WO2020034657A1 - 散热及辐射兼用无线通信天线结构 - Google Patents

散热及辐射兼用无线通信天线结构 Download PDF

Info

Publication number
WO2020034657A1
WO2020034657A1 PCT/CN2019/083489 CN2019083489W WO2020034657A1 WO 2020034657 A1 WO2020034657 A1 WO 2020034657A1 CN 2019083489 W CN2019083489 W CN 2019083489W WO 2020034657 A1 WO2020034657 A1 WO 2020034657A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible film
heat dissipation
wireless communication
spiral pattern
metal layer
Prior art date
Application number
PCT/CN2019/083489
Other languages
English (en)
French (fr)
Inventor
郭铁男
郭铁龙
徐广林
谭勇刚
Original Assignee
深圳市嘉姆特通信电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市嘉姆特通信电子有限公司 filed Critical 深圳市嘉姆特通信电子有限公司
Priority to US16/632,791 priority Critical patent/US11228082B2/en
Publication of WO2020034657A1 publication Critical patent/WO2020034657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/43Antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the invention relates to a wireless communication antenna structure for both heat dissipation and radiation, and particularly relates to a metal layer on one surface and a metal layer on the other surface using a thin and soft flexible film, which embodies an inner spiral pattern, a heat dissipation / radiation metal layer, and A wireless communication antenna in which the outer spiral pattern is sequentially connected in a spiral shape. That is, not only the inner spiral pattern and the outer spiral pattern on the surface of the flexible film, but also the spiral type wireless communication antenna wound with the additional number of turns of the heat radiation / radiation metal layer inside the flexible film, so that the heat radiation / radiation metal layer can be Works as a radiator.
  • the performance of near-field wireless communication can be further maximized, and as a heat dissipation / radiation metal layer, it can dissipate the heat generated by various components in the portable terminal, improve the communication quality, and further realize the thinness and shortness of the portable terminal.
  • a tablet or smartphone In general, a tablet or smartphone generates heat due to the driving of a plurality of circuit components required for wireless communication or various calculations through a power supply, and this heat acts as a main factor that shortens the life of each component. Need a structure that can dissipate heat as quickly as possible.
  • FIG. 1 is a diagram showing an example of an antenna coil of a prior art document (Korean Published Patent Publication No. 2016-0121073).
  • FIG. 1 The structure of a wireless antenna coil for a smartphone according to the prior art is shown in FIG. 1.
  • the housing is provided with two wireless data receiving coils 51-1 and 51-2 capable of receiving data wirelessly.
  • 51-2 is provided with a wireless energy receiving coil 52 capable of wirelessly receiving energy.
  • the largest wireless data receiving coil 51-1 located on the outside may be an NFC coil, but according to need, the wireless data receiving coil 51-1 located on the immediately inside may be an NFC coil.
  • 2a to 5b are diagrams showing an embodiment of a method of arranging a multi-antenna coil of a prior art document.
  • Figs. 2a to 2d are diagrams of an embodiment in which a wireless energy receiving coil is provided with a wireless data receiving coil inside and outside thereof.
  • Figure 2a shows that there are also two wireless energy receiving coils 52-1, 52-2, and two wireless data receiving coils 51-1, 51-2 provided outside the wireless energy receiving coils 52-1, 52-2. Diagram of an embodiment of the situation.
  • 2b and 2c show that there are also two wireless energy receiving coils 52-1, 52-2, and wireless data receiving coils 51-1, 51-2 provided outside the wireless energy receiving coils 52-1, 52-2.
  • one wireless data receiving coil 51-1, 51-2 may be either an NFC coil or another data communication coil capable of performing authentication or settlement.
  • FIG. 2d is a diagram of an embodiment when there is one wireless energy receiving coil 52-1. Furthermore, even when there is one wireless energy receiving coil 52-1, two wireless data receiving coils 51-1, 51-2 may be provided outside the wireless energy receiving coil 52-1.
  • the one wireless data receiving coil 51-1, 51-2 may be an NFC coil, or may be another data communication coil capable of performing authentication or settlement.
  • 3a to 3d are diagrams showing an embodiment equipped with wireless data receiving coils 51-1, 51-2 independently of the wireless energy receiving coil 52. At this time, there may be only one wireless data receiving coil 51-1, 51-2. In addition, the size of the wireless data receiving coils 51-1, 51-2 may be smaller than or similar to the wireless energy receiving coil 52.
  • 4 and 4b show an implementation in which one wireless data receiving coil 51-1, 51-2 is provided outside the wireless energy receiving coil 52, and another wireless data receiving coil 51-1, 51-2 is provided in another position. Case illustration.
  • the coil located outside the wireless energy receiving coil 52 may be an NFC coil or another data communication coil capable of performing authentication or settlement.
  • 5a and 5b are diagrams showing an embodiment in which two wireless data receiving coils 51-1 and 51-2 and two wireless data receiving coils 51-1 and 51-2 are arranged independently of the wireless energy receiving coil 52. .
  • one of the two wireless data receiving coils 51-1 and 51-2 is provided inside, and the other is provided outside.
  • the internal wireless data receiving coil may be an NFC coil
  • the external wireless data receiving coil may be another data communication coil capable of performing authentication or settlement, etc., on the other hand, it may also be provided externally.
  • the wireless data receiving coil is an NFC coil
  • the internal wireless data receiving coil is another data communication coil capable of performing authentication or settlement.
  • FIG. 6 is a diagram showing an example of another functional thin film layer provided in a wireless antenna coil.
  • a film 56 formed with ferrite (magnetic layer) layers 56a and 56b is provided, and a heat radiation film layer is formed thereon.
  • ferrite (magnetic layer) layers 56a and 56b is provided, and a heat radiation film layer is formed thereon.
  • a heat radiation film layer is formed thereon.
  • the types of the ferrite layer 56a and the wireless data receiving coil 56b where the wireless energy receiving coil is located may be different from each other.
  • the ferrite sheet may have an insulating effect, but it is a sheet-shaped component provided to minimize the influence of magnetic fields between coils or between coils and components. Therefore, the ferrite sheet is positioned between the coil and the mobile phone component.
  • the ferrite sheet is positioned at the top, but on the contrary, when the multi-antenna coil substrate 55 is attached to a smartphone component such as a battery Below, the ferrite sheet is attached to the bottom.
  • ferrite sheet a silicon steel sheet is used, but it may also be a commercially available material such as manganese, ferrite, permalloy, iron-cobalt magnetic alloy, metallic glass, iron powder, and the like.
  • form of the absorbent body zinc or the like can be used.
  • the border area between the coils is equipped with a ferrite sheet, thereby reducing the influence of the magnetic field between the wireless energy receiving coil and the wireless data receiving coil.
  • FIG. 7a and 7b are diagrams showing examples of cross-sectional structures of a ferrite film and a heat-dissipating film.
  • FIG. 7 is a diagram showing an embodiment for reducing the thickness of each layer.
  • the heat dissipation layer is coated on the heat dissipation film 57 to form a heat dissipation layer 57a.
  • a thermally conductive adhesive layer 57b is formed for bonding with other layers.
  • the ferrite layers 56 a and 56 b are formed on the ferrite thin film 56.
  • the ferrite layer is applied at about 20 to 100 ⁇ m.
  • a thermally conductive adhesive layer 56 c is formed under the ferrite thin film 56.
  • the structure of the wireless antenna coil for a smartphone in the prior art is a structure in which a heat dissipation layer 57a is formed by coating on the heat dissipation film 57 and a heat conductive adhesive layer 57b is formed under the heat dissipation film 57 for bonding with other layers.
  • a heat dissipation layer 57a is formed by coating on the heat dissipation film 57 and a heat conductive adhesive layer 57b is formed under the heat dissipation film 57 for bonding with other layers.
  • the present invention provides the following solutions.
  • the invention provides a wireless communication antenna structure for both heat dissipation and radiation, including:
  • the inner spiral pattern has an inner start end and an inner end formed by spirally patterning a metal layer on one surface of the flexible film;
  • An outer spiral pattern having an outer start end and an outer end formed by spirally patterning a metal layer on one side surface of the flexible film of the inner spiral pattern profile;
  • a heat-radiating / radiating metal layer having a one-way metal area and another side metal divided based on a one-way open slit formed by patterning the metal layer on the other side surface of the flexible film in one-way opening. region;
  • a plurality of vias are connected up and down between the inner end and the one side metal region, and between the outer start and the other side metal region, respectively, so that the inner spiral pattern, heat dissipation /
  • the radiating metal layer and the outer spiral pattern are sequentially connected into a spiral shape.
  • the inner start end is used as a first terminal
  • the outer end is used as a second terminal.
  • the first terminal includes:
  • a first outward-facing terminal which is formed by linearly patterning the metal layer on one surface of the flexible film in an outward-oriented manner
  • a terminal which is formed by independently patterning the heat dissipation / radiation metal layer on the other side surface of the flexible film;
  • the terminals are connected in sequence.
  • the second terminal is continuously connected to a second outward-facing terminal formed by linearly patterning the metal layer on one side surface of the flexible film.
  • it further includes an expansion slit, which is formed by expanding a metal layer on the other side surface of the flexible film, and communicates with the one-way open slit.
  • the inner spiral pattern and the outer spiral pattern are formed on the flexible film in a manner that the expansion slits on the other surface of the flexible film are arranged side by side as the center of the expansion slits. Side surface.
  • the inner spiral pattern and the outer spiral pattern are formed on one surface of the flexible film in a manner of hanging the expansion slit on the other surface of the flexible film.
  • the inner spiral pattern and the outer spiral pattern are formed on one surface of the flexible film in a manner of hanging the one-way open slit on the other surface of the flexible film.
  • the wireless communication antenna structure for both heat dissipation and radiation comprises:
  • the one-way open slit is centered on the expansion slit, and a metal layer is formed on the surface of the other side of the flexible film in a spiral pattern on an outer profile of the expansion slit.
  • the antenna structure further includes an imitation heat dissipation layer for heat dissipation, and the imitation heat dissipation layer is composed of a metal layer remaining on the surface of the flexible film on the inner and outer periphery of the inner spiral pattern and the outer spiral pattern.
  • the present invention patterns a metal layer provided on both sides of a thin and flexible flexible film, and embodies a wireless communication antenna composed of an inner spiral pattern, a heat dissipation / radiation metal layer, and an outer spiral pattern, which are sequentially connected in a spiral shape, and has the effect that As a radiator, the near-field wireless communication performance can be further maximized, and heat generated from various components in the portable terminal is dissipated.
  • the invention forms an expansion slit or a unidirectional open slit in the heat-radiating / radiating metal layer, and as a wireless communication antenna, the communication function is maximized, and the heat-radiating effect can be achieved.
  • the present invention utilizes a thin and soft flexible film with a metal layer on one surface and a metal layer on the other surface to reflect the inner spiral pattern, the heat radiation / radiation metal layer, and the outer spiral pattern in order to form a spiral wireless communication antenna, that is, Not only the inner spiral pattern and the outer spiral pattern on the surface of the flexible film, but also the spiral type wireless communication antenna wound according to the number of additional turns of the heat dissipation / radiation metal layer inside the flexible film, so that the heat dissipation / radiation metal
  • the layer can not only serve as a radiator, but also maximize the performance of short-range wireless communications, and also serve as a heat sink / radiation metal layer, which radiates heat generated by various components in the portable terminal, enabling high-quality communication of the portable terminal, Guaranteed heat dissipation, thin and short.
  • a further effect of the present invention is that the inner spiral pattern and the outer spiral pattern are formed on the surface of one side of the flexible film in a manner that the expansion slits on the other surface of the flexible film are arranged side by side as the center of the expansion slit.
  • the path of the magnetic field generated by the current of the short-range transmitter is mostly ensured by expanding the slit, so that the wireless communication antenna of the portable terminal is connected in all directions to form an induced current), so that the inner spiral pattern and the outer spiral pattern are hung on the
  • the way of expanding the slit on the other surface of the flexible film is formed on one side of the flexible film (the expansion slit and the one-way open slit can ensure the path of the magnetic field generated by the current of the short-range transmitter, making it portable
  • the wireless communication antenna of the terminal is connected in all directions to form an induced current), and the inner spiral pattern and the outer spiral pattern are hung on the other surface of the flexible film through a unidirectional open slit.
  • the slit and one-way open slit can ensure the path of the magnetic field generated by the current of the short-range transmitter, making the portable terminal Full range wireless communication antenna is connected, an induced current is formed).
  • the unidirectional open slit formed in the heat-radiating / radiating metal layer of the present invention can form a metal layer on the other surface of the flexible film by spirally patterning the expansion slit with the expansion slit as the center. .
  • this one-way open-cut slit type the overall number of turns of the wireless communication antenna is further ensured, and the short-range wireless communication performance is further maximized.
  • the invention also includes a metal layer on the surface of the flexible film on the inner and outer perimeters of the inner spiral pattern and the outer spiral pattern. Achieve maximum heat dissipation.
  • the invention allows the metal layer on the surface of the flexible film to remain, and functions as an imitating heat-dissipating layer, and has the effect of ensuring the reduction in thickness, thickness, and miniaturization while achieving maximum heat dissipation.
  • FIG. 1 is a diagram showing an embodiment of an antenna coil of the prior art document
  • 2a to 5b are diagrams showing an embodiment of a method for arranging a multi-antenna coil in a prior art document
  • FIG. 6 is a diagram showing an example of another functional thin film layer provided in a wireless antenna coil
  • FIG. 7a and 7b are diagrams showing an example of a cross-sectional structure of a ferrite film and a heat dissipation film
  • 8a is an exploded perspective view showing a structure of a wireless communication antenna for both heat dissipation and radiation of the present invention
  • 8b is a front perspective view showing a structure of a wireless communication and radiation antenna for wireless communication in accordance with the present invention.
  • FIG. 8c is a rear perspective view showing the structure of a wireless communication and radiation communication antenna structure according to the present invention.
  • 9a is a top view showing a state in which a flexible film is removed from the structure of a wireless communication and radiation communication antenna structure according to the first embodiment of the present invention.
  • 9b is a plan view showing a state in which a flexible film is removed from a structure of a wireless communication and radiation antenna for a second embodiment of the present invention.
  • 9c is a top view showing a state where a flexible film is removed from a structure of a wireless communication and radiation communication antenna according to a third embodiment of the present invention.
  • FIGS. 10a and 10b are top views showing a state in which a flexible film is removed from a wireless communication antenna structure for both heat dissipation and radiation according to a fourth embodiment of the present invention.
  • FIG. 11 is a plan view showing a state in which a flexible film is removed from the structure of a wireless communication and radiation antenna for a fifth embodiment of the present invention.
  • FIGS. 12a and 12b are top views showing a state in which a flexible film is removed from a wireless communication antenna structure for both heat dissipation and radiation according to a sixth embodiment of the present invention.
  • H11 Inner end
  • H12 Inner end
  • B11 metal area on one side
  • B12 metal area on the other side
  • T11 first outward-facing terminal T12: via terminal
  • T20 second terminal T21: second outward terminal
  • Fig. 8a is an exploded perspective view showing the structure of a wireless communication and heat radiation antenna of the present invention
  • Fig. 8b is a front perspective view showing the structure of a wireless communication and heat radiation antenna of the present invention
  • Fig. 8c is a view showing both the heat radiation and radiation of the present invention Rear perspective view of a wireless communication antenna structure.
  • the structure of the wireless communication antenna for radiation and radiation of the present invention is shown in FIG. 8a to FIG. 8c and may include:
  • the inner spiral pattern H10 has a Helical Type patterning (Patterning: Etching) or NC processing (Numerical) of a metal layer (for example, a metal layer made of copper foil) on one surface of the flexible film F. Control work, CNC machining, etc.), the inner starting end H11 and the inner end H12; the outer spiral pattern H20, which has a spiral-shaped metal layer on the side of the flexible film F on the outer surface of the inner spiral pattern H10 Patterned outer start H21 and outer end H22; heat dissipation / radiation metal layer B10 having a unidirectional open slit formed by patterning a metal layer on the other surface of the flexible film F in one direction (Slit) S1 as a reference, divided into one side metal region B11 and the other side metal region B12; a plurality of vias V, which connects between the inner end H12 and the one side metal region B11, and the The outer start end H21 and the other metal region B12 are connected up and down, respectively, so that the inner
  • the inner spiral pattern H10, the heat radiation / radiation metal layer B10, and the outer spiral pattern H20 are connected in a spiral shape in order to realize a wireless communication antenna.
  • Wireless communication antennas such as NFC, WPT or MST.
  • an inner spiral pattern H10 and an outer spiral pattern H20 having one surface of the flexible film F, and a spiral type wound by means of additional turns of a heat-radiating / radiating metal layer on the other surface of the flexible film F are realized.
  • the wireless communication antenna maximizes the communication performance in a narrow space in the portable terminal while ensuring space availability.
  • the one side metal region B11 and the other side metal region B12 and the inner spiral pattern H10 and the outer spiral pattern H20 distinguished according to the one-way open slit S1 on the other surface of the flexible film F are connected to each other, so that the heat dissipation / radiation metal layer As a radiator, B10 further maximizes the performance of short-range wireless communications. Furthermore, as the heat-radiating / radiating metal layer B10, it can dissipate the heat generated by various components in the portable terminal. Even without adopting the heat-dissipating film laminated structure of the heat-dissipating layer in the prior art literature, the entire tablet or smartphone can be realized.
  • the heat-radiating / radiating metal layer B10 can use any one of gold, silver, copper, graphite, graphene, and carbon with low electrical resistance and good electrical conductivity to make radiation and heat dissipation Effect is maximized).
  • NFC Near Field Communication
  • WPT Wireless Power Transmission
  • MST Magnetic Secure Transmission
  • mobile settlement service communication antenna etc.
  • NFC Near Field Communication
  • WPT Wireless Power Transmission
  • MST Magnetic Secure Transmission
  • MST Magnetic Secure Transmission
  • MST Magnetic Secure Transmission
  • MST Magnetic Secure Transmission
  • MST Magnetic Secure Transmission
  • MST Magnetic Secure Transmission
  • a wireless communication antenna that embodies wireless charging of a battery in a portable terminal is, in most cases, installed near a metal (battery) or near a plurality of electronic components.
  • Metal or electronic components prevent wireless communication antennas from obtaining induced current, that is, if a wireless communication antenna is installed near a metal, it causes a large number of wireless communication obstruction phenomena, because metal reduces the inductance of the wireless communication antenna, and therefore, reduces
  • the Q index Q-factor, quality factor
  • This eddy current generates a magnetic field in the opposite direction according to Lenz's Law, which becomes a big problem in short-range wireless charging systems.
  • ground plane of the metal existing under the magnetic field or electric field greatly reduces the strength of these electromagnetic fields, that is, the strength of the signal, and therefore prevents the charging efficiency of the wireless communication antenna or the function of the NFC.
  • the one-way open slit S1 and the expansion slit S2 formed by patterning the metal layer in the flexible film F applied in the present invention are relatively more secure due to the close-range emitter (not shown in the figure)
  • the path of the magnetic field generated by the current causes the wireless communication antenna of the portable terminal to be connected in all directions to form an induced current.
  • this function is not limited by the shape of the one-way open slit S1 or the expansion slit S2.
  • the wireless communication antenna enables a magnetic field generated when a current flows through a short-range transmitter to connect a wireless communication antenna of a portable terminal by expanding the slit S2 and the one-way open slit S1, while forming an induced current
  • the battery can be recharged or capable of short-range wireless communication such as NFC or MST.
  • a metal layer on one surface and a metal layer on the other surface of the thin and flexible flexible film are used to form the spiral pattern H10, the heat radiation / radiation metal layer B10, and the spiral pattern H20 in the spiral.
  • Type wireless communication antenna that is, not only the inner spiral pattern H10 and the outer spiral pattern H20 on the surface of the flexible film F, but also the winding with the number of additional turns of the heat dissipation / radiation metal layer in the flexible film F.
  • the helical wireless communication antenna enables the heat-radiating / radiating metal layer to act as a radiator and also maximizes the short-range wireless communication performance. It also acts as a heat-radiating / radiating metal layer B10, which radiates various components in the portable terminal. The amount of heat can achieve high-quality communication, heat dissipation guarantee, and slimness of the portable terminal.
  • the patterning of the flexible surface metal layer can form multiple spirals, and together form multiple wireless communication antennas such as NFC, WPT, and MST.
  • the inner start end H11 of the inner spiral pattern H10 is used as the first terminal T10
  • the outer end H22 of the outer spiral pattern H20 is used as the second terminal T20.
  • the positive power can be supplied through the first terminal T10, respectively.
  • the second terminal T20 supplies a negative power source.
  • the first terminal T10 may include: a first outward-facing terminal T11, which is formed by linearly patterning a metal layer on one side surface of the flexible film F; and via the terminal T12, the flexible film F The heat dissipation / radiation metal layer B10 on the other side of the surface is independently patterned and formed; a plurality of via holes V are formed between the inner end H11 and the via terminal T12, and the via terminal T12 and The first outward-facing terminals T11 are connected up and down, respectively, so that the inner starting end H11 is connected in sequence through the terminal T12 and the first outward-facing terminal T11. In this way, through the plurality of via holes V, the inner starting end H11, the terminal T12, and the first outward terminal T11 are connected in order, thereby ensuring the number of turns of the inner spiral pattern H10.
  • the second terminal T20 is connected to the second outward-facing terminal T21 formed by patterning the surface metal layer of the flexible film F outwardly and linearly, so that, for example, the negative power supply can be easily received.
  • FIG. 9a is a plan view showing a state in which the flexible film F is removed from the structure of the wireless communication and radiation antenna for the first embodiment of the present invention
  • FIG. 9b is a diagram showing the removal of the structure of the wireless communication and radiation antenna for the second embodiment of the present invention
  • FIG. 9C is a top view showing a state where the flexible film F is removed with the structure of a wireless communication and radiation antenna for a third embodiment of the present invention.
  • FIG. 9a The structure of the wireless communication antenna for both heat dissipation and radiation in the first embodiment of the present invention is shown in FIG. 9a, which can make the inner spiral pattern H10 and the outer spiral pattern H20 narrow the expansion of the surface of the other side of the flexible film F.
  • a slit S2 is formed at the center of the expansion slit S2 side by side and is formed on the side of the flexible film F (the path of the magnetic field generated by the current of the short-range transmitter is mostly passed through the expansion slit S2. Ensure that the wireless communication antenna of the portable terminal is connected in all directions to form an induced current).
  • the structure of the wireless communication antenna for both heat dissipation and radiation according to the second embodiment of the present invention can make the inner spiral pattern H10 and the outer spiral pattern H20 hang on the expansion slit S2 on the other surface of the flexible film F.
  • Formed on one surface of the flexible film F (by expanding the slit S2 and the one-way open slit S, the path of the magnetic field generated by the current of the short-range transmitter can be ensured, and the wireless communication antenna of the portable terminal is connected in all directions. The induced current).
  • FIG. 9c The structure of a wireless communication antenna for both heat dissipation and radiation according to the third embodiment of the present invention is shown in FIG. 9c.
  • the inner spiral pattern H10 and the outer spiral pattern H20 can be hung on the unidirectional open slit S1 on the other surface of the flexible film F
  • the method is formed on one surface of the flexible film F (the expansion slit and the one-way open slit can ensure the path of the magnetic field generated by the current of the short-range transmitter, so that the wireless communication antenna of the portable terminal is connected in all directions.
  • the induced current is formed on one surface of the flexible film F (the expansion slit and the one-way open slit can ensure the path of the magnetic field generated by the current of the short-range transmitter, so that the wireless communication antenna of the portable terminal is connected in all directions.
  • the induced current is formed on one surface of the flexible film F (the expansion slit and the one-way open slit can ensure the path of the magnetic field generated by the current of the short
  • 10a and 10b are plan views showing a state in which the flexible film F is removed from the structure of a wireless communication and radiation antenna for a fourth embodiment of the present invention.
  • the structure of the wireless communication antenna for both heat dissipation and radiation according to the fourth embodiment of the present invention may include: another open slit S3, which is formed in the flexible way to communicate with the expansion slit S2.
  • Jump pattern J which is formed on a metal layer on one surface of the flexible film F and is connected up and down with the via hole V so as to be able to cross the opening slit S3 in the other direction to transfer the heat radiation / radiation metal Layer B10 is connected in one piece.
  • FIG. 11 is a plan view showing a state in which the flexible film F is removed from the structure of a wireless communication and radiation communication antenna structure according to a fifth embodiment of the present invention.
  • FIG. 11 The structure of a heat radiation and radiation wireless communication antenna according to a fifth embodiment of the present invention is shown in FIG. 11.
  • the one-way open slit S1 formed on the heat radiation / radiation metal layer B10 is centered on the expansion slit S2, and the expansion slit S2 is centered.
  • the outer layer is spirally patterned to form a metal layer on the other surface of the flexible film F, so that the spiral shape of the one-way open slit S1 can be used to further ensure the overall number of turns of the wireless communication antenna and make it close. Wireless communication performance is further maximized.
  • FIGS. 12a and 12b are top views showing a state in which the flexible film F is removed from a wireless communication and radiation antenna structure having a heat radiation and radiation function according to a sixth embodiment of the present invention.
  • the heat dissipation and radiation wireless communication antenna structure according to the fifth embodiment of the present invention further includes a metal layer on the side of the flexible film F on the inner and outer perimeters of the inner spiral pattern H10 and the outer spiral pattern H20 remaining for the heat dissipation imitating layer D,
  • the imitation heat-dissipating layer D radiates heat generated by various components in the portable terminal to further maximize heat dissipation.
  • the metal layer on the surface of the flexible film F is patterned, a portion corresponding to a dead space can be removed by etching or the like or it is not formed from the beginning.
  • the metal layer on the surface of the flexible film F is left to function as a dummy heat-dissipating layer, while ensuring the reduction in thickness, thickness, and miniaturization, and maximizing heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本发明公开了一种散热及辐射兼用无线通信天线结构,包括:内侧螺旋图案,包括内侧始端及内侧末端;外侧螺旋图案,包括外侧始端及外侧末端;散热/辐射金属层,包括一侧金属区域及另一侧金属区域;多个导通孔,其使所述内侧末端和所述一侧金属区域之间,以及所述外侧始端和所述另一侧金属区域之间分别上下连接,使得所述内侧螺旋图案、散热/辐射金属层及外侧螺旋图案依次连接成螺旋型。本发明实现了较好的近距离无线通信的同时,还实现了对于便携终端内各种部件的散热。

Description

散热及辐射兼用无线通信天线结构 技术领域
本发明涉及散热及辐射兼用无线通信天线结构,具体涉及一种利用薄型且柔软的柔性薄膜的一侧表面的金属层与另一侧表面的金属层,体现内侧螺旋图案、散热/辐射金属层及外侧螺旋图案以螺旋型依次连接的无线通信天线。即不仅是柔性薄膜表面的内侧螺旋图案及外侧螺旋图案,而且借助柔性薄膜里面的散热/辐射金属层的追加匝(Turn)数来卷绕的螺旋型无线通信天线,使散热/辐射金属层能够作为辐射体进行工作。以此能够使近距离无线通信的性能进一步最大化的同时,还作为散热/辐射金属层,能够散发便携终端内的各种部件发生的热量,还能够提高通信品质,进一步实现便携终端的轻薄短小化。
背景技术
一般而言,平板电脑或智能手机因用于通过电源供应进行无线通信或各种运算所需的多个电路部件的驱动而发生热,这种热作为缩短部件相互间寿命的主要因素而进行作用,需要能够尽可能迅速散热的结构。
图1是显示现有技术文献(大韩民国公开专利公报第2016-0121073号)的天线线圈的实施例的图。
现有技术文献的智能手机用无线天线线圈的结构如图1所示,在外壳部分配备有2个能够无线接收数据的无线数据接收线圈51-1、51-2,在数据接收线圈内部51-1、51-2配备有能够无线接收能量的无线能量接收线圈52。
而且,一般而言,最大且位于外侧的无线数据接收线圈51-1可以为NFC线圈,但根据需要,位于紧内侧的无线数据接收线圈51-1可以为NFC线圈。
图2a至图5b是显示现有技术文献的多天线线圈的配置方法的实施例的图。
图2a至图2d是无线能量接收线圈在内部、在其外部配备有无线数据接收 线圈的情形的实施例的图。
图2a是无线能量接收线圈52-1、52-2也为2个、在无线能量接收线圈52-1、52-2外部配备的无线数据接收线圈51-1、51-2也为2个的情形的实施例的图。
图2b和图2c是无线能量接收线圈52-1、52-2也为2个、在所述无线能量接收线圈52-1、52-2外部配备的无线数据接收线圈51-1、51-2为1个的情形的实施例图。
此时,一个无线数据接收线圈51-1、51-2既可以为NFC线圈,也可以为能够进行认证或结算等的其他数据通信线圈。
另一方面,图2d是无线能量接收线圈52-1为1个时的实施例的图。而且,即使在无线能量接收线圈52-1为1个的情况下,在无线能量接收线圈52-1外部可以配备2个无线数据接收线圈51-1、51-2。
另一方面,当无线能量接收线圈52-1为1个时,在无线能量接收线圈52-1外部可以只配备1个无线数据接收线圈51-1、51-2。此时,所述1个无线数据接收线圈51-1、51-2既可以为NFC线圈,也可以为能够进行认证或结算等的其他数据通信线圈。
图3a至图3d是显示独立于无线能量接收线圈52而配备有无线数据接收线圈51-1、51-2的实施例的图。此时,无线数据接收线圈51-1、51-2可以只存在一个,另外,无线数据接收线圈51-1、51-2大小既可以小于也可以与无线能量接收线圈52相似。
图4和图4b是显示在无线能量接收线圈52外部配备有一个无线数据接收线圈51-1、51-2、在另外的位置配备有另一个无线数据接收线圈51-1、51-2的实施例的图。
此时,位于无线能量接收线圈52外部的线圈既可以为NFC线圈,也可以为能够进行认证或结算等的其他数据通信线圈。
图5a和图5b是显示独立于无线能量接收线圈52而配置有无线数据接收线圈51-1、51-2、无线数据接收线圈51-1、51-2为2个的情形的实施例的图。
而且,所述2个无线数据接收线圈51-1、51-2,一个配备于内部,另一个配备于外部。另一方面,配备于内部的无线数据接收线圈可以为NFC线圈,配备于外部的无线数据接收线圈可以为能够进行认证或结算等的其他数据通信线圈,与此相反,也可以是配备于外部的无线数据接收线圈为NFC线圈,配备于内部的无线数据接收线圈为能够进行认证或结算等的其他数据通信线圈。
图6是显示配备于无线天线线圈的其他功能性薄膜层的实施例的图。
如图6所示,在配备有无线天线线圈52、51的薄膜55上端,配备形成有铁氧体(磁性体层)层56a、56b的薄膜56,另外,在其上配备形成有散热薄膜层的薄膜57。
而且,位于无线能量接收线圈所在部分的铁氧体层56a与无线数据接收线圈56b所在的铁氧体层的种类可以互不相同。
铁氧体片也可以具有绝缘效果,但却是为了使对线圈相互间或线圈与部件间造成磁场影响实现最小化而配备的片形态的部件。因此,使得所述铁氧体片位于线圈与手机部件之间。
因此,虽然在现有技术文献的多天线线圈基板55附着于智能手机壳后面的情况下,铁氧体片位于最上面,但相反,在多天线线圈基板55附着于电池等智能手机部件的情况下,铁氧体片附着于最下面。
作为铁氧体片,使用硅钢板,但也可以为锰、铁氧体、坡莫合金、铁钴磁性合金、金属玻璃、铁粉等现已商用化的材料。另外,作为吸收体形态,可以使用锌等。
在线圈与线圈之间的边境区域配备有铁氧体片,从而在无线能量接收线圈与无线数据接收线圈相互间减小磁场的影响。
图7a和图7b是显示铁氧体薄膜与散热薄膜的剖面结构的实施例的图。
为了配备于智能手机,重要的是使各个层的厚度变薄,图7的实施例是显示用于使各层的厚度变薄的实施例的图。
在图7a和图7b中,散热层在散热薄膜57上涂布形成散热层57a,在散热薄膜57下面,为了与其他层接合而形成导热粘着层57b。而且,铁氧体片在铁氧体薄膜56上形成铁氧体层56a、56b。此时,为了使整体厚度变薄,铁氧体层涂布20~100μm左右。而且,在铁氧体薄膜56下面形成有导热粘着层56c。
可是,现有技术文献的智能手机用无线天线线圈的结构,以在散热薄膜57上涂布形成散热层57a、在散热薄膜57下面为了与其他层接合而形成导热粘着层57b的结构构成,因而带有整体厚度因散热薄膜57的厚度而变厚的问题。
发明内容
鉴于现有技术存在的不足,本发明提供了以下方案。
本发明提供了一种散热及辐射兼用无线通信天线结构,包括:
内侧螺旋图案,其具有将柔性薄膜的一侧表面的金属层进行螺旋型图案化形成的内侧始端及内侧末端;
外侧螺旋图案,其具有将所述内侧螺旋图案外廓的所述柔性薄膜的一侧表面的金属层进行螺旋型图案化形成的外侧始端及外侧末端;
散热/辐射金属层,其具有以将所述柔性薄膜的另一侧表面的金属层进行单向开放的图案化形成的单向开放切缝为基准,分成的一侧金属区域及另一侧金属区域;
多个导通孔,其使所述内侧末端和所述一侧金属区域之间,以及所述外侧始端和所述另一侧金属区域之间分别上下连接,使得所述内侧螺旋图案、散热/辐射金属层及外侧螺旋图案依次连接成螺旋型。
可选地,所述内侧始端用作第一端子,所述外侧末端用作第二端子。
可选地,所述第一端子包括:
第一外向端子,其将对所述柔性薄膜的一侧表面的金属层进行外向直线型图案化形成;
经由端子,其将对所述柔性薄膜的另一侧表面的所述散热/辐射金属层进行独立图案化形成;
多个导通孔,其使所述内侧始端和所述经由端子之间,以及所述经由端子和所述第一外向端子之间分别上下连接,使得所述内侧始端、经由端子及第一外向端子依次连接。
可选地,所述第二端子连续连接于将对所述柔性薄膜的一侧表面的金属层进行外向直线型图案化形成的第二外向端子而完成。
可选地,还包括扩张狭缝,其在所述柔性薄膜的另一侧表面的金属层扩张形成,与所述单向开放切缝连通。
可选地,所述内侧螺旋图案及外侧螺旋图案以将所述柔性薄膜另一侧表面的所述扩张狭缝为中心并排布在所述扩张狭缝外廓的方式形成在所述柔性薄膜一侧表面。
可选地,所述内侧螺旋图案及外侧螺旋图案以挂设在所述柔性薄膜另一侧表面的所述扩张狭缝的方式形成在所述柔性薄膜的一侧表面。
可选地,所述内侧螺旋图案及外侧螺旋图案以挂设在所述柔性薄膜另一侧表面的所述单向开放切缝的方式形成在所述柔性薄膜的一侧表面。
可选地,所述散热及辐射兼用无线通信天线结构,包括:
另向开放切缝,其以连通于所述扩张狭缝的方式形成在所述柔性薄膜的里面的金属层;
跳转图案,其形成在所述柔性薄膜一侧表面的金属层并与所述导通孔上下连接,以便能够横跨所述另向开放切缝,将所述散热/辐射金属层连接成一体。
可选地,所述单向开放切缝以所述扩张狭缝为中心,在所述扩张狭缝的外廓进行螺旋型图案化的方式形成在所述柔性薄膜另一侧表面的金属层。
可选地,所述天线结构还包括用于散热的仿散热层,所述仿散热层由所述内侧螺旋图案及外侧螺旋图案内外周边的所述柔性薄膜一侧表面残存的金属 层构成。
基于上述技术特征的本发明的效果为:
本发明对在薄型且柔软的柔性薄膜两面配备的金属层进行图案化,体现由依次连接成螺旋型的内侧螺旋图案、散热/辐射金属层及外侧螺旋图案构成的无线通信天线,具有的效果是在作为辐射体而能够使近距离无线通信性能进一步最大化的同时,散发便携终端内的各种部件发生的热量。
本发明在散热/辐射金属层形成扩张狭缝或单向开放切缝,作为无线通信天线使通信功能最大化的同时还能实现散热效果。
本发明利用薄型且柔软的柔性薄膜的一侧表面的金属层和另一侧表面的金属层,体现内侧螺旋图案、散热/辐射金属层及外侧螺旋图案依次连接成螺旋型的无线通信天线,即不仅是柔性薄膜表面的内侧螺旋图案及外侧螺旋图案,而且体现按借助于柔性薄膜里面的散热/辐射金属层的追加匝(Turn)数来卷绕的螺旋型无线通信天线,使散热/辐射金属层能够作为辐射体的同时,还能够使近距离无线通信性能进一步最大化,而且还作为散热/辐射金属层,散发便携终端内的各种部件发生的热量,能够实现便携终端的高品质通信、散热保障、轻薄短小化。
本发明的进一步效果是,使得内侧螺旋图案及外侧螺旋图案以将柔性薄膜另一侧表面的所述扩张狭缝为中心并排布在扩张狭缝外廓的方式形成在柔性薄膜一侧表面(因近距离发射器的电流而发生的磁场的通路,大部分通过扩张狭缝隙来确保,使便携终端的无线通信天线全方位连接,形成感应电流),使得内侧螺旋图案及外侧螺旋图案以挂设在柔性薄膜另一侧表面的扩张狭缝的方式形成在柔性薄膜的一侧表面(通过扩张狭缝及单向开放切缝,可以确保因近距离发射器的电流而发生的磁场的通路,使便携终端的无线通信天线全方位连接,形成感应电流),内侧螺旋图案及外侧螺旋图案挂设在柔性薄膜另一侧表面的单向开放切缝的方式形成在柔性薄膜的一侧表面(通过扩张狭缝及单向开放切缝,可以确保因近距离发射器的电流而发生的磁场的通路,使便携终端的无线通信天线全方位连接,形成感应电流)。
本发明在散热/辐射金属层形成的单向开放切缝,可以将以扩张狭缝为中 心,在扩张狭缝的外廓进行螺旋型图案化的方式形成在柔性薄膜另一侧表面的金属层。通过这种单向开放切缝的螺旋型进一步确保无线通信天线的整体匝数,使近距离无线通信性能进一步最大化。
本发明还包括使内侧螺旋图案及外侧螺旋图案的内外周边的柔性薄膜一侧表面的金属层残存以便用于散热的仿散热层,仿散热层散发便携终端内的各种部件发生的热量,进一步实现散热的最大化。
本发明使柔性薄膜表面金属层残存,作为仿散热层而发挥作用,具有保障轻薄短小化的同时实现散热最大化的效果。
附图说明
图1是显示现有技术文献的天线线圈的实施例的图;
图2a至图5b是显示现有技术文献的多天线线圈的配置方法的实施例的图;
图6是显示配备于无线天线线圈的其他功能性薄膜层的实施例的图;
图7a和7b是显示铁氧体薄膜与散热薄膜的剖面结构的实施例的图;
图8a是显示本发明的散热及辐射兼用无线通信天线结构的分解立体图;
图8b是显示本发明的散热及辐射兼用无线通信天线结构的正面方向立体图;
图8c是显示本发明的散热及辐射兼用无线通信天线结构的背面方向立体图;
图9a是显示本发明第一实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜的状态的俯视图;
图9b是显示本发明第二实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜的状态的俯视图;
图9c是显示本发明第三实施例的散热及辐射兼用无线通信天线结构的去 除柔性薄膜的状态的俯视图;
图10a和10b是显示本发明第四实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜的状态的俯视图;
图11是显示本发明第五实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜的状态的俯视图;
图12a和12b是显示本发明第六实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜的状态的俯视图。
以下为附图标记说明。
F:柔性薄膜              H10:内侧螺旋图案
H11:内侧始端            H12:内侧末端
H20:外侧螺旋图案        H21:外侧始端
H22:外侧末端            S1:单向开放切缝
S2:扩张狭缝             B10:散热/辐射金属层
B11:一侧金属区域        B12:另一侧金属区域
V:导通孔                T10:第一端子
T11:第一外向端子        T12:经由端子
T20:第二端子            T21:第二外向端子
S3:另向开放切缝         J:跳转图案
D:仿散热层
具体实施方式
参照附图,说明本发明的散热及辐射兼用无线通信天线结构的优选实施例,作为其实施例可以存在多个,通过这些实施例,可以更好地理解本发明的 目的、特征及优点。
图8a是显示本发明的散热及辐射兼用无线通信天线结构的分解立体图,图8b是显示本发明的散热及辐射兼用无线通信天线结构的正面方向立体图,图8c是显示本发明的散热及辐射兼用无线通信天线结构的背面方向立体图。
本发明的散热及辐射兼用无线通信天线结构如图8a至图8c所示,可以包括:
内侧螺旋图案H10,其具有将柔性薄膜F的一侧表面的金属层(例如,由铜箔构成的金属层)进行螺旋型(Helical Type)图案化(Patterning:蚀刻(Etching)或NC加工(Numerical Control Work,数控加工)等)形成的内侧始端H11及内侧末端H12;外侧螺旋图案H20,其具有将所述内侧螺旋图案H10外廓的所述柔性薄膜F的一侧表面的金属层进行螺旋型图案化形成的外侧始端H21及外侧末端H22;散热/辐射金属层B10,其具有以将所述柔性薄膜F的另一侧表面的金属层进行单向开放的图案化形成的单向开放切缝(Slit)S1为基准,分成的一侧金属区域B11及另一侧金属区域B12;多个导通孔V,其使所述内侧末端H12和所述一侧金属区域B11之间,以及所述外侧始端H21和所述另一侧金属区域B12之间分别上下连接,使得所述内侧螺旋图案H10、散热/辐射金属层B10及外侧螺旋图案H20依次连接成螺旋型。进一步,可包括,在所述柔性薄膜F的另一侧表面的金属层扩张形成并与所述单向开放切缝S1连通的扩张狭缝(Slot)S2。
内侧螺旋图案H10、散热/辐射金属层B10及外侧螺旋图案H20依次连接成螺旋型而可以实现无线通信天线。例如NFC、WPT或MST等无线通信天线。
尤其实现了具有柔性薄膜F一侧表面的内侧螺旋图案H10和外侧螺旋图案H20,以及借助于柔性薄膜F另一侧表面的散热/辐射金属层的追加匝(Turn)数来卷绕的螺旋型无线通信天线,使便携终端内狭窄空间中的通信性能最大化的同时,确保了空间利用性。
进一步,根据柔性薄膜F另一侧表面的单向开放切缝S1分辨的一侧金属区域B11及另一侧金属区域B12以及内侧螺旋图案H10及外侧螺旋图案H20相互连接,使散热/辐射金属层B10作为辐射体的同时,使近距离无线通信性 能得到进一步最大化。而且作为散热/辐射金属层B10,能够散发便携终端内的各种部件发生的热量,即使不采用现有技术文献中的涂布散热层的散热薄膜层叠结构,也可以实现平板电脑或智能手机整体的轻薄短小化(散热/辐射金属层B10可以应用电阻低、导电效率好的金、银、铜、石墨(Graphite)、石墨烯(Graphene)及碳(Carbon)中某一者,使得辐射及散热效果最大化)。
作为无线通信天线,例如可以为NFC(Near Field Communication;近距离无线通信)、WPT(Wireless Power Transfer;无线能量传输)、MST(Magnetic Secure Transmission;磁性安全传输)或移动结算服务通信天线等,具体而言,NFC作为电子标签(RFID)的一种,是利用约13.56MHz频带的非接触式无线通信模块,WPT根据电磁感应原理,即根据感应磁场原理,使电流流经无线发射充电垫而形成磁场,将智能手机置于其上,使得可以在低频带,即在100~200KHz频带或6MHz频带下对电池充电,MST用于在10~200cm的近距离,利用13.56MHz频带的非接触磁感应耦合力,使外部终端相互间传输数据。
例如,在便携终端中体现电池的无线充电的无线通信天线,在大部分情况下,安装于金属(电池)附近或其上的多个电子部件附近。金属或电子部件妨碍无线通信天线获得感应电流,即,如果无线通信天线安装于金属附近,则引起大量无线通信妨碍现象,这是因为金属使无线通信天线的电感(Inductance)减小,因此,降低Q指数(Q-factor,品质因数),使磁感应发生变化,进而磁场使得在金属内感生涡电流(Eddy Current)。这种涡电流根据楞次定律(Lenz′s Law),生成相反方向的磁场,这在近距离无线充电系统中成为大问题。
例如,如果将无线通信天线置于金属(电池)表面附近,则无线通信天线的性能急剧减小。
这是因为,存在于磁场或电场紧下面的金属的接地面,使这些电磁场的强度,即信号的强度极大减小,因此,妨碍无线通信天线的充电效率或NFC的功能。
根据上述问题,对本发明中应用的柔性薄膜F里面的金属层进行图案化形成的单向开放切缝S1及扩张狭缝S2,相对更多地确保因近距离发射器(图中未示出)的电流而发生的磁场的通路,使便携终端的无线通信天线全方位连接,形成感应电流。例如使得可以更高效地对电池充电,或进一步提高NFC或MST 的功能,保障近距离无线通信品质,而且这种功能不受单向开放切缝S1或扩张狭缝S2的形状限制。
根据这种构成,无线通信天线使得在电流流经近距离发射器时发生的磁场,通过扩张狭缝S2及单向开放切缝S1而连接便携终端的无线通信天线,在形成感应电流的同时,可以对电池充电,或能够进行诸如NFC或MST的近距离无线通信。
例如,对比在散热/辐射金属层B10有扩张狭缝S2或单向开放切缝S1的结构与在散热/辐射金属层B10均没有扩张狭缝S2或单向开放切缝S1的结构的无线通信天线及近距离发射器相互间的插入损失。则发现当在散热/辐射金属层B10有扩张狭缝S2或单向开放切缝S1时,插入损失良好(-10dB),但当在散热/辐射金属层B10均没有扩张狭缝S2或单向开放切缝S1时,插入损失显著下降,为-60~-50dB,无法实现作为无线通信天线的功能。
结果,在本发明中利用薄型且柔软的柔性薄膜的一侧表面的金属层和另一侧表面的金属层,体现内侧螺旋图案H10、散热/辐射金属层B10及外侧螺旋图案H20依次连接成螺旋型的无线通信天线,即不仅是柔性薄膜F表面的内侧螺旋图案H10及外侧螺旋图案H20,而且体现按借助于柔性薄膜F里面的散热/辐射金属层的追加匝(Turn)数来卷绕的螺旋型无线通信天线,使散热/辐射金属层能够作为辐射体的同时,还能够使近距离无线通信性能进一步最大化,而且还作为散热/辐射金属层B10,散发便携终端内的各种部件发生的热量,能够实现便携终端的高品质通信、散热保障、轻薄短小化。
进一步,柔性表面金属层的图案化可以形成多个螺旋型,一同形成诸如NFC、WPT及MST等的多个无线通信天线。
另一方面,使得内侧螺旋图案H10的内侧始端H11用作第一端子T10,外侧螺旋图案H20的外侧末端H22用作第二端子T20,例如,使得可以分别通过第一端子T10供应正极电源,通过第二端子T20供应负极电源。
更具体而言,第一端子T10可以包括:第一外向端子T11,其将柔性薄膜F的一侧表面的金属层进行外向直线型图案化形成;经由端子T12,其将对所述柔性薄膜F的另一侧表面的所述散热/辐射金属层B10进行独立图案化形成; 多个导通孔V,其使所述内侧始端H11和所述经由端子T12之间,以及所述经由端子T12和所述第一外向端子T11之间分别上下连接,使得所述内侧始端H11、经由端子T12及第一外向端子T11依次连接。如此通过多个导通孔V,使得内侧始端H11、经由端子T12及第一外向端子T11依次连接,从而确保内侧螺旋图案H10的匝数。
进而,第二端子T20连接于将柔性薄膜F的表面金属层进行外向直线型图案化形成的第二外向端子T21而完成,从而使得例如可以容易地接受负极电源供应。
图9a是显示本发明第一实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜F的状态的俯视图,图9b是显示本发明第二实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜F的状态的俯视图,图9c是显示本发明第三实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜F的状态的俯视图。
本发明第一实施例的散热及辐射兼用无线通信天线结构如图9a所示,可以使得所述内侧螺旋图案H10及外侧螺旋图案H20以将所述柔性薄膜F另一侧表面的所述扩张狭缝S2为中心并排布在所述扩张狭缝S2外廓的方式形成在所述柔性薄膜F一侧表面(因近距离发射器的电流而发生的磁场的通路,大部分通过扩张狭缝隙S2来确保,使便携终端的无线通信天线全方位连接,形成感应电流)。
本发明第二实施例的散热及辐射兼用无线通信天线结构如图9b所示,可以使得内侧螺旋图案H10及外侧螺旋图案H20以挂设在柔性薄膜F另一侧表面的扩张狭缝S2的方式形成在柔性薄膜F的一侧表面(通过扩张狭缝S2及单向开放切缝S,可以确保因近距离发射器的电流而发生的磁场的通路,使便携终端的无线通信天线全方位连接,形成感应电流)。
本发明第三实施例的散热及辐射兼用无线通信天线结构如图9c所示,当然可以使得内侧螺旋图案H10及外侧螺旋图案H20挂设在柔性薄膜F另一侧表面的单向开放切缝S1的方式形成在柔性薄膜F的一侧表面(通过扩张狭缝及单向开放切缝,可以确保因近距离发射器的电流而发生的磁场的通路,使便携终端的无线通信天线全方位连接,形成感应电流)。
图10a和10b是显示本发明第四实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜F的状态的俯视图。
本发明第四实施例的散热及辐射兼用无线通信天线结构如图10a和10b所示,可以包括:另向开放切缝S3,其以连通于所述扩张狭缝S2的方式形成在所述柔性薄膜F的里面的金属层;
跳转图案J,其形成在所述柔性薄膜F一侧表面的金属层并与所述导通孔V上下连接,以便能够横跨所述另向开放切缝S3,将所述散热/辐射金属层B10连接成一体。
此时,保持根据跳转图案J形成的螺旋型的同时,确保根据另向开放切缝S3的因近距离发射器(图中未示出)电流引起的磁场的通路。
图11是显示本发明第五实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜F的状态的俯视图。
本发明第五实施例的散热及辐射兼用无线通信天线结构如图11所示,在散热/辐射金属层B10上形成的单向开放切缝S1以扩张狭缝S2为中心,在扩张狭缝S2的外廓进行螺旋型图案化的方式形成在柔性薄膜F另一侧表面的金属层,使得可以借助这种单向开放切缝S1的螺旋型进一步确保无线通信天线的整体匝数,使近距离无线通信性能进一步最大化。
图12a和12b是显示本发明第六实施例的散热及辐射兼用无线通信天线结构的去除柔性薄膜F的状态的俯视图。
本发明第五实施例的散热及辐射兼用无线通信天线结构还包括使内侧螺旋图案H10及外侧螺旋图案H20内外周边的柔性薄膜F一侧表面的金属层残存以便用于散热的仿散热层D,仿散热层D散发便携终端内的各种部件发生的热量,进一步实现散热的最大化。
当将柔性薄膜F表面的金属层图案化时,与无效区(Dead Space)相应的部分可以通过蚀刻(Etching)等去除或从一开始就不形成。在本发明中,使柔性薄膜F表面金属层残存,发挥作为仿(Dummy)散热层的作用,在保障轻薄短小化的同时,保障散热的最大化。

Claims (18)

  1. 一种散热及辐射兼用无线通信天线结构,其中,包括:
    内侧螺旋图案,其具有将柔性薄膜的一侧表面的金属层进行螺旋型图案化形成的内侧始端及内侧末端;
    外侧螺旋图案,其具有将所述内侧螺旋图案外廓的所述柔性薄膜的一侧表面的金属层进行螺旋型图案化形成的外侧始端及外侧末端;
    散热/辐射金属层,其具有以将所述柔性薄膜的另一侧表面的金属层进行单向开放的图案化形成的单向开放切缝为基准,分成的一侧金属区域及另一侧金属区域;
    多个导通孔,其使所述内侧末端和所述一侧金属区域之间,以及所述外侧始端和所述另一侧金属区域之间分别上下连接,使得所述内侧螺旋图案、散热/辐射金属层及外侧螺旋图案依次连接成螺旋型。
  2. 根据权利要求1所述的散热及辐射兼用无线通信天线结构,其中,所述内侧始端用作第一端子,所述外侧末端用作第二端子。
  3. 根据权利要求2所述的散热及辐射兼用无线通信天线结构,其中,所述第一端子包括:
    第一外向端子,其将对所述柔性薄膜的一侧表面的金属层进行外向直线型图案化形成;
    经由端子,其将对所述柔性薄膜的另一侧表面的所述散热/辐射金属层进行独立图案化形成;
    多个导通孔,其使所述内侧始端和所述经由端子之间,以及所述经由端子和所述第一外向端子之间分别上下连接,使得所述内侧始端、经由端子及第一外向端子依次连接。
  4. 根据权利要求2所述的散热及辐射兼用无线通信天线结构,其中,所述第二端子连续连接于将对所述柔性薄膜的一侧表面的金属层进行外向直线 型图案化形成的第二外向端子而完成。
  5. 根据权利要求1所述的散热及辐射兼用无线通信天线结构,其中,还包括扩张狭缝,其在所述柔性薄膜的另一侧表面的金属层扩张形成,与所述单向开放切缝连通。
  6. 根据权利要求5所述的散热及辐射兼用无线通信天线结构,其中,所述内侧螺旋图案及外侧螺旋图案以将所述柔性薄膜另一侧表面的所述扩张狭缝为中心并排布在所述扩张狭缝外廓的方式形成在所述柔性薄膜一侧表面。
  7. 根据权利要求5所述的散热及辐射兼用无线通信天线结构,其中,所述内侧螺旋图案及外侧螺旋图案以挂设在所述柔性薄膜另一侧表面的所述扩张狭缝的方式形成在所述柔性薄膜的一侧表面。
  8. 根据权利要求5所述的散热及辐射兼用无线通信天线结构,其中,所述内侧螺旋图案及外侧螺旋图案以挂设在所述柔性薄膜另一侧表面的所述单向开放切缝的方式形成在所述柔性薄膜的一侧表面。
  9. 根据权利要求5所述的散热及辐射兼用无线通信天线结构,其中,包括:
    另向开放切缝,其以连通于所述扩张狭缝的方式形成在所述柔性薄膜的里面的金属层;
    跳转图案,其形成在所述柔性薄膜一侧表面的金属层并与所述导通孔上下连接,以便能够横跨所述另向开放切缝,将所述散热/辐射金属层连接成一体。
  10. 根据权利要求5所述的散热及辐射兼用无线通信天线结构,其中,所述单向开放切缝以所述扩张狭缝为中心,在所述扩张狭缝的外廓进行螺旋型图案化的方式形成在所述柔性薄膜另一侧表面的金属层。
  11. 根据权利要求5所述的散热及辐射兼用无线通信天线结构,其中,所述天线结构还包括用于散热的仿散热层,所述仿散热层由所述内侧螺旋图案及外侧螺旋图案内外周边的所述柔性薄膜一侧表面残存的金属层构成。
  12. 根据权利要求2所述的散热及辐射兼用无线通信天线结构,其中,还 包括扩张狭缝,其在所述柔性薄膜的另一侧表面的金属层扩张形成,与所述单向开放切缝连通。
  13. 根据权利要求12所述的散热及辐射兼用无线通信天线结构,其中,所述内侧螺旋图案及外侧螺旋图案以将所述柔性薄膜另一侧表面的所述扩张狭缝为中心并排布在所述扩张狭缝外廓的方式形成在所述柔性薄膜一侧表面。
  14. 根据权利要求12所述的散热及辐射兼用无线通信天线结构,其中,所述内侧螺旋图案及外侧螺旋图案以挂设在所述柔性薄膜另一侧表面的所述扩张狭缝的方式形成在所述柔性薄膜的一侧表面。
  15. 根据权利要求12所述的散热及辐射兼用无线通信天线结构,其中,所述内侧螺旋图案及外侧螺旋图案以挂设在所述柔性薄膜另一侧表面的所述单向开放切缝的方式形成在所述柔性薄膜的一侧表面。
  16. 根据权利要求12所述的散热及辐射兼用无线通信天线结构,其中,包括:
    另向开放切缝,其以连通于所述扩张狭缝的方式形成在所述柔性薄膜的里面的金属层;
    跳转图案,其形成在所述柔性薄膜一侧表面的金属层并与所述导通孔上下连接,以便能够横跨所述另向开放切缝,将所述散热/辐射金属层连接成一体。
  17. 根据权利要求12所述的散热及辐射兼用无线通信天线结构,其中,所述单向开放切缝以所述扩张狭缝为中心,在所述扩张狭缝的外廓进行螺旋型图案化的方式形成在所述柔性薄膜另一侧表面的金属层。
  18. 根据权利要求12所述的散热及辐射兼用无线通信天线结构,其中,所述天线结构还包括用于散热的仿散热层,所述仿散热层由所述内侧螺旋图案及外侧螺旋图案内外周边的所述柔性薄膜一侧表面残存的金属层构成。
PCT/CN2019/083489 2018-08-17 2019-04-19 散热及辐射兼用无线通信天线结构 WO2020034657A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/632,791 US11228082B2 (en) 2018-08-17 2019-04-19 Wireless communication antenna structure for both heat dissipation and radiation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810942523.6 2018-08-17
CN201810942523.6A CN109088162B (zh) 2018-08-17 2018-08-17 散热及辐射兼用无线通信天线结构

Publications (1)

Publication Number Publication Date
WO2020034657A1 true WO2020034657A1 (zh) 2020-02-20

Family

ID=64793917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083489 WO2020034657A1 (zh) 2018-08-17 2019-04-19 散热及辐射兼用无线通信天线结构

Country Status (3)

Country Link
US (1) US11228082B2 (zh)
CN (1) CN109088162B (zh)
WO (1) WO2020034657A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088162B (zh) * 2018-08-17 2024-02-20 深圳市嘉姆特科技有限公司 散热及辐射兼用无线通信天线结构
KR102178575B1 (ko) * 2018-08-31 2020-11-13 주식회사 아모텍 콤보 안테나 모듈
CN110504548B (zh) * 2019-07-18 2020-10-30 西安电子科技大学 基于液态金属的可散热频率选择装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453016A (zh) * 2017-07-10 2017-12-08 深圳市嘉姆特通信电子有限公司 具有散热功能的无线通信天线结构
US20180026326A1 (en) * 2015-01-21 2018-01-25 Amogreentech Co., Ltd. Heat dissipation sheet-integrated antenna module
CN107732406A (zh) * 2017-07-10 2018-02-23 深圳市嘉姆特通信电子有限公司 具有散热功能的无线通信天线结构
CN109088162A (zh) * 2018-08-17 2018-12-25 深圳市嘉姆特通信电子有限公司 散热及辐射兼用无线通信天线结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008459B1 (ko) * 2010-08-31 2011-01-14 진영범 칩본딩 방식을 개선한 스마트카드 제조방법
TWI459418B (zh) * 2012-03-23 2014-11-01 Lg伊諾特股份有限公司 無線功率接收器以及包含有其之可攜式終端裝置
KR20130134759A (ko) * 2012-05-31 2013-12-10 엘에스전선 주식회사 이중 모드 안테나용 인쇄 회로 기판, 이중 모드 안테나 및 이를 이용한 사용자 단말
JP2015144160A (ja) * 2014-01-31 2015-08-06 デクセリアルズ株式会社 アンテナ装置、非接触電力伝送用アンテナユニット、電子機器
JP6075511B2 (ja) * 2014-05-30 2017-02-08 株式会社村田製作所 アンテナ装置および電子機器
KR20150045985A (ko) * 2015-04-15 2015-04-29 엘에스전선 주식회사 이중 모드 안테나용 인쇄 회로 기판, 이중 모드 안테나 및 이를 이용한 사용자 단말
KR102436181B1 (ko) * 2015-07-03 2022-08-25 주식회사 위츠 코일 장치 및 이를 포함하는 기기
CN206789685U (zh) * 2017-05-12 2017-12-22 上海德门电子科技有限公司 一种散热和近场通讯二合一的天线模组
KR20190033699A (ko) * 2017-09-22 2019-04-01 송영석 무선통신 안테나 제조방법
CN208706863U (zh) * 2018-08-17 2019-04-05 深圳市嘉姆特通信电子有限公司 散热及辐射兼用无线通信天线结构
CN109167161B (zh) * 2018-08-27 2021-05-14 深圳市嘉姆特通信电子有限公司 无线通信天线制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026326A1 (en) * 2015-01-21 2018-01-25 Amogreentech Co., Ltd. Heat dissipation sheet-integrated antenna module
CN107453016A (zh) * 2017-07-10 2017-12-08 深圳市嘉姆特通信电子有限公司 具有散热功能的无线通信天线结构
CN107732406A (zh) * 2017-07-10 2018-02-23 深圳市嘉姆特通信电子有限公司 具有散热功能的无线通信天线结构
CN109088162A (zh) * 2018-08-17 2018-12-25 深圳市嘉姆特通信电子有限公司 散热及辐射兼用无线通信天线结构

Also Published As

Publication number Publication date
CN109088162B (zh) 2024-02-20
US11228082B2 (en) 2022-01-18
US20210226312A1 (en) 2021-07-22
CN109088162A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
JP6146531B2 (ja) 携帯端末
JP6008237B2 (ja) 携帯端末
US10553345B2 (en) Coil device and apparatus including the same
US10164336B2 (en) Antenna device and electronic apparatus
WO2020034657A1 (zh) 散热及辐射兼用无线通信天线结构
KR20160135677A (ko) 콤보 안테나유닛 및 이를 포함하는 무선전력 수신모듈
KR20150050541A (ko) 무선 충전용 자기장 차폐시트 및 이를 구비하는 안테나 모듈
US10417550B2 (en) Antenna device and portable terminal including the same
CN107646157B (zh) 用于无线充电的屏蔽单元和包括其的无线电能传输模块
US20160149305A1 (en) Antenna device and near field communication device including the same
JP6696573B2 (ja) 無線モジュール、rfidシステムおよびワイヤレス給電装置
US10186875B2 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
WO2020042634A1 (zh) 无线通信天线制造方法
KR102067517B1 (ko) 전자 기기 및 안테나 장치
KR20190006342A (ko) 방열 무선통신 안테나 구조
KR102154197B1 (ko) 무선전력 수신모듈 및 이를 포함하는 휴대용 전자기기
KR20190006343A (ko) 방열 무선통신 안테나 구조
CN107453016B (zh) 具有散热功能的无线通信天线结构
KR20190033699A (ko) 무선통신 안테나 제조방법
CN208706863U (zh) 散热及辐射兼用无线通信天线结构
KR20160121279A (ko) 안테나유닛 및 이를 포함하는 무선전력 충전모듈
US20170271072A1 (en) Cover and electronic device including the same
KR20190032975A (ko) 방열 및 방사 겸용 무선통신 안테나 구조
KR101942712B1 (ko) 전파의 투과가 가능하거나 방열특성을 갖는 금속 프레임
KR20180036202A (ko) 자성체 시트 및 전자기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849096

Country of ref document: EP

Kind code of ref document: A1