WO2014089801A1 - 检测方法及检测装置 - Google Patents

检测方法及检测装置 Download PDF

Info

Publication number
WO2014089801A1
WO2014089801A1 PCT/CN2012/086535 CN2012086535W WO2014089801A1 WO 2014089801 A1 WO2014089801 A1 WO 2014089801A1 CN 2012086535 W CN2012086535 W CN 2012086535W WO 2014089801 A1 WO2014089801 A1 WO 2014089801A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
lens
size
magnification
switching
Prior art date
Application number
PCT/CN2012/086535
Other languages
English (en)
French (fr)
Inventor
林勇佑
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/811,391 priority Critical patent/US9164043B2/en
Publication of WO2014089801A1 publication Critical patent/WO2014089801A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention relates to the field of detection technology, and in particular to a method and a detection device for detecting an array substrate in a liquid crystal panel process.
  • the array substrate is one of the important components of the liquid crystal panel.
  • automatic optical inspection is required (Automatic Optic The Inspection, AOI) system detects the array substrate.
  • the automatic optical inspection system detects the array substrate based on the optical principle. It automatically scans the array substrate through the optical scanning device, collects images, inspects the defects on the array substrate, and displays or marks the defects through the display or the automatic mark for maintenance. Personnel repair.
  • the commonly used detecting device only has a single magnification scanning lens. When detecting, the scanning lens is usually used to scan and photograph the array substrate. When the encountered flaw is too large, the scanning field of view is exceeded, and the defective image cannot be completely and clearly displayed. Or when the captured ⁇ part is too small, the defective image displayed does not see the defect, and the correct defect type cannot be judged.
  • a primary object of the present invention is to provide a method and apparatus for detecting a field of view that can be adjusted according to the size of a substrate defect.
  • the invention provides a detection method for detecting an array substrate, comprising the steps of:
  • the defect is captured using the switched lens.
  • the step of generating a switching control instruction according to the size of the defect, and switching the lens to the magnification corresponding to the defect size comprises:
  • the step of switching the lens to the magnification corresponding to the defect size specifically includes:
  • the lens is switched to 5 times magnification
  • the lens is switched to 10 times magnification
  • the step of switching the lens to the magnification corresponding to the defect size specifically includes:
  • the lens is switched to 5 times magnification
  • the lens is switched to 10 times magnification
  • the lens is switched to 50 times magnification.
  • the step of switching the lens to the magnification corresponding to the defect size specifically includes:
  • the step of generating a switching control instruction according to the size of the defect, and switching the lens to the magnification corresponding to the defect size comprises:
  • the step of switching the lens to the magnification corresponding to the defect size specifically includes:
  • the lens is switched to 5 times magnification
  • the lens is switched to 10 times magnification
  • the lens is switched to 50 times magnification.
  • the invention also provides a detecting device for detecting an array substrate, comprising an optical scanner, a lens switcher and a lens, the optical scanner for scanning defects of the array substrate, determining a size of the defect;
  • the device is configured to generate a switching control instruction according to the size of the defect, and control the lens to switch to a magnification corresponding to the defect size according to the switching control instruction, and control the switched lens to capture the defect.
  • the lens switcher specifically includes:
  • a size range determining unit configured to determine a preset size range in which the size of the defect is located
  • a switching control instruction generating unit configured to generate a corresponding switching control instruction according to the preset size range
  • a magnification switching unit configured to switch the lens to a magnification corresponding to the preset size range.
  • the lens is switched to 5 times magnification
  • the lens is switched to 10 times magnification
  • the lens switch is configured to move according to the switching control instruction to drive a lens corresponding to a magnification corresponding to the defect size on the lens switch to move over the defect.
  • the lens switcher specifically includes:
  • a size range determining unit configured to determine a preset size range in which the size of the defect is located
  • a magnification switching unit configured to switch the lens to a magnification corresponding to the preset size range.
  • the lens is switched to 5 times magnification
  • the lens is switched to 10 times magnification
  • the lens is switched to 50 times magnification.
  • the lens switch is configured to adjust a magnification of the lens according to the switching control instruction to adapt a magnification of the lens to the defect size.
  • the lens switcher specifically includes:
  • a magnification switching unit configured to switch the lens to a magnification corresponding to the preset size range.
  • the magnification switching unit is further configured to:
  • the lens is switched to 5 times magnification
  • the lens is switched to 10 times magnification
  • the lens is switched to 50 times magnification.
  • the invention analyzes the size of the scanned defect and switches the shooting lens according to the defect size to ensure that the switched lens can capture a clear and complete defect picture, which is beneficial to analyzing the defect type and effectively improving the analysis of the defect. rate.
  • FIG. 1 is a flow chart of a first embodiment of a detecting method of the present invention
  • FIG. 2 is a flow chart of a second embodiment of the detecting method of the present invention.
  • FIG. 3 is a flow chart of a third embodiment of the detecting method of the present invention.
  • FIG. 4 is a flow chart of a fourth embodiment of the detecting method of the present invention.
  • Figure 5 is a flow chart of a fifth embodiment of the detecting method of the present invention.
  • Figure 6 is a schematic structural view of a first embodiment of the detecting device of the present invention.
  • Figure 7 is a schematic view showing the structure of a second embodiment of the detecting device of the present invention.
  • FIG. 1 is a flow chart of a first embodiment of a detecting method of the present invention.
  • the detection method mentioned in this embodiment includes the following steps:
  • Step S101 scanning a defect of the array substrate to determine a size of the defect
  • the array is scanned by the optical scanner of the detecting device to determine the number of defects and the size of the defect on the array substrate.
  • Step S102 generating a switching control instruction according to the size of the defect, and switching the lens to a magnification suitable for the defect size;
  • step S103 the defect is captured by using the switched lens.
  • the switched lens has a suitable field of view relative to the current defect size, and can capture the current defect clearly and completely.
  • the switched lens can capture a clear and complete defect picture, which is beneficial to analyzing the defect type and effectively improving the analysis of the defect.
  • the accuracy rate improves the process monitoring effect.
  • FIG. 2 is a flow chart of a second embodiment of the detecting method of the present invention.
  • the detection method of this embodiment includes:
  • Step S201 scanning a defect of the array substrate to determine a size of the defect
  • the array is scanned by the optical scanner of the detecting device to determine the number of defects and the size of the defect on the array substrate.
  • Step S202 generating a switching control instruction according to the size of the defect
  • the switching control instruction For each defect, when the defect size is large, the switching control instruction indicates that the magnification of the lens is reduced; when the defect size is small, the switching control instruction indicates that the magnification of the lens is increased.
  • Step S203 controlling the movement of the lens switch according to the switching control instruction, and driving the lens corresponding to the magnification corresponding to the defect size on the lens switch to move over the defect;
  • switching between different lenses is adopted to realize switching of magnification, and a plurality of lenses of different magnifications are arranged on the lens switch, for example, the magnifications are 50 times, 20 times, 10 times, 5 times, and 2 times, respectively.
  • the lenses can be arranged in a line or in a circular arrangement.
  • a lens with a small magnification can be used, and by controlling the movement of the lens switch, the lens that drives the magnification of 5 times is moved over the defect, and the lens of the defect is taken with a lens of 5 times magnification;
  • a lens with a large magnification is used, and by controlling the movement of the lens switch, the lens that drives the 50 ⁇ magnification is moved over the defect, and the defective photo is taken with a lens of 50 ⁇ magnification.
  • step S204 the defect is captured by using the switched lens.
  • the movement of the lens switcher is controlled according to the switching control instruction, and the lens movement is driven to switch the lens suitable for the current defect size to the current defect to realize the switching of the magnification, thereby ensuring that the switched lens can be captured clearly and completely.
  • the defect picture is useful for analyzing the defect type and effectively improving the analysis accuracy of the defect.
  • FIG. 3 is a flowchart of a third embodiment of the detecting method of the present invention.
  • the detection method of this embodiment includes:
  • Step S301 scanning a defect of the array substrate to determine a size of the defect
  • the array is scanned by the optical scanner of the detecting device to determine the number of defects and the size of the defect on the array substrate.
  • Step S302 generating a switching control instruction according to the size of the defect
  • the switching control instruction For each defect, when the defect size is large, the switching control instruction indicates that the magnification of the lens is reduced; when the defect size is small, the switching control instruction indicates that the magnification of the lens is increased.
  • Step S303 adjusting the magnification of the lens according to the switching control instruction, so that the magnification of the lens is adapted to the defect size;
  • a lens with adjustable magnification is connected to the lens switcher.
  • the lens switch adjusts the magnification of the lens to a small magnification, and shoots the defect with a small magnification.
  • Photo when the size of the defect is small, the lens switch adjusts the magnification of the lens to a larger magnification, and takes a photo with a larger magnification.
  • step S304 the defect is captured by using the switched lens.
  • the lens switcher is controlled according to the switching control command to adjust the magnification of the lens, so that the magnification of the lens is applied to the current defect size, and the magnification is switched to ensure that the lens after the magnification switching can capture a clear and complete defect picture. It is beneficial to analyze the type of defects and effectively improve the accuracy of analysis of defects.
  • Step S401 scanning a defect of the array substrate to determine a size of the defect
  • Step S402 determining a preset size range in which the size of the defect is located
  • Step S403 generating a corresponding switching control instruction according to the preset size range
  • Step S404 switching the lens to a magnification corresponding to the preset size range
  • the lens magnification is switched to the magnification corresponding to the preset size range.
  • step S405 the defect is captured by using the switched lens.
  • a mapping relationship is established between the preset size range and the magnification, and the magnification required to be switched is obtained according to the defect size of the current scan, so that the switched lens can capture a clear and complete defect image, which is beneficial to the defect type. Analysis has effectively improved the accuracy of analysis of defects.
  • the array is scanned by the optical scanner of the detecting device to determine the number of defects and the size of the defect on the array substrate.
  • Step S502 determining a preset size range in which the size of the defect is located
  • Step S511 when the size of the defect is greater than or equal to 100 ⁇ m, the lens is switched to 5 times magnification;
  • Step S512 when the size of the defect is greater than 20 ⁇ m and less than 100 ⁇ m, the lens is switched to 10 times magnification;
  • Step S513 when the size of the defect is less than or equal to 20 ⁇ m, the lens is switched to 50 times magnification;
  • step S504 the defect is captured by using the switched lens.
  • the magnification required to be switched is obtained, so that the switched lens can capture a clear and complete defect image, which is beneficial to analyzing the defect type, and effectively improves the analysis of the defect. rate.
  • FIG. 6 is a schematic structural view of a first embodiment of the detecting device of the present invention.
  • the detecting device mentioned in this embodiment is used for detecting an array substrate, including an optical scanner 10, a lens switcher 20 and a lens 30.
  • the optical scanner 10 is used for scanning defects of the substrate and determining the size of the defect;
  • the switching control command is generated according to the size of the defect determined by the optical scanner, and the lens 30 is controlled to switch to the magnification corresponding to the defect size according to the control command, and the lens 30 after the switching is controlled to take a defect.
  • the array is scanned by the optical scanner 10 of the detecting device to determine the number of defects and the size of the defect on the array substrate. For each defect, when the defect size is large, the magnification of the lens 30 is reduced; when the defect size is small, the magnification of the lens 30 is increased.
  • the switching of the magnification may be performed by switching the lens 30, the different lenses 30 having different magnifications, or the lens 30 having the adjustable magnification to adjust the magnification of the lens 30.
  • the switched lens 30 has an appropriate field of view with respect to the current defect size, and can capture the current defect clearly and completely.
  • the shooting lens 30 is switched according to the defect size, so that the lens 30 after the switching can capture a clear and complete defect picture, which is beneficial to analyzing the defect type and effectively improving the defect.
  • the analysis accuracy rate improves the process monitoring effect.
  • the embodiment of the present invention can adopt a plurality of lenses 30 of different magnifications.
  • the lens switcher 20 moves according to the switching control command, and the lens 30 corresponding to the magnification corresponding to the defect size on the lens switcher 20 is moved to the top of the defect.
  • Switching of the lens 30 is achieved.
  • switching between different magnifications is achieved by switching between different lenses 30, and a plurality of lenses 30 of different magnifications are arranged on the lens switch 20, for example, the magnifications are 50 times, 20 times, 10 times, and 5 times, respectively.
  • the lens 20 of 2 times can be arranged in a line shape or in a circular arrangement.
  • the lens 30 having a small magnification can be used, and by controlling the movement of the lens switch 20, the lens 30 that drives the magnification of 5 times is moved over the defect, and the lens 30 of the magnification of 5 times is used to take the defect.
  • Photograph when the size of the defect is small, the lens 30 having a large magnification is used, and by controlling the movement of the lens switcher 20, the lens 30 that drives the 50-fold magnification is moved over the defect, and the lens 30 is photographed with a magnification of 50 times. photo.
  • the movement of the lens switch 20 is controlled according to the switching control command, and the lens 30 is moved to switch the lens 30 suitable for the current defect size to the current defect to realize the switching of the magnification to ensure that the switched lens 30 can be captured. Clear and complete defect images are useful for analyzing the types of defects and effectively improving the accuracy of analysis of defects.
  • the embodiment of the present invention can also adopt a lens 30 with adjustable magnification.
  • the lens switcher 20 adjusts the magnification of the lens 30 according to the switching control command, so that the magnification of the lens 30 is matched with the defect size, and the magnification of the lens 30 is switched.
  • the lens 30 with adjustable magnification is connected to the lens switcher 20.
  • the lens switch 20 adjusts the magnification of the lens 30 to a small magnification, and uses a small amplification.
  • the photograph of the defective photograph is taken at a magnification; when the size of the defect is small, the lens switcher 20 adjusts the magnification of the lens 30 to a larger magnification, and takes a photograph of the defect with a larger magnification.
  • the lens switcher 20 is controlled to adjust the magnification of the lens 30 according to the switching control command, so that the magnification of the lens 30 is applied to the current defect size, and the magnification is switched to ensure that the lens 30 after the magnification switching can be captured clearly.
  • the complete defect picture is useful for analyzing the defect type and effectively improving the analysis accuracy of the defect.
  • FIG. 7 is a schematic structural view of a second embodiment of the detecting device of the present invention. This embodiment is based on the embodiment shown in FIG. 6, and the specific structure of the lens switcher 20 is described in detail to explain the specific working principle of the lens 30 according to the defect size range.
  • the lens switcher 20 specifically includes:
  • a size range determining unit 21 configured to determine a preset size range in which the size of the defect is located
  • the switching control instruction generating unit 22 is configured to generate a corresponding switching control instruction according to the preset size range
  • the magnification switching unit 23 is configured to switch the lens 30 to a magnification corresponding to a preset size range.
  • the detecting device of the embodiment stores a defect size data table, the defect size data table has a mapping relationship between the preset size range and the magnification; or manually inputs a suitable size range in advance, and establishes a mapping relationship between the preset size range and the magnification ratio. .
  • the size range determining unit 21 is configured to determine which of the preset size ranges the defect size of the current scan falls into to determine the size range of the current defect.
  • the switching control instruction generating unit 22 is configured to query the mapping relationship data table after the size range determining unit 21 finds the corresponding preset size range, obtain a magnification corresponding to the preset size range, and generate a corresponding switching control instruction.
  • the magnification switching unit 23 realizes the corresponding switching of the defect size range and the magnification, wherein the magnification switching unit 23 is further configured to:
  • the lens 30 is switched to a magnification of 5 times;
  • the lens 30 is switched to 10 times magnification
  • the lens 30 is switched to 50 times magnification.
  • the magnification ratios are 5, 10, and 50, respectively.
  • the mapping relationship between the preset size range and the magnification is as follows: the preset size range is ⁇ 100 ⁇ m, the magnification is 5 times; 20 ⁇ m ⁇ preset size range ⁇ 100 ⁇ m, the magnification is 10 times; the preset size range is ⁇ 20 ⁇ m, and the magnification is 50 times.
  • the magnification required to be switched is obtained, so that the switched lens 30 can capture a clear and complete defect image, which is beneficial to analyzing the defect type and effectively improving the analysis of the defect. Accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本发明公开了一种用于阵列基板的检测方法和检测装置,其中,检测方法包括步骤:扫描阵列基板的缺陷,确定所述缺陷的尺寸;根据所述缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率;采用切换后的所述镜头拍摄所述缺陷。本发明通过对扫描到的缺陷尺寸进行分析,根据缺陷尺寸切换拍摄镜头,使切换后的镜头能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。

Description

检测方法及检测装置
技术领域
本发明涉及到检测技术领域,特别涉及用于液晶面板制程中阵列基板的检测方法及检测装置。
背景技术
阵列基板是液晶面板的重要元件之一,在阵列基板的制程中,需要采用自动光学检测(Automatic Optic Inspection,AOI)系统对阵列基板进行检测。自动光学检测系统是基于光学原理来对阵列基板进行检测,其通过光学扫描装置自动扫描阵列基板,采集图像,检查出阵列基板上缺陷,并通过显示器或自动标志把缺陷显示或标示出来,供维修人员修复。目前常用的检测装置仅具有单一倍率的扫描镜头,在检测时通常采用该扫描镜头对阵列基板进行扫描拍照,当遇到的瑕疵太大时,超出了扫描视野,无法完整清晰的显示缺陷的图像;或当拍摄到的瑕疵部分太小时,所呈现的缺陷图像看不清缺陷,导致无法判断出正确的缺陷类型。
发明内容
本发明的主要目的为提供一种可根据基板缺陷尺寸调整拍摄视野的检测方法和装置。
本发明提出一种检测方法,用于检测阵列基板,包括步骤:
扫描阵列基板的缺陷,确定所述缺陷的尺寸;
根据所述缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率;
采用切换后的所述镜头拍摄所述缺陷。
优选地,所述根据缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
确定所述缺陷的尺寸所在的预设尺寸范围;
根据所述预设尺寸范围,生成对应的切换控制指令;
将镜头切换至与所述预设尺寸范围对应的放大倍率。
优选地,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
优选地,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
根据所述切换控制指令,控制镜头切换器移动,带动所述镜头切换器上的与所述缺陷尺寸相适应的放大倍率所对应的镜头移动至所述缺陷上方。
优选地,所述根据缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
确定所述缺陷的尺寸所在的预设尺寸范围;
根据所述预设尺寸范围,生成对应的切换控制指令;
将镜头切换至与所述预设尺寸范围对应的放大倍率。
优选地,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
优选地,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
根据所述切换控制指令,调整所述镜头的放大倍率,使所述镜头的放大倍率与所述缺陷尺寸相适应。
优选地,所述根据缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
确定所述缺陷的尺寸所在的预设尺寸范围;
根据所述预设尺寸范围,生成对应的切换控制指令;
将镜头切换至与所述预设尺寸范围对应的放大倍率。
优选地,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
本发明还提出一种检测装置,用于检测阵列基板,包括光学扫描仪、镜头切换器和镜头,所述光学扫描仪用于扫描阵列基板的缺陷,确定所述缺陷的尺寸;所述镜头切换器用于根据所述缺陷的尺寸,生成切换控制指令,并根据切换控制指令控制所述镜头切换至与所述缺陷尺寸相适应的放大倍率,并控制切换后的所述镜头拍摄所述缺陷。
优选地,所述镜头切换器具体包括:
尺寸范围确定单元,用于确定所述缺陷的尺寸所在的预设尺寸范围;
切换控制指令生成单元,用于根据所述预设尺寸范围,生成对应的切换控制指令;
放大倍率切换单元,用于将镜头切换至与所述预设尺寸范围对应的放大倍率。
优选地,所述放大倍率切换单元进一步用于:
当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
优选地,所述镜头切换器用于根据所述切换控制指令移动,带动所述镜头切换器上的与所述缺陷尺寸相适应的放大倍率所对应的镜头移动至所述缺陷上方。
优选地,所述镜头切换器具体包括:
尺寸范围确定单元,用于确定所述缺陷的尺寸所在的预设尺寸范围;
切换控制指令生成单元,用于根据所述预设尺寸范围,生成对应的切换控制指令;
放大倍率切换单元,用于将镜头切换至与所述预设尺寸范围对应的放大倍率。
优选地,所述放大倍率切换单元进一步用于:
当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
优选地,所述镜头切换器用于根据所述切换控制指令调整所述镜头的放大倍率,使所述镜头的放大倍率与所述缺陷尺寸相适应。
优选地,所述镜头切换器具体包括:
尺寸范围确定单元,用于确定所述缺陷的尺寸所在的预设尺寸范围;
切换控制指令生成单元,用于根据所述预设尺寸范围,生成对应的切换控制指令;
放大倍率切换单元,用于将镜头切换至与所述预设尺寸范围对应的放大倍率。
优选地,所述放大倍率切换单元进一步用于:
当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
本发明通过对扫描到的缺陷尺寸进行分析,根据缺陷尺寸切换拍摄镜头,确保切换后的镜头能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
附图说明
图1为本发明检测方法的第一实施例的流程图;
图2为本发明检测方法的第二实施例的流程图;
图3为本发明检测方法的第三实施例的流程图;
图4为本发明检测方法的第四实施例的流程图;
图5为本发明检测方法的第五实施例的流程图;
图6为本发明检测装置的第一实施例的结构示意图;
图7为本发明检测装置的第二实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,图1为本发明检测方法的第一实施例的流程图。本实施例提到的检测方法,包括步骤:
步骤S101,扫描阵列基板的缺陷,确定缺陷的尺寸;
本实施例中,阵列基板在进入检测装置后,由检测装置的光学扫描仪对阵列进行扫描,确定阵列基板上的缺陷数量和缺陷尺寸。
步骤S102,根据缺陷的尺寸,生成切换控制指令,将镜头切换至与缺陷尺寸相适应的放大倍率;
针对每一个缺陷,当缺陷尺寸较大时,减小镜头的放大倍率;当缺陷尺寸较小时,增大镜头的放大倍率。放大倍率的切换可采用切换镜头的方式,不同的镜头具有不同的放大倍率,或者采用放大倍率可调的镜头,对镜头的放大倍率进行调整。
步骤S103,采用切换后的镜头拍摄缺陷。
切换后的镜头相对于当前缺陷尺寸具备合适的视野,能够将当前缺陷拍摄清楚、完整。
本实施例通过对扫描到的缺陷尺寸进行分析,根据缺陷尺寸切换拍摄镜头,确保切换后的镜头能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率,提高了制程监控效果。
如图2所示,图2为本发明检测方法的第二实施例的流程图。本实施例的检测方法包括:
步骤S201,扫描阵列基板的缺陷,确定缺陷的尺寸;
本实施例中,阵列基板在进入检测装置后,由检测装置的光学扫描仪对阵列进行扫描,确定阵列基板上的缺陷数量和缺陷尺寸。
步骤S202,根据缺陷的尺寸,生成切换控制指令;
针对每一个缺陷,当缺陷尺寸较大时,切换控制指令指示减小镜头的放大倍率;当缺陷尺寸较小时,切换控制指令指示增大镜头的放大倍率。
步骤S203,根据切换控制指令,控制镜头切换器移动,带动镜头切换器上的与缺陷尺寸相适应的放大倍率所对应的镜头移动至缺陷上方;
本实施例采用切换不同的镜头,实现放大倍率的切换,将多个不同放大倍率的镜头排列于镜头切换器上,例如,放大倍率分别为50倍、20倍、10倍、5倍、2倍的镜头,可采用一字型排列,或采用圆形排列。当缺陷的尺寸较大时,可采用放大倍率较小的镜头,通过控制镜头切换器移动,带动5倍放大倍率的镜头移动至缺陷上方,采用5倍放大倍率的镜头拍摄缺陷的照片;当缺陷的尺寸较小时,采用放大倍率较大的镜头,通过控制镜头切换器移动,带动50倍放大倍率的镜头移动至缺陷上方,采用50倍放大倍率的镜头拍摄缺陷的照片。
步骤S204,采用切换后的镜头拍摄缺陷。
本实施例根据切换控制指令控制镜头切换器的移动,带动镜头移动,使适用于当前缺陷尺寸的镜头切换至当前缺陷上方,实现放大倍率的切换,确保切换后的镜头能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
如图3所示,图3为本发明检测方法的第三实施例的流程图。本实施例的检测方法包括:
步骤S301,扫描阵列基板的缺陷,确定缺陷的尺寸;
本实施例中,阵列基板在进入检测装置后,由检测装置的光学扫描仪对阵列进行扫描,确定阵列基板上的缺陷数量和缺陷尺寸。
步骤S302,根据缺陷的尺寸,生成切换控制指令;
针对每一个缺陷,当缺陷尺寸较大时,切换控制指令指示减小镜头的放大倍率;当缺陷尺寸较小时,切换控制指令指示增大镜头的放大倍率。
步骤S303,根据切换控制指令,调整镜头的放大倍率,使镜头的放大倍率与缺陷尺寸相适应;
本实施例在镜头切换器上连接一个放大倍率可调的镜头,当缺陷的尺寸较大时,镜头切换器将镜头的放大倍率调至较小的放大倍率,采用较小的放大倍率拍摄缺陷的照片;当缺陷的尺寸较小时,镜头切换器将镜头的放大倍率调至较大的放大倍率,采用较大的放大倍率拍摄缺陷的照片。
步骤S304,采用切换后的镜头拍摄缺陷。
本实施例根据切换控制指令控制镜头切换器调整镜头的放大倍率,使镜头的放大倍率适用于当前缺陷尺寸,实现放大倍率的切换,确保放大倍率切换后的镜头能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
如图4所示,图4为本发明检测方法的第四实施例的流程图。本实施例的检测方法包括:
步骤S401,扫描阵列基板的缺陷,确定缺陷的尺寸;
本实施例中,阵列基板在进入检测装置后,由检测装置的光学扫描仪对阵列进行扫描,确定阵列基板上的缺陷数量和缺陷尺寸。
步骤S402,确定缺陷的尺寸所在的预设尺寸范围;
调用缺陷尺寸数据表,获取预设尺寸范围与放大倍率的映射关系;或预先手动输入合适的尺寸范围,将预设尺寸范围与放大倍率建立映射关系。然后判断当前扫描的缺陷尺寸落入了哪一个预设尺寸范围,以确定当前缺陷的尺寸范围。
步骤S403,根据预设尺寸范围,生成对应的切换控制指令;
查找对应的预设尺寸范围后,查询映射关系数据表,获得与预设尺寸范围对应的放大倍率,并生成响应的切换控制指令。
步骤S404,将镜头切换至与预设尺寸范围对应的放大倍率;
根据切换控制指令,将镜头放大倍率切换至与预设尺寸范围对应的放大倍率。
步骤S405,采用切换后的镜头拍摄缺陷。
本实施例通过预设尺寸范围与放大倍率建立映射关系,根据当前扫描的缺陷尺寸,获得需要切换的放大倍率,使切换后的镜头能够拍摄到清晰、完整的缺陷图像,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
如图5所示,图5为本发明检测方法的第五实施例的流程图。本实施例以图4所示实施例为基础,对确定放大倍率的步骤进行了详细描述。
步骤S501,扫描阵列基板的缺陷,确定缺陷的尺寸;
本实施例中,阵列基板在进入检测装置后,由检测装置的光学扫描仪对阵列进行扫描,确定阵列基板上的缺陷数量和缺陷尺寸。
步骤S502,确定缺陷的尺寸所在的预设尺寸范围;
调用缺陷尺寸数据表,获取预设尺寸范围与放大倍率的映射关系;或预先手动输入合适的尺寸范围,将预设尺寸范围与放大倍率建立映射关系。然后判断当前扫描的缺陷尺寸落入了哪一个预设尺寸范围,以确定当前缺陷的尺寸范围。
步骤S503,根据预设尺寸范围,生成对应的切换控制指令;
查找对应的预设尺寸范围后,查询映射关系数据表,获得与预设尺寸范围对应的放大倍率,并生成响应的切换控制指令,其包括以下步骤:
步骤S511,当缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
步骤S512,当缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
步骤S513,当缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率;
步骤S504,采用切换后的镜头拍摄缺陷。
本实施例以放大倍率分别为5倍、10倍和50倍为例,预设尺寸范围与放大倍率的映射关系如下:预设尺寸范围≥100μm,放大倍率为5倍;20μm<预设尺寸范围<100μm,放大倍率为10倍;预设尺寸范围≤20μm,放大倍率为50倍。
根据预设尺寸范围与放大倍率的映射关系,获得需要切换的放大倍率,使切换后的镜头能够拍摄到清晰、完整的缺陷图像,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
如图6所示,图6为本发明检测装置的第一实施例的结构示意图。本实施例提到的检测装置,用于检测阵列基板,包括光学扫描仪10、镜头切换器20以及镜头30,光学扫描仪10用于扫描基板的缺陷并确定缺陷的尺寸;镜头切换器20用于根据光学扫描仪确定缺陷的尺寸,生成切换控制指令,并根据控制指令控制镜头30切换至与缺陷尺寸相适应的放大倍率,并控制切换后的镜头30拍摄缺陷。
本实施例中,阵列基板在进入检测装置后,由检测装置的光学扫描仪10对阵列进行扫描,确定阵列基板上的缺陷数量和缺陷尺寸。针对每一个缺陷,当缺陷尺寸较大时,减小镜头30的放大倍率;当缺陷尺寸较小时,增大镜头30的放大倍率。放大倍率的切换可采用切换镜头30的方式,不同的镜头30具有不同的放大倍率,或者采用放大倍率可调的镜头30,对镜头30的放大倍率进行调整。切换后的镜头30相对于当前缺陷尺寸具备合适的视野,能够将当前缺陷拍摄清楚、完整。本实施例通过对扫描到的缺陷尺寸进行分析,根据缺陷尺寸切换拍摄镜头30,确保切换后的镜头30能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率,提高了制程监控效果。
本发明实施例可采用多个不同放大倍率的镜头30,镜头切换器20根据切换控制指令移动,带动镜头切换器20上的与缺陷尺寸相适应的放大倍率所对应的镜头30移动至缺陷上方,实现镜头30的切换。具体为,采用切换不同的镜头30,实现放大倍率的切换,将多个不同放大倍率的镜头30排列于镜头切换器20上,例如,放大倍率分别为50倍、20倍、10倍、5倍、2倍的镜头30,可采用一字型排列,或采用圆形排列。当缺陷的尺寸较大时,可采用放大倍率较小的镜头30,通过控制镜头切换器20移动,带动5倍放大倍率的镜头30移动至缺陷上方,采用5倍放大倍率的镜头30拍摄缺陷的照片;当缺陷的尺寸较小时,采用放大倍率较大的镜头30,通过控制镜头切换器20移动,带动50倍放大倍率的镜头30移动至缺陷上方,采用50倍放大倍率的镜头30拍摄缺陷的照片。本实施例根据切换控制指令控制镜头切换器20的移动,带动镜头30移动,使适用于当前缺陷尺寸的镜头30切换至当前缺陷上方,实现放大倍率的切换,确保切换后的镜头30能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
本发明实施例还可采用一个放大倍率可调的镜头30,镜头切换器20根据切换控制指令调整镜头30的放大倍率,使镜头30的放大倍率与缺陷尺寸相适应,实现镜头30的放大倍率切换。具体为,在镜头切换器20上连接该放大倍率可调的镜头30,当缺陷的尺寸较大时,镜头切换器20将镜头30的放大倍率调至较小的放大倍率,采用较小的放大倍率拍摄缺陷的照片;当缺陷的尺寸较小时,镜头切换器20将镜头30的放大倍率调至较大的放大倍率,采用较大的放大倍率拍摄缺陷的照片。本实施例根据切换控制指令控制镜头切换器20调整镜头30的放大倍率,使镜头30的放大倍率适用于当前缺陷尺寸,实现放大倍率的切换,确保放大倍率切换后的镜头30能够拍摄到清晰、完整的缺陷图片,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
如图7所示,图7为本发明检测装置的第二实施例的结构示意图。本实施例以图6所示实施例为基础,对镜头切换器20的具体结构进行详细说明,以说明根据缺陷尺寸范围切换镜头30的具体工作原理。其中,镜头切换器20具体包括:
尺寸范围确定单元21,用于确定缺陷的尺寸所在的预设尺寸范围;
切换控制指令生成单元22,用于根据预设尺寸范围,生成对应的切换控制指令;
放大倍率切换单元23,用于将镜头30切换至与预设尺寸范围对应的放大倍率。
本实施例的检测装置中存储有缺陷尺寸数据表,该缺陷尺寸数据表预设尺寸范围与放大倍率的映射关系;或预先手动输入合适的尺寸范围,将预设尺寸范围与放大倍率建立映射关系。尺寸范围确定单元21用于判断当前扫描的缺陷尺寸落入了哪一个预设尺寸范围,以确定当前缺陷的尺寸范围。切换控制指令生成单元22用于在尺寸范围确定单元21找到对应的预设尺寸范围后,查询映射关系数据表,获得与预设尺寸范围对应的放大倍率,并生成对应的切换控制指令。放大倍率切换单元23用于根据切换控制指令将镜头30放大倍率切换至与预设尺寸范围对应的放大倍率。本实施例通过预设尺寸范围与放大倍率建立映射关系,根据当前扫描的缺陷尺寸,获得需要切换的放大倍率,使切换后的镜头30能够拍摄到清晰、完整的缺陷图像,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
本发明实施例中,放大倍率切换单元23实现了缺陷尺寸范围与放大倍率的对应切换,其中,放大倍率切换单元23进一步用于:
当缺陷的尺寸大于或等于100μm时,将镜头30切换至5倍放大倍率;
当缺陷的尺寸大于20μm且小于100μm时,将镜头30切换至10倍放大倍率;
当缺陷的尺寸小于或等于20μm时,将镜头30切换至50倍放大倍率。
本实施例以放大倍率分别为5倍、10倍和50倍为例,预设尺寸范围与放大倍率的映射关系如下:预设尺寸范围≥100μm,放大倍率为5倍;20μm<预设尺寸范围<100μm,放大倍率为10倍;预设尺寸范围≤20μm,放大倍率为50倍。
根据预设尺寸范围与放大倍率的映射关系,获得需要切换的放大倍率,使切换后的镜头30能够拍摄到清晰、完整的缺陷图像,有利于对缺陷类型进行分析,有效提升了对缺陷的分析准确率。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种检测方法,用于检测阵列基板,其特征在于,包括步骤:
    扫描阵列基板的缺陷,确定所述缺陷的尺寸;
    根据所述缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率;
    采用切换后的所述镜头拍摄所述缺陷。
  2. 根据权利要求1所述的检测方法,其特征在于,所述根据缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    确定所述缺陷的尺寸所在的预设尺寸范围;
    根据所述预设尺寸范围,生成对应的切换控制指令;
    将镜头切换至与所述预设尺寸范围对应的放大倍率。
  3. 根据权利要求2所述的检测方法,其特征在于,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
    当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
    当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
  4. 根据权利要求1所述的检测方法,其特征在于,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    根据所述切换控制指令,控制镜头切换器移动,带动所述镜头切换器上的与所述缺陷尺寸相适应的放大倍率所对应的镜头移动至所述缺陷上方。
  5. 根据权利要求4所述的检测方法,其特征在于,所述根据缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    确定所述缺陷的尺寸所在的预设尺寸范围;
    根据所述预设尺寸范围,生成对应的切换控制指令;
    将镜头切换至与所述预设尺寸范围对应的放大倍率。
  6. 根据权利要求5所述的检测方法,其特征在于,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
    当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
    当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
  7. 根据权利要求1所述的检测方法,其特征在于,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    根据所述切换控制指令,调整所述镜头的放大倍率,使所述镜头的放大倍率与所述缺陷尺寸相适应。
  8. 根据权利要求7所述的检测方法,其特征在于,所述根据缺陷的尺寸,生成切换控制指令,将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    确定所述缺陷的尺寸所在的预设尺寸范围;
    根据所述预设尺寸范围,生成对应的切换控制指令;
    将镜头切换至与所述预设尺寸范围对应的放大倍率。
  9. 根据权利要求8所述的检测方法,其特征在于,所述将镜头切换至与所述缺陷尺寸相适应的放大倍率的步骤具体包括:
    当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
    当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
    当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
  10. 一种检测装置,用于检测阵列基板,其特征在于,包括光学扫描仪、镜头切换器和镜头,所述光学扫描仪用于扫描阵列基板的缺陷,确定所述缺陷的尺寸;所述镜头切换器用于根据所述缺陷的尺寸,生成切换控制指令,并根据切换控制指令控制所述镜头切换至与所述缺陷尺寸相适应的放大倍率,并控制切换后的所述镜头拍摄所述缺陷。
  11. 根据权利要求10所述的检测装置,其特征在于,所述镜头切换器具体包括:
    尺寸范围确定单元,用于确定所述缺陷的尺寸所在的预设尺寸范围;
    切换控制指令生成单元,用于根据所述预设尺寸范围,生成对应的切换控制指令;
    放大倍率切换单元,用于将镜头切换至与所述预设尺寸范围对应的放大倍率。
  12. 根据权利要求11所述的检测装置,其特征在于,所述放大倍率切换单元进一步用于:
    当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
    当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
    当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
  13. 根据权利要求10所述的检测装置,其特征在于,所述镜头切换器用于根据所述切换控制指令移动,带动所述镜头切换器上的与所述缺陷尺寸相适应的放大倍率所对应的镜头移动至所述缺陷上方。
  14. 根据权利要求13所述的检测装置,其特征在于,所述镜头切换器具体包括:
    尺寸范围确定单元,用于确定所述缺陷的尺寸所在的预设尺寸范围;
    切换控制指令生成单元,用于根据所述预设尺寸范围,生成对应的切换控制指令;
    放大倍率切换单元,用于将镜头切换至与所述预设尺寸范围对应的放大倍率。
  15. 根据权利要求14所述的检测装置,其特征在于,所述放大倍率切换单元进一步用于:
    当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
    当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
    当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
  16. 根据权利要求10所述的检测装置,其特征在于,所述镜头切换器用于根据所述切换控制指令调整所述镜头的放大倍率,使所述镜头的放大倍率与所述缺陷尺寸相适应。
  17. 根据权利要求16所述的检测装置,其特征在于,所述镜头切换器具体包括:
    尺寸范围确定单元,用于确定所述缺陷的尺寸所在的预设尺寸范围;
    切换控制指令生成单元,用于根据所述预设尺寸范围,生成对应的切换控制指令;
    放大倍率切换单元,用于将镜头切换至与所述预设尺寸范围对应的放大倍率。
  18. 根据权利要求17所述的检测装置,其特征在于,所述放大倍率切换单元进一步用于:
    当所述缺陷的尺寸大于或等于100μm时,将镜头切换至5倍放大倍率;
    当所述缺陷的尺寸大于20μm且小于100μm时,将镜头切换至10倍放大倍率;
    当所述缺陷的尺寸小于或等于20μm时,将镜头切换至50倍放大倍率。
PCT/CN2012/086535 2012-12-10 2012-12-13 检测方法及检测装置 WO2014089801A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/811,391 US9164043B2 (en) 2012-12-10 2012-12-13 Detecting method and detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210528167.6 2012-12-10
CN2012105281676A CN102980897A (zh) 2012-12-10 2012-12-10 检测方法及检测装置

Publications (1)

Publication Number Publication Date
WO2014089801A1 true WO2014089801A1 (zh) 2014-06-19

Family

ID=47855117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086535 WO2014089801A1 (zh) 2012-12-10 2012-12-13 检测方法及检测装置

Country Status (2)

Country Link
CN (1) CN102980897A (zh)
WO (1) WO2014089801A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502697B2 (en) * 2017-09-11 2019-12-10 The Boeing Company High speed pipe inspection system
JP7147617B2 (ja) * 2019-02-19 2022-10-05 セイコーエプソン株式会社 プロジェクター及びプロジェクターの制御方法
CN110441234B (zh) * 2019-08-08 2020-07-10 上海御微半导体技术有限公司 一种变焦筒镜、缺陷检测装置及缺陷检测方法
CN111554591B (zh) * 2020-04-27 2024-03-12 上海果纳半导体技术有限公司 半导体芯片处理装置
CN113156674B (zh) * 2021-04-26 2023-03-31 长沙惠科光电有限公司 彩膜基板的修补方法、彩膜基板及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1473360A (zh) * 2001-09-19 2004-02-04 ���ְ�˹��ѧ��ҵ��ʽ���� 半导体晶片检查设备
KR20110070062A (ko) * 2009-12-18 2011-06-24 주식회사 탑 엔지니어링 어레이 테스트 장치
KR20120006860A (ko) * 2010-07-13 2012-01-19 한미반도체 주식회사 웨이퍼 검사 장치
CN102798634A (zh) * 2011-05-26 2012-11-28 塔工程有限公司 光学检测装置以及具有光学检测装置的阵列测试装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003290752A1 (en) * 2002-11-12 2004-06-03 Fei Company Defect analyzer
DE10343148A1 (de) * 2003-09-18 2005-04-21 Leica Microsystems Verfahren und Vorrichtung zur Inspektion eines Wafers
CN102645443A (zh) * 2012-03-28 2012-08-22 中国科学院上海微系统与信息技术研究所 一种光伏探测材料缺陷与器件性能关联性的系统表征方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1473360A (zh) * 2001-09-19 2004-02-04 ���ְ�˹��ѧ��ҵ��ʽ���� 半导体晶片检查设备
KR20110070062A (ko) * 2009-12-18 2011-06-24 주식회사 탑 엔지니어링 어레이 테스트 장치
KR20120006860A (ko) * 2010-07-13 2012-01-19 한미반도체 주식회사 웨이퍼 검사 장치
CN102798634A (zh) * 2011-05-26 2012-11-28 塔工程有限公司 光学检测装置以及具有光学检测装置的阵列测试装置

Also Published As

Publication number Publication date
CN102980897A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2017155341A1 (en) Apparatus and method for controlling auto focus of camera module
WO2017191927A1 (en) Dual camera module and method for controlling the same
WO2014089801A1 (zh) 检测方法及检测装置
WO2016080708A1 (en) Wearable device and method for outputting virtual image
WO2013097487A1 (zh) 简易空中鼠标的实现方法、视频终端及系统
WO2018223418A1 (zh) 一种显示面板检测方法、装置及系统
WO2016154926A1 (zh) 成像装置及其补光控制方法、系统,以及可移动物体
WO2018166224A1 (zh) 全景视频的目标追踪显示方法、装置及存储介质
WO2014035054A1 (en) Method and apparatus for controlling zoom function in an electronic device
WO2014058086A1 (en) Image processing device and image processing method
WO2017206368A1 (zh) 高动态范围画面切换方法及装置
WO2020004837A1 (ko) 자동 편광 조절 장치 및 방법
WO2014008689A1 (zh) 偏光板撕除的方法和装置
WO2018223602A1 (zh) 显示终端、画面对比度提高方法及计算机可读存储介质
WO2017181504A1 (zh) 智能调节字幕大小的方法及电视机
WO2018094812A1 (zh) 调节液晶显示装置屏幕背光亮度的方法及装置
WO2018023925A1 (zh) 拍摄方法及系统
WO2017190452A1 (zh) 背光自适应调节方法及装置
WO2019047378A1 (zh) 星体快速识别方法、装置及望远镜
WO2014178610A1 (ko) 옵티컬 트랙킹 시스템 및 이를 이용한 트랙킹 방법
WO2013033923A1 (zh) 液晶显示面板及其电压控制方法
WO2019112132A1 (en) Lens curvature variation apparatus
WO2019148818A1 (zh) 图像处理方法、装置、系统及计算机可读存储介质
WO2017196023A1 (en) Camera module and auto focusing method thereof
WO2016119150A1 (zh) 具有多摄像头的移动终端的拍摄方法和移动终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13811391

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890070

Country of ref document: EP

Kind code of ref document: A1