters
- the amount of adsorption force produced by the film release mainly depends on the oxygen permeability of the film, because oxygen can prevent the material from curing.
- oxygen will gradually pass through the film and enter the upper part of the resin box, and adhere to the material contact surface on the film on. Through such segmented stripping, the contact surface of the film and the material is always guaranteed to have oxygen, thereby achieving a low stripping sound and increasing the service life of the film.
- the material box follows the printing mechanism for a certain distance to achieve multi-stage film release, thereby preventing the film from being easily torn. .
- the deformation of the film during the stripping is reduced, the sound during the stripping is reduced, and the service life of the film is improved.
- the separate setting of the material box and the base of the material box does not affect the installation size of the design projection surface when the material box is replaced, which guarantees the versatility of the material box and can reduce the manufacturing cost of replacing the material box.
- the material box When the film is removed, the material box can be moved up and down with the printing platform up and down to achieve 3D printing of different layers.
- the glass plate By fixing the glass plate on the base of the material box, during the printing process, the glass plate can always be kept stationary, that is, the projection surface is not moved. Therefore, the 3D printing accuracy and quality of the 3D printing device can be improved.
- the material box 372 may not be connected to the material box base 371 through the guide movement part 38, but the material box 372 may be connected through the first buckle 57 and the second buckle. 58 and the material box base 371 are detachably fixed together, as shown in FIG. 5, which is a schematic cross-sectional structural diagram of a combination of a material box base and a material box of another 3D printing device according to another embodiment of the present application.
- a light-transmitting glass plate 62 is fixed on the material box base 371.
- the glass plate 62 is fixed on the upper surface of the material box base 371 by fixing glue at the periphery of the glass plate 62.
- the fixing glue may be AB glue.
- the material box 372 is located on the glass plate 62 and is detachably fixed to the material box base 371 through the first buckle 57 and the second buckle 58.
- the film 39 is placed on the upper surface of the glass plate 62 in the material box 372 by using a stretch film tooling and a compression ring 59.
- the film 39 may be a Teflon film, which is generated between the film 39 and the glass plate 62. Together.
- the separate setting of the material box and the base of the material box will not affect the installation size of the design projection surface when the material box is replaced, and the versatility of the material box is guaranteed, which can reduce the manufacturing cost of replacing the material box.
- the separate setting of the material box and the base of the material box does not affect the installation size of the design projection surface when the material box is replaced, which guarantees the versatility of the material box and can reduce the manufacturing cost of replacing the material box.
- the material box can be moved up and down with the printing platform up and down to achieve 3D printing of different layers.
- the glass plate By fixing the glass plate on the base of the material box, during the printing process, the glass plate can always be kept stationary, that is, the projection surface is not moved. Therefore, the 3D printing accuracy and quality of the 3D printing device can be improved.
- there is no projection surface on the upper part of the material box and the flatness requirement is extremely low.
- FIG. 6 is a schematic structural diagram of another 3D printing device according to another embodiment of the present application.
- the 3D printing device includes a printing mechanism 2, a liquid holding mechanism 3, and an exposure mechanism 4 installed on a base 1.
- the printing mechanism 2 is located above the liquid holding mechanism 3, and the exposure mechanism 4 is located below the liquid holding mechanism 3.
- the printing mechanism 2 includes a module 23 and a printing platform slidably mounted on the module 23.
- the module 23 is vertically mounted on the base 1 and has a sliding groove sliding up and down.
- the printing platform includes a printing arm 21 and a platform assembly 22 detachably mounted on the printing arm 21.
- the platform assembly 22 and the printing arm 21 are fixed by attracting magnetic components.
- the other end of the printing arm 21 is mounted on the module 23. In the sliding slot, the printing platform can slide up and down along the sliding slot through the printing arm 21.
- the liquid holding mechanism 3 includes a material box base 31 and a material box 32 detachably mounted on the material box base 31.
- the material box base 31 is horizontally installed on the base 1.
- the upper side of the material box 32 faces the space.
- the printing mechanism 2 faces the platform assembly 22 in a spaced manner.
- the material box 32 is a bottomless basin, and the shape can be a circular basin, a square basin, or a rectangular basin, which is not limited in this application.
- the liquid holding mechanism 3 further includes a light-transmitting glass plate 34.
- the material box base 31 is a rigid ring plate with a mounting groove, for example, a glass ring plate, a plastic ring plate, and a metal ring.
- the metal ring plate may be an aluminum ring plate and an aluminum alloy ring plate.
- the mounting groove in the middle of the material box base 31 faces the bottom of the material box 32.
- the size and shape of the mounting groove are determined by the size and shape of the bottom of the material box 32.
- the area of the mounting groove is greater than or equal to The area of the bottom of the material box 32 so that the light emitted by the exposure mechanism 4 can enter the material box 32 through the mounting groove.
- the glass plate 34 is fixedly mounted on the material box base 31 and covers a mounting groove of the material box base 31.
- the material box 32 is above the glass plate 34.
- the material box base 31 and the material box 32 are detachably fixed to each other by a plurality of guide movement parts 5 at their periphery, for example, three or four or more guide movements
- the component 5, for example, the material box 32 is fixed to the material box base 31 at four corners of its periphery through four guide moving parts 5.
- the material box 32 may also have any other shape.
- the overall shape of the material box 32 may be a cylinder.
- the plurality of guide movement parts 5 are fixed to the material box base 31 after being fixed to the peripheral edge of the material box 32.
- the plurality of guide movement parts 5 may pass through the peripheral edge of the material box 32 after being fixed. It is detachably fixed on the base 31 of the material box.
- Each guide moving member 5 is a following member with an upper limit structure and a lower limit structure. The following member is fixed to the peripheral edge of the material box 32.
- the printing mechanism 2 is used for upward movement when the film is removed, and the printed object is pulled by the adsorption force between the film and the printed object to drive the material box 32 to move together; the plurality of guide movement parts 5 are used to make the material box 32 After the printing mechanism 2 follows a certain distance between the upper limit structure and the lower limit structure, the film 39 is removed.
- a heating ring is further provided at the bottom edge of the material box 32, and the printing solution can be heated by the heating ring, so that the printing solution will not freeze even at low temperatures.
- the heating ring is generally close to the bottom of the material box 32, and a heating wire, a thermistor, or the like can be used.
- the exposure mechanism 4 is located below the base 31 of the material box and is mounted on the base 1.
- the graphic light source emitted from the exposure port 411 of the exposure mechanism 4 is directly or reflected to the bottom of the material box 32.
- the exposure mechanism 4 includes a projector 41 and a reflecting mirror 42.
- the graphic light source emitted from the exposure port 411 of the projector 41 is reflected by the reflecting mirror 42, passes through the mounting groove of the material box base 31, and then passes through the The glass plate 34 and the material box 32 are projected toward the bottom surface (ie, the molding surface) of the platform assembly 22.
- the base 1 is provided with a control screen (not shown).
- the control screen is connected to the control module (not shown) of the 3D printing device.
- a touch screen can be specifically used to implement human-computer interaction through the touch screen to make the printing process more Convenient and smart.
- the printing arm 21 includes a printing arm body 211, and the connecting end 2111 of the printing arm body 211 is movably mounted on the module 23 of the 3D printing device.
- the printing arm body 211 The free end 2112 is provided with a magnetic component 212.
- the magnetic component 212 includes a first magnet 2121 and a second magnet 2122 disposed above and below.
- the control switch 2123 is connected to the first magnet 2121 through the rotation shaft 2124.
- the first magnet 2121 follows the control switch 2123. Turn and turn.
- the first magnet 2121 is a strong magnet
- the second magnet 2122 is a weak magnet
- the first magnet 2121 and the second magnet 2122 are arranged up and down in the magnet slot 213, wherein the second magnet 2122 located below is fixedly installed in the magnet slot 213, that is, the second magnet 2122 does not rotate with the rotation of the control switch 2123 .
- the first magnet 2121 is movably installed in the magnet groove 213.
- the first magnet 2121 and the second magnet 2122 can be spaced at a certain distance, that is, the depth of the magnet groove 213 is greater than that of the first magnet 2121 and The sum of the thickness of the second magnet 2122.
- a cover plate 214 is fixedly installed on the magnet groove 213 side near the control switch 2123.
- the cover plate 214 is used to cover the first magnet 2121 on the one hand to prevent the magnet groove 213 from popping out when the same sex repels, and on the other hand is used to control the first magnet 2121.
- Rotation angle The specific way of setting the cover plate 214 to control the rotation angle of the first magnet 2121 is: the cover plate 214 is provided with a counterbore 2141 near the first magnet 2121 side, and a through hole for the rotation shaft 2124 to pass through the counterbore 2141. 2142.
- the counterbore 2141 is composed of a large-diameter arc segment 2141a and a small-diameter arc segment 2141b.
- a limit rod 2125 is provided at the bottom of the rotating shaft 2124, and a connecting post facing the first magnet 2121 is provided at each end of the limit rod 2125. 2125a and 2125b.
- the connecting posts 2125a and 2125b are respectively placed in the two connecting holes 2121a and 2121b of the first magnet 2121.
- the main part of the limit rod 2125 is installed in the groove 2124a penetrating the bottom of the entire rotating shaft 2124, and rotates. The shaft 2124 and the limit lever 2125 drive the first magnet 2121 to rotate accordingly.
- the distance of the limit rod 2125 away from the connecting post 2125a of the rotation axis 2124 to the rotation axis 2124 is smaller than the radius of the large-diameter arc segment 2141a, but larger than the radius of the small-diameter arc segment 2141b.
- Such a setting can limit the rotation angle of the limit lever 2125
- the first magnet 2121 is controlled to rotate within a set angle in the magnet groove 213 to prevent its excessive rotation.
- the two connecting holes 2121a and 2121b of the first magnet 2121 are eccentrically disposed, that is, the limit rod 2125 is not disposed in the center region of the first magnet 2121.
- the working principle of the magnetic component 212 described above When the control switch 2123 is turned to the on state, the same ends of the first magnet 2121 and the second magnet 2122 provided at the top and bottom have the same polarity. At this time, according to the principle of repulsion of the same sex, the first magnet 2121 and The second magnet 2122 repels each other up and down, and only the second magnet 2122 generates magnetism in the entire magnetic member 212, that is, the magnetic member 212 is in a weak magnetic state at this time. When the control switch 2123 is turned to the closed state, the same ends of the first and second magnets 2121 and 2122 are set to different polarities.
- the first and second magnets 2121 and 2122 attract each other up and down.
- the magnetism of the entire magnetic member 212 is generated by the first magnet 2121 and the second magnet 2122 together.
- the magnetic member 212 is in a strong magnetic state.
- FIG. 12 is a schematic view of the three-dimensional structure of the platform assembly of the 3D printing device of FIG. 6.
- the platform assembly 22 includes a housing 221 provided with a housing for the free end 2112 of the printing arm body to extend into.
- the cavity 222 is provided with a magnetic metal piece 223 corresponding to the bottom of the second magnet 2122 at the bottom of the accommodating cavity 222.
- the magnetic metal piece 223 may be an iron piece or other metal pieces that can be attracted.
- the printing arm body 211 is provided with at least three positioning holes 215, and an elastic positioning post corresponding to the positioning holes 215 is provided in the receiving cavity 222.
- the positioning post includes point beads and an elastic member, and the positioning beads are elastically embedded in the positioning holes 215 through the elastic members.
- a U-shaped groove 225 is also provided above the accommodating cavity 222 for the rotating shaft 2124 to move into.
- An integrated structure printing table 224 is provided at the lower end of the platform component housing 221. The integrated structure of the printing table 224 makes printing more convenient and does not cause liquid leakage.
- the printing arm 21 and the platform assembly 22 of the 3D printing platform of the present application are attracted and fixed by a magnetic member 212 to facilitate installation and removal.
- the free end 2112 of the print arm body 211 is extended into the receiving cavity 222 of the platform assembly 22, and the two are accurately aligned through the positioning hole 215 and the positioning post.
- the control switch 2123 is turned, and the same end of the first magnet 2121 and the second magnet 2122 are different polarities through the rotation shaft 2124.
- the two attract each other to generate a strong suction force, thereby attracting the magnetic metal located at the bottom of the receiving cavity 222.
- the component 223 further stably mounts the platform assembly 22 on the print arm 21.
- the suction force of the first magnet 2121 and the second magnet 2122 is reduced by turning the control switch 2123, so that the platform assembly 22 is quickly removed from the printing arm 21.
- the magnetic component can also use an electromagnet instead of a common magnet.
- the print arm 21 includes a print arm body 211, and a connecting end 2111 of the print arm body 211 is movably mounted on the module 23 of the 3D printing device.
- a free end 2112 of the print arm body is provided with a magnetic component 212.
- the magnetic component 212 includes an electromagnet and a control switch for controlling the magnetism of the electromagnet.
- the electromagnet is connected to a power source.
- the control switch controls the on and off of the power source of the electromagnet. Power on the magnet), the electromagnet is in a strong magnetic state.
- the magnetic attraction between the platform assembly 22 and the print arm 21 is achieved by an electromagnet.
- the detachable installation manner of the material box base 31 and the material box 32 may be as follows.
- FIG. 13 it is a schematic enlarged structural view of a partial cross section of the material box base combined with the base and the material box in FIG. 6.
- the material box base 31 is a rigid annular plate with a mounting groove. It is detachably installed on the base 1.
- the base 1 has a plurality of upwardly-supporting support columns 11, for example, three or four support columns 11 are respectively located on the periphery of the base 1.
- four support columns 11 As an example, four support posts 11 are located at four corners of the base 1.
- the material box base 31 is detachably fixed to the support column 11 through an adjustment rod 12.
- the adjustment rod 12 may be a screw or a bolt.
- the top surface of the support column 11 and the bottom end of the material box base 31 are respectively provided.
- the adjustment hole cooperated with the adjustment rod 12, wherein the adjustment hole of the material box base 31 may be a through hole, and the inside surface of the adjustment hole on the top surface of the support post 11 is threaded, that is, the adjustment hole on the top surface of the support post 11 is After the adjusting rod 12 passes through the through hole, the adjusting rod 12 is fixed to the adjusting hole of the support post 11.
- one end of the adjustment rod 12 is installed in the adjustment hole of the material box base 31, and the other end of the adjustment rod 12 is installed in the adjustment hole at the top of the support post 11.
- the material box base 31 is driven Adjust some distance down.
- one or more or all of the adjustment levers 12 around the material box base 31 can also be adjusted to keep the material box base 31 in a horizontal position.
- the upper surface of the material box base 31 can be set horizontally. Air bubbles (not shown).
- an adjustment spring 13 is sleeved on the outside of the adjustment rod 12, and two ends of the adjustment spring 13 respectively abut against the upper surface of the support post 11 and the lower surface of the material box base 31 by adjusting
- the vertical movement of one or more or all of the adjusting rods 12 adjusts the parallelism between the bottom surface of the entire material box 32 and the bottom surface (ie, the molding surface) of the printing table 224, thereby ensuring that the thickness of the printing layer is completely consistent.
- the mounting groove of the material box base 31 is covered by a light-transmitting glass plate 34, and the glass plate 34 is fixed on the upper surface of the material box base 31.
- the periphery of the glass plate 34 is fixed by
- the glass plate 34 is fixed on the upper surface of the material box base 31 by glue, for example, the fixing glue may be AB glue.
- the size and shape of the glass plate 34 can be determined according to the size and shape of the material box 32.
- FIGS. 6, 13 and 14 The combination of the material box base 31 and the material box 32 can be shown in FIGS. 6, 13 and 14, wherein FIG. 14 is an enlarged view of the area B in FIG. 6.
- the following part includes the guide rod 50, the upper spring 51, and the lower part.
- the guide rod 50 passes through the peripheral edge of the material box 32 and is fixed on the material box base 31.
- the edge of the material box 32 has an outward (eg, horizontally outward) fixing plate 33, wherein the fixing plate 33 may be an edge of the material box 32 extending outward, that is, the fixing plate 33 is the material box A part of 32 may be integrally formed.
- the fixing plate 33 may also be a single fixing plate, and the fixing plate 33 is fixed to the upper edge of the material box 32, for example, by bolts or welding.
- the upper surface of the material box base 31 is provided with a fixing hole, and the fixing plate 33 is provided with a through hole corresponding to the fixing hole.
- the guide rod 50 passes through the through hole of the fixing plate 33 and is then fixed to the material box base 31.
- the fixing hole may be a threaded hole, and the fixed end of the guide rod 50 used for fixing with the material box base 31 has a thread matching the thread of the threaded hole.
- the guide rod 50 can also be fixed to the material box base 31 by a nut 56.
- the nut 56 is located on the upper surface of the material box base 31 and the guide rod 50 is fixed to the material.
- the guide rod 50 is fixed on the material box base 31, or two nuts 56 are respectively located on the upper surface of the material box base 31 and The lower surface fixes the guide rod 50 on the material box base 31, which is not limited in this embodiment.
- the upper spring 51 is sleeved on a portion of the guide rod 50 above the upper surface of the material box 32.
- the upper spring adjustment member 53 is fixedly adjustable with the guide rod 50 and the upper spring adjustment member 53 is located on the upper spring 51.
- the upper spring 51 is abutted against the upper surface of the material box 32 through the upper spring adjusting member 53.
- the upper spring 51 is sleeved on a portion of the guide rod 50 above the fixing plate 33, and the upper spring 51 is provided at the top end of the upper spring 51 with the guide rod 50 adjustable and fixed.
- the upper spring adjusting member 53 abuts the upper spring 51 against the upper surface of the fixing plate 33.
- the upper spring adjusting member 53 may be a nut, and corresponding to the upper spring adjusting member 53, the guide rod 50 is provided with a thread that cooperates with the upper spring adjusting member 53.
- a convex stop structure 55 is further provided on the guide rod 50 and above the upper spring adjusting member 53,
- the stopper structure 55 is located on the top of the guide rod 50.
- the stopper structure 55 is a ring with a diameter larger than the diameter of the guide rod 50.
- the stopper structure 55 can be formed integrally with the guide rod 50. It may be fixed to the guide rod 50 by a thread.
- the lower spring 52 is sleeved on a portion of the guide rod 50 below the lower surface of the material box 32.
- the lower spring adjusting member 54 is fixedly adjustable with the guide rod 50 and the lower spring adjusting member 54 is located on the lower spring 52.
- the lower spring 52 is abutted against the lower surface of the material box 32 through the lower spring adjusting member 54.
- the lower spring 52 is sleeved on a portion of the guide rod 50 below the fixing plate 33, that is, the lower spring 52 is located between the material box base 31 and the fixing plate 33, and is provided at the lower end of the lower spring 52.
- the lower spring adjusting member 54 is adjustable and fixed with the guide rod 50.
- the lower spring 52 abuts the lower surface of the fixing plate 33 through the lower spring adjusting member 54.
- the lower spring adjusting member 54 may be a nut, and corresponding to the lower spring adjusting member 54, the guide rod 50 is provided with a thread that cooperates with the lower spring adjusting member 54.
- the upper and lower positions of the material box 32 can be adjusted and the material box 32 can be placed in a horizontal position.
- the sum of the gravity of the lower spring 52 is equal to the upward elastic force of the lower spring 52.
- the film is placed on the glass plate 34 in a close and balanced state.
- a film 39 is placed on the upper surface of the glass plate 34 in the material box 32 by using a stretch film tool and a compression ring.
- the film 39 may be a Teflon film, and the film 39 and the glass plate 34 Adhesive force is generated between them.
- the upward spring force of the lower spring 52 + the weight of the material box 32 + the weight of the expected material the downward spring force of the upper spring 51, so that the film 39 is placed on The upper surface of the glass plate 34 is in a close state.
- the printing platform moves upward to overcome the adsorption force between the film 39 and the printing object, pulling the printing object drives the material box 32 to move upward for a distance, the upper spring 51 is compressed to generate downward stress, and the lower spring 52 is stretched to reduce its upward elasticity, that is, the balance of the above equation will be broken, causing the thin film 39 and the glass plate 34 to begin to slowly separate, and oxygen enters between the thin film 39 and the glass plate 34 to achieve the first One stage of release between the film and the glass plate 34.
- the material box 32 will follow the printing platform to move upward for a distance until the upper spring 51's downward elastic force + the material box 32's gravity + the expected material's gravity> the lower spring 52's upward elastic force + the printing platform's upward force
- the film 39 and the glass plate 34 are completely separated, and the film release between the film and the printed object in the second stage is achieved.
- the printing platform continues to move up to a preset film height (for example, 6-10 millimeters (mm), such as 8 millimeters) to complete a layer of printing process.
- a preset film height for example, 6-10 millimeters (mm), such as 8 millimeters
- the presence of the upper spring 51 and the lower spring 52 enables the material box 32 to follow the printing mechanism 2 a certain distance to achieve film stripping. It can avoid the risk of the film being damaged if the film is removed too quickly.
- the guide moving member 5 described in the above embodiment is repeatedly detached by the upper and lower springs.
- the guide moving member 5 may also be a pneumatic component, a hydraulic component, or an upper and lower limit structure. Motorized parts for multiple releases.
- the 3D printing device includes a base 1, a printing mechanism 2, a liquid holding mechanism 3, and an exposure mechanism 4, wherein the printing mechanism 2 is located in the holding Above the liquid mechanism 3, the exposure mechanism 4 is located below the liquid holding mechanism 3.
- the liquid holding mechanism 3 includes a material box base 31, a material box 32, and a plurality of guide moving parts 5.
- the material box 32 is detachably mounted on the material box base 31 through the plurality of guide moving parts 5.
- the upper space faces the printing mechanism 2.
- the liquid holding mechanism 3 further includes a light-transmitting glass plate 34.
- the material box base 31 is a rigid annular plate with a mounting groove, and is detachably mounted on the base 1.
- the mounting groove of the material box base 31 is covered by the glass.
- the plate 34 is covered, and the glass plate 34 is fixed on the upper surface of the material box base 31.
- the plurality of guide moving parts 5 are fixed to the material box base 31 after being fixed to the peripheral edge of the material box 32, and the material box 32 is placed on the glass plate 34.
- Each of the guide moving parts 5 is a follower with an upper limit structure and a lower limit structure.
- the glass plate 34 is used to place a film on the upper surface of the glass plate 34.
- the stripping method includes:
- step 151 when the film is removed, the printing mechanism 2 moves upward and pulls the printing object by the adsorption force between the film and the printing object to drive the material box 32 to move together;
- step 152 the plurality of guide moving parts 5 enable the material box 32 to follow the printing mechanism 2 for a certain distance between the upper limit structure and the lower limit structure to realize the film release.
- Each guide moving member 5 includes a guide rod 50, an upper spring 51, a lower spring 52, an upper spring adjusting member 53, and a lower spring adjusting member 54.
- the upper spring adjusting member 53 is an upper limit structure
- the lower spring adjusting member 54 Is the lower limit structure.
- the guide rod 50 passes through the peripheral edge of the material box 32 and is fixed on the material box base 31.
- the upper spring 51 is sleeved on a portion of the guide rod 50 above the upper surface of the material box 32.
- the upper spring adjustment member 53 is fixedly adjustable with the guide rod 50 and the upper spring adjustment member 53 is located on the upper spring 51.
- the upper spring 51 is abutted against the upper surface of the material box 32 through the upper spring adjusting member 53.
- the lower spring 52 is sleeved on a portion of the guide rod 50 below the lower surface of the material box 32.
- the lower spring adjusting member 54 is fixedly adjustable with the guide rod 50 and the lower spring adjusting member 54 is located on the lower spring 52. Below, the lower spring 52 is abutted against the lower surface of the material box 32 through the lower spring adjusting member 54.
- the film 39 is placed on the upper surface of the glass plate 34 to be in a close state and has an adsorption force therebetween.
- the printing mechanism 2 moves upward to overcome the adsorption force, and when the printing object is pulled, the film 39 and the glass plate 34 begin to slowly separate, and oxygen enters between the film 39 and the glass plate 34 to realize the first One stage of film release between the film and the glass plate 34.
- the downward spring force of the upper spring 51 + the gravity of the material box 32 + the gravity of the expected material ⁇ The upward spring force of the lower spring 52 + the upward force of the printing mechanism 2.
- the upper spring 51 and the lower spring 52 drive the material box 32 to follow the printing mechanism 2 to move upward for a distance, until the downward spring force of the upper spring 51 + the gravity of the material box 32 + the expected gravity of the material> the lower spring 52 is upward
- the elastic force + the upward force of the printing mechanism 2 the film 39 and the glass plate 34 are completely separated, and the film release between the film and the printed object in the second stage is achieved.
- the amount of adsorption force produced by the film removal mainly depends on the oxygen permeability of the film, because oxygen can prevent the material from curing.
- oxygen will gradually pass through the film and enter the upper part of the resin box, and adhere to the material contact surface on the film on. Through such segmented stripping, the contact surface of the film and the material is always guaranteed to have oxygen, thereby achieving a low stripping sound and increasing the service life of the film.
- the 3D printing device adopts a separate design, such as the separate setting of the material box and the base of the material box.
- a separate design such as the separate setting of the material box and the base of the material box.
- the material box When the material box is replaced, it does not affect the installation size of the design projection surface, and the versatility of the material box is guaranteed. Reduce the manufacturing cost of replacing the material box.
- the material box When the film is removed, the material box can be moved up and down with the printing platform up and down to achieve 3D printing of different layers. By fixing the glass plate on the base of the material box, during the printing process, the glass plate can always be kept stationary, that is, the projection surface is not moved. Therefore, the 3D printing accuracy and quality of the 3D printing device can be improved.
- the material box is connected to the material box base through a guide moving part, and the material moving part follows a certain distance from the printing mechanism to realize the film release, and the segmented film release is reduced, and the deformation of the film during the film release is reduced. This reduces the sound during film removal and increases the service life of the film. In addition, there is no projection surface on the upper part of the material box, and the flatness requirement is extremely low.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
本申请公开一种3D打印装置及其脱膜方法和盛液机构,涉及3D打印领域,盛液机构包括物料盒底座、物料盒和多个导向运动部件,物料盒底座为具有安装槽的刚性环形板,可拆卸安装在3D打印装置的基座上,物料盒底座的安装槽被透光的玻璃板覆盖,且玻璃板固定在料盒底座的上表面;多个导向运动部件与物料盒的周边边缘固定后可拆卸式地固定在物料盒底座上;每个导向运动部件为带有上限位结构和下限位结构的跟随部件,跟随部件与物料盒的周边边缘固定,多个导向运动部件用于使得物料盒在上、下限位结构之间跟随打印机构一定距离以实现所述薄膜的脱膜。本申请的盛液机构,通过固定玻璃板、分离和多段脱膜设计,能提高打印质量,降低成本,使得薄膜不易变形。
Description
技术领域
本申请涉及3D打印技术领域,尤其涉及一种3D打印装置以及其脱膜方法和盛液机构。
背景技术
3D打印即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术,3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。
3D打印既区别于纸张平面对文字的打印,又区别于传统方式通过铣刨等方式对产品的制造,是一种以立体逐层打印方式完成物品制造的系列技术与方法。具体的实现方式为:以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。
与传统方式的制造方法相比,3D打印有许多优点,如简化工艺流程、可以制造空间形状较为复杂的物品、节省原材料等。因此,近年来3D打印技术飞速发展,并在诸多领域得到了应用,该技术在珠宝、鞋类、工业设计、建筑、工程和施工、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用,3D打印制造出的物品已经深入到了人们生活的各个领域。
使用光敏树脂作为打印材料的3D打印机需采用树脂盒盛装打光敏树脂,例如,公开号为CN205685751U的中国专利公开一种3D打印机,如图1和2所示,该3D打印机包括机架10和设置于机架10上的树脂盒20,该树脂盒20下方设有光学系统和光源,光源发出的光通过光学系统射到树脂盒20的底部,树脂盒20的顶端设有打印头。
该树脂盒20包括由铝板制作的底板201和设置于底板201顶端的盒体202,盒体202的下端四角设有四根螺母柱,底板201上设有供螺母柱插接的沉头孔2011,底板201的下端设有从下向上穿过沉头孔2011后插接在螺母柱中的螺钉203,螺钉203螺纹连接于螺母柱中,将树脂盒20固定在机架10上。
通常,在树脂盒20放置透明的投影玻璃,打印的薄膜置于该盒体202中。
但是,现有技术中,投影玻璃有可能固定不紧密,易发生位置的移动,引起距离/焦距的变化等问题,导致的打印精度低。
在打印过程中,由于真空吸附力的问题,出现脱膜声音大,薄膜易变形、薄膜使用寿命短等技术问题。
而且,由于现有的树脂盒是整体式设计,通用性也很差,树脂盒损坏后需及时更换,不仅使用成本提高,而且更换了新的树脂盒后,还需要进行校准,存在费时费力且安装操作要求高等问题。
因此,本领域的技术人员致力于开发一种3D打印装置,能提高3D打印质量,使得薄膜不容易变形,降低成本,并简化安装操作,提高安装校准速度。
发明内容
有鉴于现有技术的上述缺陷,本申请所要解决的技术问题包括如下至少之一:3D打印质量差、薄膜易变形、成本高和安装操作要求高。
为实现上述目的,本申请的一方面提供了一种3D打印装置,包括基座、打印机构、盛液机构和曝光机构,其中,该打印机构位于该盛液机构之上,该曝光机构位于该盛液机构之下;
该盛液机构包括物料盒底座、物料盒和多个导向运动部件,该物料盒通过该多个导向运动部件可拆卸安装在该物料盒底座上,该物料盒的上方隔空对着该打印机构;
该盛液机构还包括透光的玻璃板,该物料盒底座为具有安装槽的刚性环形板,可拆卸安装在该基座上,该物料盒底座的该安装槽被该玻璃板覆盖,且该玻璃板固定在该物料盒底座的上表面;
该多个导向运动部件与该物料盒的周边边缘固定后可拆卸式地固定在该物料盒底座上且该物料盒置于该玻璃板之上;
该玻璃板,用于在其位于该物料盒内的上表面放置薄膜;
该每个导向运动部件均为带有上限位结构和下限位结构的跟随部件;
该打印机构用于在脱膜时向上运动且通过该薄膜与打印物体之间的吸附力拉动该打印物体以带动该物料盒一起运动;
该多个导向运动部件用于使得该物料盒在该上限位结构和该下限位结构之间跟随该打印机构一定距离后实现该薄膜的脱膜。
可选地,该每个导向运动部件包括导向杆、上弹簧、下弹簧、上弹簧调节件和下弹簧调节件,该上弹簧调节件为该上限位结构,该下弹簧调节件为该下限位结构;
该导向杆穿过该物料盒的周边边缘后固定在该物料盒底座上;
该上弹簧套在该导向杆位于该物料盒上表面之上的部分,该上弹簧调节件与该导向杆可调节式地固定且该上弹簧调节件位于该上弹簧之上,该上弹簧通过该上弹簧调节件被抵触于该物料盒的上表面;
该下弹簧套在该导向杆位于该物料盒下表面之下的部分,该下弹簧调节件与该导向杆可调节式地固定且该下弹簧调节件位于该下弹簧之下,该下弹簧通过该下弹簧调节件被抵触于该物料盒的下表面。
可选地,在该导向杆上且位于该上弹簧调节件之上还设有凸起的止挡结构。
可选地,该3D打印装置还包括调节杆和调节弹簧,该基座上表面具有多根支架柱,该物料盒底座通过该调节杆可拆卸式地固定在该支架柱上,该调节杆外侧套有该调节弹簧,该调节弹簧的两端分别抵触于该支架柱的上表面和该物料盒底座的下表面。
可选地,该支架柱顶端表面和该物料盒底座底端分别开设有与该调节杆配合的调节孔,其中,该物料盒底座的调节孔为通孔,该支架柱顶端表面的调节孔的内侧表面具有螺纹,该调节杆穿过该通孔后再与该支架柱的调节孔固定。
可选地,该导向运动部件为气动部件、液压部件或者电动部件。
本申请的另一方面提供一种3D打印装置中的盛液机构,该盛液机构位于该3D打印装置所包括的基座之上和该3D打印装置所包括的打印机构之下;
该盛液机构包括物料盒底座、物料盒和多个导向运动部件,该物料盒通过该多个导向运动部件可拆卸安装在该物料盒底座上,该物料盒的上方隔空对着该打印机构;
该盛液机构还包括透光的玻璃板,该物料盒底座为具有安装槽的刚性环形板,可拆卸安装在该基座上,该物料盒底座的该安装槽被该玻璃板覆盖,且该玻璃板固定在该物料盒底座的上表面;
该多个导向运动部件与该物料盒的周边边缘固定后可拆卸式地固定在该物料盒底座上且该物料盒置于该玻璃板之上;
该玻璃板,用于在其位于该物料盒内的上表面放置薄膜;
该每个导向运动部件均为带有上限位结构和下限位结构的跟随部件;
该打印机构用于在脱膜时向上运动且通过该薄膜与打印物体之间的吸附力拉动该打印物体以带动该物料盒一起运动;
该多个导向运动部件用于使得该物料盒在该上限位结构和该下限位结构之间跟随该打印机构一定距离后实现该薄膜的脱膜。
可选地,该每个导向运动部件包括导向杆、上弹簧、下弹簧、上弹簧调节件和下弹簧调节件,该上弹簧调节件为该上限位结构,该下弹簧调节件为该下限位结构;
该导向杆穿过该物料盒的周边边缘后固定在该物料盒底座上;
该上弹簧套在该导向杆位于该物料盒上表面之上的部分,该上弹簧调节件与该导向杆可调节式地固定且该上弹簧调节件位于该上弹簧之上,该上弹簧通过该上弹簧调节件被抵触于该物料盒的上表面;
该下弹簧套在该导向杆位于该物料盒下表面之下的部分,该下弹簧调节件与该导向杆可调节式地固定且该下弹簧调节件位于该下弹簧之下,该下弹簧通过该下弹簧调节件被抵触于该物料盒的下表面。
可选地,在该导向杆上且位于该上弹簧调节件之上还设有凸起的止挡结构。
可选地,该基座上表面具有多根支架柱,该物料盒底座通过该3D打印装置所包括的调节杆可拆卸式地固定在该支架柱上,该调节杆外侧套有调节弹簧,该调节弹簧的两端分别抵触于该支架柱的上表面和该物料盒底座的下表面。
可选地,该支架柱顶端表面和该物料盒底座底端分别开设有与该调节杆配合的调节孔,其中,该物料盒底座的调节孔为通孔,该支架柱顶端表面的调节孔的内侧表面具有螺纹,该调节杆穿过该通孔后再与该支架柱的调节孔固定。
可选地,该导向运动部件为气动部件、液压部件或者电动部件。
本申请的另一方面提供一种3D打印装置的脱膜方法,该3D打印装置包括基座、打印机构、盛液机构和曝光机构,其中,该打印机构位于该盛液机构之上,该曝光机构位于该盛液机构之下;
该盛液机构包括物料盒底座、物料盒和多个导向运动部件,该物料盒通过该多个导向运动部件可拆卸安装在该物料盒底座上,该物料盒的上方隔空对着该打印机构;
该盛液机构还包括透光的玻璃板,该物料盒底座为具有安装槽的刚性环形板,可拆卸安装在该基座上,该物料盒底座的该安装槽被该玻璃板覆盖,且该玻璃板固定在该物料盒底座的上表面;
该多个导向运动部件与该物料盒的周边边缘固定后可拆卸式地固定在该物料盒底座上且该物料盒置于该玻璃板之上;
该每个导向运动部件均为带有上限位结构和下限位结构的跟随部件;
该玻璃板,用于在其位于该物料盒内的上表面放置薄膜;
该脱膜方法包括:
在脱膜时,该打印机构向上运动且通过该薄膜与打印物体之间的吸附力拉动该打印物体以带动该物料盒一起运动;
该多个导向运动部件使得该物料盒在该上限位结构和该下限位结构之间跟随该打印机构一定距离后实现该薄膜的脱膜。
可选地,该每个导向运动部件包括导向杆、上弹簧、下弹簧、上弹簧调节件和下弹簧调节件,该上弹簧调节件为该上限位结构,该下弹簧调节件为该下限位结构;
该导向杆穿过该物料盒的周边边缘后固定在该物料盒底座上;
该上弹簧套在该导向杆位于该物料盒上表面之上的部分,该上弹簧调节件与该导向杆可调节式地固定且该上弹簧调节件位于该上弹簧之上,该上弹簧通过该上弹簧调节件被抵触于该物料盒的上表面;
该下弹簧套在该导向杆位于该物料盒下表面之下的部分,该下弹簧调节件与该导向杆可调节式地固定且该下弹簧调节件位于该下弹簧之下,该下弹簧通过该下弹簧调节件被抵触于该物料盒的下表面。
可选地,该脱膜方法还包括:
在该物料盒加入预计材料,并在脱膜之前,保持该下弹簧向上的弹力+该物料盒自重+该预计材料的重量=该上弹簧向下的弹力,以使该薄膜放在该玻璃板上表面成贴紧状态且两者之间具有吸附力;
当脱膜时,该打印机构向上运动以克服吸附力,拉动该打印物体时,使该薄膜和该玻璃板开始缓慢分开,该薄膜和该玻璃板之间进入氧气,实现第一阶段的该薄膜和该玻璃板之间的脱膜,此时,该薄膜和该打印物体之间具有吸附力,该上弹簧向下的弹力+该物料盒重力+预计材料的重力<该下弹簧向上的弹力+该打印机构向上的力;
该上弹簧和该下弹簧带动该物料盒跟随该打印机构向上移动一段距离,直到该上弹簧向下的弹力+该物料盒重力+预计材料的重力>该下弹簧向上的弹力+该打印机构向上的力时,该薄膜和该玻璃板完全分开,实现第二阶段的该薄膜和该打印物体之间的脱膜。
上述描述的该3D打印装置及其脱膜方法和盛液机构,采用物料盒和该物料盒底座的分离设置,在该物料盒更换时不会影响设计投影面的安装尺寸,保证的该物料盒的通用性,可以降低更换该物料盒的制造成本。通过将玻璃板固定在该物料盒底座上,可以在打印过程中,始终保证玻璃板不动,可以提高3D打印装置的3D打印精度和质量。通过导向运动部件将该物料盒和该物料盒底座连接,导向运动部件使得该物料盒在该上限位结构和该下限位结构之间跟随该打印机构一定距离,可以实现分段式脱膜,减轻了脱膜过程中薄膜的变形量,减小了脱膜时的声音和提高了薄膜的使用寿命。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
图1为现有技术中一种3D打印机的结构示意图;
图2为现有技术中该图1的3D打印机的树脂盒的结构示意图;
图3为本申请一实施例的一种3D打印装置的结构示意图;
图4为图3的该3D打印装置的盛液机构的横截面示意图;
图5为本申请另一实施例的另一种3D打印装置的物料盒底座与物料盒结合的横截面结构示意图;
图6为本申请另一实施例的另一种3D打印装置的结构示意图;
图7为图6的该3D打印装置的打印臂俯视图;
图8为图7的A-A向剖视图;
图9为图6的该3D打印装置的打印臂立体结构示意图;
图10为图9的打印臂中的磁性部件结构爆炸图;
图11为图9的打印臂中的旋转轴、电磁盖板、限位杆配合安装图;
图12为图6的该3D打印装置的平台组件立体结构示意图;
图13为图6中物料盒底座分别与基座和物料盒结合的局部截面放大结构示意图;
图14为图6中B区域的放大图;
图15为本申请另一实施例的一种3D打印装置脱膜方法的过程示意图。
具体实施方式
以下参考说明书附图介绍本申请的多个优选实施例,使其技术内容更加清楚和便于理解。本申请可以通过许多不同形式的实施例来得以体现,本申请的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本申请并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图3-4所示,为本申请一实施例的一种3D打印装置,该3D打印装置包括安装在基座35上的打印机构36和盛液机构37,其中,该打印机构36位于该盛液机构37之上,该盛液机构37位于基座35上。
该盛液机构37包括物料盒底座371和物料盒372,该物料盒372为无底的盆,形状可以为圆形盆、方形盆或长方形盆,本申请并不限定,该物料盒372可以通过多个导向运动部件38可拆卸安装在该物料盒底座371上,该物料盒372的上方隔空对着该打印机构36。
例如,该基座35上具有多根朝上的支架柱350,该物料盒底座371通过调节杆351可拆卸式地固定在该支架柱350上,该调节杆351外侧套有调节弹簧352,该调节弹簧352的两端分别抵触于该支架柱350的上表面和该物料盒底座371的下表面。其中,该调节杆351可以为螺钉或螺栓。
该支架柱350顶端表面和该物料盒底座371底端分别开设有与该调节杆351配合的调节孔(未图示),其中,该物料盒底座371的调节孔为通孔,该支架柱350顶端表面的调节孔的内侧表面具有螺纹,该调节杆351穿过该通孔后再与该支架柱350的调节孔固定。
该盛液机构37还包括透光的玻璃板,该物料盒底座371为具有安装槽的刚性环形板,该物料盒底座371的该安装槽被该玻璃板覆盖,且该玻璃板固定在该物料盒底座371的上表面,在该玻璃板上为该物料盒372。例如,在该玻璃板的周边通过固定胶将该玻璃板固定在该物料盒底座371的上表面,例如,该固定胶可以为AB胶。该玻璃板的大小和形状可以根据物料盒372的大小和形状而定。
该多个导向运动部件38与该物料盒372的周边边缘固定后可拆卸式地固定在该物料盒底座371上。例如,每个导向运动部件38为带有上限位结构和可选地带有下限位结构的跟随部件,该跟随部件与该物料盒372的周边边缘固定。
该打印机构36用于在脱膜时向上运动且通过该薄膜与打印物体之间的吸附力拉动该打印物体以带动该物料盒372一起运动;该多个导向运动部件38用于使得该物料盒372在该上限位结构和该下限位结构之间跟随该打印机构一定距离以实现该薄膜的脱膜。
例如,该多个导向运动部件38为带上限位结构和可选地带有下限位结构的弹簧部件、气动部件、液压部件或者电动部件。
例如,该多个导向运动部件38包括导向杆381、上弹簧382、下弹簧383和上弹簧调节件,该上限位结构为该上弹簧调节件,例如,该上弹簧调节件可以为螺母,该下限位结构为可以直接是该物料盒底座371,也可以是一个下弹簧调节件,例如,螺母。
该导向杆381穿过该物料盒372的周边边缘后固定在该物料盒底座371上。
该上弹簧382套在该导向杆381位于该物料盒372上表面之上的部分,该上弹簧调节件与该导向杆381可调节式地固定且该上弹簧调节件位于该上弹簧382之上,该上弹簧382通过该上弹簧调节件被抵触于该物料盒372的上表面。
该下弹簧383套在该导向杆381位于该物料盒372下表面之下的部分,当该下限位结构为该下弹簧调节件时,该下弹簧调节件与该导向杆381可调节式地固定且该下弹簧调节件位于该下弹簧383之下,该下弹簧383通过该下弹簧调节件被抵触于该物料盒372的下表面;当该下限位结构直接为该物料盒底座371时,该下弹簧383抵触于该物料盒底座371的上表面和该物料盒372的下表面之间。
在该导向杆381上且位于该上弹簧调节件之上还设有凸起的止挡结构(未图示)。
通过绷薄膜工装和使用压紧圈373在该物料盒372内将薄膜39放置于该玻璃板的上表面,该薄膜39可以为特氟龙膜,该薄膜39和该玻璃板产生吸附力而吸附在一起。
在该物料盒372加入预计材料后以及在脱膜之前,保持该下弹簧383向上的弹力+该物料盒372自重+该预计材料的重量=该上弹簧382向下的弹力,从而使该薄膜39放在该玻璃板上表面成贴紧状态。当脱膜时,打印平台向上运动克服吸附力,拉动打印物体时,该上弹簧382被压缩产生向下的应力,该下弹簧383被拉长使其向上的弹力减少,即上面的等式的平衡将被打破,导致该薄膜39和该玻璃板开始缓慢分开,该薄膜39和该玻璃板之间进入氧气,实现第一阶段的该薄膜和该玻璃板之间的脱膜。此时,该薄膜和该打印物体之间有吸附力,该上弹簧382向下的弹力+该物料盒372自重和预计材料的重力<该下弹簧383向上的弹力+打印平台向上的力,因此,该物料盒372会跟随该打印平台向上移动一段距离,直到该上弹簧382向下的弹力+该物料盒372重力+预计材料的重力>该下弹簧383向上的弹力+打印平台向上的力时,该薄膜39和该玻璃板完全分开,实现第二阶段的该薄膜和该打印物体之间的脱膜。当完成第二阶段脱膜后,打印平台继续向上移动到预设拔薄膜高度(例如,6-10毫米(mm),例如8毫米),完成一层打印过程。
在打印过程中,脱膜所产生的吸附力大小主要取决与薄膜的透氧量,因为氧气可以阻止材料固化。在第一阶段时,薄膜和玻璃板实现脱膜在开始脱膜的同时,氧气会随着薄膜和玻璃板的分开,逐步的透过薄膜进入树脂盒上部,并附着在薄膜上材料的接触面上。通过这样分段式的脱膜,让薄膜和材料的接触面上始终保证有氧气的存在,从而实现脱膜声音小,增加膜的使用寿命。
因此,在上述第一、二阶段的脱膜过程中,由于有该上弹簧与该下弹簧的弹性作用使得物料盒跟随该打印机构一定距离以实现多段式脱膜,从而避免薄膜容易被撕坏。通过分段式脱膜,减轻了脱膜过程中薄膜的变形量,减小了脱膜时的声音和提高了薄膜的使用寿命。进一步,该物料盒和该物料盒底座的分离设置,在该物料盒更换时不会影响设计投影面的安装尺寸,保证的该物料盒的通用性,可以降低更换该物料盒的制造成本。当脱膜时,该物料盒可以随着打印平台的上下而上下移动,实现不同层的3D打印。通过将玻璃板固定在该物料盒底座上,可以在打印过程中,始终保证玻璃板不动,即投影面不动,因此,可以提高3D打印装置的3D打印精度和质量。另外,该物料盒上部没有设置投影面,对平面度要求极低。
在本申请的另一实施例中,该物料盒372可以不通过该导向运动部件38与该物料盒底座371连接在一起,而是该物料盒372通过第一卡扣57和和第二卡扣58与该物料盒底座371可拆卸式的固定在一起,如图5所示,为本申请另一实施例的另一种3D打印装置的物料盒底座与物料盒结合的横截面结构示意图。在该物料盒底座371上固定透光的玻璃板62,例如,在该玻璃板62的周边通过固定胶将该玻璃板62固定在该物料盒底座371的上表面,例如,该固定胶可以为AB胶。然后,该物料盒372位于该玻璃板62之上,且通过第一卡扣57和和第二卡扣58与该物料盒底座371可拆卸式的固定在一起。
通过绷薄膜工装和使用压紧圈59在该物料盒372内将薄膜39放置于该玻璃板62的上表面,该薄膜39可以为特氟龙膜,该薄膜39和该玻璃板62之间产生吸附力而吸附在一起。
因此,该物料盒和该物料盒底座的分离设置,在该物料盒更换时不会影响设计投影面的安装尺寸,保证的该物料盒的通用性,可以降低更换该物料盒的制造成本。
该物料盒和该物料盒底座的分离设置,在该物料盒更换时不会影响设计投影面的安装尺寸,保证的该物料盒的通用性,可以降低更换该物料盒的制造成本。当脱膜时,该物料盒可以随着打印平台的上下而上下移动,实现不同层的3D打印。通过将玻璃板固定在该物料盒底座上,可以在打印过程中,始终保证玻璃板不动,即投影面不动,因此,可以提高3D打印装置的3D打印精度和质量。另外,该物料盒上部没有设置投影面,对平面度要求极低。
如图6所示,图6为本申请另一实施例的另一种3D打印装置的结构示意图,该3D打印装置包括安装在基座1上的打印机构2、盛液机构3和曝光机构4,其中,该打印机构2位于该盛液机构3之上,该曝光机构4位于该盛液机构3之下。
该打印机构2包括模组23以及滑动安装在模组23上打印平台,该模组23竖直安装在该基座1上且具有上下滑动的滑动槽。
该打印平台包括打印臂21以及可拆卸安装在打印臂21上的平台组件22,该平台组件22与打印臂21通过磁性部件吸合固定,该打印臂21的另一端安装在该模组23的该滑动槽,该打印平台通过该打印臂21可以沿该滑动槽上下滑动。
该盛液机构3包括物料盒底座31以及可拆卸安装在该物料盒底座31上的物料盒32,该物料盒底座31水平安装在该基座1上,该物料盒32的上方隔空对着该打印机构2,即隔空对着该平台组件22。该物料盒32为无底的盆,形状可以为圆形盆、方形盆或长方形盆,本申请并不限定。
在本申请的另一实施例中,该盛液机构3还包括透光的玻璃板34,该物料盒底座31为具有安装槽的刚性环形板,例如,玻璃环形板、塑料环形板和金属环形板,例如,该金属环形板可以为铝环形板和铝合金环形板。该物料盒底座31中间的安装槽正对该物料盒32的底部,该安装槽的大小和形状根据该物料盒32的底部的大小和形状而定,可选地,该安装槽的面积大于等于该物料盒32底部的面积,以便曝光机构4发出的光能通过该安装槽进入该物料盒32。
该玻璃板34固定安装在该物料盒底座31之上且覆盖该物料盒底座31的安装槽,该物料盒32在该玻璃板34之上。
在本申请的另一实施例中,该物料盒底座31和物料盒32在它们的周边通过多个导向运动部件5可拆卸式地相互固定,例如,三个或四个或四个以上导向运动部件5,例如,该物料盒32在其周边四个角通过四个导向运动部件5与该物料盒底座31固定。在本申请的另一实施例中,该物料盒32还可以是其它任意形状,例如,该物料盒32的整体形状可以为圆柱体。
该多个导向运动部件5与该物料盒32的周边边缘固定后可拆卸式地固定在该物料盒底座31上,例如,该多个导向运动部件5穿过该物料盒32的周边边缘后可拆卸式地固定在该物料盒底座31上,每个导向运动部件5为带有上限位结构和下限位结构的跟随部件,该跟随部件与该物料盒32的周边边缘固定。
该打印机构2用于在脱膜时向上运动且通过该薄膜与打印物体之间的吸附力拉动该打印物体以带动该物料盒32一起运动;该多个导向运动部件5用于使得物料盒32在该上限位结构和该下限位结构之间跟随该打印机构2一定距离后实现薄膜39的脱膜。
在本申请的另一实施例中,该物料盒32底部边沿还设有一圈加热圈,通过加热圈可以加热打印溶液,这样哪怕在低温下,打印溶液也不会冻住。加热圈一般紧贴在该物料盒32底部周围,可以采用加热丝、热敏电阻等等。
如图6所示,该曝光机构4位于物料盒底座31下方且安装在该基座1上,该曝光机构4的曝光口411射出的图形光源直射或反射到该物料盒32底。例如,该曝光机构4包括投影仪41和反射镜42,该投影仪41的曝光口411射出的图形光源经过该反射镜42反射后、穿过该物料盒底座31的安装槽、然后透过该玻璃板34和该物料盒32射向该平台组件22底面(即成型面)。
该基座1上设有控制屏(未图示),该控制屏与该3D打印装置的控制模块(未图示)相连,具体可以采用触摸屏,通过触摸屏可以实现人机交互,使打印过程更方便智能。
在本实施例中,如图7-11所示,该打印臂21包括打印臂本体211,该打印臂本体211的连接端2111活动安装在3D打印装置的模组23上,该打印臂本体211的自由端2112设有磁性部件212,该磁性部件212包括上下设置的第一磁铁2121和第二磁铁2122,控制开关2123通过旋转轴2124与第一磁铁2121相连,第一磁铁2121随控制开关2123转动而转动。
在本实施例中,该第一磁铁2121为强磁铁,第二磁铁2122为弱磁铁。第一磁铁2121和第二磁铁2122上下设置在磁铁槽213内,其中,位于下方的第二磁铁2122固定安装在磁铁槽213内,即第二磁铁2122不会随着控制开关2123的转动而转动。该第一磁铁2121活动安装在磁铁槽213内,为方便第一磁铁2121的转动,第一磁铁2121和第二磁铁2122可留取一定的间距,即磁铁槽213的深度大于第一磁铁2121和第二磁铁2122的厚度之和。磁铁槽213靠近控制开关2123侧固定安装有盖板214,盖板214一方面用于盖住第一磁铁2121,防止其同性相斥时弹出磁铁槽213,另一方面用于控制第一磁铁2121的转动角度。其中,盖板214控制第一磁铁2121的转动角度的具体设置方式为:该盖板214靠近第一磁铁2121侧设有沉孔2141,沉孔2141中间设有供旋转轴2124穿过的通孔2142。该沉孔2141由大直径弧段2141a和小直径弧段2141b组成;该旋转轴2124底部设有限位杆2125,限位杆2125的两端分别各设有1个面向第一磁铁2121的连接柱2125a和2125b,该连接柱2125a和2125b分别放置在第一磁铁2121的2个连接孔2121a和2121b内,该限位杆2125的主体部分安装在贯通整个旋转轴2124底部的凹槽2124a,转动旋转轴2124,限位杆2125随之带动第一磁铁2121转动。限位杆2125远离旋转轴2124的连接柱2125a到旋转轴2124的距离小于大直径弧段2141a的半径,但大于小直径弧段2141b的半径,这样的设置,可以限定限位杆2125的旋转角度,进而控制第一磁铁2121在磁铁槽213内的设定角度内旋转,防止其旋转过度。为方便第一磁铁2121转动,该第一磁铁2121的2个连接孔2121a和2121b为偏心设置,即限位杆2125非设置在第一磁铁2121的中心区域。
上述磁性部件212工作原理:当控制开关2123转动到打开状态时,上下设置的第一磁铁2121和第二磁铁2122同一端为相同的极性,此时根据同性相斥原理,第一磁铁2121和第二磁铁2122上下相互排斥,整个磁性部件212仅第二磁铁2122会产生磁性,即此时磁性部件212为弱磁状态。当控制开关2123转动到闭合状态时,上下设置的第一磁铁2121和第二磁铁2122同一端为不同的极性,此时根据异性相吸原理,第一磁铁2121和第二磁铁2122上下相互吸引,整个磁性部件212的磁性由第一磁铁2121和第二磁铁2122共同产生,此时磁性部件212为强磁状态。
如图12所示,图12为图6的该3D打印装置的平台组件立体结构示意图,该平台组件22包括壳体221,该壳体221上设有供打印臂本体自由端2112伸入的容纳腔222,该容纳腔222的底部设有与第二磁铁2122底部相对应的磁性金属件223,该磁性金属件223可以是铁片,也可以是其他具有可被吸合的金属件。
为保证打印臂21与平台组件22的精确安装,打印臂本体211设有至少3个定位孔215,该容纳腔222内设有与该定位孔215一一对应的弹性定位柱。该定位柱包括点位珠和弹性件,通过弹性件使定位珠弹性安嵌在定位孔215内。
该容纳腔222上方还设有供旋转轴2124移入的U型槽225。该平台组件壳体221下端设有一体结构打印台224。一体结构的打印台224使打印更方便,不会出现渗液现象。
本申请该的3D打印平台的打印臂21与平台组件22之间通过磁性部件212吸合固定,方便安装拆卸。工作时,将打印臂本体211的自由端2112伸入平台组件22的容纳腔222内,通过定位孔215和定位柱,使两者精确对位。接着,转动控制开关2123,通过旋转轴2124使该第一磁铁2121和第二磁铁2122同一端为不同的极性,两者相互吸引产生强劲的吸力,从而吸住位于容纳腔222底部的磁性金属件223,进而将平台组件22稳定地安装在打印臂21上。当需要将平台组件22从打印臂21上拆除时,通过转动控制开关2123,使第一磁铁2121和第二磁铁2122吸力降低,从而将平台组件22快速从打印臂21上拆除。
该的磁性部件除上述实施例该的结构外,还可以采用电磁铁替代普通的磁铁。例如,该打印臂21包括打印臂本体211,该打印臂本体211的连接端2111活动安装在3D打印装置的模组23上,该打印臂本体的自由端2112设有磁性部件212,该磁性部件212包括电磁铁以及控制电磁铁磁性的控制开关;该电磁铁与电源相连,控制开关控制电磁铁电源的通断,打开时(即切断电磁铁电源),电磁铁无磁性,关闭时(即接通电磁铁电源),电磁铁为强磁状态。通过电磁铁来实现平台组件22与打印臂21之间的磁性吸合。
本实施例中,该物料盒底座31和该物料盒32的可拆卸安装方式可以如下该。
如图13所示,为图6中物料盒底座分别与基座和物料盒结合的局部截面放大结构示意图,结合图6和图13,该物料盒底座31为具有安装槽的刚性环形板,可拆卸安装在该基座1上,例如,该基座1上具有多根朝上的支架柱11,例如,三根或四根支架柱11,分别位于该基座1的周边,可选地,本实施例中,以四根支架柱11
为例进行说明,则四个支架柱11位于该基座1的四个角。
该物料盒底座31通过调节杆12可拆卸式地固定在该支架柱11上,例如,该调节杆12可以为螺钉或螺栓,该支架柱11顶端表面和该物料盒底座31底端分别开设有与该调节杆12配合的调节孔,其中,该物料盒底座31的调节孔可以为通孔,该支架柱11顶端表面的调节孔内侧表面具有螺纹,即该支架柱11顶端表面的调节孔为螺纹孔,该调节杆12穿过该通孔后再与该支架柱11的调节孔固定。例如,该调节杆12一端安装在该物料盒底座31的调节孔,该调节杆12的另一端安装在该支架柱11顶端的调节孔,通过旋转该调节杆12可以带动该物料盒底座31向下调整一段距离。本实施例中,还可以通过调整该物料盒底座31周边的一个或多个或所有的调节杆12,使得该物料盒底座31保持水平位置,例如,可以在该物料盒底座31上表面设置水平气泡(未图示)。
在本申请的另一实施例中,该调节杆12外侧套有调节弹簧13,该调节弹簧13的两端分别抵触于该支架柱11的上表面和该物料盒底座31的下表面,通过调节一个或多个或所有的调节杆12的上下运动来调节整个物料盒32底面与打印台224底面(即成型面)的平行度,从而保证打印层的厚度完全一致。
如图13所示,该物料盒底座31的安装槽被透光的玻璃板34覆盖,且该玻璃板34固定在该物料盒底座31的上表面,例如,在该玻璃板34的周边通过固定胶将该玻璃板34固定在该物料盒底座31的上表面,例如,该固定胶可以为AB胶。该玻璃板34的大小和形状可以根据物料盒32的大小和形状而定。
该物料盒底座31与该物料盒32的结合可以如图6、13和14所示,其中,图14为图6中B区域的放大图,该跟随部件包括导向杆50、上弹簧51、下弹簧52、上弹簧调节件53和下弹簧调节件54,该上限位结构为该上弹簧调节件53,该下限位结构为该下弹簧调节件54。
该导向杆50穿过该物料盒32的周边边缘后固定在该物料盒底座31上。例如,该物料盒32的边缘具有向外(例如,水平向外)的固定板33,其中,该固定板33可以为该物料盒32向外延伸的边缘,即该固定板33为该物料盒32的一部分,可以是一体成型的。在本申请的另一实施例中,该固定板33也可以是单独一块固定板,该固定板33固定于该物料盒32的上边缘,例如通过螺栓或焊接固定。该物料盒底座31上表面开设有固定孔,该固定板33且对应于该固定孔的位置开设有通孔,该导向杆50穿过该固定板33的通孔然后固定在该物料盒底座31上表面的固定孔中,例如,该固定孔可以为螺纹孔,则该导向杆50用于与该物料盒底座31固定的固定端具有与该螺纹孔的螺纹相配合的螺纹。
为进一步固定该导向杆50,还可以通过螺母56将该导向杆50固定在该物料盒底座31上,例如,该螺母56位于该物料盒底座31的上表面将该导向杆50固定在该物料盒底座31上,或者,该螺母56位于该物料盒底座31的下表面将该导向杆50固定在该物料盒底座31上,或者,两个螺母56分别位于该物料盒底座31的上表面和下表面将该导向杆50固定在该物料盒底座31上,本实施例并不限定。
该上弹簧51套在该导向杆50位于该物料盒32上表面之上的部分,该上弹簧调节件53与该导向杆50可调节式地固定且该上弹簧调节件53位于该上弹簧51之上,该上弹簧51通过该上弹簧调节件53被抵触于该物料盒32的上表面。例如,该上弹簧51套在该导向杆50位于该固定板33之上的部分,并在该上弹簧51的顶端设有与该导向杆50可调节固定的该上弹簧调节件53,通过该上弹簧调节件53将该上弹簧51抵触于该固定板33的上表面。该上弹簧调节件53可以为螺母,则对应于该上弹簧调节件53,该导向杆50设有与该上弹簧调节件53相配合的螺纹。
为限定该上弹簧调节件53的上下调整范围以及防止该上弹簧调节件53松脱,在该导向杆50上且位于该上弹簧调节件53之上还设有凸起的止挡结构55,例如,该止挡结构55位于该导向杆50的顶部,例如,该止挡结构55为直径比该导向杆50直径大的圆环,该止挡结构55既可以与该导向杆50一体成型,也可以通过螺纹与该导向杆50固定。
该下弹簧52套在该导向杆50位于该物料盒32下表面之下的部分,该下弹簧调节件54与该导向杆50可调节式地固定且该下弹簧调节件54位于该下弹簧52之下,该下弹簧52通过该下弹簧调节件54被抵触于该物料盒32的下表面。例如,该下弹簧52套在该导向杆50位于该固定板33之下的部分,即该下弹簧52位于该物料盒底座31与该固定板33之间,并在该下弹簧52的下端设有与该导向杆50可调节固定的该下弹簧调节件54,通过该下弹簧调节件54将该下弹簧52抵触于该固定板33的下表面。该下弹簧调节件54可以为螺母,则对应于该下弹簧调节件54,该导向杆50设有与该下弹簧调节件54相配合的螺纹。
通过调整该上弹簧调节件53和/或该下弹簧调节件54的上下位置,可以调整该物料盒32的上下位置以及将该物料盒32置于水平位置。
在本申请的另一实施例中,通过计算使得该上弹簧51向下的弹力、该物料盒32重力和预计材料的重力之和等于该下弹簧52向上的弹力,从而使树脂盒3中的薄膜放在该玻璃板34上面成贴紧平衡状态,该上弹簧51和该下弹簧52弹力的具体计算,可以根据弹簧的弹性系数计算得出,例如,根据公式F=-kx计算,其中,F为弹簧的弹力,k为弹性系数,x是形变量。
打印时,通过绷薄膜工装和使用压紧圈在该物料盒32内将薄膜39放置于该玻璃板34的上表面,该薄膜39可以为特氟龙膜,该薄膜39和该玻璃板34之间产生吸附力而吸附在一起。
在该物料盒32加入预计材料后以及脱膜之前,该下弹簧52向上的弹力+该物料盒32自重+该预计材料的重量=该上弹簧51向下的弹力,从而使该薄膜39放在该玻璃板34上表面成贴紧状态。当脱膜时,打印平台向上运动克服该薄膜39和打印物体之间的吸附力,拉动打印物体带动该物料盒32向上运动一段距离,该上弹簧51被压缩产生向下的应力,该下弹簧52被拉长使其向上的弹力减少,即上面的等式的平衡将被打破,导致该薄膜39和该玻璃板34开始缓慢分开,该薄膜39和该玻璃板34之间进入氧气,实现第一阶段的该薄膜和该玻璃板34之间的脱膜。此时,该薄膜和该打印物体之间有吸附力,该上弹簧51向下的弹力+该物料盒32重力+预计材料的重力<该下弹簧52向上的弹力+打印平台向上的力,因此,该物料盒32会跟随该打印平台向上移动一段距离,直到该上弹簧51向下的弹力+该物料盒32重力+预计材料的重力>该下弹簧52向上的弹力+打印平台向上的力时,该薄膜39和该玻璃板34完全分开,实现第二阶段的该薄膜和该打印物体之间的脱膜。当完成第二阶段脱膜后,打印平台继续向上移动到预设拔薄膜高度(例如,6-10毫米(mm),例如8毫米),完成一层打印过程。
而且,在上述描述的第一阶段和第二阶段脱膜的过程中,由于有该上弹簧51和该下弹簧52的使得物料盒32可以跟随该打印机构2一定距离以实现薄膜的脱膜,可以避免脱膜过快导致薄膜被损坏的风险。
上述实施例描述的导向运动部件5通过上下弹簧实现多次脱膜,在本申请的另一实施例中,该导向运动部件5还可以为带有上、下限位结构的气动部件、液压部件或者电动部件,实现多次脱膜。
本申请的另一实施例还提供一种3D打印装置的脱膜方法,该3D打印装置包括基座1、打印机构2、盛液机构3和曝光机构4,其中,该打印机构2位于该盛液机构3之上,该曝光机构4位于该盛液机构3之下。
该盛液机构3包括物料盒底座31、物料盒32和多个导向运动部件5,该物料盒32通过该多个导向运动部件5可拆卸安装在该物料盒底座31上,该物料盒32的上方隔空对着该打印机构2。
该盛液机构3还包括透光的玻璃板34,该物料盒底座31为具有安装槽的刚性环形板,可拆卸安装在该基座1上,该物料盒底座31的该安装槽被该玻璃板34覆盖,且该玻璃板34固定在该物料盒底座31的上表面。
该多个导向运动部件5与该物料盒32的周边边缘固定后可拆卸式地固定在该物料盒底座31上且该物料盒32置于该玻璃板34之上。
该每个导向运动部件5均为带有上限位结构和下限位结构的跟随部件。
该玻璃板34,用于在其位于该物料盒32内的上表面放置薄膜。
该脱膜方法包括:
步骤151,在脱膜时,该打印机构2向上运动且通过该薄膜与打印物体之间的吸附力拉动该打印物体以带动该物料盒32一起运动;
步骤152,该多个导向运动部件5使得该物料盒32在该上限位结构和该下限位结构之间跟随该打印机构2一定距离后实现该薄膜的脱膜。
该每个导向运动部件5包括导向杆50、上弹簧51、下弹簧52、上弹簧调节件53和下弹簧调节件54,该上弹簧调节件53为该上限位结构,该下弹簧调节件54为该下限位结构。
该导向杆50穿过该物料盒32的周边边缘后固定在该物料盒底座31上。
该上弹簧51套在该导向杆50位于该物料盒32上表面之上的部分,该上弹簧调节件53与该导向杆50可调节式地固定且该上弹簧调节件53位于该上弹簧51之上,该上弹簧51通过该上弹簧调节件53被抵触于该物料盒32的上表面。
该下弹簧52套在该导向杆50位于该物料盒32下表面之下的部分,该下弹簧调节件54与该导向杆50可调节式地固定且该下弹簧调节件54位于该下弹簧52之下,该下弹簧52通过该下弹簧调节件54被抵触于该物料盒32的下表面。
本实施例中,在该物料盒32加入预计材料,并在脱膜之前,保持该下弹簧52向上的弹力+该物料盒32自重+该预计材料的重量=该上弹簧51向下的弹力,以使该薄膜39放在该玻璃板34上表面成贴紧状态且两者之间具有吸附力。
当脱膜时,该打印机构2向上运动以克服吸附力,拉动该打印物体时,使该薄膜39和该玻璃板34开始缓慢分开,该薄膜39和该玻璃板34之间进入氧气,实现第一阶段的该薄膜和该玻璃板34之间的脱膜,此时,该薄膜和该打印物体之间具有吸附力,该上弹簧51向下的弹力+该物料盒32重力+预计材料的重力<该下弹簧52向上的弹力+该打印机构2向上的力。
该上弹簧51和该下弹簧52带动该物料盒32跟随该打印机构2向上移动一段距离,直到该上弹簧51向下的弹力+该物料盒32重力+预计材料的重力>该下弹簧52向上的弹力+该打印机构2向上的力时,该薄膜39和该玻璃板34完全分开,实现第二阶段的该薄膜和该打印物体之间的脱膜。
综上该,在打印过程中,脱膜所产生的吸附力大小主要取决与薄膜的透氧量,因为氧气可以阻止材料固化。在第一阶段时,薄膜和玻璃板实现脱膜在开始脱膜的同时,氧气会随着薄膜和玻璃板的分开,逐步的透过薄膜进入树脂盒上部,并附着在薄膜上材料的接触面上。通过这样分段式的脱膜,让薄膜和材料的接触面上始终保证有氧气的存在,从而实现脱膜声音小,增加膜的使用寿命。
因此,该3D打印装置采用分离式设计,例如该物料盒和该物料盒底座的分离设置,在该物料盒更换时不会影响设计投影面的安装尺寸,保证的该物料盒的通用性,可以降低更换该物料盒的制造成本。当脱膜时,该物料盒可以随着打印平台的上下而上下移动,实现不同层的3D打印。通过将玻璃板固定在该物料盒底座上,可以在打印过程中,始终保证玻璃板不动,即投影面不动,因此,可以提高3D打印装置的3D打印精度和质量。通过导向运动部件将该物料盒和该物料盒底座连接,导向运动部件使得物料盒跟随该打印机构一定距离以实现薄膜的脱膜,实现分段式脱膜,减轻了脱膜过程中薄膜的变形量,减小了脱膜时的声音和提高了薄膜的使用寿命。另外,该物料盒上部没有设置投影面,对平面度要求极低。
以上详细描述了本申请的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本申请的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本申请的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
Claims (15)
- 一种3D打印装置,其特征在于,包括基座(1)、打印机构(2)、盛液机构(3)和曝光机构(4),其中,所述打印机构(2)位于所述盛液机构(3)之上,所述曝光机构(4)位于所述盛液机构(3)之下;所述盛液机构(3)包括物料盒底座(31)、物料盒(32)和多个导向运动部件(5),所述物料盒(32)通过所述多个导向运动部件(5)可拆卸安装在所述物料盒底座(31)上,所述物料盒(32)的上方隔空对着所述打印机构(2);所述盛液机构(3)还包括透光的玻璃板(34),所述物料盒底座(31)为具有安装槽的刚性环形板,可拆卸安装在所述基座(1)上,所述物料盒底座(31)的所述安装槽被所述玻璃板(34)覆盖,且所述玻璃板(34)固定在所述物料盒底座(31)的上表面;所述多个导向运动部件(5)与所述物料盒(32)的周边边缘固定后可拆卸式地固定在所述物料盒底座(31)上且所述物料盒(32)置于所述玻璃板(34)之上;所述玻璃板(34),用于在其位于所述物料盒(32)内的上表面放置薄膜;所述每个导向运动部件(5)均为带有上限位结构和下限位结构的跟随部件;所述打印机构(2)用于在脱膜时向上运动且通过所述薄膜与打印物体之间的吸附力带动所述物料盒(32)一起运动;所述多个导向运动部件(5)用于使得所述物料盒(32)在所述上限位结构和所述下限位结构之间跟随所述打印机构(2)一定距离后实现所述薄膜的脱膜。
- 如权利要求1所述的3D打印装置,其特征在于,所述每个导向运动部件(5)包括导向杆(50)、上弹簧(51)、下弹簧(52)、上弹簧调节件(53)和下弹簧调节件(54),所述上弹簧调节件(53)为所述上限位结构,所述下弹簧调节件(54)为所述下限位结构;所述导向杆(50)穿过所述物料盒(32)的周边边缘后固定在所述物料盒底座(31)上;所述上弹簧(51)套在所述导向杆(50)位于所述物料盒(32)上表面之上的部分,所述上弹簧调节件(53)与所述导向杆(50)可调节式地固定且所述上弹簧调节件(53)位于所述上弹簧(51)之上,所述上弹簧(51)通过所述上弹簧调节件(53)被抵触于所述物料盒(32)的上表面;所述下弹簧(52)套在所述导向杆(50)位于所述物料盒(32)下表面之下的部分,所述下弹簧调节件(54)与所述导向杆(50)可调节式地固定且所述下弹簧调节件(54)位于所述下弹簧(52)之下,所述下弹簧(52)通过所述下弹簧调节件(54)被抵触于所述物料盒(32)的下表面。
- 如权利要求2所述的3D打印装置,其特征在于,在所述导向杆(50)上且位于所述上弹簧调节件(53)之上还设有凸起的止挡结构(55)。
- 如权利要求1-3任一所述的3D打印装置,其特征在于,所述3D打印装置还包括调节杆(12)和调节弹簧(13),所述基座(1)上表面具有多根支架柱(11),所述物料盒底座(31)通过所述调节杆(12)可拆卸式地固定在所述支架柱(11)上,所述调节杆(12)外侧套有所述调节弹簧(13),所述调节弹簧(13)的两端分别抵触于所述支架柱(11)的上表面和所述物料盒底座(31)的下表面。
- 如权利要求4所述的3D打印装置,其特征在于,所述支架柱(11)顶端表面和所述物料盒底座(31)底端分别开设有与所述调节杆(12)配合的调节孔,其中,所述物料盒底座(31)的调节孔为通孔,所述支架柱(11)顶端表面的调节孔的内侧表面具有螺纹,所述调节杆(12)穿过该通孔后再与所述支架柱(11)的调节孔固定。
- 如权利要求1所述的3D打印装置,其特征在于,所述导向运动部件为气动部件、液压部件或者电动部件。
- 一种3D打印装置中的盛液机构(3),其特征在于,所述盛液机构(3)位于所述3D打印装置所包括的基座(1)之上和所述3D打印装置所包括的打印机构(2)之下;所述盛液机构(3)包括物料盒底座(31)、物料盒(32)和多个导向运动部件(5),所述物料盒(32)通过所述多个导向运动部件(5)可拆卸安装在所述物料盒底座(31)上,所述物料盒(32)的上方隔空对着所述打印机构(2);所述盛液机构(3)还包括透光的玻璃板(34),所述物料盒底座(31)为具有安装槽的刚性环形板,可拆卸安装在所述基座(1)上,所述物料盒底座(31)的所述安装槽被所述玻璃板(34)覆盖,且所述玻璃板(34)固定在所述物料盒底座(31)的上表面;所述多个导向运动部件(5)与所述物料盒(32)的周边边缘固定后可拆卸式地固定在所述物料盒底座(31)上且所述物料盒(32)置于所述玻璃板(34)之上;所述玻璃板(34),用于在其位于所述物料盒(32)内的上表面放置薄膜;所述每个导向运动部件(5)均为带有上限位结构和下限位结构的跟随部件;所述打印机构(2)用于在脱膜时向上运动且通过所述薄膜与打印物体之间的吸附力拉动所述打印物体以带动所述物料盒(32)一起运动;所述多个导向运动部件(5)用于使得所述物料盒(32)在所述上限位结构和所述下限位结构之间跟随所述打印机构(2)一定距离后实现所述薄膜的脱膜。
- 如权利要求7所述的盛液机构(3),其特征在于,所述每个导向运动部件(5)包括导向杆(50)、上弹簧(51)、下弹簧(52)、上弹簧调节件(53)和下弹簧调节件(54),所述上弹簧调节件(53)为所述上限位结构,所述下弹簧调节件(54)为所述下限位结构;所述导向杆(50)穿过所述物料盒(32)的周边边缘后固定在所述物料盒底座(31)上;所述上弹簧(51)套在所述导向杆(50)位于所述物料盒(32)上表面之上的部分,所述上弹簧调节件(53)与所述导向杆(50)可调节式地固定且所述上弹簧调节件(53)位于所述上弹簧(51)之上,所述上弹簧(51)通过所述上弹簧调节件(53)被抵触于所述物料盒(32)的上表面;所述下弹簧(52)套在所述导向杆(50)位于所述物料盒(32)下表面之下的部分,所述下弹簧调节件(54)与所述导向杆(50)可调节式地固定且所述下弹簧调节件(54)位于所述下弹簧(52)之下,所述下弹簧(52)通过所述下弹簧调节件(54)被抵触于所述物料盒(32)的下表面。
- 如权利要求8所述的盛液机构(3),其特征在于,在所述导向杆(50)上且位于所述上弹簧调节件(53)之上还设有凸起的止挡结构(55)。
- 如权利要求7-9任一所述的盛液机构(3),其特征在于,所述基座(1)上表面具有多根支架柱(11),所述物料盒底座(31)通过所述3D打印装置所包括的调节杆(12)可拆卸式地固定在所述支架柱(11)上,所述调节杆(12)外侧套有调节弹簧(13),所述调节弹簧(13)的两端分别抵触于所述支架柱(11)的上表面和所述物料盒底座(31)的下表面。
- 如权利要求10所述的盛液机构(3),其特征在于,所述支架柱(11)顶端表面和所述物料盒底座(31)底端分别开设有与所述调节杆(12)配合的调节孔,其中,所述物料盒底座(31)的调节孔为通孔,所述支架柱(11)顶端表面的调节孔的内侧表面具有螺纹,所述调节杆(12)穿过该通孔后再与所述支架柱(11)的调节孔固定。
- 如权利要求7所述的盛液机构(3),其特征在于,所述导向运动部件为气动部件、液压部件或者电动部件。
- 一种3D打印装置的脱膜方法,其特征在于,所述3D打印装置包括基座(1)、打印机构(2)、盛液机构(3)和曝光机构(4),其中,所述打印机构(2)位于所述盛液机构(3)之上,所述曝光机构(4)位于所述盛液机构(3)之下;所述盛液机构(3)包括物料盒底座(31)、物料盒(32)和多个导向运动部件(5),所述物料盒(32)通过所述多个导向运动部件(5)可拆卸安装在所述物料盒底座(31)上,所述物料盒(32)的上方隔空对着所述打印机构(2);所述盛液机构(3)还包括透光的玻璃板(34),所述物料盒底座(31)为具有安装槽的刚性环形板,可拆卸安装在所述基座(1)上,所述物料盒底座(31)的所述安装槽被所述玻璃板(34)覆盖,且所述玻璃板(34)固定在所述物料盒底座(31)的上表面;所述多个导向运动部件(5)与所述物料盒(32)的周边边缘固定后可拆卸式地固定在所述物料盒底座(31)上且所述物料盒(32)置于所述玻璃板(34)之上;所述每个导向运动部件(5)均为带有上限位结构和下限位结构的跟随部件;所述玻璃板(34),用于在其位于所述物料盒(32)内的上表面放置薄膜;所述脱膜方法包括:在脱膜时,所述打印机构(2)向上运动且通过所述薄膜与打印物体之间的吸附力拉动所述打印物体以带动所述物料盒(32)一起运动;所述多个导向运动部件(5)使得所述物料盒(32)在所述上限位结构和所述下限位结构之间跟随所述打印机构(2)一定距离后实现所述薄膜的脱膜。
- 如权利要求13所述的脱膜方法,其特征在于,所述每个导向运动部件(5)包括导向杆(50)、上弹簧(51)、下弹簧(52)、上弹簧调节件(53)和下弹簧调节件(54),所述上弹簧调节件(53)为所述上限位结构,所述下弹簧调节件(54)为所述下限位结构;所述导向杆(50)穿过所述物料盒(32)的周边边缘后固定在所述物料盒底座(31)上;所述上弹簧(51)套在所述导向杆(50)位于所述物料盒(32)上表面之上的部分,所述上弹簧调节件(53)与所述导向杆(50)可调节式地固定且所述上弹簧调节件(53)位于所述上弹簧(51)之上,所述上弹簧(51)通过所述上弹簧调节件(53)被抵触于所述物料盒(32)的上表面;所述下弹簧(52)套在所述导向杆(50)位于所述物料盒(32)下表面之下的部分,所述下弹簧调节件(54)与所述导向杆(50)可调节式地固定且所述下弹簧调节件(54)位于所述下弹簧(52)之下,所述下弹簧(52)通过所述下弹簧调节件(54)被抵触于所述物料盒(32)的下表面。
- 如权利要求14所述的脱膜方法,其特征在于,所述脱膜方法还包括:在所述物料盒(32)加入预计材料,并在脱膜之前,保持所述下弹簧(52)向上的弹力+所述物料盒(32)自重+所述预计材料的重量=所述上弹簧(51)向下的弹力,以使所述薄膜(39)放在所述玻璃板(34)上表面成贴紧状态且两者之间具有吸附力;当脱膜时,所述打印机构(2)向上运动以克服吸附力,拉动所述打印物体时,使所述薄膜(39)和所述玻璃板(34)开始缓慢分开,所述薄膜(39)和所述玻璃板(34)之间进入氧气,实现第一阶段的所述薄膜和所述玻璃板(34)之间的脱膜,此时,所述薄膜和所述打印物体之间具有吸附力,所述上弹簧(51)向下的弹力+所述物料盒(32)重力+预计材料的重力<所述下弹簧(52)向上的弹力+所述打印机构(2)向上的力;所述上弹簧(51)和所述下弹簧(52)带动所述物料盒(32)跟随所述打印机构(2)向上移动一段距离,直到所述上弹簧(51)向下的弹力+所述物料盒(32)重力+预计材料的重力>所述下弹簧(52)向上的弹力+所述打印机构(2)向上的力时,所述薄膜(39)和所述玻璃板(34)完全分开,实现第二阶段的所述薄膜和所述打印物体之间的脱膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/268,037 US11780158B2 (en) | 2018-08-14 | 2019-08-14 | 3D printing device, and release method and liquid containing mechanism therefor |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821303312.X | 2018-08-14 | ||
CN201821309304.6U CN208841839U (zh) | 2018-08-14 | 2018-08-14 | 一种3d打印平台 |
CN201821303312.XU CN208646047U (zh) | 2018-08-14 | 2018-08-14 | 一种3d打印装置 |
CN201810919505.6A CN108748982A (zh) | 2018-08-14 | 2018-08-14 | 一种3d打印装置 |
CN201821304239.8 | 2018-08-14 | ||
CN201810919505.6 | 2018-08-14 | ||
CN201810919493.7A CN108724702A (zh) | 2018-08-14 | 2018-08-14 | 一种3d打印平台 |
CN201810919493.7 | 2018-08-14 | ||
CN201821304239.8U CN208646048U (zh) | 2018-08-14 | 2018-08-14 | 一种可快速拆卸的盛液机构 |
CN201821309304.6 | 2018-08-14 | ||
CN201910740656.XA CN110815818B (zh) | 2018-08-14 | 2019-08-12 | 一种3d打印装置以及其脱膜方法和盛液机构 |
CN201910740656.X | 2019-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020034991A1 true WO2020034991A1 (zh) | 2020-02-20 |
Family
ID=69524692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/100567 WO2020034991A1 (zh) | 2018-08-14 | 2019-08-14 | 一种3d打印装置以及其脱膜方法和盛液机构 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020034991A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140085620A1 (en) * | 2012-09-24 | 2014-03-27 | Maxim Lobovsky | 3d printer with self-leveling platform |
CN104210102A (zh) * | 2014-07-29 | 2014-12-17 | 苏州江南嘉捷机电技术研究院有限公司 | 约束型光固化快速成型设备的可倾斜式树脂槽机构 |
CN204431745U (zh) * | 2015-01-28 | 2015-07-01 | 东莞理工学院 | 基于dmd的倒立式数字光固化成型机 |
CN104999665A (zh) * | 2014-04-16 | 2015-10-28 | 三纬国际立体列印科技股份有限公司 | 立体打印装置 |
CN105365218A (zh) * | 2015-11-18 | 2016-03-02 | 宁波市鄞州智造数字科技有限公司 | Dlp光固化3d打印机用树脂槽 |
CN205097561U (zh) * | 2015-11-18 | 2016-03-23 | 宁波市鄞州智造数字科技有限公司 | Dlp光固化3d打印机用树脂槽 |
CN205836012U (zh) * | 2016-05-18 | 2016-12-28 | 博纳云智(天津)科技有限公司 | 一种3d打印机离型机构 |
CN106426921A (zh) * | 2016-08-02 | 2017-02-22 | 苏州秉创科技有限公司 | 一种基于光固化的3d打印机 |
US9597731B2 (en) * | 2014-08-28 | 2017-03-21 | Incodema3D, LLC | Additive manufacturing device |
-
2019
- 2019-08-14 WO PCT/CN2019/100567 patent/WO2020034991A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140085620A1 (en) * | 2012-09-24 | 2014-03-27 | Maxim Lobovsky | 3d printer with self-leveling platform |
CN104999665A (zh) * | 2014-04-16 | 2015-10-28 | 三纬国际立体列印科技股份有限公司 | 立体打印装置 |
CN104210102A (zh) * | 2014-07-29 | 2014-12-17 | 苏州江南嘉捷机电技术研究院有限公司 | 约束型光固化快速成型设备的可倾斜式树脂槽机构 |
US9597731B2 (en) * | 2014-08-28 | 2017-03-21 | Incodema3D, LLC | Additive manufacturing device |
CN204431745U (zh) * | 2015-01-28 | 2015-07-01 | 东莞理工学院 | 基于dmd的倒立式数字光固化成型机 |
CN105365218A (zh) * | 2015-11-18 | 2016-03-02 | 宁波市鄞州智造数字科技有限公司 | Dlp光固化3d打印机用树脂槽 |
CN205097561U (zh) * | 2015-11-18 | 2016-03-23 | 宁波市鄞州智造数字科技有限公司 | Dlp光固化3d打印机用树脂槽 |
CN205836012U (zh) * | 2016-05-18 | 2016-12-28 | 博纳云智(天津)科技有限公司 | 一种3d打印机离型机构 |
CN106426921A (zh) * | 2016-08-02 | 2017-02-22 | 苏州秉创科技有限公司 | 一种基于光固化的3d打印机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015102438A1 (en) | Display apparatus | |
CN100539020C (zh) | 投影光学系统、曝光装置及曝光方法 | |
WO2017155341A1 (en) | Apparatus and method for controlling auto focus of camera module | |
WO2016080708A1 (en) | Wearable device and method for outputting virtual image | |
EP3058561A1 (en) | Display apparatus | |
WO2015080538A2 (ko) | 선광원 발생장치와 이를 구비한 노광기 | |
WO2011126193A1 (ko) | 유리창 청소 장치 및 그의 제어 방법 | |
WO2019139359A1 (en) | Water purifier and method for controlling the same | |
WO2013180365A1 (en) | Member for cotrolling luminous flux, method for fabricating the member, display device, and light emitting device | |
CN100535703C (zh) | 透镜系统及使用该透镜系统的投影机 | |
WO2020071852A1 (ko) | 카메라 액추에이터 및 이를 포함하는 카메라 모듈 | |
WO2020034991A1 (zh) | 一种3d打印装置以及其脱膜方法和盛液机构 | |
WO2017078393A1 (ko) | 렌즈 구동장치 및 이를 포함하는 카메라 모듈 | |
WO2012015220A2 (ko) | 편광디스플레이장치 | |
WO2012070904A2 (ko) | 편광조명시스템 | |
WO2020076111A1 (ko) | 카메라 액추에이터 및 이를 포함하는 카메라 모듈 | |
EP3834052A1 (en) | Display device | |
WO2017173678A1 (zh) | 一种显示器 | |
WO2019112396A1 (ko) | 휴대폰 케이스 | |
WO2015111874A1 (ko) | 디스플레이 장치 | |
WO2019045439A1 (ko) | 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기 | |
WO2013100325A1 (ko) | 이동 단말기 | |
WO2018094812A1 (zh) | 调节液晶显示装置屏幕背光亮度的方法及装置 | |
WO2016111492A1 (en) | Display module and display apparatus having the same | |
WO2014089801A1 (zh) | 检测方法及检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19850476 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19850476 Country of ref document: EP Kind code of ref document: A1 |