WO2020034931A1 - 用于激光气体检测仪的数据管理方法及数据管理终端 - Google Patents

用于激光气体检测仪的数据管理方法及数据管理终端 Download PDF

Info

Publication number
WO2020034931A1
WO2020034931A1 PCT/CN2019/100307 CN2019100307W WO2020034931A1 WO 2020034931 A1 WO2020034931 A1 WO 2020034931A1 CN 2019100307 W CN2019100307 W CN 2019100307W WO 2020034931 A1 WO2020034931 A1 WO 2020034931A1
Authority
WO
WIPO (PCT)
Prior art keywords
data management
management terminal
measured
gas concentration
data
Prior art date
Application number
PCT/CN2019/100307
Other languages
English (en)
French (fr)
Inventor
陶俊
向少卿
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Priority to US17/268,122 priority Critical patent/US20210302267A1/en
Publication of WO2020034931A1 publication Critical patent/WO2020034931A1/zh
Priority to US17/354,880 priority patent/US11867816B2/en
Priority to US17/354,789 priority patent/US11867815B2/en
Priority to US18/499,278 priority patent/US20240061120A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/40Software arrangements specially adapted for pattern recognition, e.g. user interfaces or toolboxes therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • G08B21/16Combustible gas alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0118Apparatus with remote processing
    • G01N2021/0125Apparatus with remote processing with stored program or instructions
    • G01N2021/0131Apparatus with remote processing with stored program or instructions being externally stored
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • G01N2021/1795Atmospheric mapping of gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0214Airborne
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0224Pivoting casing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/17Image acquisition using hand-held instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/93Remote control using other portable devices, e.g. mobile phone, PDA, laptop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • H04Q2209/43Arrangements in telecontrol or telemetry systems using a wireless architecture using wireless personal area networks [WPAN], e.g. 802.15, 802.15.1, 802.15.4, Bluetooth or ZigBee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/50Arrangements in telecontrol or telemetry systems using a mobile data collecting device, e.g. walk by or drive by

Definitions

  • the present invention relates to the field of laser telemetry. More specifically, the present invention relates to a data management method of a laser gas detector and a data management terminal thereof.
  • the laser telemeter is a widely used device for detecting natural gas leakage.
  • the telemeter uses wavelength-modulated spectroscopy technology.
  • the basic principle is: fix the laser frequency near a certain absorption peak of methane, modulate the laser frequency at the same time, and modulate the harmonics according to the frequency.
  • the correlation between the signal and the concentration of the gas to be measured is detected, thereby obtaining the information of the gas to be measured on the optical path.
  • Laser telemeters can be configured into different forms of products, such as cloud desktop, handheld and unmanned airborne.
  • Cloud desktop is usually used to scan and monitor the gas leakage in fixed areas (such as natural gas pipelines, gas fields, natural gas stations, etc.); such telemeters only need to upload real-time measured data directly to the upper computer for viewing, and when a leak occurs When the alarm occurs through the host computer.
  • the data of such laser telemeters can be displayed immediately without being saved, integrated, and managed, which results in that most of these laser telemeters still do not have a data management system or use the simplest data export. Way to manage.
  • the present invention provides a data management method for a laser gas detector.
  • the data management terminal connected to the laser gas detector communicates with the gas concentration detected by the laser gas detector in real time.
  • the data is organized into a log of the gas concentration to be measured and sent to the server, which saves, integrates and manages the data of the laser gas detector.
  • the data management method provided by the present invention includes:
  • a data management terminal establishes a connection with a communication port of the laser gas detector, and acquires the gas concentration to be measured in the target area in real time through the connection;
  • Log creation step the data management terminal creates a log of the gas concentration to be measured according to the information of the gas concentration to be measured;
  • Second communication step the data management terminal sends the log of the gas concentration to be measured to the server, or the data management terminal creates a detection report according to the log of the gas concentration to be measured, and sends the detection report to the server .
  • the data management method provided by the present invention is different from the original real-time measurement direct upload method.
  • the data management terminal is used to manage the gas concentration data detected by the laser gas detector, and the data is uploaded to the server through a log or report. , Solved the data management problem of portable laser gas detector.
  • the data management terminal organizes the data into logs or reports and uploads such independent files, which can provide a platform for engineers to operate the data, so that each engineer can participate in the upload, integration and management of data;
  • the integration of data from multiple data management terminals also enables engineers or server-side managers to have a more macroscopic understanding of the concentration distribution of the gas to be measured at different locations in the managed area. Once signs of leakage are found, they can According to the concentration of the gas to be measured and the wind direction at the leak point, and the data of the gas to be measured at other locations uploaded by other data management terminals, etc., comprehensively determine the possible geographic location of the leak point and the impact range and area involved after the leak.
  • the server in the data management method of the present invention receives a log of the gas concentration to be measured, which is more convenient for archiving, downloading, and viewing of the server than the previous real-time receiving method.
  • the data management method further includes:
  • Image acquisition step acquiring image data of the target area
  • the image data is also sent to a server, or a detection report including the image data is created, and the detection report is sent to the server.
  • inspectors After inspectors measure a natural gas leak in a certain area, in most cases, they do not have the ability to complete the repair work alone, but need to dispatch other operators to perform the repair task. In this process, the inspector can use the precious waiting time to accurately identify the leak point, and collect the image data of the target area to upload to the server to show the operator the exact location of the leak point and the operating environment conditions, etc. It is convenient for operators to quickly determine the location and extent of repairs and equipment necessary to adapt to the operating environment.
  • the data management terminal is a smart phone, a tablet computer, or a laptop computer.
  • the data management terminal is a consumer digital personal assistant (PDA) such as a smart phone, a tablet computer, or a laptop computer
  • PDA consumer digital personal assistant
  • the terminal itself has a camera device, and the image acquisition process can be implemented through software invocation There is no need to provide an additional camera device.
  • consumer-grade PDAs have been widely used, and their data processing systems generally have higher computing capabilities than industrial-grade PDAs. Management systems can be built with only the corresponding software support. Reduced hardware costs required for engineering staff.
  • the data management method further includes:
  • Data association step correlate the gas concentration log to be measured with the image data.
  • the data association step is performed at a server or a data management terminal; the association method adopted is naming or correlating the log and image of the gas concentration to be measured with the relevant file name.
  • the data is placed in the same folder.
  • the data management method further includes a data viewing step: the data management terminal obtains a log of a gas concentration to be measured or a detection report from a server for viewing.
  • the same data management terminal is used to simultaneously collect data (that is, connect to a laser gas detector and obtain real-time detection data), integrate data (that is, organize it into a log or report and send it to the server) and Presentation of data (that is, viewing after obtaining from the server), so that each engineer can participate in the collection, integration, management and use of data through the data management terminal equipment equipped for it.
  • the log of the gas concentration to be measured or the detection report obtained by the data management terminal from the server includes the log of the gas concentration to be shared shared by other data management terminals.
  • each engineer who holds the data management terminal and the server-side manager can have a more macroscopic understanding of the distribution of the gas concentration to be measured at different locations in the area involved.
  • emergency repair program discussion and formulation it is conducive to responding to large-scale multi-point leakage and other emergency situations.
  • the data management method further includes: a location collection step: the data management terminal acquires location information; and in the second communication step, the location information is further sent to a server, Alternatively, a detection report including the location information is created, and the detection report is sent to a server.
  • the position of the measuring point of the inspector can be determined.
  • This technical solution can be used in combination with a technical solution with an image acquisition step, which facilitates the operator to restore the position of the inspector based on the position information, and finds the exact location of the leak point based on the content of the image data.
  • the above technical solution also enables data to be visually presented on a map.
  • the step of presenting data on the map includes: associating the log of the gas concentration to be measured with the location information; after the association is completed, the method further includes: displaying a map, and displaying a location corresponding to the location information on the map The marked point and the measured gas concentration value of the measured gas concentration log associated with the position information.
  • the data management terminal is a smart phone, a tablet computer, or a laptop computer, and a program instruction is used to call a GPS positioning system of the data management terminal to obtain position information.
  • the laser gas detector is a handheld laser methane telemeter, a cloud desktop laser methane remote meter, or an unmanned airborne laser methane remote meter.
  • the data management terminal is a smart phone, a tablet computer, or a laptop computer.
  • the present invention also provides a data management terminal for a laser gas detector, including:
  • a first communication device capable of being communicatively connected with the laser gas detector
  • a second communication device capable of communicating with the server
  • One or more processors are One or more processors;
  • a memory which is configured to store one or more programs executed by the one or more processors
  • the one or more programs include instructions for performing the following steps:
  • a first communication step acquiring the concentration of a gas to be measured in a target area in real time through a communication connection between the first communication device and the laser gas detector;
  • Log creation step creating a log of the gas concentration to be measured according to the information of the gas concentration to be measured;
  • Second communication step sending the gas concentration log to be measured to the server through the second communication device, or creating a detection report based on the gas concentration log to be measured, and sending the detection through the second communication device The report is sent to the server.
  • the data management terminal of the present invention also has the following advantages: implementing specific data management steps through a software program, so that the data management terminal of the present invention can be configured as various hardware form.
  • the data management terminal is a personal mobile device such as a smart phone, a tablet computer, or a laptop computer.
  • the personal mobile device is used as the terminal to build the management system. No additional design and manufacturing terminal is required. Instead, the corresponding software can be directly installed in the above equipment held by the engineer personally, and his personal mobile device can be called as the data management terminal, which greatly reduces the system construction. the cost of.
  • a Bluetooth or wireless receiving device of the smart phone may be configured as the first communication device, and a wireless receiving device or a cellular mobile network of the smart phone may be configured as The second communication device installs a program including the above steps in a memory of the smart phone.
  • the data management terminal further includes an image acquisition device
  • the one or more programs further include instructions for performing the following steps: an image acquisition step: acquiring data from the image acquisition device through the image acquisition device The image data of the target area; in the second communication step, the image data is also sent to the server, or a detection report including the image data is created and the detection report is sent to the server.
  • the data management terminal is integrally installed with the laser gas detector.
  • the data management terminal further includes a visible light emitting device configured to emit a visible light beam that is parallel to the measurement laser of the laser gas detector.
  • the engineer can reflect the irradiation position of the measurement laser with the spot position of the visible light beam, and photograph and record the position with the image acquisition device.
  • the data management terminal further includes a display screen
  • the one or more programs further include instructions for performing the following steps: setting a threshold value of a gas concentration to be measured; when When the concentration of the gas to be measured in the target area reaches the threshold value of the gas to be measured, the data management terminal responds and enters a pre-shooting mode, and the data management terminal entering the pre-shooting mode will display the Measure the gas concentration, record the gas concentration to be measured, and turn on the image acquisition device to receive image data of the target area.
  • the data management terminal provided by this better technical solution can automatically trigger the terminal to enter the pre-shooting mode when detecting a leak point when performing a leak point determination and recording, to remind the inspector that there is a leak, and to display the gas concentration data to be measured. It is convenient for the user to determine the real-time gas concentration to be measured. At the same time, the camera is turned on and ready to shoot and save at any time. With the above settings, the inspector only needs to operate the entire process on the integrated device, and the operation method is simple and fast, which greatly reduces the operation time and difficulty of the inspector, and brings a better user experience.
  • the one or more programs further include instructions for performing the following steps: characterizing a certain region in the image; determining a concentration value of the gas to be measured in the gas concentration log to be measured, and The gas concentration value to be measured is associated with the characteristic region.
  • a region is marked in the image data by providing a marking tool to characterize the region, or in the image data An area having an irradiation position of the visible light beam.
  • the data management terminal includes a display screen, and the one or more programs further include instructions for performing the following steps: a data viewing step: the data management terminal obtains a test to be tested from a server Gas concentration log for review.
  • a positioning device is further included, and the one or more programs further include instructions for performing the following steps: a position acquisition step: the data management terminal acquires position information; and in the second In the communication step, the location information is also sent to the server, or a detection report including the location information is created, and the detection report is sent to the server.
  • the laser gas detector is a handheld laser methane telemeter, a cloud desktop laser methane remote meter, or an unmanned airborne laser methane remote meter.
  • the laser gas detector is a handheld laser methane telemeter or an unmanned airborne laser methane telemeter.
  • the laser gas detector is a handheld laser methane telemeter.
  • the invention also provides a laser gas detector with a data management terminal.
  • FIG. 1 is a schematic diagram of a system configuration of a data management terminal according to a first embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a data management method according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a system configuration of a data management terminal according to a second embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a data management method in a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a data viewing interface of a data management terminal in a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an image acquisition step performed by an engineer in a second embodiment of the present invention.
  • FIG. 7 is a system configuration diagram of a data management terminal according to a third embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a pre-shooting mode interface of a laser gas detector in a third embodiment of the present invention.
  • this embodiment first provides a data management terminal 2 and a data management system for managing a handheld laser telemeter including the data management terminal 2.
  • the data management terminal 2 is an engineering project.
  • a personal data assistant device held by a person includes a first communication device 202, a second communication device 204, a processor 206, and a memory 208.
  • the memory 208 stores a program for execution by the processor 206, and can call the first communication
  • the device 202 and the second communication device 204 transmit and receive data.
  • FIG. 1 only shows that the server 3 corresponds to a group of laser gas detectors 1 and data management terminals 2.
  • each server 3 can correspond to two or more data management terminals 2 and Data is managed and transmitted, and each data management terminal 2 can work with different laser gas detectors 1.
  • the memory 208 stores program instructions executable by the processor 206, and the program instructions can perform the following steps:
  • the first communication step connect the detector to obtain the gas concentration data of the target area
  • the first communication device 202 is called, and a communication connection is established with the communication interface 102 of the laser gas detector 1, and through this communication connection, the data management terminal 2 can acquire the gas concentration data of the target area to be measured.
  • the data management terminal 2 communicates in real time with the laser gas detector 1 that is measuring the concentration of the gas to be measured in the target area through a communication connection, so as to obtain the data of the gas concentration in the target area in real time, but the data management terminal 2 may also Communicate with the laser gas detector 1 that has completed the measurement through a communication connection to obtain the measured gas concentration data that has been measured and stored.
  • the communication interface 102 of the laser gas detector 1 is an interface of a communication module configured by the laser gas detector 1 after shipment or afterwards.
  • S200 log creation step create a log of the gas concentration to be measured according to the information of the gas concentration data to be measured;
  • the data management terminal 2 creates a log of the gas concentration to be read and processed by the server 3 or the data management terminal 2 based on the gas concentration data to be measured obtained from the laser gas detector 1.
  • S300 second communication step sending a log of the gas concentration to be measured to the server;
  • the data management terminal 2 sends the log of the gas concentration to be measured generated in step S200 to the server 3, and the server 3 obtains the gas concentration to be measured obtained from the same data processing terminal 2 or a different data management terminal 2. Logs are managed collectively.
  • the data management terminal 2 converts real-time data into a report or log that can be read and processed by the server and local applications.
  • each engineering staff can participate in the uploading, integration and management of data; on the other hand, by integrating the data of multiple data management terminals, It also enables engineers or server-side managers to have a more macroscopic understanding of the distribution of gas concentration to be measured in the area under management. For example, when a relatively high concentration of gas to be measured is not exceeded, the engineering staff Tend to think that there is a possible leak point near this location, but it is often difficult to determine the exact location of the leak point due to the gas flow diffusion effect.
  • the engineering personnel can obtain the gas concentration data of the nearby location uploaded from other data management terminals 2 from the server, and accurately determine the location of the leak point in combination with environmental factors.
  • the server receives the log of the gas concentration to be measured that has been sorted out by the data processing terminal 2. Compared with the previous real-time receiving method, it is also easier to archive and consult.
  • this embodiment first provides a data management terminal 2 and a data management system including the data management terminal 2 for managing a handheld laser telemeter (laser gas detector 1).
  • the data management terminal 2 is a smart phone and includes a first communication device 202 (Bluetooth communication device), a second communication device 204 (cellular mobile network), a processor 206, a memory 208, an image acquisition device 210 (camera), and a positioning device. 212 (GPS positioning system), wherein the processor 206 is communicatively connected to the first communication device 202, the second communication device 204, the memory 208, the image acquisition device 210, and the positioning device 212 to transmit data and control the operation of the device .
  • An application program for use with the data management terminal 2 is stored in the memory 208 of the smart phone. After obtaining the user authorization, the application program is executed by the processor 206 and can call the first communication device 202 and the second communication device of the mobile phone 204 performs data processing and transmission and reception, calls a camera of the mobile phone as the image acquisition device 210 to take a picture or video, and calls a GPS positioning system of the mobile phone as the positioning device 212 to obtain geographic coordinate information.
  • the data management system can completely eliminate the design and production steps of the data management terminal and directly distribute a laser gas detector.
  • the application program is installed on the smart phone of the engineer 1 in the above manner.
  • the personal mobile device of the engineer is used as the data management terminal, which can greatly reduce the cost of system construction.
  • the data management terminal 2 can execute instructions for the following steps by installing a mobile phone application software:
  • the first communication step connect the detector to obtain the gas concentration data of the target area
  • the first communication device 202 is called, and a Bluetooth connection is established with the communication interface 102 of the laser gas detector 1.
  • the smartphone can obtain the target gas concentration in the target area and save it in the memory 208.
  • the saved content includes: The measurement time and the concentration of the gas to be measured at the measurement time.
  • the smartphone communicates in real time with the laser gas detector 1 that is measuring the concentration of the gas to be measured in the target area through a Bluetooth connection, so as to obtain the data of the gas concentration in the target area in real time, but the smartphone can also communicate with The laser gas detector 1 that has completed the measurement communicates to acquire the measured gas concentration data that has been measured and stored.
  • the communication interface 102 of the laser gas detector 1 is a Bluetooth communication module configured by the laser gas detector 1 after shipment or added later.
  • the obtained gas concentration to be measured can be presented on the display screen of the data management terminal 2 in the form of numbers, histograms, line graphs, etc., which is convenient for engineers to read.
  • S102 image acquisition step acquiring image data of a target area through an image acquisition device
  • the laser gas detector 1 is equipped with a visible light emitting device 104 (visible light laser), and the propagation direction of the visible light beam emitted by the visible light emitting device 104 is substantially parallel to the measurement laser propagation direction of the laser gas detector 1.
  • the spot position indicates the irradiation position of the measurement laser emitted by the laser gas detector 1, and can be used to guide the image acquisition device 210 to perform image acquisition on a gas leak point. By collecting the image data of the target area and uploading it to the server, it is convenient for the inspector to show the exact location of the leak point to the operator.
  • S200 log creation step create a log of the gas concentration to be measured according to the information of the gas concentration data to be measured;
  • the leak point confirmation is complete.
  • a log of the gas concentration to be measured that can be read by the application program of the server 3 or the data management terminal 2 can be created according to the gas concentration data collected within the time range from the beginning of searching to the end and confirming the leak point.
  • the log of the gas concentration to be measured includes at least a part of the measurement time saved in step S100 and the concentration of the gas to be measured at the measurement time.
  • S202 Position acquisition step acquiring position information through a position acquisition device
  • the GPS positioning system of the smart phone is called as the positioning device 210, and the geographic coordinates of the location where the smart phone is located are obtained, and the coordinates reflect the position of the inspector during the measurement. Subsequent operators can restore the station based on the geographic coordinates and look around and compare the content with the image data to find the exact leak location.
  • S204 data association step correlate the gas concentration log to be measured, image data and position information; this step occurs after steps S200, S102, and S202;
  • a file format naming standard with a fixed format is used to name the gas concentration log file to be measured, an image file, and position information text, to associate the gas concentration log to be measured, image data, and position information to indicate the gas concentration log to be measured and The uniformity of image data in recording time and recording place.
  • S206 report creation step create a detection report based on the gas concentration log to be measured, image data and location information.
  • the detection report may be selectively stored in the local storage 208 when it is created.
  • S300 second communication step sending a detection report to the server
  • the detection report created in step S206 is sent to the server through the cellular data network, and the server performs data processing on the detection reports obtained from different data management terminals 2.
  • the data processing process includes at least: extracting the concentration value of the gas to be measured recorded in the log of the concentration of the gas to be measured in the detection report, and extracting the position information.
  • the value of the gas concentration to be measured may be the highest value of the gas concentration in the gas concentration log record, or the average value of the gas concentration in the gas concentration log record, or it may be the gas concentration log The last recorded gas concentration value in the record. It may further include extracting information such as a regional distribution map of the measured gas concentration obtained from the analysis and analysis of the gas concentration log to be measured or time-varying data of the measured gas concentration.
  • the data management terminal 2 obtains a detection report from the server for viewing, and the available detection reports include detection reports shared by other data management terminals.
  • the data management terminal provided by the present invention can simultaneously implement data collection, integration, and presentation functions, so that each engineer can participate in the collection and use of data, and the content of the management system is more comprehensive and information is more interoperable.
  • the data viewing function of the data management terminal 2 provided in this embodiment is not limited to viewing the detection report, but also includes viewing the distribution map of the concentration of the gas to be measured based on the geographic location.
  • the data management terminal 2 presenting the geographical position-based gas concentration distribution map includes the following steps:
  • this embodiment presents the measured gas concentration value 214b by a method of displaying numerical values
  • the technician can also choose other suitable presentation methods according to the actual situation, such as using different visualization parameters such as color, size, and shape to present different regions. The difference in the concentration of the gas to be measured.
  • the laser gas detector 1 has a visible light emitting device 104 (not shown in FIG. 6, see FIG. 3).
  • the visible light emitting device 104 is a laser that can emit a visible light beam 108 a.
  • the emission direction of the visible light beam 108a emitted by the laser remains substantially parallel to the emission direction of the measurement laser 106a of the detector.
  • the measurement laser 106a is usually invisible light. Therefore, in this embodiment, by setting the visible light laser 108a in the same direction as the measurement laser 106a, an engineer can reflect the irradiation position 106b of the measurement laser 106a with the position of the spot 108b of the visible laser 108a during measurement to help find a leak point.
  • the light spot 108b can also cooperate with the image acquisition function of the data management terminal 2 provided in this embodiment to realize the marking of the leak point.
  • the engineer can mark the leak point with the light spot 108b, keep the laser gas detector 1 still, and call the camera of the mobile phone to take a picture toward the leak point. Due to the high brightness of the laser spot, the identified leak point location can be clearly displayed on the photo.
  • step S100 the sequence of the three steps S102, 200, and S202 can be interchanged with each other.
  • step S100 the bluetooth connection is used to communicate with the laser gas detector 1 that has completed the measurement, to obtain the measured and stored This step can also occur after steps S102 and S202; in addition, some steps in this embodiment, such as S102, S202, and S400, can also be deleted or replaced according to actual needs.
  • this embodiment provides a laser gas detector 1 having a data management module 20.
  • the data management module 20 is installed inside the laser gas detector 1 and communicates with the laser gas detector 1.
  • the detection module 10 is electrically connected to directly read the measured gas concentration data to be measured through the first communication device 202.
  • the data management module 20 of the laser gas detector includes a first communication device 202, a second communication device 204, a processor 206, a memory 208, an image acquisition device 210, and a positioning device 212.
  • the connection methods, main functions and the use of the above components refer to the second embodiment, and details are not described herein again.
  • the laser gas detector 1 in this embodiment is configured with a display screen 30.
  • the laser gas detector 1 in this embodiment is integrally installed with the data management module 20 and the detection module 10, the measurement laser emitting device 106, the visible light emitting device 104, and the image acquisition device 210 of the data management module 20 can be installed in the detection module 10.
  • the optical axes arranged in the three are approximately parallel, which greatly facilitates the image acquisition of engineers.
  • the laser gas detector 1 in this embodiment can also automatically enter a pre-shooting mode to improve the efficiency of image acquisition by engineers.
  • the data management module 20 is configured to be capable of executing instructions for the following steps:
  • S001 Threshold setting step setting the gas concentration threshold 801 to be measured
  • the first communication step the processor 206 obtains the measured gas concentration measurement value 802 from the detection module 10 in real time through the communication interface 102 and the first communication device 202;
  • the processor controls the laser gas detector 1 to enter a pre-shooting mode.
  • the interactive interface displayed in the pre-shooting mode is shown in FIG. 8.
  • the display screen 30 When the laser gas detector 1 enters the pre-shooting mode, the display screen 30 displays the measurement value 802 of the gas concentration to be measured in real time, and stores the measurement data in the memory 208 continuously or in stages, and simultaneously turns on the image acquisition device to receive the target Area image data 804.
  • the display screen 30 is a touch screen.
  • a shooting icon 803 is displayed to receive a user's instruction to save the image data 804 data.
  • the operation time is urgent and the operation is difficult. It has a pre-shooting mode.
  • the laser gas detector 1 can be automatically triggered to enter the pre-shooting mode. While reminding the inspector that there is a leak, the current gas to be measured is displayed in real time. Concentration data for easy user confirmation. In this way, the inspector can directly observe the data of the measured gas concentration measurement value 802 to determine the leak point, and at the same time the leak point is determined, the camera is turned on and ready to shoot and save at any time.
  • the inspector only needs to operate the entire process on the integrated installation device, and the operation method is simple and fast, which greatly reduces the operation time and difficulty of the inspector.
  • this embodiment further includes:
  • an image recognition module (not shown) is used to identify the pixels corresponding to the light spot 108b in the image data 804 by using the differences in color and brightness, and then the rectangular area 805 centered on the pixels is marked to characterize The area. Next, correlate the rectangular area 805 with the measured gas concentration value in the measured gas concentration log to show the leak point to the operator.
  • the feature of the area may also be implemented in other forms. For example, a marking tool may be provided for the user, and the user may mark a certain area in the image data 804 obtained by shooting to show the leakage point.
  • the communication connection modes between various components in the embodiments of the present invention are not limited to the types listed in the above embodiments, and a technician can configure it to communicate via cables, infrared data, Bluetooth, universal serial bus, IEEE 1394, Zigbee, wireless local area network or other suitable methods for communication connection.

Abstract

一种用于激光气体检测仪(1)的数据管理终端(2)及其数据管理方法,数据管理方法包括:第一通信步骤:数据管理终端(2)与激光气体检测仪(1)的通信端口(102)建立连接,并通过连接实时获取目标区域的待测气体浓度(S100);日志创建步骤:数据管理终端(2)根据待测气体浓度的信息,创建待测气体浓度日志(S200);第二通信步骤:数据管理终端(2)将待测气体浓度日志发送至服务器(3),或者,数据管理终端(2)根据待测气体浓度日志创建检测报告,并将检测报告发送至服务器(3)(S300)。数据管理方法不同于原有的实时测量直接上传的方式,使用数据管理终端(2)对激光气体检测仪(1)的待测气体浓度数据进行管理,通过日志或报告的方式将数据上传至服务器(3),解决了便携式激光气体检测仪(1)的数据管理问题。

Description

用于激光气体检测仪的数据管理方法及数据管理终端 技术领域
本发明涉及激光遥测领域,更详细地说,本发明涉及一种激光气体检测仪的数据管理方法及其数据管理终端。
背景技术
激光遥测仪是目前广泛使用的检测天然气泄漏的装置,遥测仪采用波长调制光谱技术,基本原理为:将激光频率固定在甲烷某一吸收峰附近,同时对激光频率进行调制,根据频率调制谐波信号与待测气体浓度的相关性进行检测,从而获得光路径上的待测气体信息。
激光遥测仪可以被配置为不同形式的产品,例如云台式、手持式和无人机载式。云台式通常用于对固定区域内(如天然气管道、气田、天然气站等)的气体泄漏情况进行扫描监测;此类遥测仪仅需将实时测量的数据直接上传上位机进行查看,并在发生泄漏时通过上位机报警即可。
而对于手持式、无人机载式等便携型的激光遥测仪,通常工程人员需要进入危险区域或其附近实地测量,然而此类激光遥测仪并不需要经由上位机进行报警,当实地测量到高于阈值的待测气体浓度时,由工程人员联系作业人员抢修即可。
鉴于上述原因,此类激光遥测仪的数据即时显示即可,并没有对其进行保存、整合和管理,也就造成大多数此类激光遥测仪仍旧不存在数据管理系统或使用最简单的数据导出方式进行管理。
发明内容
为了解决现有技术的上述问题,本发明提供了一种激光气体检测仪的数据管理方法,通过与激光气体检测仪通信连接的数据管理终端,将激光气体检测仪实时检测到的待测气体浓度数据整理成为待测气体浓度日志,并发送至服务器,实现了对于激光气体检测仪数据的保存、整合和管理。
具体地,本发明提供的数据管理方法包括:
第一通信步骤:数据管理终端与所述激光气体检测仪的通信端口建 立连接,并通过所述连接实时获取目标区域的待测气体浓度;
日志创建步骤:所述数据管理终端根据所述待测气体浓度的信息,创建待测气体浓度日志;
第二通信步骤:所述数据管理终端将所述待测气体浓度日志发送至服务器,或者,所述数据管理终端根据所述待测气体浓度日志创建检测报告,并将所述检测报告发送至服务器。
本发明提供的数据管理方法不同于原有的实时测量直接上传的方式,使用数据管理终端对激光气体检测仪检测到的待测气体浓度数据进行管理,通过日志或报告的方式将数据上传至服务器,解决了便携式激光气体检测仪的数据管理问题。
另外,通过数据管理终端将数据整理成日志或报告此类独立文件上传,可以为工程人员提供一个对数据进行操作的平台,使每个工程人员均可以参与到数据的上传、整合和管理中;另一方面,通过将多个数据管理终端的数据整合汇总,也使得工程人员或服务器端的管理人员能够对所管理片区不同位置的待测气体浓度分布拥有较为宏观的了解,一旦发现泄漏迹象,可以根据泄露点的待测气体浓度及风向以及其他数据管理终端上传的其他位置的待测气体浓度数据等,综合判断泄漏点可能的地理位置及泄漏后的影响范围和涉及区域。再者,本发明数据管理方法中的服务器接收的是整理好的待测气体浓度日志,相较以往实时接收的方式,也便于服务器的归档整理和下载查看。
在本发明的较优技术方案中,所述数据管理方法还包括:
影像采集步骤:采集所述目标区域的影像数据;
在所述第二通信步骤中,还将所述影像数据发送至服务器,或者,创建包括该影像数据的检测报告,并将所述检测报告发送至服务器。
检测人员测量到某一区域的天然气泄漏后,大多情况下自身不具有单独完成抢修工作的能力,而需要调度其他作业人员前来执行抢修任务。在此过程中,检测人员可以利用宝贵的等待抢修时间准确地识别泄漏点,并通过采集目标区域的影像数据上传到服务器,向作业人员展示该泄漏点的准确位置及作业环境条件等信息,以方便作业人员迅速判断需要抢修的位置及程度以及准备适应作业环境条件所必要的设备。
进一步地,所述数据管理终端为智能手机、平板电脑或膝上电脑。当所述数据管理终端为智能手机、平板电脑或膝上电脑此类消费级个人 数据助理(Personal Digital Assistant,PDA)时,此类终端自身就带有摄像装置,可以通过软件调用实现影像采集过程,无需额外提供摄像装置;此外,消费级PDA已广泛推广使用,且其数据处理系统相较工业级PDA通常具有更高的运算能力,管理系统仅需配备相应的软件支持即可搭建完成,大幅减少了需要为工程人员配备的硬件成本。
在本发明的较优技术方案中,所述数据管理方法还包括:
数据关联步骤:关联所述待测气体浓度日志和所述影像数据。关联待测气体浓度日志和影像数据,可以明确地表示该待测气体浓度日志和影像文件为同一检测人员在同一位置测量得到,无需分别查找和判断。
进一步地,在本发明的较优技术方案中,所述数据关联步骤在服务器或数据管理终端处执行;所采用的关联方法为采用相关文件名命名或将待关联的待测气体浓度日志和影像数据置于同一文件夹内。
在本发明的较优技术方案中,所述数据管理方法还包括:数据查看步骤:所述数据管理终端从服务器获取待测气体浓度日志或检测报告进行查看。
本较优技术方案中,在同一数据管理终端上同时实现数据的收集(即与激光气体检测仪连接并获取实时检测数据)、数据的整合(即整理成日志或报告的形式发送至服务器)和数据的呈现(即从服务器获取后进行查看),从而使得每个工程人员均可通过为其配备的数据管理终端设备参与到数据的收集、整合、管理和使用中。
进一步地,在本发明的较优技术方案中,所述数据查看步骤中,所述数据管理终端从服务器获取的待测气体浓度日志或检测报告包括其他数据管理终端共享的待测气体浓度日志。通过共享其他数据管理终端上传的待测气体浓度日志,使得每一个持有数据管理终端的工程人员以及服务器端的管理人员都能够对所涉及片区不同位置的待测气体浓度分布拥有较为宏观的了解,以利于每一个工程人员实时参与到泄漏情况分析,抢修方案讨论及制定中,有利于应对较大规模的多点泄漏等紧急情况。
在本发明的较优技术方案中,所述数据管理方法还包括:位置采集步骤:所述数据管理终端获取位置信息;在所述第二通信步骤中,还将所述位置信息发送至服务器,或者,创建包括该位置信息的检测报告,并将所述检测报告发送至服务器。
通过采集并上传位置信息,可以确定检测人员测量点的位置。
该技术方案可以与具有影像采集步骤的技术方案结合使用,方便作业人员根据所述位置信息还原检测人员的站位,并根据所述影像数据的内容,找到泄漏点的准确位置。
此外,上述技术方案还使得数据能够可视化地在地图上予以呈现。具体的,在地图上呈现数据的步骤包括:关联所述待测气体浓度日志和所述位置信息;关联完成之后,还包括:显示地图,并在该地图上显示与所述位置信息对应的位置标记点和与该位置信息关联的待测气体浓度日志的待测气体浓度值。
优选地,所述数据管理终端为智能手机、平板电脑或膝上电脑,通过程序指令调用所述数据管理终端的GPS定位系统获取位置信息。
在本发明的较优技术方案中,所述激光气体检测仪为手持式激光甲烷遥测仪或云台式激光甲烷遥测仪或无人机载激光甲烷遥测仪。
在本发明的较优技术方案中,所述数据管理终端为智能手机、平板电脑或膝上电脑。
本发明还提供一种用于激光气体检测仪的数据管理终端,包括:
第一通信装置,能够与所述激光气体检测仪通信连接;
第二通信装置,能够与服务器通信连接;
一个或多个处理器;
存储器,所述存储器用于存储由所述一个或多个处理器执行的一个或多个程序;
所述一个或多个程序包括用于执行以下步骤的指令:
第一通信步骤:通过所述第一通信装置与所述激光气体检测仪的通信连接实时获取目标区域的待测气体浓度;
日志创建步骤:根据所述待测气体浓度的信息,创建待测气体浓度日志;
第二通信步骤:通过所述第二通信装置将所述待测气体浓度日志发送至服务器,或者,根据所述待测气体浓度日志创建检测报告,并通过所述第二通信装置将所述检测报告发送至服务器。
除本发明提供的的数据管理方法中公开的相关内容,本发明的数据管理终端还具有以下优势:通过软件程序实现具体的数据管理步骤,使得本发明的数据管理终端能够被配置为各种硬件形态。优选地,所述数据管理终端为智能手机、平板电脑或膝上电脑等个人移动设备。以个人 移动设备为终端搭建管理系统,无需额外设计制造终端,而直接于工程人员个人所持有的上述设备内安装相应软件,即可调用其个人移动设备作为数据管理终端,大大降低了系统搭建的成本。
例如,当所述数据管理终端为智能手机时,可以将所述智能手机的蓝牙或无线接收装置配置为所述第一通信装置,同时将所述智能手机的无线接收装置或蜂窝移动网络配置为所述第二通信装置,并于所述智能手机的存储器中安装包括执行上述步骤的程序。
在本发明的较优技术方案中,所述数据管理终端还包括影像采集装置,所述一个或多个程序还包括用于执行以下步骤的指令:影像采集步骤:通过所述影像采集装置采集所述目标区域的影像数据;在所述第二通信步骤中,还将所述影像数据发送至服务器,或者,创建包括该影像数据的检测报告,并将所述检测报告发送至服务器。
在本发明的较优技术方案中,所述数据管理终端与所述激光气体检测仪一体安装。
进一步地,在本发明的较优技术方案中,所述数据管理终端还包括可见光发射装置,其被配置为发射与所述激光气体检测仪的测量激光保持平行的可见光光束。
由于测量激光的频率通常是不可见的,工程人员面临着如何记录泄漏位置的问题。在本发明的较优技术方案中,通过设置与测量激光传播方向相同的可见光光束,工程人员能够以可见光光束的光斑位置,反映测量激光的照射位置,并结合影像采集装置,拍摄记录该位置。
更进一步地,在本发明的较优技术方案中,所述数据管理终端还包括显示屏,所述一个或多个程序还包括用于执行以下步骤的指令:设定待测气体浓度阈值;当所述目标区域的待测气体浓度达到所述待测气体浓度阈值时,所述数据管理终端响应并进入预拍摄模式,进入所述预拍摄模式的数据管理终端将通过所述显示屏实时显示待测气体浓度,记录待测气体浓度,并开启所述影像采集装置接收所述目标区域的影像数据。
检测人员在面临寻找并记录泄漏点的任务时,需要执行多个步骤,操作时间紧迫且操作难度大。本较优技术方案提供的数据管理终端在进行泄漏点确定和记录工作时,在检测到泄漏时能够自动触发终端进入预拍摄模式,提醒检测人员存在泄露情况的同时,显示待测气体浓度数据以方便用户确定实时的待测气体浓度,同时开启摄像头随时准备拍摄保 存。通过以上设置,检测人员仅需在一体安装的设备上操作整个流程,且操作方法简单快捷,极大降低了检测人员的操作时间和难度,以带来较佳的用户体验。
优选地,所述一个或多个程序还包括用于执行以下步骤的指令:特征化所述影像中的某一区域;确定所述待测气体浓度日志中的待测气体浓度值,并将所述待测气体浓度值与该被特征化的区域进行关联。
进一步优选地,在特征化所述影像中的某一区域的步骤中,通过提供标记工具在所述影像数据中标记出某一区域,以特征化该区域,或者,特征化所述影像数据中具有所述可见光光束的照射位置的区域。
在本发明的较优技术方案中,所述数据管理终端包括显示屏,所述一个或多个程序还包括用于执行以下步骤的指令:数据查看步骤:所述数据管理终端从服务器获取待测气体浓度日志进行查看。
在本发明的较优技术方案中,还包括定位装置,所述一个或多个程序还包括用于执行以下步骤的指令:位置采集步骤:所述数据管理终端获取位置信息;在所述第二通信步骤中,还将所述位置信息发送至服务器,或者,创建包括该位置信息的检测报告,并将所述检测报告发送至服务器。
在本发明的较优技术方案中,所述激光气体检测仪为手持式激光甲烷遥测仪或云台式激光甲烷遥测仪或无人机载激光甲烷遥测仪。优选地,所述激光气体检测仪为手持式激光甲烷遥测仪或无人机载激光甲烷遥测仪。进一步优选地,所述激光气体检测仪为手持式激光甲烷遥测仪。
本发明还提供了具有数据管理终端的激光气体检测仪。
附图说明
图1是本发明第一实施例的数据管理终端的系统配置示意图;
图2是本发明第一实施例的数据管理方法的流程示意图;
图3是本发明第二实施例的数据管理终端的系统配置示意图;
图4是本发明第二实施例中数据管理方法的流程示意图;
图5是本发明第二实施例中数据管理终端数据查看界面的示意图;
图6是本发明第二实施例中工程人员进行影像采集步骤的示意图;
图7是本发明第三实施例的数据管理终端的系统配置示意图;
图8是本发明第三实施例中激光气体检测仪预拍摄模式界面的示意 图。
具体实施方式
以下,一边参照附图一边说明本发明的优选实施例。另外,本发明的实施例并不限定于下述实施例,能够采用在本发明的技术构思范围内的各种各样的实施例。
实施例一
如图1所示,本实施例首先提供了一种数据管理终端2,及包含该数据管理终端2在内的用于管理手持式激光遥测仪的数据管理系统,该数据管理终端2为由工程人员持有的个人数据助理装置,包括第一通信装置202、第二通信装置204、处理器206和存储器208,其存储器208中存储有供所述处理器206执行的程序,能够调用第一通信装置202、第二通信装置204进行数据的收发。
为了方便图示,图1中仅示出了服务器3对应于一组激光气体检测仪1和数据管理终端2,而实际上每台服务器3可以对应两台或两台以上数据管理终端2,并对数据进行管理和传输,并且每台数据管理终端2可以配合不同的激光气体检测仪1进行工作。
具体地,参考图2,所述存储器208内存储有可由所述处理器206执行的程序指令,所述程序指令能够执行以下步骤:
S100第一通信步骤:连接检测仪,获取目标区域的待测气体浓度数据;
调用第一通信装置202,与激光气体检测仪1的通信接口102建立通信连接,通过该通信连接,数据管理终端2能够获取目标区域的待测气体浓度数据。优选地,数据管理终端2通过通信连接与正在对目标区域进行待测气体浓度测量的激光气体检测仪1实时通信,从而实时地获取目标区域的待测气体浓度数据,但是数据管理终端2也可以通过通信连接与已经完成测量的激光气体检测仪1通信,来获取已经测量并被存储的待测气体浓度数据。其中,所述激光气体检测仪1的通信接口102为激光气体检测仪1出厂配置的或后续加装的通讯模块的接口。
S200日志创建步骤:根据待测气体浓度数据的信息,创建待测气体浓度日志;
数据管理终端2根据从激光气体检测仪1处获取的待测气体浓度数 据,创建可供服务器3或数据管理终端2读取、处理的待测气体浓度日志。
S300第二通信步骤:将待测气体浓度日志发送至服务器;
通过第二通信装置204,数据管理终端2将S200步骤中生成的所述待测气体浓度日志发送至服务器3,服务器3对从同一数据处理终端2或者不同数据管理终端2获取的待测气体浓度日志进行汇总管理。
本实施例中,所述数据管理终端2将实时数据转化为服务器及本地应用可读取、处理的报告或日志。一方面,通过为工程人员配备相应的数据管理终端2,可以让每个工程人员均能够参与到数据的上传、整合和管理中;另一方面,通过将多个数据管理终端的数据整合汇总,也使得工程人员或服务器端的管理人员能够对所管理片区的待测气体浓度分布拥有较为宏观的了解,例如,当检测到某相对较高但又未超过警戒值的待测气体浓度时,工程人员倾向于认为该位置附近具有可能的泄漏点,但由于气体的流动扩散作用,通常对于泄漏点的准确位置难以确定。当管理系统使用了本实施例提供的管理方法后,工程人员可以从服务器获取来自其他数据管理终端2上传的附近位置的待测气体浓度数据,结合环境因素,准确判断泄漏点的方位。同时,因为可以为工程人员提供一个对数据进行操作的平台,也有利于每一个工程人员实时参与到泄漏情况分析,抢修方案讨论及决策制定中,有利于应对较大规模的多点泄漏的紧急情况,方便对泄漏后的影响范围和涉及区域进行快速综合评估和预测,为抢修和疏散或预警提供及时的数据信息支持。此外,本实施例中,服务器接收的是已由数据处理终端2整理完成的待测气体浓度日志,相较以往实时接收的方式,也方便归档和查阅。
实施例二
如图3所示,本实施例首先提供了一种数据管理终端2,及包含该数据管理终端2的用于管理手持式激光遥测仪(激光气体检测仪1)的数据管理系统,本实施例中的数据管理终端2为智能手机,包括第一通信装置202(蓝牙通讯装置)、第二通信装置204(蜂窝移动网络)、处理器206、存储器208、影像采集装置210(摄像头)和定位装置212(GPS定位系统),其中所述处理器206与所述第一通信装置202、第二通信装置204、存储器208、影像采集装置210和定位装置212均通信 连接,以传输数据和控制设备运行。
智能手机的存储器208中存储有与该数据管理终端2配合使用的应用程序,该应用程序获得用户授权后,由所述处理器206执行,能够调用手机的第一通信装置202、第二通信装置204进行数据的处理和收发,调用手机的摄像头作为影像采集装置210进行拍照或摄像,并调用手机的GPS定位系统作为定位装置212获取地理坐标信息。
由于本实施例中数据管理终端2的硬件要求均未超出常规智能手机所具备的硬件条件,因此该数据管理系统完全可以免去数据管理终端的设计生产步骤,直接在配发有激光气体检测仪1的工程人员的智能手机上安装该应用程序,通过以上方式,本实施例采用工程人员的个人移动设备作为数据管理终端,可以大大降低系统搭建的成本。
具体地,参考图4,该数据管理终端2通过安装手机应用软件能够执行用于以下步骤的指令:
S100第一通信步骤:连接检测仪,获取目标区域的待测气体浓度数据;
调用第一通信装置202,与激光气体检测仪1的通信接口102建立蓝牙连接,通过该蓝牙连接,智能手机能够获取目标区域的待测气体浓度并保存在所述存储器208中,保存内容包括:测量时间与该测量时间下的待测气体浓度。优选地,智能手机通过蓝牙连接与正在对目标区域进行待测气体浓度测量的激光气体检测仪1实时通信,从而实时地获取目标区域的待测气体浓度数据,但是智能手机也可以通过蓝牙连接与已经完成测量的激光气体检测仪1通信,来获取已经测量并被存储的待测气体浓度数据。
其中,所述激光气体检测仪1的通信接口102为激光气体检测仪1出厂配置的或后续加装的蓝牙通讯模块。获取的待测气体浓度可以以数字、柱状图、折线图等形式呈现于数据管理终端2的显示屏上,方便工程人员读取。
S102影像采集步骤:通过影像采集装置采集目标区域的影像数据;
激光气体检测仪1上配置有可见光发射装置104(可见光激光器),所述可见光发射装置104发出的可见光光束的传播方向与激光气体检测仪1的测量激光的传播方向保持大致平行,参照可见光激光器的光斑位置指示所述激光气体检测仪1发射的测量激光的照射位置,可以用来指 引影像采集装置210对气体泄漏点进行影像采集。通过采集目标区域的影像数据并上传服务器,能够方便检测人员向作业人员展示泄漏点的准确位置。
S200日志创建步骤:根据待测气体浓度数据的信息,创建待测气体浓度日志;
在S102影像采集步骤完成后,泄漏点确认完成。此时,可根据从开始寻找到结束并确认泄漏点的时间范围内收集到的待测气体浓度数据,创建可供服务器3或数据管理终端2应用程序读取的待测气体浓度日志。所述待测气体浓度日志至少包括一部分S100步骤中保存的所述测量时间与该测量时间下的待测气体浓度。
S202位置采集步骤:通过位置采集装置获取位置信息;
调用智能手机的GPS定位系统作为定位装置210,获取智能手机所处位置的地理坐标,以该坐标反映检测人员进行测量时的站位。后续作业人员可以根据该地理坐标,还原该站位并环视四周与影像数据的内容进行比对,进而找到准确的泄漏位置。
S204数据关联步骤:关联待测气体浓度日志、影像数据和位置信息;该步骤发生在S200、S102、S202步骤之后;
以一固定格式的文件名命名标准,命名待测气体浓度日志文件、影像文件以及位置信息文本,以关联所述待测气体浓度日志、影像数据和位置信息,表示所述待测气体浓度日志和影像数据在记录时间和记录地点上的统一性。
S206报告创建步骤:根据待测气体浓度日志、影像数据和位置信息创建检测报告。本实施例中,所述检测报告除了后续被上传服务器端,还在创建时可被选择性地保存在本地的存储器208中。
S300第二通信步骤:将检测报告发送至服务器;
通过蜂窝数据网络将S206步骤中创建的检测报告发送至服务器,服务器对从不同数据管理终端2获取的检测报告进行数据处理。数据处理过程至少包括:提取所述检测报告中所述待测气体浓度日志记录的待测气体浓度值,以及,提取所述位置信息。该待测气体浓度值可以为待测气体浓度日志记录中的待测气体浓度最高值,也可以为待测气体浓度日志记录中待测气体浓度的平均值,另外还可以为待测气体浓度日志记录中最后被记录的待测气体浓度值。还可以包括提取从所述待测气体浓 度日志中加工分析获得的待测气体浓度地域分布图或随时间变化的待测气体浓度数据等信息。
S400数据查看步骤:从服务器获取检测报告进行查看;
所述数据管理终端2从服务器获取检测报告进行查看,可供查看的检测报告包括由其他数据管理终端共享的检测报告。通过上述方案,本发明提供的数据管理终端可以同时实现数据的收集、整合和呈现功能,使每个工程人员均能参与到数据的收集和使用当中,管理系统的内容更加全面、信息更加互通。
此外,本实施例提供的数据管理终端2的数据查看功能也不仅限于对检测报告的查看,还包括查看基于地理位置的待测气体浓度分布图。参考图5,所述数据管理终端2呈现所述基于地理位置的待测气体浓度分布图包括以下步骤:
显示地图214;
根据所述S300第二通信步骤中数据处理过程提取的所述待测气体浓度日志记录的待测气体浓度值的信息和所述位置信息,在地图214上显示与所述位置信息对应的位置标记点214a和与该位置信息关联的待测气体浓度日志的待测气体浓度值214b。
虽然本实施例中以显示数值的方法呈现该待测气体浓度值214b,技术人员也可以根据实际情况,选择其他合适的呈现方式,例如使用颜色、尺寸、形状等可视化参数的差别以呈现不同地区待测气体浓度值的差异。
为了清楚地说明本实施例中的数据管理终端2及其工作方式,以下将对工程人员使用本实施例中数据管理终端2配合激光气体检测仪1进行数据采集的方式进行详细的说明。
参考图6,所述激光气体检测仪1具有可见光发射装置104(图6中未示出,参见图3),该可见光发射装置104为一可发射可见光光束108a的激光器,如前所述,该激光器发射出的可见光光束108a的出射方向与检测仪的测量激光106a的出射方向保持大致平行。测量激光106a为了满足测量需要,通常是不可见光。因此,本实施例中通过设置该与测量激光106a方向相同的可见光激光108a,工程人员在测量时能够以可见光激光108a的光斑108b位置反映测量激光106a的照射位置106b,以帮助寻找泄漏点。
除了在寻找泄漏点过程中的辅助作用,在找到泄漏点后,该光斑 108b还可以配合本实施例提供的数据管理终端2的影像采集功能,实现对于泄漏点的标记。如图6所示,拍照记录时,工程人员可以用光斑108b标记泄漏点后,保持激光气体检测仪1不动,调用手机的摄像头朝向泄漏点拍照。由于激光光斑的亮度较高,可以在照片上清晰地显示出确定的泄漏点位置。
需要说明的是,虽然本实施例提供的数据管理方法中所列举的各步骤依次执行,但技术人员完全可以根据实际情况,对步骤进行删除、替换和顺序调整,在不偏离本发明主旨的前提下,上述变化均未超出本发明的保护范围之内。例如,S102、200、S202三个步骤本身的先后顺序是可以相互调换的;再如,若S100步骤中,通过蓝牙连接与已经完成测量的激光气体检测仪1通信,来获取已经测量并被存储的待测气体浓度数据,则该步骤也可以发生在S102和S202步骤之后;此外,本实施例中的部分步骤,例如S102、S202、S400等,也可以根据实际需要予以删除或替换。
实施例三
参考图7,本实施例提供了一种具有数据管理模块20的激光气体检测仪1,该数据管理模块20安装于所述激光气体检测仪1的内部,并与所述激光气体检测仪1的检测模块10通过电连接,以将测得的待测气体浓度数据直接经由第一通信装置202读出。该激光气体检测仪的数据管理模块20包括第一通信装置202、第二通信装置204、处理器206、存储器208、影像采集装置210和定位装置212,以上组件的连接方式、主要功能及其采用的数据管理方法均可参考实施例二,此处不再赘述。为了可视化地呈现数据和交互界面,本实施例中的激光气体检测仪1配置有显示屏30。
本实施例中的激光气体检测仪1由于数据管理模块20与检测模块10一体安装,可将检测模块10的测量激光发射装置106、可见光发射装置104以及所述数据管理模块20的影像采集装置210配置成三者的光轴大致平行,极大地方便了工程人员的影像采集。
本实施例中的激光气体检测仪1还可以自动进入预拍摄模式,以提高工程人员影像采集的效率。
所述数据管理模块20被配置为能够执行用于以下步骤的指令:
S001阈值设定步骤:设定待测气体浓度阈值801;
S100第一通信步骤:所述处理器206通过所述通信接口102及所述第一通信装置202从检测模块10实时获得待测气体浓度测量值802;
当检测到待测气体浓度测量值802达到预先设定的所述待测气体浓度阈值801时,处理器控制所述激光气体检测仪1进入预拍摄模式。所述预拍摄模式所显示的交互界面如图8所示。
当所述激光气体检测仪1进入预拍摄模式时,所述显示屏30实时显示待测气体浓度测量值802,并连续或分次将测量数据存入存储器208中,同时开启影像采集装置接收目标区域的影像数据804。本实施例中,所述显示屏30为触摸屏,优选地,当进入预拍摄模式时,显示拍摄图标803,以接收用户保存影像数据804数据的指令。
检测人员在面临寻找并记录泄漏点的任务时,需要执行多个步骤,操作时间紧迫且操作难度大。拥有了预拍摄模式,当检测到泄漏或者需要预警的待测气体浓度时,能够自动触发激光气体检测仪1进入预拍摄模式,在提醒检测人员存在泄露情况的同时,即时显示当前的待测气体浓度数据以方便用户确认。这样,检测人员可以直接观察待测气体浓度测量值802数据确定泄漏点,并在泄漏点确定的同时,开启摄像头随时准备拍摄保存。通过以上技术方案,检测人员仅需在一体安装的设备上操作整个流程,且操作方法简单快捷,极大降低了检测人员的操作时间和难度。
本实施例与实施例二在数据管理方法的另一差别在于,本实施例在S102影像采集步骤完成之后,S300第二通信步骤之前,还包括:
特征化影像数据804中的矩形区域805;
确定所述待测气体浓度日志中的待测气体浓度值,并将所述待测气体浓度值与该被特征化的区域进行关联;
本实施例中,采用图像识别模块(未示出)利用颜色、亮度的差别在影像数据804中识别出与光斑108b对应的像素,之后标记以所述像素为中心的矩形区域805,以特征化该区域。接着,将该矩形区域805与待测气体浓度日志中的待测气体浓度值进行关联,以向作业人员展示泄漏点。在本发明的其他实施例中,区域的特征化还可以采用其他形式实现,例如可以为用户提供标记工具,由用户在拍摄得到的影像数据804中标记出某一区域,以示出泄漏点。
本实施例其他可由所述数据管理模块20执行的步骤可参考实施例二中所述数据管理终端2,在此不再赘述。
此外,需要说明的是,本发明各个实施例中各部件间的通信连接方式并不限于上述实施例中所列举的类型,技术人员可以根据实际情况,将其配置为通过电缆、红外数据通信、蓝牙、通用串行总线、IEEE 1394、Zigbee、无线局域网或其他合适的方式进行通信连接。
至此,已经结合附图描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施例。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (20)

  1. 一种激光气体检测仪的数据管理方法,其特征在于,包括:
    第一通信步骤:数据管理终端与所述激光气体检测仪的通信端口建立通信连接,并通过所述通信连接获取目标区域的待测气体浓度数据;
    日志创建步骤:所述数据管理终端根据所述待测气体浓度数据的信息,创建待测气体浓度日志;
    第二通信步骤:所述数据管理终端将所述待测气体浓度日志发送至服务器,或者,所述数据管理终端根据所述待测气体浓度日志创建检测报告,并将所述检测报告发送至服务器。
  2. 如权利要求1所述的激光气体检测仪的数据管理方法,其特征在于,还包括:
    影像采集步骤:采集所述目标区域的影像数据;
    在所述第二通信步骤中,所述数据管理终端还将所述影像数据发送至服务器,或者,所述数据管理终端创建还包括该影像数据的检测报告,并将所述检测报告发送至服务器。
  3. 如权利要求2所述的激光气体检测仪的数据管理方法,其特征在于,还包括:
    数据关联步骤:关联所述待测气体浓度日志和所述影像数据。
  4. 如权利要求3所述的激光气体检测仪的数据管理方法,其特征在于,所述数据关联步骤在服务器或所述数据管理终端处执行,所述数据关联步骤采用的关联方法为采用相关文件名命名或将待关联的待测气体浓度日志和影像数据置于同一文件夹内。
  5. 如权利要求1所述的激光气体检测仪的数据管理方法,其特征在于,还包括:
    数据查看步骤:所述数据管理终端从所述服务器获取待测气体浓度日志进行查看。
  6. 如权利要求5所述的激光气体检测仪的数据管理方法,其特征在 于,所述数据查看步骤中,所述数据管理终端从服务器获取的待测气体浓度日志包括与其他数据管理终端共享的待测气体浓度日志。
  7. 如权利要求1所述的激光气体检测仪的数据管理方法,其特征在于,还包括:
    位置信息采集步骤:所述数据管理终端获取位置信息;
    在所述第二通信步骤中,所述数据管理终端还将所述位置信息发送至服务器,或者,所述数据管理终端创建还包括该位置信息的检测报告,并将所述检测报告发送至服务器。
  8. 如权利要求7所述的激光气体检测仪的数据管理方法,其特征在于,还包括:
    关联所述待测气体浓度日志和所述位置信息;
    关联完成之后,还包括:
    显示地图,并在该地图上显示与所述位置信息对应的位置标记点和与该位置信息关联的待测气体浓度日志的待测气体浓度值。
  9. 如权利要求1-8中任一项所述的激光气体检测仪的数据管理方法,其特征在于,所述激光气体检测仪为手持式激光甲烷遥测仪或云台式激光甲烷遥测仪或无人机载激光甲烷遥测仪。
  10. 如权利要求1-8中任一项所述的激光气体检测仪的数据管理方法,其特征在于,所述数据管理终端为智能手机或平板电脑或膝上电脑。
  11. 一种用于激光气体检测仪的数据管理终端,其特征在于,包括:
    第一通信装置,能够与所述激光气体检测仪通信连接;
    第二通信装置,能够与服务器通信连接;
    一个或多个处理器;
    存储器,所述存储器用于存储由所述一个或多个处理器执行的一个或多个程序;
    所述一个或多个程序包括用于执行以下步骤的指令:
    第一通信步骤:通过所述第一通信装置与所述激光气体检测仪的通 信连接获取目标区域的待测气体浓度数据;
    日志创建步骤:根据所述待测气体浓度的信息,创建待测气体浓度日志;
    第二通信步骤:通过所述第二通信装置将所述待测气体浓度日志发送至服务器,或者,根据所述待测气体浓度日志创建检测报告,并通过所述第二通信装置将所述检测报告发送至服务器。
  12. 如权利要求11所述的用于激光气体检测仪的数据管理终端,其特征在于,所述数据管理终端包括影像采集装置,所述一个或多个程序还包括用于以下步骤的指令:
    影像采集步骤:通过所述影像采集装置采集所述目标区域的影像数据;
    在所述第二通信步骤中,通过所述第二通信装置还将所述影像数据发送至服务器,或者,创建还包括该影像数据的检测报告,并通过所述第二通信装置将所述检测报告发送至服务器。
  13. 如权利要求12所述的用于激光气体检测仪的数据管理终端,其特征在于,所述数据管理终端与所述激光气体检测仪一体安装。
  14. 如权利要求12所述的用于激光气体检测仪的数据管理终端,其特征在于,所述数据管理终端还包括显示屏,所述一个或多个程序还包括用于执行以下步骤的指令:
    设定待测气体浓度阈值;
    当所述目标区域的待测气体浓度达到所述待测气体浓度阈值时,所述数据管理终端响应并进入预拍摄模式,进入所述预拍摄模式的数据管理终端通过所述显示屏实时显示待测气体浓度,记录待测气体浓度,并开启所述影像采集装置接收所述目标区域的影像数据。
  15. 如权利要求12-14中任一项所述的用于激光气体检测仪的数据管理终端,其特征在于,所述一个或多个程序还包括用于执行以下步骤的指令:
    特征化所述影像数据中的某一区域;
    确定所述待测气体浓度日志中的待测气体浓度值,并将所述待测气体浓度值与该被特征化的区域进行关联。
  16. 如权利要求11所述的用于激光气体检测仪的数据管理终端,其特征在于,所述数据管理终端包括显示屏,所述一个或多个程序还包括用于执行以下步骤的指令:
    数据查看步骤:所述数据管理终端从服务器获取待测气体浓度日志或检测报告进行查看。
  17. 如权利要求11所述的用于激光气体检测仪的数据管理终端,其特征在于,还包括定位装置,所述一个或多个程序还包括用于执行以下步骤的指令:
    位置信息采集步骤:所述数据管理终端通过所述定位装置获取位置信息;
    在所述第二通信步骤中,通过所述第二通信装置还将所述位置信息发送至服务器,或者,创建包括该位置信息的检测报告,并通过所述第二通信装置将所述检测报告发送至服务器。
  18. 如权利要求11-14、16、17中任一项所述的用于激光气体检测仪的数据管理终端,其特征在于,所述数据管理终端为智能手机或平板电脑或膝上电脑。
  19. 如权利要求11-14、16、17中任一项所述的用于激光气体检测仪的数据管理终端,其特征在于,所述激光气体检测仪为手持式激光甲烷遥测仪或云台式激光甲烷遥测仪或无人机载激光甲烷遥测仪。
  20. 一种激光气体检测仪,其特征在于,所述激光气体检测仪具有如权利要求11-19中任一项所述的数据管理终端。
PCT/CN2019/100307 2018-08-16 2019-08-13 用于激光气体检测仪的数据管理方法及数据管理终端 WO2020034931A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/268,122 US20210302267A1 (en) 2018-08-16 2019-08-13 Data management method and data management terminal for a laser gas detector
US17/354,880 US11867816B2 (en) 2018-08-16 2021-06-22 Laser gas detector and laser gas detection system
US17/354,789 US11867815B2 (en) 2018-08-16 2021-06-22 Laser gas detector and laser gas detection system
US18/499,278 US20240061120A1 (en) 2018-08-16 2023-11-01 Laser gas detector and laser gas detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810936525.4A CN109030374A (zh) 2018-08-16 2018-08-16 用于激光气体检测仪的数据管理方法及数据管理终端
CN201810936525.4 2018-08-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/268,122 A-371-Of-International US20210302267A1 (en) 2018-08-16 2019-08-13 Data management method and data management terminal for a laser gas detector
US17/354,789 Continuation-In-Part US11867815B2 (en) 2018-08-16 2021-06-22 Laser gas detector and laser gas detection system

Publications (1)

Publication Number Publication Date
WO2020034931A1 true WO2020034931A1 (zh) 2020-02-20

Family

ID=64631810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100307 WO2020034931A1 (zh) 2018-08-16 2019-08-13 用于激光气体检测仪的数据管理方法及数据管理终端

Country Status (3)

Country Link
US (4) US20210302267A1 (zh)
CN (1) CN109030374A (zh)
WO (1) WO2020034931A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112733983A (zh) * 2021-01-07 2021-04-30 中科魔镜(深圳)科技发展有限公司 一种智能监护装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020028353A1 (en) * 2018-07-30 2020-02-06 Seekops Inc. Ultra-lightweight, handheld gas leak detection device
CN109030374A (zh) 2018-08-16 2018-12-18 上海禾赛光电科技有限公司 用于激光气体检测仪的数据管理方法及数据管理终端
CN109710664B (zh) * 2018-12-29 2023-03-28 上海一谱仪器科技股份有限公司 一种用于光谱分析仪测量数据的信息展示系统
CN109919461A (zh) * 2019-02-22 2019-06-21 赛飞特工程技术集团有限公司 工业园区安全风险分级管控系统
CN110630911B (zh) * 2019-10-09 2021-01-26 郑州如阳科技有限公司 一种燃气地埋管线泄漏横向盲测扫描装置
CN113125341B (zh) * 2019-12-30 2023-09-29 上海禾赛科技有限公司 基于多光谱成像技术的气体遥测方法和装置
CN111562055B (zh) * 2020-05-22 2021-04-23 北京富吉瑞光电科技股份有限公司 一种针对甲烷气体泄露的红外成像与浓度检测装置和方法
CN113267451A (zh) * 2021-05-25 2021-08-17 山西中液互联能源有限公司 基于tdlas的气体泄漏遥测系统
CN113628162A (zh) * 2021-07-08 2021-11-09 东风柳州汽车有限公司 充液信息化控制系统及方法
US11610472B1 (en) * 2021-09-07 2023-03-21 Honeywell International Inc. Aspirating smoke detector device operational analysis
CN114112251B (zh) * 2022-01-29 2022-04-19 长扬科技(北京)有限公司 一种天然气泄漏点定位方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140349707A1 (en) * 2012-02-01 2014-11-27 Young-ki Bang Gas detection system and method using smart phone
CN107035972A (zh) * 2017-03-24 2017-08-11 北京华夏艾科激光科技有限公司 一种城市燃气管巡检车用智能巡检系统
CN207471129U (zh) * 2017-11-21 2018-06-08 中煤航测遥感集团有限公司 天然气监控系统
CN207527300U (zh) * 2017-07-14 2018-06-22 北京讯腾智慧科技股份有限公司 基于北斗定位的城镇燃气管道泄漏检测系统
CN108399717A (zh) * 2018-04-18 2018-08-14 四川巴斯德环境检测技术有限责任公司 一种厨房天然气泄露检测和报警系统
CN109030374A (zh) * 2018-08-16 2018-12-18 上海禾赛光电科技有限公司 用于激光气体检测仪的数据管理方法及数据管理终端
CN208705222U (zh) * 2018-08-16 2019-04-05 上海禾赛光电科技有限公司 用于激光气体检测仪的数据管理终端及其系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822742B1 (en) * 2003-12-19 2004-11-23 Eastman Kodak Company System and method for remote quantitative detection of fluid leaks from a natural gas or oil pipeline
US8451120B2 (en) * 2009-08-14 2013-05-28 Accenture Global Services Limited System for relative positioning of access points in a real time locating system
CN103091684A (zh) * 2011-10-31 2013-05-08 上海伽利略导航有限公司 全球导航卫星系统的手持终端及其对中和调平方法
CN103475489B (zh) * 2013-09-30 2016-05-11 重庆大学 基于加密通信的氚浓度监控终端及方法
US20150177208A1 (en) * 2013-12-20 2015-06-25 Jonathan David Murphy Gas sensor with interface to hand-held instrument
CN105067198A (zh) * 2015-07-21 2015-11-18 深圳西大仪器有限公司 泄漏检测仪及泄漏检测方法
CN105372199B (zh) * 2015-11-19 2019-02-26 重庆高略联信智能技术有限公司 一种基于红外漫反射的酒驾遥测系统及遥测方法
DE102015120307A1 (de) 2015-11-24 2017-05-24 Wobben Properties Gmbh Verfahren zum grafischen Darstellen von Sensordaten mehrerer Windenergieanlagen sowie Vorrichtung hierfür und System damit
CN205538667U (zh) * 2016-04-07 2016-08-31 大连市艾科微波光电子工程研究有限公司 气体检测装置
US10533965B2 (en) * 2016-04-19 2020-01-14 Industrial Scientific Corporation Combustible gas sensing element with cantilever support
JP6806154B2 (ja) * 2016-08-24 2021-01-06 コニカミノルタ株式会社 ガス計測システム及びガス計測プログラム
US10928371B1 (en) 2017-03-31 2021-02-23 Air Stations Llc/Elevated Analytics Llc Joint Venture Hand-held sensor and monitor system
CN107024440A (zh) * 2017-04-19 2017-08-08 无锡市永安电子科技有限公司 一种有毒气体和水质变化预警平台系统
CN206740177U (zh) * 2017-05-03 2017-12-12 北京思路创新科技有限公司 一种便携式空气质量监测仪
JP6631592B2 (ja) * 2017-06-19 2020-01-15 カシオ計算機株式会社 通信機器、通信方法及びプログラム
CN207365918U (zh) * 2017-10-25 2018-05-15 东莞市微巨自动化设备有限公司 一种手持式线宽检测仪
CN108120905A (zh) * 2017-12-13 2018-06-05 鼎阳智电慧服科技股份有限公司 一种电气设备局部放电检测方法及其检测装置
CN107992085A (zh) * 2017-12-29 2018-05-04 汉威科技集团股份有限公司 基于无人机的激光遥测危险气体自动巡检系统及自动巡检方法
FR3080915B1 (fr) 2018-05-02 2020-05-08 Pfeiffer Vacuum Module de detection de fuites et procede de controle de l etancheite d un objet a tester par gaz traceur
US10554886B2 (en) 2018-05-18 2020-02-04 Valve Corporation Power management for optical position tracking devices
WO2020028353A1 (en) * 2018-07-30 2020-02-06 Seekops Inc. Ultra-lightweight, handheld gas leak detection device
KR20210063928A (ko) 2019-11-25 2021-06-02 삼성전자주식회사 증강 현실 서비스를 제공하기 위한 전자 장치 및 그의 동작 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140349707A1 (en) * 2012-02-01 2014-11-27 Young-ki Bang Gas detection system and method using smart phone
CN107035972A (zh) * 2017-03-24 2017-08-11 北京华夏艾科激光科技有限公司 一种城市燃气管巡检车用智能巡检系统
CN207527300U (zh) * 2017-07-14 2018-06-22 北京讯腾智慧科技股份有限公司 基于北斗定位的城镇燃气管道泄漏检测系统
CN207471129U (zh) * 2017-11-21 2018-06-08 中煤航测遥感集团有限公司 天然气监控系统
CN108399717A (zh) * 2018-04-18 2018-08-14 四川巴斯德环境检测技术有限责任公司 一种厨房天然气泄露检测和报警系统
CN109030374A (zh) * 2018-08-16 2018-12-18 上海禾赛光电科技有限公司 用于激光气体检测仪的数据管理方法及数据管理终端
CN208705222U (zh) * 2018-08-16 2019-04-05 上海禾赛光电科技有限公司 用于激光气体检测仪的数据管理终端及其系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112733983A (zh) * 2021-01-07 2021-04-30 中科魔镜(深圳)科技发展有限公司 一种智能监护装置

Also Published As

Publication number Publication date
US20210302267A1 (en) 2021-09-30
US11867815B2 (en) 2024-01-09
US11867816B2 (en) 2024-01-09
US20210318236A1 (en) 2021-10-14
US20210321174A1 (en) 2021-10-14
US20240061120A1 (en) 2024-02-22
CN109030374A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020034931A1 (zh) 用于激光气体检测仪的数据管理方法及数据管理终端
CN110212451B (zh) 一种电力ar智能巡检装置
CN105378810B (zh) 测量数据的远程共享
CN111508097B (zh) 场地巡检方法、装置、设备及存储介质
CN108830837B (zh) 一种用于检测钢包溶蚀缺陷的方法和装置
CN111710055A (zh) 便携式电力巡检设备及电力巡检方法、电力巡检系统
AU2017339771B2 (en) Method and system for remote processing and analysis of industrial asset inspection data
CN108444529A (zh) 一种管廊移动巡检装置
US20200238114A1 (en) Fire-fighting terminal, fire-fighting server, and fire-fighting monitoring device
US20230267240A1 (en) A system for managing the progress of construction based on lidar technology
US20210344833A1 (en) Inspection workflow using object recognition and other techniques
CN111208140A (zh) 一种缺陷复检系统及方法
CN208705222U (zh) 用于激光气体检测仪的数据管理终端及其系统
KR101393191B1 (ko) 음극방식 관리장치의 cips 측정방법
CN115052337A (zh) 一种基于AI-Beacon新型智能头戴式终端巡检系统
CN116499421A (zh) 桥梁巡检装置、系统及方法
CN110940315A (zh) 一种继电保护及安全自动装置插件照片采集设备及自动比对方法
CN115190151A (zh) 电力巡检方法、系统、装置及电子设备
CN114025148A (zh) 一种监测方法和监测系统
KR102260559B1 (ko) 태블릿을 이용한 시설 구조물의 안전 진단 방법
CN111045115B (zh) 一种判断气象条件的系统及方法
CN113206977A (zh) 输气站场的巡检监控方法、装置和存储介质
CN114910443A (zh) 激光气体检测仪及激光气体检测系统
CN110991672A (zh) 一种地下电缆可视化巡检系统
CN218162610U (zh) 一种用于机场飞行区桥梁病害数字化检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849235

Country of ref document: EP

Kind code of ref document: A1