WO2020034784A1 - 一种耐久性增强型无碱液体速凝剂的制备方法 - Google Patents

一种耐久性增强型无碱液体速凝剂的制备方法 Download PDF

Info

Publication number
WO2020034784A1
WO2020034784A1 PCT/CN2019/094980 CN2019094980W WO2020034784A1 WO 2020034784 A1 WO2020034784 A1 WO 2020034784A1 CN 2019094980 W CN2019094980 W CN 2019094980W WO 2020034784 A1 WO2020034784 A1 WO 2020034784A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
reaction
temperature
water
add
Prior art date
Application number
PCT/CN2019/094980
Other languages
English (en)
French (fr)
Inventor
郭鑫祺
官梦芹
蒋卓君
李祥河
陈晓彬
林添兴
郭元强
麻秀星
Original Assignee
科之杰新材料集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科之杰新材料集团有限公司 filed Critical 科之杰新材料集团有限公司
Priority to PH12019502019A priority Critical patent/PH12019502019A1/en
Publication of WO2020034784A1 publication Critical patent/WO2020034784A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/12Set accelerators

Definitions

  • the invention belongs to the technical field of building materials, and particularly relates to a method for preparing a durability-enhancing alkali-free liquid quick-setting agent.
  • An object of the present invention is to provide a method for preparing a durability-enhancing alkali-free liquid accelerator.
  • a method for preparing a durability-enhancing alkali-free liquid quick-setting agent includes the following steps:
  • the molar ratio of the alcohol amine, oxalic acid and glycerol is 1: 1: 1 to 0.4 to 1.2;
  • the above alcohol amine is monoethanolamine At least one of diethanolamine, diethanolamine, triethanolamine and triisopropanolamine, diethanolmonoisopropanolamine and monoethanoldiisopropanolamine;
  • the catalyst in the above step (1) and step (3) is p-toluenesulfonic acid and / or concentrated sulfuric acid;
  • the amount of the catalyst is 0.3 to 0.6% of the total mass of maleic anhydride and urea.
  • the amount of the ammonium persulfate is 0.5 to 3.0% of the total mass of the solute in the acylated product, the acrylamide solution, and the acrylic acid solution.
  • the amount of the molecular weight modifier is 0.2 to 3.0% of the total mass of the solute in the acylated product, the acrylamide solution, and the acrylic acid solution.
  • the amount of the catalyst is 0.3 to 4.0% of the total mass of the alcohol amine and the oxalic acid.
  • the molecular weight modifier is at least one of mercaptoacetic acid, mercaptopropionic acid, mercaptoethanol, isopropanol, and dodecanethiol.
  • an acylated product is prepared by acylating maleic anhydride and urea, and then copolymerized with acrylamide and acrylic acid to obtain a suspension stabilizer, which is used for the synthesis of an alkali-free liquid quick-setting agent.
  • a suspension stabilizer with an amide structure is prepared, which improves the cohesiveness of the liquid coagulant, effectively suppresses the precipitation, and greatly improves the storage stability of the mother liquor.
  • the stability can reach More than 15 months; and the amide structure and urea can promote the development of early strength, thereby improving the early strength of concrete.
  • the preparation method of the present invention is a method in which an alcohol amine is first esterified with ethylene glycol and then esterified with glycerol to obtain a reinforcing agent, which is then used in the synthesis of an alkali-free liquid accelerator, which can improve the concrete Early and late strength.
  • the high-durability enhanced alkali-free liquid quick-setting agent prepared by the present invention does not contain sulfates, chloride ions, and alkali content, so the durability of concrete can be improved.
  • suspension stabilizer 100.00 g of acylated product, acrylamide aqueous solution (including 120.00 g of acrylic acid and 150.00 g of water), aqueous acrylic acid solution (of which 32.00 g acrylic acid and 150.00 g of water), and ammonium persulfate aqueous solution (where 2.30 g of ammonium sulfate and 150.00 g of water) and an aqueous solution of thioglycolic acid (including 1.50 g of thioglycolic acid and 150.00 g of water) were dropped into 500.00 g of water for reaction.
  • the reaction temperature was 80 ° C, the dropping time was 2.0 h, and the temperature was maintained for 1.0 h.
  • suspension stabilizer 100.00 g of acylated product, acrylamide aqueous solution (including 142.00 g of acrylic acid and 150.00 g of water), aqueous acrylic acid solution (of which 36.00 g acrylic acid and 150.00 g of water), and ammonium persulfate aqueous solution (where 1.70 g of ammonium sulfate and 150.00 g of water) and an aqueous solution of mercaptopropionic acid (including 1.70 g of mercaptopropionic acid and 150.00 g of water) were dropped into 500.00 g of water for reaction.
  • the reaction temperature was 70 ° C
  • the dropping time was 3.0 h
  • the temperature was maintained at 2.0. h, to obtain a suspension stabilizer;
  • suspension stabilizer 100.00 g of acylated product, acrylamide aqueous solution (including 155.00 g of acrylic acid and 150.00 g of water), aqueous acrylic acid solution (of which 38.00 g acrylic acid and 150.00 g of water), and ammonium persulfate aqueous solution (where 2.80 g of ammonium sulfate and 150.00 g of water) and an aqueous solution of mercaptoethanol (of which 3.00 g of mercaptoethanol and 150.00 g of water) were dropped into 520.00 g of water to carry out the reaction.
  • the reaction temperature was 80 ° C.
  • the dropping time was 2.0 h
  • the holding temperature was 3.0 h.
  • suspension stabilizer 100.00 g of acylated product, acrylamide aqueous solution (including 136.00 g of acrylic acid and 150.00 g of water), aqueous acrylic acid solution (of which 50.00 g acrylic acid and 150.00 g of water), and ammonium persulfate aqueous solution (where 2.00 g of ammonium sulfate and 150.00 g of water) and an isopropanol aqueous solution (of which 2.60 g of isopropanol and 150.00 g of water) were dropped into 520.00 g of water for reaction.
  • the reaction temperature was 60 ° C
  • the dropping time was 4.0 h
  • the temperature was 1.0 h
  • suspension stabilizer 100.00 g of acylated product, acrylamide aqueous solution (including 160.00 g of acrylic acid and 150.00 g of water), aqueous acrylic acid solution (of which 60.00 g acrylic acid and 150.00 g of water), and ammonium persulfate aqueous solution (where 2.60 g of ammonium sulfate and 150.00 g of water) and an aqueous solution of thioglycolic acid (of which 2.50 g of thioglycolic acid and 150.00 g of water) were dropped into 600.00 g of water for reaction.
  • the reaction temperature was 65 ° C, the dropping time was 3.0 h, and the temperature was maintained for 1.0 h.
  • the high-durability enhanced alkali-free liquid accelerator used in Examples 1 to 5 was tested, and Conch P.O. 42.5 ordinary portland cement was selected. According to JC477-2005 "Accelerator for sprayed concrete", the obtained high-durability enhanced alkali-free liquid accelerating agent was subjected to cement coagulation time and cement mortar strength test. The amount of accelerator used is calculated as a percentage of the weight of cement.
  • the accelerator is added to the cement slurry according to 5% of the weight of the cement, and at the same time, the water amount mentioned above includes the water contained in the liquid accelerator.
  • the current commercially available alkali-free liquid accelerator (Sample 1) as a comparison, the setting time, mortar strength and stability of cement paste were tested. The test results are shown in Tables 1 and 2.
  • a method for preparing a durability-enhancing alkali-free liquid quick-setting agent includes the following steps:
  • the molar ratio of the alcohol amine, oxalic acid and glycerol is 1: 1: 1 to 0.4 to 1.2;
  • the above alcohol amine is monoethanolamine At least one of diethanolamine, diethanolamine, triethanolamine and triisopropanolamine, diethanolmonoisopropanolamine and monoethanoldiisopropanolamine;
  • the catalyst in the above step (1) and step (3) is p-toluenesulfonic acid and / or concentrated sulfuric acid;
  • the amount of the catalyst is 0.3 to 0.6% of the total mass of maleic anhydride and urea.
  • the amount of the ammonium persulfate is 0.5 to 3.0% of the total mass of the solute in the acylation product, the acrylamide solution and the acrylic acid solution; the amount of the molecular weight regulator is the acylation product, 0.2 to 3.0% of the total mass of the solute in the acrylamide solution and the acrylic acid solution.
  • an amount of the catalyst is 0.3 to 4.0% of a total mass of the alcohol amine and the oxalic acid.
  • the molecular weight modifier is at least one of mercaptoacetic acid, mercaptopropionic acid, mercaptoethanol, isopropanol, and dodecanethiol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种耐久性增强型无碱液体速凝剂的制备方法。本发明的制备方法通过将马来酸酐和尿素酰化制得酰化产物,再与丙烯酰胺和丙烯酸进行共聚制得悬浮稳定剂,将其用于制备无碱液体速凝剂的合成。通过引入马来酸酐和尿素酰化制得具有酰胺结构的悬浮稳定剂,改善了液体速凝剂的凝聚性,有效的抑制了沉淀的产生,大大提高了母液存储的稳定性,稳定性能够达到15个月以上;而且酰胺结构和尿素可以促进早期强度的发展,从而提升混凝土的早期强度。

Description

一种耐久性增强型无碱液体速凝剂的制备方法 技术领域
本发明属于建筑材料技术领域,具体涉及一种耐久性增强型无碱液体速凝剂的制备方法。
背景技术
随着大规模的矿山开采、隧道开挖以及公路网和铁路网工程建设的加速,使得速凝剂用量大大增加,对速凝剂的性能质量也提出了更高的要求。传统粉状速凝剂产品只能应用于干喷工艺施工,且存在溶解速度慢、不易分散均匀等缺陷。
目前,喷射混凝土用速凝剂的发展趋势正在由传统的固体粉末状向液体转变,且低碱、无碱正逐步取代传统的速凝剂。国内目前采用的液体速凝剂存在碱含量高、后期强度损失大、硬化混凝土抗渗性差等问题。碱含量高对环境污染严重,对施工人员伤害大,混凝土质量不稳定等问题,为了改善速凝剂对施工人以及混凝土质量的伤害,开发一种耐久性增强型无碱液体速凝剂具有重大的意义。
发明内容
本发明的目的在于提供一种耐久性增强型无碱液体速凝剂的制备方法。
本发明的技术方案如下:
一种耐久性增强型无碱液体速凝剂的制备方法,包括如下步骤:
(1)酰化反应:在反应装置中先加入马来酸酐和尿素,氮气保护下,升温至60℃,再加入催化剂,缓慢升温至70~90℃,恒温1.5~4h,降温得到酰化产物,马来酸酐和尿素的摩尔比为1:1~2;
(2)悬浮稳定剂的制备:将上述酰化产物、丙烯酰胺水溶液、丙烯酸水溶液、过硫酸铵水溶液及分子量调节剂水溶液滴入水中进行反应,反应温度为50~90℃,滴加时间为1.0~4.0h,保温0~3.0h,得悬浮稳定剂;该步骤所用水的总量使得该悬浮稳定剂的质量浓度为5~40%,酰化产物、丙烯酰胺溶液和丙烯酸溶液的质量比为1:1~2:0.2~1;
(3)增强剂的制备:将醇胺和乙二酸进行反应,反应温度50~90℃,再加入催化剂,反应时间为1~4h,得到第一混合物;再往第一混合物中加入丙三醇进行反应,反应温度70~90℃,反应时间为1-4h,得到增强剂;醇胺、乙二酸和丙三醇的摩尔比为1:1:0.4~1.2; 上述醇胺为一乙醇胺、二乙醇胺、三乙醇胺和三异丙醇胺、二乙醇单异丙醇胺和单乙醇二异丙醇胺中的至少一种;
上述步骤(1)和步骤(3)中的催化剂为对甲苯磺酸和/或浓硫酸;
(4)按重量份计,将0.2~3.0份步骤(2)制得的悬浮稳定剂和1~10份氨水加入到水中进行搅拌,反应温度为10~60℃,再加入15~40份氢氧化铝,0.2~2.0h后再加入5~25份步骤(3)制得的增强剂,反应0.2~1h,得所述耐久性增强型无碱液体速凝剂;该步骤所用水的总量使得该耐久性增强型无碱液体速凝剂的质量浓度为30~60%。
在本发明的一个优选实施方案中,所述步骤(1)中,所述催化剂的用量为马来酸酐和尿素总质量的0.3~0.6%。
在本发明的一个优选实施方案中,所述步骤(2)中,所述过硫酸铵的用量为酰化产物、丙烯酰胺溶液和丙烯酸溶液中的溶质的总质量的0.5~3.0%。
在本发明的一个优选实施方案中,所述步骤(2)中,所述分子量调节剂的用量为酰化产物、丙烯酰胺溶液和丙烯酸溶液中的溶质的总质量的0.2~3.0%。
在本发明的一个优选实施方案中,所述步骤(3)中,所述催化剂的用量为醇胺和乙二酸的总质量的0.3~4.0%。
进一步优选的,所述分子量调节剂为巯基乙酸、巯基丙酸、巯基乙醇、异丙醇和十二硫醇中的至少一种。
本发明的有益效果是:
1、本发明的制备方法通过将马来酸酐和尿素酰化制得酰化产物,再与丙烯酰胺和丙烯酸进行共聚制得悬浮稳定剂,将其用于制备无碱液体速凝剂的合成。通过引入马来酸酐和尿素酰化制得具有酰胺结构的悬浮稳定剂,改善了液体速凝剂的凝聚性,有效的抑制了沉淀的产生,大大提高了母液存储的稳定性,稳定性能够达到15个月以上;而且酰胺结构和尿素可以促进早期强度的发展,从而提升混凝土的早期强度。
2、本发明制备方法制方法通过醇胺先与乙二酸酯化后再与丙三醇酯化制得增强剂,再将其运用于无碱液体速凝剂的合成中,能够提高混凝土的早期强度和后期强度。
3、本发明制备的高耐久性增强型无碱液体速凝剂不含硫酸盐、氯离子、碱含量,因此可提升混凝土的耐久性。
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
实施例1
(1)酰化反应:在反应装置中先加入100.00g马来酸酐和66.00g尿素,氮气保护下,升温至60℃,加入0.60g对甲苯磺酸,缓慢升温至85℃,恒温1.0h,降温得到酰化产物;
(2)悬浮稳定剂的制备:将100.00g酰化产物、丙烯酰胺水溶液(其中丙烯酸120.00g和水150.00g)、丙烯酸水溶液(其中丙烯酸32.00g和水150.00g)、过硫酸铵水溶液(其中过硫酸铵2.30g和水150.00g)及巯基乙酸水溶液(其中巯基乙酸1.50g和水150.00g),滴入500.00g水中进行反应,反应温度为80℃,滴加时间为2.0h,保温1.0h,得悬浮稳定剂;
(3)增强剂的制备:将105.00g二乙醇胺和90.00g乙二酸进行反应,反应温度66℃,再加入1.00g对甲苯磺酸,反应时间为2h,得到第一混合物;再往第一混合物中加入46.00g丙三醇进行反应,反应温度70℃,反应时间为2.0h,得到增强剂;
(4)将1.20g步骤(2)制得的悬浮稳定剂和3.20g氨水加入到50.00g水中进行搅拌,反应温度为45℃,再加入20.00g氢氧化铝,1.0h后再加入10.00g步骤(3)制得的增强剂,反应0.5h,得所述高耐久性增强型无碱液体速凝剂。
实施例2
(1)酰化反应:在反应装置中先加入100.00g马来酸酐和71.00g尿素,氮气保护下,升温至60℃,加入0.80g浓硫酸,缓慢升温至75℃,恒温2.0h,降温得到酰化产物;
(2)悬浮稳定剂的制备:将100.00g酰化产物、丙烯酰胺水溶液(其中丙烯酸142.00g和水150.00g)、丙烯酸水溶液(其中丙烯酸36.00g和水150.00g)、过硫酸铵水溶液(其中过硫酸铵1.70g和水150.00g)及巯基丙酸水溶液(其中巯基丙酸1.70g和水150.00g),滴入500.00g水中进行反应,反应温度为70℃,滴加时间为3.0h,保温2.0h,得悬浮稳定剂;
(3)增强剂的制备:将61.00g一乙醇胺和90.00g乙二酸进行反应,反应温度80℃,再加入0.90g浓硫酸,反应时间为3.0h,得到第一混合物;再往第一混合物中加入56.00g丙三醇进行反应,反应温度80℃,反应时间为2.0h,得到增强剂;
(4)将2.00g步骤(2)制得的悬浮稳定剂和5.00g氨水加入到50.00g水中进行搅拌,反应温度为50℃,再加入30.00g氢氧化铝,1.5h后再加入12.00g步骤(3)制得的增强剂,反应0.5h,得所述高耐久性增强型无碱液体速凝剂。
实施例3
(1)酰化反应:在反应装置中先加入100.00g马来酸酐和68.00g尿素,氮气保护下,升温至60℃,加入0.70g浓硫酸,缓慢升温至80℃,恒温3.5h,降温得到酰化产物;
(2)悬浮稳定剂的制备:将100.00g酰化产物、丙烯酰胺水溶液(其中丙烯酸155.00g和水150.00g)、丙烯酸水溶液(其中丙烯酸38.00g和水150.00g)、过硫酸铵水溶液(其中过硫酸铵2.80g和水150.00g)及巯基乙醇水溶液(其中巯基乙醇3.00g和水150.00g),滴入520.00g水中进行反应,反应温度为80℃,滴加时间为2.0h,保温3.0h,得悬浮稳定剂;
(3)增强剂的制备:将149.00g三乙醇胺和90.00g乙二酸进行反应,反应温度60℃,再加入1.00g浓硫酸,反应时间为2.5h,得到第一混合物;再往第一混合物中加入74.00g丙三醇进行反应,反应温度75℃,反应时间为3.0h,得到增强剂;
(4)将1.50g步骤(2)制得的悬浮稳定剂和4.00g氨水加入到50.00g水中进行搅拌,反应温度为45℃,再加入25.00g氢氧化铝,1.0h后再加入10.00g步骤(3)制得的增强剂,反应0.5h,得所述高耐久性增强型无碱液体速凝剂。
实施例4
(1)酰化反应:在反应装置中先加入100.00g马来酸酐和82.00g尿素,氮气保护下,升温至60℃,加入0.80g对甲苯磺酸,缓慢升温至80℃,恒温2.5h,降温得到酰化产物;
(2)悬浮稳定剂的制备:将100.00g酰化产物、丙烯酰胺水溶液(其中丙烯酸136.00g和水150.00g)、丙烯酸水溶液(其中丙烯酸50.00g和水150.00g)、过硫酸铵水溶液(其中过硫酸铵2.00g和水150.00g)及异丙醇水溶液(其中异丙醇2.60g和水150.00g),滴入520.00g水中进行反应,反应温度为60℃,滴加时间为4.0h,保温1.0h,得悬浮稳定剂;
(3)增强剂的制备:将191.00g三异丙醇胺和90.00g乙二酸进行反应,反应温度75℃,再加入1.40g浓硫酸,反应时间为2.5h,得到第一混合物;再往第一混合物中加入65.00g丙三醇进行反应,反应温度85℃,反应时间为1.0h,得到增强剂;
(4)将2.00g步骤(2)制得的悬浮稳定剂和8.00g氨水加入到50.00g水中进行搅拌,反应温度为30℃,再加入28.00g氢氧化铝,0.5h后再加入15.00g步骤(3)制得的增强剂,反应0.5h,得所述高耐久性增强型无碱液体速凝剂。
实施例5
(1)酰化反应:在反应装置中先加入100.00g马来酸酐和100.00g尿素,氮气保护下,升温至60℃,加入1.00g浓硫酸,缓慢升温至85℃,恒温3.5h,降温得到酰化产物;
(2)悬浮稳定剂的制备:将100.00g酰化产物、丙烯酰胺水溶液(其中丙烯酸160.00g和水150.00g)、丙烯酸水溶液(其中丙烯酸60.00g和水150.00g)、过硫酸铵水溶液(其中过硫酸铵2.60g和水150.00g)及巯基乙酸水溶液(其中巯基乙酸2.50g和水150.00g),滴入600.00g水中进行反应,反应温度为65℃,滴加时间为3.0h,保温1.0h,得悬浮稳定剂;
(3)增强剂的制备:将163.20g二乙醇单异丙醇胺和90.00g乙二酸进行反应,反应温度80℃,再加入1.30g浓硫酸,反应时间为3.0h,得到第一混合物;再往第一混合物中加入90.00g丙三醇进行反应,反应温度80℃,反应时间为2.0h,得到增强剂;
(4)将1.00g步骤(2)制得的悬浮稳定剂和6.00g氨水加入到50.00g水中进行搅拌,反应温度为20℃,再加入35.00g氢氧化铝,1.0h后再加入20.00g步骤(3)制得的增强剂,反应0.5h,得所述高耐久性增强型无碱液体速凝剂。
对实施例1到实施例5所制得的高耐久性增强型无碱液体速凝剂进行测试,选用海螺P.O 42.5普通硅酸盐水泥。按照JC477-2005《喷射混凝土用速凝剂》对所得高耐久性增强型无碱液体速凝剂进行水泥净浆凝结水时间和水泥砂浆强度试验。其中速凝剂用量按照水泥重量的百分比计算。
水泥净浆凝结时间测试
水泥           400
水             160
水泥砂浆强度测试
水泥           900
标准砂         1350
水             450
速凝剂按照水泥重量的5%加入水泥浆体中,同时上述用水量包含了液体速凝剂中所含的水。用目前市售无碱液体速凝剂(样品1)作为对比,进行了水泥净浆凝结时间、砂浆强度以及稳定性进行了试验。试验结果如表1和表2所示。
表1 水泥净浆凝结时间测试结果
Figure PCTCN2019094980-appb-000001
表2 水泥砂浆强度测试及稳定性
Figure PCTCN2019094980-appb-000002
从表1和表2可以看出本发明的高耐久性增强型无碱液体速凝剂的初凝时间和终凝时间都比市售无碱液体速凝剂更短,1d抗压强度和28d抗压强度比更高,稳定性更好。
本领域普通技术人员可知,本发明的技术方案在下述范围内变化时,仍然能够得到与上述实施例相同或相近的技术效果,仍然属于本发明的保护范围:
一种耐久性增强型无碱液体速凝剂的制备方法,包括如下步骤:
(1)酰化反应:在反应装置中先加入马来酸酐和尿素,氮气保护下,升温至60℃,再加入催化剂,缓慢升温至70~90℃,恒温1.5~4h,降温得到酰化产物,马来酸酐和尿素的摩尔比为1:1~2;
(2)悬浮稳定剂的制备:将上述酰化产物、丙烯酰胺水溶液、丙烯酸水溶液、过硫酸铵水溶液及分子量调节剂水溶液滴入水中进行反应,反应温度为50~90℃,滴加时间为 1.0~4.0h,保温0~3.0h,得悬浮稳定剂;该步骤所用水的总量使得该悬浮稳定剂的质量浓度为5~40%,酰化产物、丙烯酰胺溶液和丙烯酸溶液的质量比为1:1~2:0.2~1;
(3)增强剂的制备:将醇胺和乙二酸进行反应,反应温度50~90℃,再加入催化剂,反应时间为1~4h,得到第一混合物;再往第一混合物中加入丙三醇进行反应,反应温度70~90℃,反应时间为1-4h,得到增强剂;醇胺、乙二酸和丙三醇的摩尔比为1:1:0.4~1.2;上述醇胺为一乙醇胺、二乙醇胺、三乙醇胺和三异丙醇胺、二乙醇单异丙醇胺和单乙醇二异丙醇胺中的至少一种;
上述步骤(1)和步骤(3)中的催化剂为对甲苯磺酸和/或浓硫酸;
(4)按重量份计,将0.2~3.0份步骤(2)制得的悬浮稳定剂和1~10份氨水加入到水中进行搅拌,反应温度为10~60℃,再加入15~40份氢氧化铝,0.2~2.0h后再加入5~25份步骤(3)制得的增强剂,反应0.2~1h,得所述耐久性增强型无碱液体速凝剂;该步骤所用水的总量使得该耐久性增强型无碱液体速凝剂的质量浓度为30~60%。
所述步骤(1)中,所述催化剂的用量为马来酸酐和尿素总质量的0.3~0.6%。所述步骤(2)中,所述过硫酸铵的用量为酰化产物、丙烯酰胺溶液和丙烯酸溶液中的溶质的总质量的0.5~3.0%;所述分子量调节剂的用量为酰化产物、丙烯酰胺溶液和丙烯酸溶液中的溶质的总质量的0.2~3.0%。所述步骤(3)中,所述催化剂的用量为醇胺和乙二酸的总质量的0.3~4.0%。
所述分子量调节剂为巯基乙酸、巯基丙酸、巯基乙醇、异丙醇和十二硫醇中的至少一种。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (6)

  1. 一种耐久性增强型无碱液体速凝剂的制备方法,其特征在于:包括如下步骤:
    (1)酰化反应:在反应装置中先加入马来酸酐和尿素,氮气保护下,升温至60℃,再加入催化剂,缓慢升温至70~90℃,恒温1.5~4h,降温得到酰化产物,马来酸酐和尿素的摩尔比为1:1~2;
    (2)悬浮稳定剂的制备:将上述酰化产物、丙烯酰胺水溶液、丙烯酸水溶液、过硫酸铵水溶液及分子量调节剂水溶液滴入水中进行反应,反应温度为50~90℃,滴加时间为1.0~4.0h,保温0~3.0h,得悬浮稳定剂;该步骤所用水的总量使得该悬浮稳定剂的质量浓度为5~40%,酰化产物、丙烯酰胺溶液和丙烯酸溶液的质量比为1:1~2:0.2~1;
    (3)增强剂的制备:将醇胺和乙二酸进行反应,反应温度50~90℃,再加入催化剂,反应时间为1~4h,得到第一混合物;再往第一混合物中加入丙三醇进行反应,反应温度70~90℃,反应时间为1-4h,得到增强剂;醇胺、乙二酸和丙三醇的摩尔比为1:1:0.4~1.2;上述醇胺为一乙醇胺、二乙醇胺、三乙醇胺和三异丙醇胺、二乙醇单异丙醇胺和单乙醇二异丙醇胺中的至少一种;
    上述步骤(1)和步骤(3)中的催化剂为对甲苯磺酸和/或浓硫酸;
    (4)按重量份计,将0.2~3.0份步骤(2)制得的悬浮稳定剂和1~10份氨水加入到水中进行搅拌,反应温度为10~60℃,再加入15~40份氢氧化铝,0.2~2.0h后再加入5~25份步骤(3)制得的增强剂,反应0.2~1h,得所述耐久性增强型无碱液体速凝剂;该步骤所用水的总量使得该耐久性增强型无碱液体速凝剂的质量浓度为30~60%。
  2. 如权利要求1所述的制备方法,其特征在于:所述步骤(1)中,所述催化剂的用量为马来酸酐和尿素总质量的0.3~0.6%。
  3. 如权利要求1所述的制备方法,其特征在于:所述步骤(2)中,所述过硫酸铵的用量为酰化产物、丙烯酰胺溶液和丙烯酸溶液中的溶质的总质量的0.5~3.0%。
  4. 如权利要求1所述的制备方法,其特征在于:所述步骤(2)中,所述分子量调节剂的用量为酰化产物、丙烯酰胺溶液和丙烯酸溶液中的溶质的总质量的0.2~3.0%。
  5. 如权利要求1所述的制备方法,其特征在于:所述步骤(3)中,所述催化剂的用量为醇胺和乙二酸的总质量的0.3~4.0%。
  6. 如权利要求1至5中任一权利要求所述的制备方法,其特征在于:所述分子量调节剂为巯基乙酸、巯基丙酸、巯基乙醇、异丙醇和十二硫醇中的至少一种。
PCT/CN2019/094980 2018-08-16 2019-07-08 一种耐久性增强型无碱液体速凝剂的制备方法 WO2020034784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12019502019A PH12019502019A1 (en) 2018-08-16 2019-09-04 Method for preparing durable reinforced alkali-free liquid accelerators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810934458.2A CN108793811B (zh) 2018-08-16 2018-08-16 一种耐久性增强型无碱液体速凝剂的制备方法
CN201810934458.2 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020034784A1 true WO2020034784A1 (zh) 2020-02-20

Family

ID=64080127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094980 WO2020034784A1 (zh) 2018-08-16 2019-07-08 一种耐久性增强型无碱液体速凝剂的制备方法

Country Status (3)

Country Link
CN (1) CN108793811B (zh)
PH (1) PH12019502019A1 (zh)
WO (1) WO2020034784A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793811B (zh) * 2018-08-16 2020-06-09 科之杰新材料集团有限公司 一种耐久性增强型无碱液体速凝剂的制备方法
CN109824294B (zh) * 2019-03-25 2021-08-17 科之杰新材料集团有限公司 一种高强稳定型液体速凝剂及其制备方法
CN113929339A (zh) * 2021-09-06 2022-01-14 中铁第一勘察设计院集团有限公司 一种复合丙酮增强无碱液体速凝剂
CN116161893B (zh) * 2023-03-02 2023-12-01 中国水利水电第七工程局有限公司 一种用于制备高早强低回弹混凝土的交联单体制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136507A1 (en) * 2000-03-22 2001-09-26 Sika AG, vorm. Kaspar Winkler & Co. Cement dispersing polymers for high flow, high strength and selfcompacting concrete
CN108178548A (zh) * 2017-12-28 2018-06-19 福建科之杰新材料有限公司 一种高耐久性无碱液体速凝剂的制备方法
CN108793811A (zh) * 2018-08-16 2018-11-13 科之杰新材料集团有限公司 一种耐久性增强型无碱液体速凝剂的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300239A1 (de) * 1993-01-07 1994-07-14 Basf Ag Verwendung von partiell veresterten Carboxylgruppen enthaltenden Copolymerisaten als Dispergiermittel
EP1270529A1 (de) * 2001-06-22 2003-01-02 Sika AG, vorm. Kaspar Winkler & Co. Verfahren zur Beschleunigung des Abbindens und Erhärtens von hydraulischen Bindemitteln und hierfür zu verwendende Gemische
CN102126841B (zh) * 2010-12-31 2012-11-21 科之杰新材料(漳州)有限公司 一种桩杆用高性能增强剂及其制备方法
CN102229477B (zh) * 2011-04-29 2013-04-03 中国建筑材料科学研究总院 一种无碱无氯液态混凝土速凝剂及其制备方法与应用
CN104230198B (zh) * 2014-09-12 2016-04-20 北京工业大学 一种提高风冷矿渣活性指数的外加剂及其制备方法
CN104961378A (zh) * 2015-06-23 2015-10-07 汤海涛 一种水泥助磨剂
CN108101403B (zh) * 2017-12-28 2019-09-27 科之杰新材料集团有限公司 一种环保型无碱液体速凝剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136507A1 (en) * 2000-03-22 2001-09-26 Sika AG, vorm. Kaspar Winkler & Co. Cement dispersing polymers for high flow, high strength and selfcompacting concrete
CN108178548A (zh) * 2017-12-28 2018-06-19 福建科之杰新材料有限公司 一种高耐久性无碱液体速凝剂的制备方法
CN108793811A (zh) * 2018-08-16 2018-11-13 科之杰新材料集团有限公司 一种耐久性增强型无碱液体速凝剂的制备方法

Also Published As

Publication number Publication date
CN108793811B (zh) 2020-06-09
CN108793811A (zh) 2018-11-13
PH12019502019A1 (en) 2020-03-16

Similar Documents

Publication Publication Date Title
WO2020034784A1 (zh) 一种耐久性增强型无碱液体速凝剂的制备方法
WO2020034670A1 (zh) 一种环保增强型无碱液体速凝剂的制备方法
CN108996943B (zh) 一种抗渗高强型无碱液体速凝剂及其制备方法
CN105645823B (zh) 一种低掺量绿色无碱氯液体速凝剂及其制备方法
CN108101403B (zh) 一种环保型无碱液体速凝剂的制备方法
CN108178548B (zh) 一种高耐久性无碱液体速凝剂的制备方法
CN106082750B (zh) 喷射混凝土用低回弹液体速凝剂及其制备方法
CN106747240B (zh) 一种碱性硫氧镁水泥及其制备方法
CN107337374B (zh) 含氟无碱液体速凝剂
CN110255955B (zh) 一种无碱液体速凝剂及其制备方法和应用
CN107459278A (zh) 一种喷射混凝土用低碱液体速凝剂及其制备方法
CN104370489B (zh) 一种无碱液体速凝剂及其制备方法
CN110078403A (zh) 一种超早强无碱液体速凝剂及其制备方法
CN115403294B (zh) 一种高稳定性无碱无氯无氟液体速凝剂及其制备方法
CN105503016B (zh) 一种高强型无硫无碱液体速凝剂及其制备方法
CN113636767A (zh) 低碳水泥及其制备方法
CN107244825A (zh) 无硫无碱液体速凝剂
CN106866017A (zh) 一种无碱速凝剂及其制品
CN108147695B (zh) 一种液体无碱速凝剂及其合成方法
CN106630725A (zh) 一种喷射混凝土用液体速凝剂及其制备方法
CN112225486B (zh) 一种稳定型无碱液体速凝剂及其制备方法与应用
CN109879631B (zh) 一种高强增溶型液体速凝剂及其制备方法
CN109721271A (zh) 一种自密实高和易性混凝土用聚羧酸减水剂组合物
CN114573267A (zh) 无碱无氯无氟的环保型液体速凝剂、制备方法及其应用
CN109824294B (zh) 一种高强稳定型液体速凝剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849754

Country of ref document: EP

Kind code of ref document: A1