WO2020034221A1 - 天线组件、天线免调优方法及装置 - Google Patents

天线组件、天线免调优方法及装置 Download PDF

Info

Publication number
WO2020034221A1
WO2020034221A1 PCT/CN2018/101193 CN2018101193W WO2020034221A1 WO 2020034221 A1 WO2020034221 A1 WO 2020034221A1 CN 2018101193 W CN2018101193 W CN 2018101193W WO 2020034221 A1 WO2020034221 A1 WO 2020034221A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
plane
antennas
target
antenna plane
Prior art date
Application number
PCT/CN2018/101193
Other languages
English (en)
French (fr)
Inventor
王珏平
崔善超
李永久
程竹林
韩小江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18930508.9A priority Critical patent/EP3832798B1/en
Priority to PCT/CN2018/101193 priority patent/WO2020034221A1/zh
Priority to CN201880096357.0A priority patent/CN112544013B/zh
Priority to JP2021507973A priority patent/JP7186281B2/ja
Publication of WO2020034221A1 publication Critical patent/WO2020034221A1/zh
Priority to US17/171,170 priority patent/US11456543B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0478Substantially flat resonant element parallel to ground plane, e.g. patch antenna with means for suppressing spurious modes, e.g. cross polarisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas

Definitions

  • the present application relates to the technical field of terminals, and in particular, to an antenna assembly, an antenna-free tuning method, and a device.
  • a wireless client terminal equipment Customer Equipment, CPE
  • CPE Customer Equipment
  • a CPE includes multiple directional antennas for receiving signals. During installation, the direction of the antennas in the CPE can be adjusted to make the CPE align with the better signal direction as much as possible.
  • the direction of the antenna in the CPE needs to be adjusted again.
  • the main adjustment method is to manually rotate the antenna by a technician to adjust the direction of the antenna.
  • it is necessary to provide a rotation space for the rotation of the antenna in the CPE. Therefore, the size of the CPE is large, which is not conducive to installation, and it needs to be manually adjusted, which is inconvenient to operate.
  • it is urgent to propose an antenna tuning-free device and method, that is, even when the network changes, the CPE alignment signal can be made without adjusting the antenna direction. Good direction.
  • the present application provides an antenna assembly, an antenna-free tuning method, and a device, which can be used to solve the problems of large CPE, difficult to install, and inconvenient operation caused by the need to manually rotate the antenna in related technologies.
  • the technical scheme is as follows:
  • an antenna assembly for use in a customer terminal device CPE.
  • the antenna assembly includes multiple antenna faces, each antenna face of the multiple antenna faces being a side of a polyhedron, and each antenna At least one antenna is disposed on the surface, and the total number of antennas disposed on all antenna surfaces is greater than the target number, where the target number refers to the number of receiving antennas supported by the CPE to receive data simultaneously.
  • the antenna assembly may include more antennas than the number of receiving antennas supported by the CPE.
  • the CPE may select a receiving antenna supported by the CPE from the included multiple antennas.
  • the same number of antennas with good data transmission performance are used as receiving antennas, that is, the CPE does not need to adjust the direction of the antenna, but selects a better receiving antenna from the set of redundant numbers of antennas to ensure that the CPE aligns the signal Better direction, because it is not necessary to align the CPE with a better signal direction by rotating the antenna direction, so not only ensures the high gain of the antenna in the CPE, but also avoids the inconvenience caused by manual rotation, and CPE does not need to provide rotation space for antenna rotation, which reduces the size of CPE and facilitates installation.
  • At least one antenna provided on each antenna surface is a directional antenna.
  • an omnidirectional antenna is further provided on a plane on which each antenna surface is located.
  • an electronic switch is connected to each of the plurality of antenna faces, and the electronic switch is used to control the opening and closing of the antenna on the corresponding antenna face.
  • the electronic switches connected on each antenna surface can uniformly control the opening and closing of all antennas on the corresponding antenna surface, and can also independently control the opening and closing of each antenna on the corresponding antenna surface.
  • all antennas on the antenna surface can be turned on by turning on an electronic switch connected to the antenna surface, or any antenna on the antenna surface can be turned on by turning on a switch connected to the antenna surface.
  • the number of antennas provided on each antenna surface of the plurality of antenna surfaces is the same.
  • an antenna-free tuning method is provided.
  • the method is applied to a customer terminal device CPE.
  • the CPE includes the antenna component according to any one of the first aspect, and the method includes:
  • At least one target antenna plane is selected from the plurality of antenna planes, and a data transmission performance value of the at least one target antenna plane is greater than a first threshold, and the data transmission performance value is used to characterize the CPE Receiving performance when data is received through an antenna on the at least one target antenna plane;
  • a target antenna of the target number is determined based on antennas included on the at least one target antenna plane, and the determined target antenna of the target number is used as a receiving antenna of the CPE.
  • the antenna assembly may include more antennas than the number of receiving antennas supported by the CPE.
  • the CPE can select data transmission performance from multiple antenna planes based on the target number.
  • the receiving antenna of the CPE is determined based on the antennas included in the at least one target antenna surface, that is, the CPE may select a redundant number of antennas without having to adjust the direction of the antenna. A good antenna is used to ensure that the CPE is aligned with a better signal direction.
  • the CPE Since the CPE is not required to be aligned with a good signal direction by rotating the antenna direction, it not only ensures the high gain of the antenna in the CPE, but also avoids The inconvenience caused by manual rotation, and the CPE does not need to provide a rotation space for the antenna rotation, which reduces the size of the CPE and facilitates installation.
  • the selecting at least one target antenna plane from the plurality of antenna planes based on the number of targets includes:
  • the target number is equal to The ratio k between the number of antennas on the antenna surface;
  • At least one target antenna plane is selected from the plurality of antenna planes.
  • the selecting at least one target antenna plane from the plurality of antenna planes based on the k includes:
  • k is an integer greater than 1, dividing each consecutive k antenna planes of the multiple antenna planes into one antenna plane combination to obtain multiple antenna plane combinations;
  • At least one antenna plane included in the determined antenna plane combination is determined as the at least one target antenna plane.
  • the selecting at least one target antenna plane from the plurality of antenna planes based on the k includes:
  • At least one antenna plane included in the determined antenna plane combination and one antenna plane adjacent to the at least one antenna plane is determined as the at least one target antenna plane.
  • determining the target antenna of the target number based on multiple antennas provided on the at least one target antenna surface includes:
  • the antennas provided on each of the at least one antenna plane and the selected T antennas are used as the target number of target antennas.
  • the selecting at least one target antenna plane from the plurality of antenna planes based on the k includes:
  • the determined antenna plane is determined as the at least one target antenna plane.
  • the selecting at least one target antenna plane from the plurality of antenna planes based on the number of targets includes:
  • the first value refers to the number of antennas provided on each antenna face of the plurality of antenna faces.
  • the selecting at least one target antenna plane from the plurality of antenna planes based on the M and the first value includes:
  • determining the target antenna based on the number of targets based on the antennas included on the at least one target antenna plane includes:
  • the selected M antennas and the plurality of omnidirectional antennas are determined as the target antennas of the target number.
  • the selecting at least one target antenna plane from the plurality of antenna planes based on the M and the first value includes:
  • determining the number of antennas based on the antennas included on the at least one target antenna plane includes:
  • the selected M antennas and the plurality of omnidirectional antennas are used as the target antennas of the target number.
  • the sequentially acquiring the data transmission performance value of each antenna plane combination in the multiple antenna plane combinations within a first duration includes:
  • any antenna plane combination A of the plurality of antenna plane combinations turn on the antenna on each antenna plane of the plurality of antenna planes included in the antenna plane combination A, and turn off the antenna antenna Antennas other than the multiple antenna planes;
  • the sum of the ratio of the throughput and the number of resource blocks of multiple transmission time intervals in the first time period is determined as the data transmission performance value of the antenna plane combination A in the first time period.
  • the acquiring the data transmission performance value of each of the multiple antenna planes within a first duration includes:
  • any one of the plurality of antenna planes turning on at least one antenna on the antenna plane B, and turning off antennas on other antenna planes except the antenna plane B;
  • the CPE may select a part or all of the omnidirectional antennas from the included omnidirectional antennas as a part of the receiving antenna, and Among the included directional antennas, the remaining number of antennas are selected as the remaining receiving antennas. In the process of selecting the antenna by the CPE, the omnidirectional antenna is always on.
  • each antenna surface combination or antenna surface data transmission is obtained in sequence
  • the omnidirectional antenna is always on and the omnidirectional antenna can receive signals from various directions, even if the data transmission performance of the antenna plane or antenna plane combination currently being acquired is extremely poor, it can be passed An omnidirectional antenna to ensure signal quality, thereby avoiding scenes with extremely poor signals during the acquisition process.
  • an antenna-free tuning device includes the antenna component in the first aspect, and the antenna-free tuning device has the behavior of implementing the antenna-free tuning method in the second aspect. Functions.
  • the antenna-free tuning device includes at least one module, and the at least one module is configured to implement the antenna-free tuning method provided in the second aspect.
  • an antenna-free tuning device includes the antenna assembly in the first aspect, and the structure of the antenna-free tuning device further includes a processor and a memory.
  • the memory is configured to store a program that supports the antenna-free tuning device to execute the antenna-free tuning method provided in the second aspect, and store data used to implement the antenna-free tuning method provided in the second aspect.
  • the processor is configured to execute a program stored in the memory.
  • the operating device of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • a computer-readable storage medium stores instructions that, when run on a computer, causes the computer to execute the antenna-free tuning method according to the second aspect.
  • a computer program product containing instructions which, when run on a computer, causes the computer to execute the antenna-free tuning method according to the second aspect.
  • An embodiment of the present application provides an antenna assembly.
  • the antenna assembly includes multiple antenna surfaces, and each antenna surface serves as a side surface of a polyhedron. In this way, each antenna surface can be oriented in one direction and disposed on each antenna surface. At least one antenna, and the total number of antennas included in the multiple antenna planes is greater than the number of receiving antennas supported by the CPE to receive data simultaneously. Because the number of antennas included in a CPE is greater than the number of receiving antennas supported by the CPE, when the network changes, you can select from the multiple antennas included in the CPE the same number of antennas as the number of receiving antennas supported by the CPE. Receive antenna.
  • the antenna-free tuning device provided by the embodiment of the present application enables the CPE to eliminate the need to adjust the antenna direction, but to select a better receiving antenna from the set of redundant antennas to ensure that the CPE aligns the signal.
  • the better orientation because the orientation of the antenna does not need to be adjusted, so the inconvenience caused by manually rotating the antenna is avoided, and in the CPE, there is no need to provide a space for the antenna to rotate, which reduces the size of the CPE, which is convenient installation.
  • FIG. 1 is a schematic structural diagram of an antenna assembly according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a CPE provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of an antenna-free tuning method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna tuning-free device according to an embodiment of the present application.
  • FIG. 6 is a block diagram of a selection module according to an embodiment of the present application.
  • FIG. 7 is a block diagram of another selection module according to an embodiment of the present invention.
  • the CPE when deploying a CPE, in order to make the receiving antenna in the CPE align the signal with a better direction as much as possible, the CPE can be adjusted so that the receiving antenna of the CPE is aligned with the base station as much as possible. After the CPE deployment is completed, the direction that the CPE's receiving antenna is facing is also fixed. However, during the use of CPE, the operator may make network adjustments, such as adding a new base station or adjusting the direction of the antenna in the base station, resulting in network changes. In this case, the direction of the receiving antenna of the CPE may no longer be aligned with the best signal direction. Based on this, embodiments of the present application provide an antenna-free tuning device and method. The antenna-free tuning device can be applied to CPE, and when the network changes, the antenna-free tuning device provided by the embodiment of the present application can be used. Optimize the method to ensure that the receiving antenna of the CPE can always be aligned with the better signal direction.
  • the antenna assembly provided in the embodiment of the present application is described next.
  • the antenna assembly 101 provided in the embodiment of the present application can be applied to a CPE.
  • the antenna assembly 101 includes multiple antenna faces. Each antenna face of the multiple antenna faces is a side of a polyhedron. Each antenna face is provided with at least one One antenna, and the total number of antennas set on all antenna surfaces is greater than the target number.
  • the target number refers to the number of receiving antennas supported by the CPE and receiving data simultaneously.
  • FIG. 1 exemplarily shows a schematic diagram of an antenna-free tuning device when the number of antenna surfaces is four.
  • each of the four antenna surfaces 1011-1014 is a side surface of a tetrahedron.
  • At least two antennas 1015 are provided on each antenna surface.
  • the number of antennas provided on each antenna surface may be the same.
  • two antennas may be provided on each antenna surface.
  • two antennas may be provided on the antenna surface 1011 and the antenna surface 1013, and other numbers and the same number of antennas may be provided on the antenna surface 1012 and the antenna surface 1014, for example, Three antennas are provided on the antenna surface 1012 and the antenna surface 1014.
  • the number of antennas provided on each of the antenna surfaces 1011-1014 may be different. This embodiment of the present application does not specifically limit this.
  • At least two antennas 1015 provided on each antenna surface may be directional antennas. And, for any antenna surface, when two directional antennas are disposed on the antenna surface, the two directional antennas can be disposed vertically.
  • an omnidirectional antenna may be further disposed on a plane where each antenna surface is located, and the omnidirectional antenna may be disposed above the directional antenna.
  • an electronic switch 1016 may be connected to each of the multiple antenna faces.
  • the antenna on the antenna surface connected to the electronic switch 1016 will be turned on, that is, the antenna on the antenna surface connected to the electronic switch will be used as the receiving antenna of the CPE to receive data.
  • the electronic switch 1016 connected to each antenna surface can be used to uniformly control all antennas on the corresponding antenna surface, that is, when the electronic switch 1016 is turned on, All antennas on the antenna surface to which the electronic switch 1016 is connected are turned on.
  • the electronic switch 1016 connected to each antenna surface can be used to independently control the antenna on the corresponding antenna surface, that is, the electronic switch 1016 can be selected to be turned on according to the required number of receiving antennas. Part of the antenna on the antenna surface connected to it.
  • the total number of antennas provided on all antenna surfaces of the antenna assembly is greater than the number of receiving antennas supported by the CPE and receiving data simultaneously. That is, the number of antennas included in the antenna assembly is more than the number of antennas required by the CPE. For example, suppose the baseband chip of the CPE supports 4 receiving antennas, that is, each time the CPE receives data, it supports data reception through a maximum of 4 receiving antennas. In this case, the number of antennas included in the antenna assembly will be greater than 4. If the CPE baseband chip supports 8 receiving antennas, the number of antennas that can be set in the antenna assembly is greater than 8.
  • the CPE can select the same number of receiving antennas as the number of receiving antennas supported by the CPE when the network changes.
  • the antenna acts as a receiving antenna. It can be seen that by using the antenna assembly provided in the embodiment of the present application, the CPE does not need to adjust the direction of the antenna, but selects a better receiving performance antenna from the set of redundant number of antennas to ensure that the CPE aligns with a better signal.
  • the direction does not need to adjust the direction of the antenna, so it avoids the inconvenience caused by manually rotating the antenna, and in the CPE, it is not necessary to provide a space for the antenna to rotate, reducing the size of the CPE and facilitating installation.
  • FIG. 2 is a schematic structural diagram of a CPE provided by an embodiment of the present application.
  • the CPE may include an antenna component 101, a transmitter 102, a receiver 103, a memory 104, and a processor 105 shown in FIG. 1.
  • the structure of the CPE shown in FIG. 2 does not constitute a limitation on the CPE, and may include more or fewer components than shown in the figure, or a combination of some components, or a different component arrangement. The embodiment of the invention does not limit this.
  • the antenna component 101 may be the antenna component described in the foregoing embodiment, and may provide the CPE with more antennas than the number of receiving antennas supported.
  • the transmitter 102 may be configured to send data and / or signaling to the base station.
  • the receiver 103 may be configured to receive data and / or signaling sent by a base station.
  • the memory 104 may be used to store data sent by the base station, and the memory 104 may also be used to store one or more running programs and / or modules used to execute the antenna-free tuning method provided by the embodiments of the present application.
  • the memory 2013 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)), or a device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc
  • Optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can Any other medium accessed by the integrated circuit, but is not limited thereto.
  • the memory 104 may exist independently, and is connected to the processor 105 through a communication bus 106.
  • the memory 104 may also be integrated with the processor 105.
  • the processor 105 is the control center of the CPE, and the processor 105 may be a general-purpose central processing unit (Central Processing Unit) (hereinafter referred to as a CPU), a microprocessor, and an application-specific integrated circuit (hereinafter referred to as a CPU) (Referred to as ASIC), or one or more integrated circuits used to control the execution of the program of this solution.
  • the processor 105 may implement the antenna-free tuning method provided by the embodiment of the present application by running or executing a software program and / or module stored in the memory 2013 and calling data stored in the memory 104.
  • processor 105 and the memory 104 can transmit information through the communication bus 106.
  • the antenna component may include at least two directional antennas but not omnidirectional antennas provided on each antenna surface of the multiple antenna surfaces, or the antenna component may include multiple antenna surfaces.
  • the directional antenna may also include multiple omnidirectional antennas.
  • the embodiments of the present application can use different methods to select at least one target antenna surface from multiple antenna surfaces based on the number of targets, and then select The at least one target antenna plane determines the number of target antennas, and uses the determined number of target antennas as the receiving antenna of the CPE.
  • an embodiment of the present application will introduce the implementation process of the antenna-free tuning method when the antenna assembly includes multiple directional antennas but does not include an omnidirectional antenna, with reference to FIG. 3. Referring to FIG. 3, the method may include the following steps:
  • Step 301 When the number of antennas on each antenna surface is the same and the antennas on each antenna surface are directional antennas, determine the number of targets and each antenna surface on the multiple antenna surfaces. Set the ratio k between the number of antennas.
  • the number of antennas provided on each antenna surface in the antenna assembly may be the same or different.
  • a memory of the CPE may store each of the antenna assemblies included in the CPE. Correspondence between the identification of the antenna surface, the antenna type and the number of antennas provided on each antenna surface. Based on this, the CPE can determine whether the number of antennas provided on each antenna surface is the same according to the stored correspondence relationship. If the number of antennas provided on each antenna surface is the same, the CPE can determine a ratio k of the target number to the number of antennas provided on each antenna surface of the multiple antenna surfaces.
  • the target number refers to the number of receiving antennas supported by the CPE. It should be noted that the number of receiving antennas supported by the CPE is determined by the baseband chip of the CPE. At present, the number of common receiving antennas supported by a CPE can be 2, 4, 8, or 16 and so on. Exemplarily, when the number of receiving antennas supported by the CPE is two, the target number is two, and when the number of receiving antennas supported by the CPE is four, the target number is four, which is not described in the embodiment of this application. To repeat.
  • Step 302 Based on a ratio k between the number of targets and the number of antennas provided on each antenna surface, select at least one target antenna surface from a plurality of antenna surfaces, and determine the target antenna of the target number based on the at least one target antenna surface, and The determined target number of target antennas is used as the receiving antenna of the CPE.
  • the data transmission performance value of at least one target antenna surface is greater than a first threshold.
  • a ratio k of the number of targets to the number of antennas provided on each antenna surface may be greater than 1, or may not be greater than 1.
  • the CPE may use the following several different methods to select at least one target antenna plane from multiple antenna planes, and determine the number of target antennas based on the at least one antenna plane as the receiving antenna of the CPE.
  • each consecutive k antenna planes in the multiple antenna planes are divided into one antenna plane combination to obtain multiple antenna plane combinations; each antenna in the multiple antenna plane combinations is obtained in turn.
  • the data transmission performance value of the surface combination within the first duration; selecting an antenna surface combination whose data transmission performance value within the first duration is greater than the first threshold from a plurality of antenna surface combinations, and selecting the selected antenna surface combination at the first At least one antenna plane included in the antenna plane combination with the largest data transmission performance value within a period of time is determined as at least one target antenna plane, and all antennas included in the at least one target antenna plane are determined as target antennas with a target number.
  • the CPE can use the antennas included on the k antenna surfaces as receiving antennas.
  • the CPE can select continuous k antenna planes with better receiving performance from multiple antenna planes, and use the selected continuous k antenna planes as at least one target antenna plane.
  • the CPE may divide each consecutive k antenna planes of the multiple antenna planes into one antenna plane combination, thereby obtaining multiple antenna plane combinations. For example, if the number of targets is 8, the antenna component includes 5 antenna faces, and 4 antennas are provided on each antenna face, then k is 2, that is, the CPE selects 2 consecutive antenna faces from the 5 antenna faces, that is, can. For ease of explanation, the five antenna faces are numbered 1-5 in order. Divide antenna faces 1 and 2 into an antenna face combination, antenna faces 2 and 3 into an antenna face combination, antenna faces 3 and 4 into an antenna face combination, antenna faces 4 and 5 into an antenna face combination, and the antenna Faces 5 and 1 are divided into one antenna face combination to obtain 5 antenna face combinations. In this way, a target number of antennas is actually included in each antenna plane combination.
  • the CPE can sequentially obtain the data transmission performance value of each antenna plane combination in the multiple antenna plane combinations within the first duration.
  • the CPE may turn on the antenna on each antenna plane of the multiple antenna planes included in the antenna plane combination A, and turn off all antennas except the antenna plane combination A.
  • Antennas on other antenna planes other than the multiple antenna planes receive data through the antennas on the multiple antenna planes included in the antenna plane combination A within the first duration, and determine each of the antenna plane combinations A within the first duration
  • the ratio of the throughput and the resource block of the transmission time interval; the sum of the throughput and the ratio of the resource block of multiple transmission time intervals in the first time period is determined as the data transmission performance of the antenna plane combination A in the first time period value.
  • the CPE can turn on the antenna on each antenna surface by turning on the electronic switch connected to each antenna surface of the multiple antenna surfaces included in the antenna surface combination A, and for multiple antennas except the antenna surface combination A, For antenna surfaces other than the antenna surface, you can turn off the antenna on the other antenna surface by turning off the electronic switch connected to each antenna surface in the other antenna surface. In this way, all antennas included in the antenna surface combination A will be regarded as the current ones.
  • Receiving antenna At this time, the CPE can receive data signals through all antennas included in the antenna surface combination A. After that, the CPE can start a timer. The running time of the timer is the first duration.
  • the CPE can record the throughput and the number of resource blocks in each transmission interval and calculate the corresponding transmission.
  • the ratio between the throughput and the number of resource blocks in the time interval Until the timer expires, the CPE can calculate the sum of the ratio between the throughput and the number of resource blocks in multiple transmission time intervals during the running of the timer. , And the calculated sum is determined as the data transmission performance value of the antenna surface combination A within the first duration.
  • the data transmission performance value of the antenna plane combination A within the first duration can be used to characterize the reception performance of the CPE when the antenna included in the antenna plane combination A is used as a receiving antenna.
  • the larger the value of the data transmission performance the closer the direction of the antenna included in the antenna surface combination A to the target direction is, the better the reception performance is.
  • the target direction refers to the direction the antenna faces when it is aligned with the base station.
  • the CPE can refer to the manner described above for determining the data transmission performance value of the antenna plane combination A within the first duration to determine that each antenna plane combination is within the first duration Data transmission performance value.
  • the CPE may select an antenna plane combination with a data transmission performance value greater than a first threshold value from a plurality of antenna plane combinations, where the first threshold value may be It is determined according to a minimum value of a plurality of data transmission performance values of the plurality of antenna plane combinations, and may also be determined according to an average value of the plurality of data transmission performance values of the plurality of antenna plane combinations.
  • the CPE After selecting an antenna plane combination with a data transmission performance value greater than the first threshold from a plurality of antenna plane combinations, the CPE can then select the antenna plane with the largest data transmission performance value within the first duration from the selected antenna plane combinations. combination.
  • the larger the data transmission performance value the closer the antenna included in the antenna is to the direction of the base station, the better the reception performance. Therefore, the antenna surface combination with the largest data transmission performance value can actually guarantee the CPE.
  • the CPE may use the target number of antennas included in the antenna plane combination with the largest data transmission performance value as the target number of target antennas, that is, the receiving antenna of the CPE.
  • the CPE may randomly select one from the selected antenna plane combinations. Antenna plane combination, and determine at least one antenna plane included in the randomly selected antenna plane combination as at least one target antenna plane.
  • each antenna surface combination in the first duration in a plurality of antenna surface combinations select the antenna surface whose data transmission performance value in the first duration is greater than the first threshold value from the plurality of antenna surface combinations Combination, and determine the antenna surface combination with the largest data transmission performance value in the first time period from the selected antenna surface combination, including at least one antenna surface included in the determined antenna surface combination and an antenna adjacent to the at least one antenna surface
  • the plane is determined as at least one target antenna plane; the difference T between the number of targets and the number of antennas included in the at least one antenna plane is determined; T antennas are selected from the antenna planes adjacent to the at least one antenna plane;
  • the antenna set on each antenna plane and the selected T antennas on the antenna plane are determined as the target antennas of the target number, that is, the receiving antennas of the CPE.
  • CPE can round k to get r. For example, when k is 2.6, the CPE rounds k to get 2; that is, r is 2.
  • the CPE can divide each consecutive r antenna planes in the multiple antenna planes into one antenna plane combination, thereby obtaining multiple antenna plane combinations, where the CPE divides each consecutive r antennas in the multiple antenna planes.
  • the implementation process of dividing the plane into one antenna plane combination refer to the implementation process of dividing each consecutive k antenna planes in the multiple antenna planes into one antenna plane combination, which is not described in the embodiment of this application.
  • the CPE can refer to the method described above to obtain the data transmission performance value of each antenna plane combination within the first duration of the multiple antenna plane combinations, and select from among the multiple antenna plane combinations.
  • the antenna plane combination whose data transmission performance value is greater than the first threshold in the first time period is determined from the selected antenna plane combination, and the antenna plane combination having the largest data transmission performance value in the first time period is determined.
  • the antenna plane combination with the largest data transmission performance value is the antenna plane combination whose antenna included in the multiple antenna plane combinations is closest to the target direction.
  • the CPE can also select T antennas from other antenna planes based on the difference T between the target number and the total number of antennas included in the antenna plane combination. In this way, the antenna plane with the largest data transmission performance value is selected.
  • the antennas included in the combination and the T antennas selected additionally can be used as the target antennas for the target number.
  • the CPE can select the remaining T antennas from the antenna plane adjacent to the antenna plane included in the antenna plane combination.
  • the CPE needs to select another 2 antennas.
  • the CPE can select 2 antennas from the antenna surface 1 adjacent to the antenna surface 2 or 2 antennas from the antenna surface 4 adjacent to the antenna surface 3, so that the antenna surfaces 2 and The 6 antennas included on the antenna surface 3 and the 2 antennas selected from the other antenna surfaces will serve as the 8 receiving antennas of the CPE.
  • the CPE may randomly select one from the selected antenna plane combinations. Antenna plane combination, and determine at least one antenna plane included in the randomly selected antenna plane combination as at least one target antenna plane.
  • k is not greater than 1, obtain the data transmission performance value of each antenna surface in the first time period from the multiple antenna planes; select the data transmission performance value of the first time period from the multiple antenna planes to be greater than the first time period.
  • a threshold antenna plane and determine the antenna plane with the largest data transmission performance value in the first duration among the selected antenna planes as at least one target antenna plane; select the target antenna number of targets from the at least one target antenna plane, and The selected antenna is used as the receiving antenna of the CPE.
  • the CPE can obtain the data transmission performance value of each of the multiple antenna planes within the first duration, select an antenna plane with a data transmission performance value greater than the first threshold from the multiple antenna planes, and The antenna plane with the largest data transmission performance value among the selected antenna planes is used as the target antenna plane, and a target number of antennas are selected from the antennas included in the target antenna plane as the CPE receiving antennas.
  • the first threshold value may be an average value of multiple data transmission performance values corresponding to multiple antenna faces, or the first threshold value may be determined according to a minimum value of multiple data transmission performance values corresponding to multiple antenna faces. get.
  • the CPE may turn on at least two antennas on the antenna face B, and turn off the antennas on the other antenna faces except the antenna face B; Receive data through at least two antennas on the antenna plane B, and determine the ratio of the throughput and the number of resource blocks for each transmission time interval of the antenna plane B within the first duration; set the antenna plane B within the first duration The sum of the ratio of the throughput of multiple transmission time intervals and the number of resource blocks is determined as the data transmission performance value of the antenna plane B in the first duration.
  • the CPE can turn on all the antennas on the antenna surface B by turning on the electronic switches connected to the antenna surface B, and turn off all the antennas on the other antenna surfaces by turning off the electronic switches connected to the other antenna surfaces.
  • the antenna will be used as the current receiving antenna.
  • the CPE can receive data signals through the antenna set on the antenna surface B.
  • the CPE can start a timer.
  • the running time of the timer is the first duration. From the start of the timer, the CPE can record the throughput and the number of resource blocks in each transmission interval and calculate the corresponding transmission. The ratio between the throughput and the number of resource blocks in the time interval.
  • the CPE can calculate the sum of the ratio between the throughput and the number of resource blocks in multiple transmission time intervals during the running of the timer. , And determine the calculated sum as the data transmission performance value of the antenna surface B within the first duration.
  • the CPE After determining the data transmission performance value of each antenna plane within the first duration, if k is equal to 1, it means that the number of targets is equal to the number of antennas on one antenna plane.
  • the CPE can use all antennas on the antenna surface with the highest data transmission performance value among multiple antenna surfaces as the receiving antennas of the CPE. If k is less than 1, the number of targets is less than the number of antennas on one antenna surface.
  • the CPE can determine the number of target antennas among the multiple antennas on the antenna surface with the largest data transmission performance value as the receiving antenna of the CPE. . Among them, the direction of the antenna on the antenna surface with the largest data transmission performance value is closest to the target direction. Therefore, selecting all or part of the antenna from the selected antenna surface as the receiving antenna of the CPE can ensure better reception of the CPE. performance.
  • the CPE may randomly select one antenna plane from the selected antenna planes. , And use the randomly selected antenna plane as the target antenna plane.
  • the CPE since the number of antennas included in the CPE is greater than the number of receiving antennas supported by the CPE, when the network changes, the CPE can select from among the included multiple antennas the receiving antennas supported by the CPE.
  • the same number of antennas with good data transmission performance are used as receiving antennas, that is, the CPE does not need to adjust the direction of the antenna, but selects a better receiving antenna from the redundant number of antennas to ensure that the CPE aligns the signal Better direction, because it is not necessary to align the CPE with a better signal direction by rotating the direction of the antenna. Therefore, while ensuring the high gain of the CPE receiving antenna, it is not necessary to set a motor in the CPE, and Antenna rotation provides rotation space, reduces the size of the CPE, facilitates installation, and reduces manufacturing costs.
  • the foregoing embodiment mainly describes that when the antenna assembly includes multiple directional antennas but does not include an omnidirectional antenna, the CPE selects at least one target antenna plane from a plurality of antenna planes based on the number of targets, and determines based on the at least one target antenna plane. The realization process of the target number of target antennas.
  • the CPE selects at least one target antenna plane from the multiple antenna planes based on the number of targets, and based on the at least one target antenna plane. The process of determining the number of target antennas.
  • FIG. 4 is a flowchart of an antenna-free tuning method according to an embodiment of the present application. As shown in Figure 4, the method includes the following steps:
  • Step 401 When the number of antennas is the same on each of the multiple antenna faces, and an omnidirectional antenna is provided on the plane where each antenna face is located, determine the number of targets and the number of multiple omnidirectional antennas. The difference M between N.
  • the CPE may select a part or all of the omnidirectional antennas from a plurality of omnidirectional antennas, and include Select a part of the directional antennas from the multiple antennas to obtain a target number of target antennas.
  • the CPE can first calculate the difference M between the number of targets and the number of multiple omnidirectional antennas. According to different M, the CPE can use different methods to select the omnidirectional antenna and the target antenna surface.
  • Step 402 Based on M and the first value, select at least one target antenna plane from a plurality of antenna planes, and determine a target number of target antennas based on the selected at least one target antenna plane, and use the determined target number of target antennas as the CPE. Receive antenna.
  • the first value refers to the number of antennas provided on each of the multiple antenna faces. Since at least one antenna is provided on each antenna face, the first value is a positive integer greater than or equal to 1.
  • the CPE may select an omnidirectional antenna and a target antenna plane in different ways.
  • the CPE may first compare M with a first value, and select at least one target antenna plane according to the comparison result.
  • the CPE may round the ratio between M and the first value to obtain w; divide each consecutive w + 1 antenna faces of the multiple antenna faces into an antenna face combination, Obtain multiple antenna plane combinations; sequentially obtain the data transmission performance value of each antenna plane combination within the first duration from the multiple antenna plane combinations; select from multiple antenna plane combinations the data transmission performance value within the first duration is greater than A first threshold antenna plane, and determining at least one antenna plane included in the antenna plane combination having the largest data transmission performance value in the first duration among the selected antenna plane combinations as at least one target antenna plane, and from the at least one target antenna plane Among the included antennas, M antennas are selected; the selected M antennas and multiple omnidirectional antennas are used as the receiving antennas of the CPE.
  • the first threshold value may be an average value of multiple data transmission performance values corresponding to multiple antenna plane combinations, or may be determined according to a minimum value of the multiple data transmission performance values.
  • the CPE may use all included omnidirectional antennas as reception Antenna, and because the number of omnidirectional antennas has not reached the target number, the CPE can select the remaining number of antennas from the included multiple directional antennas, that is, M directional antennas, so that the selected M antennas and all The omnidirectional antenna acts as the receiving antenna for the CPE.
  • the CPE when the CPE selects the remaining M antennas from the included multiple directional antennas, the CPE can calculate the ratio between M and the first value. Since M is greater than the first value, the ratio will be greater than 1. Among them, since the first value refers to the number of directional antennas remaining on each antenna surface except for omnidirectional antennas, when the ratio is greater than 1, it indicates that the directional antennas on one antenna surface plus all omnidirectional antennas The antenna also failed to reach the target number. That is, the CPE needs to select at least two antenna planes from multiple antenna planes, so that the directional antennas on at least two antenna planes plus all omnidirectional antennas can reach the target number.
  • the CPE can round the ratio between M and the first value to obtain w, and divide each consecutive w + 1 antenna planes into multiple antenna planes to obtain multiple antenna planes. combination. After that, the CPE can turn on all omnidirectional antennas, and sequentially obtain the data transmission performance value of each antenna plane combination of the multiple antenna plane combinations within the first duration by referring to the related method described in the foregoing embodiment, and from multiple antennas Among the plane combinations, the antenna plane combination with the largest data transmission performance value in the first time period is selected. Because the larger the value of the data transmission performance, the closer the direction of the antenna on the antenna surface in the corresponding antenna surface combination approaches the target direction, the better the performance of receiving data signals.
  • the antenna surface combination with the largest data transmission performance value In fact, it is the antenna surface combination that can ensure the best signal quality of the CPE.
  • the CPE may select M directional antennas as the remaining receiving antennas from the directional antennas included in the antenna surface combination.
  • the multiple omnidirectional antennas included in the CPE will be always on.
  • the omnidirectional antenna since the omnidirectional antenna is always on, and the omnidirectional antenna can receive signals from various directions, even the antenna currently being acquired
  • the data transmission performance of the antenna or antenna surface combination is extremely poor.
  • the omnidirectional antenna can also be used to ensure the signal quality, thereby avoiding scenes with extremely poor signals during the acquisition process.
  • the CPE may randomly select one from the selected antenna plane combinations. Antenna plane combination, and determine at least one antenna plane included in the randomly selected antenna plane combination as at least one target antenna plane.
  • the CPE may further determine whether M is greater than 0, and if M is greater than 0, the CPE may obtain data transmission performance of each of the multiple antenna planes within the first duration Value; select an antenna plane whose data transmission performance value within a first time period is greater than a first threshold value from a plurality of antenna planes, and determine the antenna plane with the largest data transmission performance value within the first time period among the selected antenna planes as At least one target antenna plane; selecting M antennas from the antennas included in the determined at least one target antenna plane; determining the selected M antennas and multiple omnidirectional antennas as target antennas of a target number.
  • the first threshold value may be an average value of multiple data transmission performance values corresponding to multiple antenna faces, or the first threshold value may be determined according to a minimum value of multiple data transmission performance values corresponding to multiple antenna faces. get.
  • M is greater than 0 but not greater than the first value, it means that after all omnidirectional antennas are used as receiving antennas, the number of remaining receiving antennas is less than the number of directional antennas on each antenna surface. That is, the CPE can select the remaining number of receiving antennas from a plurality of antennas included in one antenna surface. Based on this, the CPE may refer to the related method described in the foregoing embodiment to obtain the data transmission performance value of each antenna surface of the multiple antenna surfaces, and select the antenna surface with the largest data transmission performance value from the multiple antenna surfaces. As the data transmission performance value is larger, the antenna direction on the antenna surface is closer to the target direction.
  • the CPE can select M directional antennas as the remaining receiving antennas from the directional antennas included in the antenna surface with the largest data transmission performance value. In order to ensure that the selected directional antenna is aligned with the base station as much as possible, thereby ensuring better receiving performance of the CPE.
  • the CPE may also randomly select an antenna from the selected antenna planes. And use the randomly selected antenna plane as the target antenna plane.
  • the CPE may select a first number of omnidirectional antennas from the included multiple omnidirectional antennas. Directional antennas, where the first number is less than the target number, and the antenna surfaces corresponding to each of the two selected first number of omnidirectional antennas are not adjacent. After selecting the first number of omnidirectional antennas, the CPE may select a second number of directional antennas from the included directional antennas. The second quantity is a difference between the target quantity and the first quantity.
  • the CPE can select two opposite antenna faces from the four antenna faces, and The two omnidirectional antennas serve as two of the four receiving antennas of the CPE. After that, the CPE can select two more directional antennas from the multiple directional antennas included, and use the selected two omnidirectional antennas and the selected two directional antennas as the receiving antennas of the CPE.
  • the implementation process of the CPE selecting the second number of directional antennas from the included directional antennas can refer to the implementation process of the CPE selecting the M directional antennas from the included directional antennas described in the above embodiment. I will not repeat them here.
  • the CPE since the number of antennas included in the CPE is greater than the number of receiving antennas supported by the CPE, when the network changes, the CPE can select from among the included multiple antennas the receiving antennas supported by the CPE.
  • the same number of antennas with good data transmission performance are used as receiving antennas, that is, the CPE does not need to adjust the direction of the antenna, but selects a better receiving antenna from the set of redundant numbers of antennas to ensure that the CPE aligns the signal Better direction, because it is not necessary to align the CPE with a better signal direction by rotating the antenna direction. Therefore, not only the high gain of the antenna in the CPE is ensured, but also there is no need to set a motor in the CPE, and it is not necessary. Provides rotation space for antenna rotation, reduces the size of the CPE, facilitates installation, and reduces manufacturing costs.
  • the CPE may select part or all of the omnidirectional antennas from the included omnidirectional antennas as a part of the receiving antenna. Among the directional antennas, the remaining number of antennas are selected as the remaining receiving antennas. After determining the selected omnidirectional antenna, the CPE can turn on the selected omnidirectional antennas, and then determine each antenna plane combination or antenna plane. Data transmission performance value to select the remaining number of directional antennas.
  • the omnidirectional antenna is always on, and the omnidirectional antenna can receive signals from various directions, even the antenna currently being acquired
  • the data transmission performance of the antenna or antenna surface combination is extremely poor.
  • the omnidirectional antenna can also be used to ensure the signal quality, thereby avoiding scenes with extremely poor signals during the acquisition process.
  • the above embodiment mainly describes the implementation process of the CPE selecting a target number of antennas from a plurality of antennas included in multiple antenna surfaces when the number of antennas provided on each antenna surface in the antenna-free tuning device is the same.
  • the number of antennas provided on each antenna surface may also be different.
  • the CPE can sequentially number each antenna plane, and then, starting from the antenna on the first antenna plane according to the target number, select the target number of antennas as an antenna group in order to obtain multiple antenna groups.
  • the target antenna group determines the antenna group whose data transmission performance value is greater than the first threshold within the first duration as the target antenna group, and the target antenna group
  • the target number of antennas included in the antenna group with the largest data transmission performance value is selected as the receiving antenna of the CPE, or the target number of antennas included in any antenna group in the target antenna group is used as the receiving antenna of the CPE.
  • the antenna-free tuning device provided by the embodiment of the present application is described next.
  • FIG. 5 is a block diagram of an antenna tuning-free device provided by an embodiment of the present application.
  • the device can be applied to the aforementioned CPE.
  • the CPE includes the antenna assembly described in the foregoing embodiment.
  • the device A selection module 501 and a determination module 502 are included.
  • a selection module 501 is configured to perform operations of selecting at least one target antenna plane based on k in steps 301 and 302, or to perform operations of selecting at least one target antenna plane based on the number of targets in steps 401 and 402;
  • a determining module 502 configured to perform the operation of determining the target number of target antennas based on at least one target antenna plane in step 302, and using the determined target number of target antennas as the receiving antenna of the CPE, or for performing the selection-based The operation of at least one target antenna plane determining a target number of target antennas, and using the determined target number of target antennas as a receiving antenna of a CPE.
  • the selection module 501 includes:
  • the first determining sub-module 5011 is configured to determine the target quantity and the multiple antenna faces when the number of antennas provided on each antenna face is the same and the antennas provided on each antenna face are directional antennas.
  • the first selection sub-mode 5012 is used to select at least one target antenna plane from a plurality of antenna planes based on k.
  • the first selection sub-module 5012 is specifically configured to:
  • each consecutive k antenna planes in the multiple antenna planes are divided into one antenna plane combination to obtain multiple antenna plane combinations;
  • An antenna plane combination having a data transmission performance value within a first time period that is greater than the first threshold value is selected from a plurality of antenna plane combinations, and the largest data transmission performance value within the first time period is determined from the selected antenna plane combinations.
  • At least one antenna plane included in the determined antenna plane combination is determined as at least one target antenna plane.
  • the first selection sub-module 5012 is specifically configured to:
  • At least one antenna plane included in the determined antenna plane combination and one antenna plane adjacent to the at least one antenna plane is determined as at least one target antenna plane.
  • the determining module 502 is specifically configured to:
  • the antennas provided on each of the at least one antenna plane and the selected T antennas are used as the target antennas for the target number.
  • the first selection sub-module 5012 is specifically configured to:
  • the determined antenna plane is determined as at least one target antenna plane.
  • the selection module 501 includes:
  • the second determining sub-module 5013 is configured to determine the number of targets and multiple antennas when the number of antennas on each antenna surface is the same and an omnidirectional antenna is provided on the plane where each antenna surface is located.
  • the second selection sub-mode 5014 selects at least one target antenna plane from a plurality of antenna planes based on M and the first value.
  • the first value refers to the number of antennas provided on each antenna plane of the multiple antenna planes.
  • the second selection sub-module 5014 is specifically configured to:
  • the determining module 502 is specifically configured to:
  • the selected M antennas and multiple omnidirectional antennas are determined as the target antennas of the target number.
  • the second selection sub-module is specifically configured to:
  • the determining module 502 is specifically configured to:
  • the selected M antennas and multiple omnidirectional antennas are determined as the target antennas of the target number.
  • the selection module 501 is specifically configured to:
  • any antenna plane combination A of the multiple antenna plane combinations turn on the antenna on each antenna plane of the multiple antenna planes included in the antenna plane combination A, and turn off one of the multiple antenna planes included in the antenna plane combination A.
  • the sum of the ratio of the throughput and the number of resource blocks of multiple transmission time intervals in the first time period is determined as the data transmission performance value of the antenna plane combination A in the first time period.
  • the selection module 501 is specifically configured to:
  • antenna face B of the multiple antenna faces turn on at least one antenna on the antenna face B, and turn off antennas on other antenna faces except the antenna face B;
  • the sum of the ratio of the throughput of multiple transmission time intervals of the antenna plane B and the number of resource blocks in the first duration is determined as the data transmission performance value of the antenna plane B in the first duration.
  • the CPE since the number of antennas included in the CPE is greater than the number of receiving antennas supported by the CPE, when the network changes, the CPE can select from among the included multiple antennas the receiving antennas supported by the CPE.
  • the same number of antennas with good data transmission performance are used as receiving antennas, that is, the CPE does not need to adjust the direction of the antenna, but selects a better receiving antenna from the set of redundant numbers of antennas to ensure that the CPE aligns the signal Better direction, because it is not necessary to align the CPE with a better signal direction by rotating the direction of the antenna. Therefore, not only the high gain of the antenna in the CPE is guaranteed, but also the inconvenience caused by manual rotation can be avoided, and CPE does not need to provide rotation space for antenna rotation, which reduces the size of CPE and facilitates installation.
  • the antenna-free tuning device provided by the foregoing embodiment executes the antenna-free tuning method
  • only the above-mentioned division of functional modules is used as an example.
  • the foregoing functions may be allocated by different functional modules as required. That is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the antenna-free tuning device provided by the foregoing embodiment belongs to the same concept as the method embodiment shown in FIG. 1-4. For a specific implementation process, refer to the method embodiment, and details are not described herein again.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer instructions When the computer instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center through a cable (For example: coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (for example: infrared, wireless, microwave, etc.) to another website, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available media that can be accessed by a computer, or a data storage device such as a server, a data center, or the like that includes one or more available media integrations.
  • the available medium may be a magnetic medium (for example: a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Versatile Disc (DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk) (SSD)) Wait.
  • a magnetic medium for example: a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a Digital Versatile Disc (DVD)
  • DVD Digital Versatile Disc
  • SSD Solid State Disk
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is run on the computer, the computer is caused to execute the steps of the antenna-free tuning method shown in FIG. 3 to FIG. 4.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线组件、天线免调优方法及装置,涉及终端领域,在本申请中,天线组件中包括的天线的数量大于该CPE支持的接收天线的数量,因此,当网络发生变化时,CPE可以从天线组件包括的多根天线中选择与CPE支持的接收天线的数量相同数量且数据传输性能较好的天线作为接收天线,也即,CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要通过旋转天线的方向来使CPE对准信号较好的方向,因此,不仅保证了CPE中的天线的高增益,同时,还可以避免手动旋转带来的不便,并且,CPE也不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装。

Description

天线组件、天线免调优方法及装置 技术领域
本申请涉及终端技术领域,特别涉及一种天线组件、天线免调优方法及装置。
背景技术
随着互联网业务的发展,用户对宽带上网的网络质量的要求越来越高。然而,在一些偏远地区,由于基站部署成本较高,因此,相邻两个基站之间的间距较大。在这种情况下,为了保证网络质量,可以在用户居所附近设置无线客户端终端设备(Customer Premise Equipment,CPE)。或者,在某些地区,由于不方便部署线缆或者是由于部署线缆的成本较高,因此,也可以通过部署CPE来解决用户的上网问题。通常,CPE中包括多根用于接收信号的定向天线,在安装时,可以对CPE中的天线的方向进行调整,以使CPE尽可能的对准信号较好的方向。然而,在CPE的使用过程中,若网络发生变化,也即基站天线的方向发生了变化,或者是新增了基站,则需要重新对CPE中的天线的方向进行调整。
当前,主要的调整方法是由技术人员手动旋转天线,从而实现天线的方向调整。在这种情况下,CPE中需要为天线的旋转提供旋转空间,因此,将导致CPE尺寸较大,不利于安装,且由于需要手动调整,因此,操作不便。基于此,为了避免上述问题,亟需提出一种天线免调优装置及方法,也即,即使在网络发生变化时,在不对天线的方向进行调整的情况下,也可以使得CPE对准信号较好的方向。
发明内容
本申请提供了一种天线组件、天线免调优方法及装置,可以用于解决相关技术中由于需要手动旋转天线所导致的CPE尺寸较大、不易安装且操作不便的问题。该技术方案如下:
第一方面,提供了一种天线组件,应用于客户终端设备CPE中,所述天线组件包括多个天线面,所述多个天线面中的每个天线面为多面体的一个侧面,每个天线面上设置有至少一根天线,且所有天线面上设置的天线的总数量大于目标数量,所述目标数量是指所述CPE支持的同时接收数据的接收天线的数量。
在本申请实施例中,天线组件中可以包括有大于该CPE支持的接收天线的数量的天线,这样,当网络发生变化时,CPE可以从包括的多根天线中选择与CPE支持的接收天线的数量相同数量且数据传输性能较好的天线作为接收天线,也即,CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要通过旋转天线的方向来使CPE对准信号较好的方向,因此,不仅保证了CPE中的天线的高增益,同时,避免了手动旋转所带来的不便,并且,CPE可以不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装。
可选地,所述每个天线面上设置的至少一根天线均为定向天线。
可选地,在所述每个天线面上所在的平面上还设置有一根全向天线。
可选地,所述多个天线面中的每个天线面均连接有电子开关,所述电子开关用于控制 相应天线面上的天线的开启和关闭。
其中,每个天线面上连接的电子开关可以统一控制相应天线面上所有的天线的开启和关闭,也可以独立的控制相应天线面上每根天线的开启和关闭。换句话说,可以通过开启天线面连接的电子开关来开启该天线面上所有的天线,也可以通过开启天线面连接的开关来开启该天线面上任一根天线。
可选地,所述多个天线面中的每个天线面上设置的天线的数量相同。
第二方面,提供了一种天线免调优方法,该方法应用于客户终端设备CPE,所述CPE包含有上述第一方面任一所述的天线组件,所述方法包括:
基于所述目标数量,从所述多个天线面中选择至少一个目标天线面,所述至少一个目标天线面的数据传输性能值大于第一阈值,所述数据传输性能值用于表征所述CPE通过所述至少一个目标天线面上的天线进行数据接收时的接收性能;
基于所述至少一个目标天线面上包括的天线确定所述目标数量的目标天线,并将确定的所述目标数量的目标天线作为所述CPE的接收天线。
在本申请实施例中,天线组件中可以包括有大于该CPE支持的接收天线的数量的天线,这样,当网络发生变化时,CPE可以基于目标数量从多个天线面中选择数据传输性能较好的至少一个目标天线面,基于至少一个目标天线面上包括的天线中确定CPE的接收天线,也即,CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要通过旋转天线的方向来使CPE对准信号较好的方向,因此,不仅保证了CPE中的天线的高增益,同时,避免了手动旋转所带来的不便,并且,CPE可以不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装。
可选地,所述基于所述目标数量,从所述多个天线面中选择至少一个目标天线面,包括:
当所述多个天线面中每个天线面上设置的天线的数量相同,且每个天线面上设置的天线均为定向天线时,确定所述目标数量与所述多个天线面中每个天线面上设置的天线数量之间的比值k;
基于所述k,从所述多个天线面中选择至少一个目标天线面。
可选地,所述基于所述k,从所述多个天线面中选择至少一个目标天线面,包括:
若所述k为大于1的整数,则将所述多个天线面中每连续的k个天线面划分为一个天线面组合,得到多个天线面组合;
依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
将确定的天线面组合中包括的至少一个天线面确定为所述至少一个目标天线面。
可选地,所述基于所述k,从所述多个天线面中选择至少一个目标天线面,包括:
若所述k大于1,且所述k不为整数,则对所述k进行取整,得到r;
将所述多个天线面中每连续的r个天线面划分为一个天线面组合,得到多个天线面组合;
依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
将确定的天线面组合包括的至少一个天线面以及与所述至少一个天线面相邻的一个天线面确定为所述至少一个目标天线面。
可选地,所述基于所述至少一个目标天线面上设置的多根天线确定所述目标数量的目标天线,包括:
确定所述目标数量与所述至少一个天线面所包括的天线的数量之间的差值T;
从与所述至少一个天线面相邻的天线面中选择T根天线;
将所述至少一个天线面中每个天线面上设置的天线以及选择的T根天线作为所述目标数量的目标天线。
可选地,所述基于所述k,从所述多个天线面中选择至少一个目标天线面,包括:
若所述k不大于1,则获取所述多个天线面中每个天线面在第一时长内的数据传输性能值;
从所述多个天线面中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
将确定的天线面确定为所述至少一个目标天线面。
可选地,所述基于所述目标数量,从所述多个天线面中选择至少一个目标天线面,包括:
当所述多个天线面中每个天线面上设置的天线的数量相同,且每个天线面所在的平面上设置有一根全向天线时,确定所述目标数量与所述多根全向天线的数量N之间的差值M;
基于所述M和第一数值,从所述多个天线面中选择至少一个目标天线面,所述第一数值是指所述多个天线面中每个天线面上设置的天线的数量。
可选地,所述基于所述M和第一数值,从所述多个天线面中选择至少一个目标天线面,包括:
若所述M大于所述第一数值,则对所述M与所述第一数值之间的比值取整,得到w;
将所述多个天线面中每连续的w+1个天线面划分为一个天线面组合,得到多个天线面组合;
依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
将确定的天线面组合中包括的至少一个天线面确定为所述至少一个目标天线面;
相应地,所述基于所述至少一个目标天线面上包括的天线确定所述目标数量的目标天线,包括:
从所述至少一个目标天线面包括的天线中选择M根天线;
将选择的M根天线和所述多根全向天线确定为所述目标数量的目标天线。
可选地,所述基于所述M和第一数值,从所述多个天线面中选择至少一个目标天线面,包括:
若所述M不大于所述第一数值,且所述M大于0,则获取所述多个天线面中每个天线面在第一时长内的数据传输性能值;
从所述多个天线面中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
将确定的天线面确定为所述至少一个目标天线面;
相应地,所述基于所述至少一个目标天线面上包括的天线确定所述目标数量的天线,包括:
从所述至少一个目标天线面包括的天线中选择M根天线;
将选择的M根天线和所述多根全向天线作为所述目标数量的目标天线。
可选地,所述依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值,包括:
对于所述多个天线面组合中的任一天线面组合A,开启所述天线面组合A包括的多个天线面中每个天线面上的天线,并关闭除所述天线面组合A中包括的多个天线面之外的其他天线面上的天线;
在所述第一时长内通过所述天线面组合A包括的多个天线面上的天线接收数据,并确定所述天线面组合A在所述第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
将所述第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为所述天线面组合A在所述第一时长内的数据传输性能值。
可选地,所述获取所述多个天线面中每个天线面在第一时长内的数据传输性能值,包括:
对于所述多个天线面中的任一天线面B,开启所述天线面B上的至少一根天线,并关闭除所述天线面B之外的其他天线面上的天线;
在所述第一时长内通过所述天线面B上的至少一根天线接收数据,并确定所述天线面B在所述第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
将所述天线面B在所述第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为所述天线面B在所述第一时长内的数据传输性能值。
在本申请实施例中,当在每个天线面所在的平面上均设置有一根全向天线时,CPE可以从包括的全向天线中选择部分或全部的全向天线作为接收天线的一部分,从包括的定向天线中选择剩余数量的天线作为剩余部分的接收天线,并且,在CPE选择天线的过程中,全向天线一直处于开启状态,这样,在依次获取各个天线面组合或天线面的数据传输性能值的过程中,由于全向天线一直处于开启状态,且全向天线可以接收来自各个方向的信号,因此,即使当前正在获取的天线面或天线面组合的数据传输性能极差,也可以通过全向天线来保证信号质量,从而避免在获取过程中出现信号极差的场景。
第三方面,提供了一种天线免调优装置,所述装置包含有上述第一方面中的天线组件,且所述天线免调优装置具有实现上述第二方面中的天线免调优方法行为的功能。所述天线免调优装置包括至少一个模块,该至少一个模块用于实现上述第二方面所提供的天线免调优方法。
第四方面,提供了一种天线免调优装置,所述天线免调优装置包含有上述第一方面中的天线组件,且所述天线免调优装置的结构中还包括处理器和存储器,所述存储器用于存储支持天线免调优装置执行上述第二方面所提供的天线免调优方法的程序,以及存储用于实现上述第二方面所提供的天线免调优方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面所述的天线免调优方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的天线免调优方法。
上述第三方面、第四方面、第五方面和第六方面所获得的技术效果与第一方面和第二方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
本申请提供的技术方案带来的有益效果是:
本申请实施例提供了一种天线组件,该天线组件中包括多个天线面,每个天线面作为多面体的一个侧面,这样,每个天线面即可以朝向一个方向,在每个天线面上设置至少一根天线,并且,多个天线面包括的天线的总数量大于CPE支持的同时接收数据的接收天线的数量。由于CPE中包括的天线的数量大于该CPE支持的接收天线的数量,因此,当网络发生变化时,可以从该CPE包括的多根天线中选择与CPE支持的接收天线的数量相同数量的天线作为接收天线。由此可见,利用本申请实施例提供的天线免调优装置,使得CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要对天线的方向进行调整,因此,避免了由于手动旋转天线所带来的不便,并且,CPE中可以不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装。
附图说明
图1是本申请实施例提供的一种天线组件的结构示意图;
图2是本申请实施例提供的一种CPE的结构示意图;
图3是本申请实施例提供的一种天线免调优方法的流程图;
图4是本申请实施例提供的一种天线免调优方法的流程图;
图5是本申请实施例提供的一种天线免调优装置的结构示意图;
图6是本申请实施例提供的一种选择模块的框图;
图7是本发明实施例提供的另一种选择模块的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在对本申请实施例进行详细的解释说明之前,先对本申请实施例涉及的应用场景予以介绍。
当前,在一些农村或偏远地区,由于用户较少,因此,运营商在这些地区建设的基站的间距一般比较大,在这种情况下,可以通过在用户工作或生活的区域附近部署室外型CPE来保证广覆盖场景下的网络质量。除此之外,在某些地区,由于不方便部署线缆或者是由于部署线缆的成本较高,因此,也可以通过部署CPE来解决用户的上网问题。
通常情况下,在部署CPE时,为了使CPE内的接收天线能尽可能的对准信号较好的方向,可以调整CPE,以使CPE的接收天线尽可能的对准基站。在CPE部署完成之后,CPE的接收天线所朝向的方向也就固定了。然而,在CPE的使用过程中,运营商可能会进行网络调整,例如新增基站或者是调整基站内的天线的方向,从而导致网络变化。在这种情况下,CPE的接收天线的方向可能将不再对准信号最好的方向。基于此,本申请实施例提供了一种天线免调优装置及方法,该天线免调优装置即可以应用于CPE中,并且,在网络发生变化时,可以通过本申请实施例提供的天线免调优方法来保证CPE的接收天线能始终对准信号较好的方向。
接下来对本申请实施例提供的天线组件进行介绍。
本申请实施例提供的天线组件101可以应用于CPE中,该天线组件101包括多个天线面,该多个天线面中的每个天线面为多面体的一个侧面,每个天线面上设置有至少一根天线,且所有天线面上设置的天线的总数量大于目标数量,该目标数量是指CPE支持的同时接收数据的接收天线的数量。
需要说明的是,天线面的数量可以为3个、4个、5个或更多。图1中示例性的示出了天线面的数量为4个时的天线免调优装置的示意图。如图1所示,四个天线面1011-1014中的每个天线面为四面体的一个侧面。每个天线面上设置有至少两根天线1015。
可选地,各个天线面上设置的天线的数量可以相同,例如,如图1所示,每个天线面上可以均设置有两根天线。当然,在一种可能的实现方式中,也可以在天线面1011和天线面1013上设置两根天线,而在天线面1012和天线面1014上设置有其他数量的且数量相同的天线,例如,在天线面1012和天线面1014上均设置有三根天线。或者,也可以在天线面1011-1014中的每个天线面上设置的天线的数量均不同。本申请实施例对此不做具体限定。
需要说明的是,每个天线面上设置的至少两根天线1015可以均为定向天线。并且,对于任一天线面,当该天线面上设置有两根定向天线时,这两根定向天线可以垂直设置。
可选地,在本申请实施例中,在每个天线面所在的平面上还可以设置有一根全向天线,其中,该全向天线可以设置在定向天线的上方。
可选地,如图1所示,多个天线面中的每个天线面均可以连接有电子开关1016。当该电子开关1016开启时,与电子开关1016连接的天线面上的天线将开启,也即,与电子开关连接的天线面上的天线将被作为CPE的接收天线来接收数据。
需要说明的是,在一种可能的实现方式中,每个天线面连接的电子开关1016可以用于 对相应天线面上的所有天线进行统一控制,也即,当电子开关1016开启时,与开启的电子开关1016连接的天线面上的所有天线均开启。在另一种可能的实现方式中,每个天线面连接的电子开关1016可以用于对相应天线面上的天线进行单独控制,也即,电子开关1016可以根据需要的接收天线的数量,选择开启与其连接的天线面上的部分天线。
另外,还需要说明的是,在本申请实施例中,该天线组件的全部天线面上设置的天线的总数量大于CPE支持的同时接收数据的接收天线的数量。也即,该天线组件中包括的天线的数量多于CPE需要的天线的数量。例如,假设CPE的基带芯片支持4根接收天线,也即,CPE每次接收数据时,最多支持通过4根接收天线进行数据接收,在这种情况下,该天线组件包括的天线的数量将大于4。若CPE的基带芯片支持8根接收天线,则该天线组件中可以设置的天线的数量大于8。
由于该天线组件中包括的天线的数量大于CPE支持的接收天线的数量,因此,当网络发生变化时,CPE可以从该天线组件包括的多根天线中选择与CPE支持的接收天线的数量相同数量的天线作为接收天线。由此可见,利用本申请实施例提供的天线组件,使得CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要对天线的方向进行调整,因此,避免了由于手动旋转天线所带来的不便,并且,CPE中可以不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装。
图2是本申请实施例提供的一种CPE的结构示意图,如图2所示,该CPE可以包括有图1所示的天线组件101、发射机102、接收机103、存储器104、处理器105以及通信总线106。本领域技术人员可以理解,图2中示出的CPE的结构并不构成对CPE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,本发明实施例对此不做限定。
其中,天线组件101可以为上述实施例中介绍的天线组件,可以为CPE提供多于支持的接收天线的数量的天线。
发射机102可以用于向基站发送数据和/或信令等。该接收机103可以用于接收基站发送的数据和/或信令等。
其中,该存储器104可以用于存储基站发送的数据,并且,该存储器104也可以用于存储用于执行本申请实施例提供的天线免调优方法的一个或多个运行程序和/或模块。该存储器2013可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM))或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由集成电路存取的任何其它介质,但不限于此。存储器104可以是独立存在,通过通信总线106与处理器105相连接。存储器104也可以和处理器105集成在一起。
其中,该处理器105是该CPE的控制中心,该处理器105可以是一个通用中央处理器 (Central Processing Unit,以下简称CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,以下简称ASIC),或一个或多个用于控制本方案程序执行的集成电路。该处理器105可以通过运行或执行存储在存储器2013内的软件程序和/或模块,以及调用存储在存储器104内的数据,来实现本申请实施例提供的天线免调优方法。
另外,上述处理器105和存储器104可以通过通信总线106传送信息。
由前述对天线组件的介绍可知,该天线组件中可以包括多个天线面中的每个天线面上设置的至少两根定向天线但不包括全向天线,或者,该天线组件中在包括多根定向天线的同时还可以包括多根全向天线,针对这两种不同的情况,本申请实施例可以通过不同的方法来基于目标数量从多个天线面中选择至少一个目标天线面,进而根据选择的至少一个目标天线面确定目标数量的目标天线,将确定的目标数量的目标天线作为CPE的接收天线。接下来,本申请实施例将结合附图3来介绍当该天线组件包括多根定向天线但不包括全向天线时的天线免调优方法的实现过程。参见图3,该方法可以包括以下步骤:
步骤301:当多个天线面中每个天线面上设置的天线的数量相同,且每个天线面上设置的天线均为定向天线时,确定目标数量与多个天线面中每个天线面上设置的天线数量之间的比值k。
在本申请实施例中,天线组件中每个天线面上设置的天线的数量可以相同,也可以不同,其中,对于CPE而言,CPE的存储器中可以存储有该CPE包含的天线组件中每个天线面的标识、每个天线面上设置的天线的天线类型以及数量之间的对应关系。基于此,CPE可以根据存储的对应关系,判断每个天线面上设置的天线的数量是否相同。若每个天线面上设置的天线的数量相同,则CPE可以确定目标数量与多个天线面中每个天线面上设置的天线的数量的比值k。
其中,目标数量是指该CPE支持的接收天线的数量。需要说明的是,CPE支持的接收天线的数量由CPE的基带芯片决定。目前,常见的CPE支持的接收天线的数量可以为2根、4根、8根或16根等等。示例性的,当CPE支持的接收天线的数量为2根时,则目标数量为2,当CPE支持的接收天线的数量为4根时,则目标数量为4,本申请实施例对此不再赘述。
步骤302:基于目标数量与每个天线面上设置的天线数量之间的比值k,从多个天线面中选择至少一个目标天线面,并基于至少一个目标天线面确定目标数量的目标天线,将确定的目标数量的目标天线作为CPE的接收天线。
其中,至少一个目标天线面的数据传输性能值大于第一阈值。
在本申请实施例中,目标数量与每个天线面上设置的天线的数量的比值k可能大于1,也可能不大于1。其中,根据k的不同,CPE可以采用以下几种不同的方式来从多个天线面中选择至少一个目标天线面,并基于至少一个天线面中确定目标数量的目标天线作为CPE的接收天线。
(1)若k为大于1的整数,则将多个天线面中每连续的k个天线面划分为一个天线面组合,得到多个天线面组合;依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;从多个天线面组合中选择在第一时长内的数据传输性能值大于第一阈值 的天线面组合,并将选择的天线面组合中在第一时长内的数据传输性能值最大的天线面组合包括的至少一个天线面确定为至少一个目标天线面,将至少一个目标天线面包括的全部天线确定为目标数量的目标天线。
其中,当k为大于1的整数时,则说明k个天线面上的天线的总数量就等于目标数量。也即,CPE可以将k个天线面上包括的天线作为接收天线。并且,考虑到当某个天线面对准基站时,与该天线面相邻的其他天线面上的天线接收信号的质量将优于与该天线面相对的天线面上的天线接收信号的质量,因此,CPE可以从多个天线面中选择接收性能较好的连续的k个天线面,并将选择的连续的k个天线面作为至少一个目标天线面。
示例性的,在选择连续的k个天线面时,CPE可以将多个天线面中每连续的k个天线面划分为一个天线面组合,从而得到多个天线面组合。例如,假设目标数量为8,天线组件包括5个天线面,每个天线面上设置有4根天线,则k为2,也即,CPE从5个天线面中选择连续的2个天线面即可。为了便于说明,按顺序将5个天线面编号为1-5。将天线面1和2划分为一个天线面组合,天线面2和3划分为一个天线面组合,天线面3和4划分为一个天线面组合,天线面4和5划分为一个天线面组合,天线面5和1划分为一个天线面组合,从而得到5个天线面组合。这样,实际上每个天线面组合中即包括目标数量的天线。
在得到多个天线面组合之后,CPE可以依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值。示例性的,对于多个天线面组合中的任一天线面组合A,CPE可以开启天线面组合A包括的多个天线面中每个天线面上的天线,并关闭除天线面组合A包括的多个天线面之外的其他天线面上的天线;在第一时长内通过天线面组合A包括的多个天线面上的天线接收数据,并确定天线面组合A在第一时长内的每个传输时间间隔的吞吐量和资源块的比值;将第一时长内的多个传输时间间隔的吞吐量和资源块的比值的总和确定为天线面组合A在所述第一时长内的数据传输性能值。
需要说明的是,CPE可以通过开启天线面组合A包括的多个天线面中每个天线面连接的电子开关来开启每个天线面上的天线,而对于除该天线面组合A包括的多个天线面之外的其他天线面,则可以通过关闭其他天线面中每个天线面连接的电子开关来关闭其他天线面上的天线,这样,该天线面组合A中包括的所有天线将作为当前的接收天线,CPE此时可以通过天线面组合A包括的所有天线来接收数据信号。之后,CPE可以启动定时器,其中,该定时器的运行时长为第一时长,从该定时器启动开始,CPE可以记录每个传输时间间隔内的吞吐量和资源块的数量,并计算相应传输时间间隔内的吞吐量与资源块的数量之间的比值,直到该定时器定时结束,CPE可以计算该定时器运行期间多个传输时间间隔的吞吐量和资源块的数量之间的比值的总和,并将计算得到的总和确定为天线面组合A在第一时长内的数据传输性能值。
其中,天线面组合A在第一时长内的数据传输性能值可以用于表征CPE在采用天线面组合A包括的天线作为接收天线时的接收性能。数据传输性能值越大,则说明天线面组合A所包括的天线所朝向的方向与目标方向越接近,接收性能越好,其中,目标方向是指天线对准基站时所朝向的方向。
对于多个天线面组合中的每个天线面组合,CPE均可以参照上述介绍的确定天线面组合A在第一时长内的数据传输性能值的方式来确定每个天线面组合在第一时长内的数据传输性能值。在确定得到每个天线面组合在第一时长内的数据传输性能值之后,CPE可以从 多个天线面组合中选择数据传输性能值大于第一阈值的天线面组合,其中,第一阈值可以是根据该多个天线面组合的多个数据传输性能值中的最小值确定得到,也可以是根据该多个天线面组合的多个数据传输性能值的平均值确定得到。
在从多个天线面组合中选择出数据传输性能值大于第一阈值的天线面组合之后,CPE可以再从选择出的天线面组合中选择在第一时长内的数据传输性能值最大的天线面组合。由于数据传输性能值越大,说明天线所包括的天线所朝向的方向与对准基站的方向越接近,接收性能越好,因此,数据传输性能值最大的天线面组合,实际上就是能够保证CPE的接收信号质量最好的天线面组合。此时,CPE可以将选择的数据传输性能值最大的天线面组合包括的目标数量的天线作为目标数量的目标天线,也即,该CPE的接收天线。
可选地,在一种可能的实现方式中,在从多个天线面组合中选择出数据传输性能值大于第一阈值的天线面组合之后,CPE可以从选择出的天线面组合中随机选择一个天线面组合,并将随机选择的天线面组合包括的至少一个天线面确定为至少一个目标天线面。
(2)若k大于1,且k不为整数,则对k进行取整,得到r;将多个天线面中每连续的r个天线面划分为一个天线面组合,得到多个天线面组合;依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;从多个天线面组合中选择在第一时长内的数据传输性能值大于第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合,将确定的天线面组合包括的至少一个天线面以及与至少一个天线面相邻的一个天线面确定为至少一个目标天线面;确定目标数量与至少一个天线面所包括的天线的数量之间的差值T;从与至少一个天线面相邻的天线面中选择T根天线;将至少一个天线面中每个天线面上设置的天线以及选择的T根天线确定为目标数量的目标天线,也即CPE的接收天线。
当k大于1,且k不为整数时,则说明目标数量不是每个天线面上的天线的数量的整数倍,此时,CPE将无法直接选择若干个天线面上的全部天线作为目标数量的目标天线,在这种情况下,CPE可以对k进行取整,得到r。例如,当k为2.6时,则CPE对k取整后得到2,也即r为2。
在确定r之后,CPE可以将多个天线面中每连续的r个天线面划分为一个天线面组合,从而得到多个天线面组合,其中,CPE将多个天线面中每连续的r个天线面划分为一个天线面组合的实现过程可以参考前文中介绍的将多个天线面中每连续的k个天线面划分为一个天线面组合的实现过程,本申请实施例在此不再赘述。
在得到多个天线面组合之后,CPE可以参考前文介绍的方法来获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值,并从多个天线面组合中选择在第一时长内的数据传输性能值大于第一阈值的天线面组合,从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合。
其中,确定的数据传输性能值最大的天线面组合就是当前多个天线面组合中包括的天线的方向最接近目标方向的天线面组合。但是,由于一个天线面组合中包括的天线的总数量小于目标数量,也即,对于CPE支持的接收天线的数量,一个天线面组合包括的天线的数量并不够。因此,CPE还可以根据目标数量与该天线面组合所包括的天线的总数量之间的差值T,从其他天线面中再选择T根天线,这样,选择的数据传输性能值最大的天线面组合中包括的天线和另外选择的T根天线即可以作为目标数量的目标天线。
示例性的,由于选择的天线面组合中包括的天线面上的天线的方向是最接近目标方向的,因此,相较于与该天线面组合中包括的天线面不相邻的天线面,与之相邻的天线面上的天线与目标方向的差距将更小。基于此,CPE可以从与天线面组合包括的天线面相邻的天线面上选择剩余的T根天线。
例如,假设有5个天线面,每个天线面上设置有3根天线,目标数量为8,则r为2。假设数据传输性能值最大的天线面组合为由天线面2和3组成的天线面组合,由于天线面2和3上一共包括6根天线,因此,CPE还需要再选择2根天线。在这种情况下,CPE可以从与天线面2相邻的天线面1中选择2根天线,也可以从与天线面3相邻的天线面4中选择2根天线,这样,天线面2和天线面3上包括的6根天线以及从其他天线面上选择的2根天线将作为CPE的8根接收天线。
可选地,在一种可能的实现方式中,在从多个天线面组合中选择出数据传输性能值大于第一阈值的天线面组合之后,CPE可以从选择出的天线面组合中随机选择一个天线面组合,并将随机选择的天线面组合包括的至少一个天线面确定为至少一个目标天线面。
(3)若k不大于1,则获取多个天线面中每个天线面在第一时长内的数据传输性能值;从多个天线面中选择在第一时长内的数据传输性能值大于第一阈值的天线面,并将选择的天线面中在第一时长内的数据传输性能值最大的天线面确定为至少一个目标天线面;从至少一个目标天线面上选择目标数量的目标天线,将选择的天线作为CPE的接收天线。
当k不大于1时,则说明目标数量小于或等于每个天线面上的天线的数量,也即,CPE只需从多个天线面中选择一个天线面即可。在这种情况下,CPE可以获取多个天线面中每个天线面在第一时长内的数据传输性能值,从多个天线面中选择数据传输性能值大于第一阈值的天线面,并将选择的天线面中数据传输性能值最大的一个天线面作为目标天线面,从该目标天线面包括的天线中选择目标数量的天线作为CPE的接收天线。其中,第一阈值可以是多个天线面对应的多个数据传输性能值的平均值,或者,第一阈值可以是根据多个天线面对应的多个数据传输性能值中的最小值确定得到。
示例性的,对于多个天线面中的任一天线面B,CPE可以开启天线面B上的至少两根天线,并关闭除天线面B之外的其他天线面上的天线;在第一时长内通过天线面B上的至少两根天线接收数据,并确定天线面B在第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;将天线面B在第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为天线面B在第一时长内的数据传输性能值。
其中,CPE可以通过开启天线面B连接的电子开关来开启天线面B上的所有天线,并通过关闭其他天线面连接的电子开关来关闭其他天线面上的所有天线,这样,该天线面B上的天线将作为当前的接收天线,CPE此时可以通过天线面B上设置的天线来接收数据信号。之后,CPE可以启动定时器,其中,该定时器的运行时长为第一时长,从该定时器启动开始,CPE可以记录每个传输时间间隔内的吞吐量和资源块的数量,并计算相应传输时间间隔内的吞吐量与资源块的数量之间的比值,直到该定时器定时结束,CPE可以计算该定时器运行期间多个传输时间间隔的吞吐量和资源块的数量之间的比值的总和,并将计算得到的总和确定为天线面B在第一时长内的数据传输性能值。
在确定得到每个天线面在第一时长内的数据传输性能值之后,若k等于1,则说明目标数量等于一个天线面上的天线的数量。此时,CPE可以将多个天线面中数据传输性能值最 大的天线面上的全部天线作为CPE的接收天线。若k小于1,说明目标数量小于一个天线面上的天线的数量,此时,CPE可以从数据传输性能值最大的天线面上设置的多根天线中的目标数量的天线确定为CPE的接收天线。其中,选择的数据传输性能值最大的天线面上的天线的朝向是最接近目标方向的,因此,从选择的天线面上选择全部或部分天线作为CPE的接收天线可以保证CPE具备更好的接收性能。
可选地,在一种可能的实现方式中,在从多个天线面中选择出数据传输性能值大于第一阈值的天线面之后,CPE可以从选择出的天线面中再随机选择一个天线面,并将随机选择的天线面作为目标天线面。
在本申请实施例中,由于CPE中包括的天线的数量大于该CPE支持的接收天线的数量,因此,当网络发生变化时,CPE可以从包括的多根天线中选择与CPE支持的接收天线的数量相同数量且数据传输性能较好的天线作为接收天线,也即,CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要通过旋转天线的方向来使CPE对准信号较好的方向,因此,在保证了CPE的接收天线的高增益的同时,不必再在CPE中设置电机,也不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装,降低了制造成本。
前述实施例主要介绍了当天线组件中包括多根定向天线但不包括全向天线的情况下,CPE基于目标数量从多个天线面中选择至少一个目标天线面,并基于至少一个目标天线面确定目标数量的目标天线的实现过程。接下来将结合附图4来说明当天线组件中包括多根定向天线和多根全向天线时,CPE基于目标数量从多个天线面中选择至少一个目标天线面,并基于至少一个目标天线面确定目标数量的目标天线的实现过程。
图4是本申请实施例示出的一种天线免调优方法的流程图。如图4所示,该方法包括以下步骤:
步骤401:当多个天线面中每个天线面上设置的天线的数量相同,且在每个天线面所在的平面上设置有一根全向天线时,确定目标数量与多根全向天线的数量N之间的差值M。
在本申请实施例中,当在每个天线面所在的平面上均设置有一根全向天线时,CPE可以从多根全向天线中选择部分或全部全向天线,并从多个天线面包括的多根天线中选择部分定向天线,从而得到目标数量的目标天线。
其中,CPE可以首先计算目标数量与多根全向天线的数量之间的差值M,根据M的不同,CPE可以采用不同的方式来选择全向天线和目标天线面。
步骤402:基于M和第一数值,从多个天线面中选择至少一个目标天线面,并基于选择的至少一个目标天线面确定目标数量的目标天线,将确定的目标数量的目标天线作为CPE的接收天线。
其中,第一数值是指多个天线面中每个天线面上设置的天线的数量,由于每个天线面上均设置有至少一根天线,第一数值为大于或等于1的正整数。
在本申请实施例中,根据M的大小,CPE可以采用不同的方式来选择全向天线和目标天线面。示例性的,CPE可以首先将M与第一数值进行比较,并根据比较结果来选择至少一个目标天线面。
其中,若M大于第一数值,则CPE可以对M与第一数值之间的比值取整,得到w; 将多个天线面中每连续的w+1个天线面划分为一个天线面组合,得到多个天线面组合;依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;从多个天线面组合中选择在第一时长内的数据传输性能值大于第一阈值的天线面,并将选择的天线面组合中在第一时长内的数据传输性能值最大的天线面组合包括的至少一个天线面确定为至少一个目标天线面,从至少一个目标天线面包括的天线中选择M根天线;将选择的M根天线和多根全向天线作为CPE的接收天线。其中,该第一阈值可以是多个天线面组合对应的多个数据传输性能值的平均值,也可以是根据多个数据传输性能值中的最小值确定得到的。
需要说明的是,若目标数量与N之间的差值M大于第一数值,则说明目标数量大于CPE包括的全向天线的数量,此时,CPE可以将包括的所有全向天线均作为接收天线,并且,由于全向天线的数量还未达到目标数量,因此,CPE可以从包括的多根定向天线中选择剩余数量的天线,也即M根定向天线,从而将选择的M根天线和所有的全向天线作为CPE的接收天线。
示例性的,当CPE从包括的多根定向天线中选择剩余的M根天线时,CPE可以计算M与第一数值之间的比值,由于M大于第一数值,因此,该比值将大于1。其中,由于第一数值是指每个天线面上除全向天线之外剩余的定向天线的数量,因此,当该比值大于1时,则说明一个天线面上的定向天线加上所有的全向天线也依然达不到目标数量。也即,CPE需要从多个天线面中选择至少两个天线面,这样,至少两个天线面上的定向天线加上全部的全向天线才可能达到目标数量。
基于此,CPE可以对M与第一数值之间的比值进行取整,得到w,并将多个天线面中每连续的w+1个天线面划分为一个天线面组合,得到多个天线面组合。之后,CPE可以开启所有的全向天线,并参考前述实施例中介绍的相关方法依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值,并从多个天线面组合中选择在第一时长内的数据传输性能值最大的天线面组合。由于数据传输性能值越大,则相应的天线面组合中天线面上的天线所朝向的方向越接近目标方向,接收数据信号的性能也越好,因此,数据传输性能值最大的天线面组合,实际上就是能够保证CPE的接收信号质量最好的天线面组合。此时,CPE可以从该天线面组合包括的定向天线中选择M根定向天线作为剩余的接收天线。
需要说明的是,在本申请实施例中,在CPE执行本申请实施例提供的天线免调优方法的过程中,CPE中包括的多根全向天线将一直处于开启状态。这样,在依次获取各个天线面组合或天线面的数据传输性能值的过程中,由于全向天线一直处于开启状态,且全向天线可以接收来自各个方向的信号,因此,即使当前正在获取的天线面或天线面组合的数据传输性能极差,也可以通过全向天线来保证信号质量,从而避免在获取过程中出现信号极差的场景。
可选地,在一种可能的实现方式中,在从多个天线面组合中选择出数据传输性能值大于第一阈值的天线面组合之后,CPE可以从选择出的天线面组合中随机选择一个天线面组合,并将随机选择的天线面组合包括的至少一个天线面确定为至少一个目标天线面。
可选地,若M不大于第一数值,则CPE可以进一步的判断M是否大于0,若M大于0,则CPE可以获取多个天线面中每个天线面在第一时长内的数据传输性能值;从多个天线面中选择在第一时长内的数据传输性能值大于第一阈值的天线面,并将选择的天线面中在第一时长内的数据传输性能值最大的天线面确定为至少一个目标天线面;从确定的至少一个 目标天线面包括的天线中选择M根天线;将选择的M根天线和多根全向天线确定为目标数量的目标天线。其中,第一阈值可以是多个天线面对应的多个数据传输性能值的平均值,或者,第一阈值可以是根据多个天线面对应的多个数据传输性能值中的最小值确定得到。
其中,若M大于0但不大于第一数值,则说明在将所有全向天线作为接收天线之后,剩余的接收天线的数量小于每个天线面上的定向天线的数量。也即,CPE从一个天线面包括的多根天线中就可以选择出剩余数量的接收天线。基于此,CPE可以参考前述实施例中介绍的相关方法获取多个天线面中每个天线面的数据传输性能值,并从多个天线面中选择数据传输性能值最大的天线面。由于数据传输性能值越大,该天线面上的天线的方向就越接近目标方向,因此,CPE可以从数据传输性能值最大的天线面包括的定向天线中选择M根定向天线作为剩余的接收天线,以此来保证选择的定向天线尽可能对准基站,从而保证CPE具备的较好的接收性能。
可选地,在一种可能的实现方式中,在从多个天线面中选择出数据传输性能值大于第一阈值的天线面之后,CPE也可以从选择出的天线面中再随机选择一个天线面,并将随机选择的天线面作为目标天线面。
可选地,若M不大于0,则说明CPE中包括的全向天线的数量大于或等于目标数量,在这种情况下,CPE可以从包括的多根全向天线中选择第一数量的全向天线,其中,第一数量小于目标数量,且选择的第一数量的全向天线中每两根天线所对应的天线面均不相邻。在选择了第一数量的全向天线之后,CPE可以从包括的定向天线中选择第二数量的定向天线。其中,第二数量为目标数量与第一数量之间的差值。
例如,假设目标数量为4,CPE包括的全向天线的数量为4,则CPE可以从4个天线面中选择相对的两个天线面,并将选择的两个天线面上所在的平面上的两根全向天线作为CPE的4根接收天线中的2根。之后,CPE可以从包括的多根定向天线中再选择2根定向天线,将选择的2根全向天线和选择的2根定向天线作为CPE的接收天线。
值得注意的是,CPE从包括的定向天线中选择第二数量的定向天线的实现过程可以参考上述实施例中介绍的CPE从包括的定向天线中选择M根定向天线的实现过程,本申请实施例在此不再赘述。
在本申请实施例中,由于CPE中包括的天线的数量大于该CPE支持的接收天线的数量,因此,当网络发生变化时,CPE可以从包括的多根天线中选择与CPE支持的接收天线的数量相同数量且数据传输性能较好的天线作为接收天线,也即,CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要通过旋转天线的方向来使CPE对准信号较好的方向,因此,不仅保证了CPE中的天线的高增益,同时,可以不必再在CPE中设置电机,也不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装,降低了制造成本。
另外,在本申请实施例中,当每个天线面上均设置有一根全向天线时,CPE可以从包括的全向天线中选择部分或全部的全向天线作为接收天线的一部分,从包括的定向天线中选择剩余数量的天线作为剩余部分的接收天线,并且,CPE在确定选择的全向天线之后,即可以将选择的全向天线均开启,之后,再通过确定各个天线面组合或天线面的数据传输性能值来选择剩余数量的定向天线。这样,在依次获取各个天线面组合或天线面的数据传输性能值的过程中,由于全向天线一直处于开启状态,且全向天线可以接收来自各个方向 的信号,因此,即使当前正在获取的天线面或天线面组合的数据传输性能极差,也可以通过全向天线来保证信号质量,从而避免在获取过程中出现信号极差的场景。
上述实施例中主要介绍了当天线免调优装置中每个天线面上设置的天线数量相同的情况下,CPE从多个天线面包括的多根天线中选择目标数量的天线的实现过程。可选地,在本申请实施例中,每个天线面上设置的天线的数量也可以不相同。在这种情况下,CPE可以将每个天线面依次进行编号,之后,按照目标数量从第一个天线面上的天线开始,依次选择目标数量的天线作为一个天线组,从而得到多个天线组,获取多个天线组中每个天线组在第一时长内的数据传输性能值,并将在第一时长内数据传输性能值大于第一阈值的天线组确定为目标天线组,将目标天线组中选择数据传输性能值最大的天线组中包括的目标数量的天线作为CPE的接收天线,或者,将目标天线组中的任一天线组中包括的目标数量的天线作为CPE的接收天线。其中,CPE获取多个天线组中每个天线组在第一时长内的数据传输性能值的实现方式可以参考前述实施例中介绍的相关方法,本申请实施例在此不再赘述。
接下来对本申请实施例提供的天线免调优装置进行介绍。
图5是本申请实施例提供的一种天线免调优装置的框图,该装置可以应用于前述的CPE中,该CPE中包含有前述实施例介绍的天线组件,如图5所示,该装置包括选择模块501和确定模块502。
选择模块501,用于执行步骤301和步骤302中基于k选择至少一个目标天线面的操作,或者,用于执行步骤401以及步骤402中基于目标数量选择至少一个目标天线面的操作;
确定模块502,用于执行步骤302中基于至少一个目标天线面确定目标数量的目标天线,将确定的目标数量的目标天线作为CPE的接收天线的操作,或者,用于执行步骤402中基于选择的至少一个目标天线面确定目标数量的目标天线,将确定的目标数量的目标天线作为CPE的接收天线的操作。
可选地,参见图6,选择模块501包括:
第一确定子模块5011,用于当多个天线面中每个天线面上设置的天线的数量相同,且每个天线面上设置的天线均为定向天线时,确定目标数量与多个天线面中每个天线面上设置的天线数量之间的比值k;
第一选择子模5012,用于基于k,从多个天线面中选择至少一个目标天线面。
可选地,第一选择子模块5012具体用于:
若k为大于1的整数,则将多个天线面中每连续的k个天线面划分为一个天线面组合,得到多个天线面组合;
依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
从多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
将确定的天线面组合中包括的至少一个天线面确定为至少一个目标天线面。
可选地,第一选择子模块5012具体用于:
若k大于1,且k不为整数,则对k进行取整,得到r;
将多个天线面中每连续的r个天线面划分为一个天线面组合,得到多个天线面组合;
依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
从多个天线面组合中选择在第一时长内的数据传输性能值大于第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
将确定的天线面组合包括的至少一个天线面以及与至少一个天线面相邻的一个天线面确定为至少一个目标天线面。
可选地,确定模块502具体用于:
确定目标数量与至少一个天线面所包括的天线的数量之间的差值T;
从与至少一个天线面相邻的天线面中选择T根天线;
将至少一个天线面中每个天线面上设置的天线以及选择的T根天线作为目标数量的目标天线。
可选地,第一选择子模块5012具体用于:
若k不大于1,则获取多个天线面中每个天线面在第一时长内的数据传输性能值;
从多个天线面中选择在第一时长内的数据传输性能值大于第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
将确定的天线面确定为至少一个目标天线面。
可选地,参见图7,选择模块501包括:
第二确定子模块5013,用于当多个天线面中每个天线面上设置的天线的数量相同,且每个天线面所在的平面上设置有一根全向天线时,确定目标数量与多根全向天线的数量N之间的差值M;
第二选择子模5014,基于M和第一数值,从多个天线面中选择至少一个目标天线面,第一数值是指多个天线面中每个天线面上设置的天线的数量。
可选地,第二选择子模块5014具体用于:
若所述M大于所述第一数值,则对M与第一数值之间的比值取整,得到w;
将多个天线面中每连续的w+1个天线面划分为一个天线面组合,得到多个天线面组合;
依次获取多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
从多个天线面组合中选择在第一时长内的数据传输性能值大于第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
将确定的天线面组合包括的至少一个天线面确定为至少一个目标天线面;
相应地,确定模块502具体用于:
从至少一个目标天线面包括的天线中选择M根天线;
将选择的M根天线和多根全向天线确定为目标数量的目标天线。
可选地,第二选择子模块具体用于:
若M不大于第一数值,且M大于0,则获取多个天线面中每个天线面在第一时长内的数据传输性能值;
从多个天线面中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
将确定的天线面确定为至少一个目标天线面;
相应地,确定模块502具体用于:
从至少一个目标天线面包括的天线中选择M根天线;
将选择的M根天线和多根全向天线确定为目标数量的目标天线。
可选地,选择模块501具体用于:
对于多个天线面组合中的任一天线面组合A,开启天线面组合A包括的多个天线面中每个天线面上的天线,并关闭除天线面组合A中包括的多个天线面之外的其他天线面上的天线;
在第一时长内通过天线面组合A包括的多个天线面上的天线接收数据,并确定天线面组合A在第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
将第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为天线面组合A在第一时长内的数据传输性能值。
可选地,选择模块501具体用于:
对于多个天线面中的任一天线面B,开启天线面B上的至少一根天线,并关闭除天线面B之外的其他天线面上的天线;
在第一时长内通过天线面B上的至少一根天线接收数据,并确定天线面B在第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
将天线面B在第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为天线面B在第一时长内的数据传输性能值。
在本申请实施例中,由于CPE中包括的天线的数量大于该CPE支持的接收天线的数量,因此,当网络发生变化时,CPE可以从包括的多根天线中选择与CPE支持的接收天线的数量相同数量且数据传输性能较好的天线作为接收天线,也即,CPE可以不必调整天线的方向,而是从设置的冗余数量的天线中选取接收性能较好的天线来保证CPE对准信号较好的方向,由于不需要通过旋转天线的方向来使CPE对准信号较好的方向,因此,不仅保证了CPE中的天线的高增益,同时,可以避免手动旋转所带来的不便,并且,CPE可以不必为天线旋转提供旋转空间,减小了CPE的尺寸,便于安装。
上述实施例提供的天线免调优装置在执行天线免调优方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的天线免调优装置与图1-4所示的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本发明实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(Digital Subscriber Line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何 可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(Digital Versatile Disc,DVD))、或者半导体介质(例如:固态硬盘(Solid State Disk,SSD))等。
也即,在本申请实施例中,提供了一种计算机可读存储介质,当其在计算机上运行时,使得计算机执行上述图3至图4所示的天线免调优方法的步骤。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述为本申请提供的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (27)

  1. 一种天线组件,其特征在于,应用于客户终端设备CPE中,所述天线组件包括多个天线面,所述多个天线面中的每个天线面为多面体的一个侧面,每个天线面上设置有至少一根天线,且所有天线面上设置的天线的总数量大于目标数量,所述目标数量是指所述CPE支持的同时接收数据的接收天线的数量。
  2. 如权利要求1所述的天线组件,其特征在于,所述每个天线面上设置的至少一根天线为定向天线。
  3. 如权利要求1所述的天线组件,其特征在于,在所述每个天线面所在的平面上还设置有一根全向天线。
  4. 如权利要求1-3任一所述的天线组件,其特征在于,所述多个天线面中的每个天线面均连接有电子开关,所述电子开关用于控制相应天线面上的天线的开启和关闭。
  5. 如权利要求1-4任一所述的天线组件,其特征在于,所述多个天线面中的每个天线面上设置的天线的数量相同。
  6. 一种天线免调优方法,其特征在于,应用于客户终端设备CPE,所述CPE包含有权利要求1-5任一所述的天线组件,所述方法包括:
    基于所述目标数量,从所述多个天线面中选择至少一个目标天线面,所述至少一个目标天线面的数据传输性能值大于第一阈值,所述数据传输性能值用于表征所述CPE通过所述至少一个目标天线面上的天线进行数据接收时的接收性能;
    基于所述至少一个目标天线面上包括的天线确定所述目标数量的目标天线,并将确定的所述目标数量的目标天线作为所述CPE的接收天线。
  7. 如权利要求6所述的方法,其特征在于,所述基于所述目标数量,从所述多个天线面中选择至少一个目标天线面,包括:
    当所述多个天线面中每个天线面上设置的天线的数量相同,且每个天线面上设置的天线均为定向天线时,确定所述目标数量与所述多个天线面中每个天线面上设置的天线数量之间的比值k;
    基于所述k,从所述多个天线面中选择至少一个目标天线面。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述k,从所述多个天线面中选择至少一个目标天线面,包括:
    若所述k为大于1的整数,则将所述多个天线面中每连续的k个天线面划分为一个天线面组合,得到多个天线面组合;
    依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
    从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
    将确定的天线面组合中包括的至少一个天线面确定为所述至少一个目标天线面。
  9. 如权利要求7所述的方法,其特征在于,所述基于所述k,从所述多个天线面中选择至少一个目标天线面,包括:
    若所述k大于1,且所述k不为整数,则对所述k进行取整,得到r;
    将所述多个天线面中每连续的r个天线面划分为一个天线面组合,得到多个天线面组合;
    依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
    从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
    将确定的天线面组合包括的至少一个天线面以及与所述至少一个天线面相邻的一个天线面确定为所述至少一个目标天线面。
  10. 如权利要求9所述的方法,其特征在于,所述基于所述至少一个目标天线面上包括的天线确定所述目标数量的目标天线,包括:
    确定所述目标数量与所述至少一个天线面所包括的天线的数量之间的差值T;
    从与所述至少一个天线面相邻的天线面中选择T根天线;
    将所述至少一个天线面中每个天线面上设置的天线以及选择的T根天线作为所述目标数量的目标天线。
  11. 如权利要求7所述的方法,其特征在于,所述基于所述k,从所述多个天线面中选择至少一个目标天线面,包括:
    若所述k不大于1,则获取所述多个天线面中每个天线面在第一时长内的数据传输性能值;
    从所述多个天线面中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
    将确定的天线面确定为所述至少一个目标天线面。
  12. 如权利要求6所述的方法,其特征在于,所述基于所述目标数量,从所述多个天线面中选择至少一个目标天线面,包括:
    当所述多个天线面中每个天线面上设置的天线的数量相同,且在每个天线面所在的平面上设置有一根全向天线时,确定所述目标数量与多根全向天线的数量N之间的差值M;
    基于所述M和第一数值,从所述多个天线面中选择至少一个目标天线面,所述第一数值是指所述多个天线面中每个天线面上设置的天线的数量。
  13. 如权利要求12所述的方法,其特征在于,所述基于所述M和第一数值,从所述多个天线面中选择至少一个目标天线面,包括:
    若所述M大于所述第一数值,则对所述M与所述第一数值之间的比值取整,得到w;
    将所述多个天线面中每连续的w+1个天线面划分为一个天线面组合,得到多个天线面组 合;
    依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
    从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
    将确定的天线面组合包括的至少一个天线面确定为所述至少一个目标天线面。
    相应地,所述基于所述至少一个目标天线面上包括的天线确定所述目标数量的目标天线,包括:
    从所述至少一个目标天线面包括的天线中选择M根天线;
    将选择的M根天线和所述多根全向天线确定为所述目标数量的目标天线。
  14. 如权利要求12所述的方法,其特征在于,所述基于所述M和第一数值,从所述多个天线面中选择至少一个目标天线面,包括:
    若所述M不大于所述第一数值,且所述M大于0,则获取所述多个天线面中每个天线面在第一时长内的数据传输性能值;
    从所述多个天线面中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
    将确定的天线面确定为所述至少一个目标天线面;
    相应地,所述基于所述至少一个目标天线面上包括的天线确定所述目标数量的天线,包括:
    从所述至少一个目标天线面包括的天线中选择M根天线;
    将选择的M根天线和所述多根全向天线确定为所述目标数量的目标天线。
  15. 如权利要求8、9或13所述的方法,其特征在于,所述依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值,包括:
    对于所述多个天线面组合中的任一天线面组合A,开启所述天线面组合A包括的多个天线面中每个天线面上的天线,并关闭除所述天线面组合A中包括的多个天线面之外的其他天线面上的天线;
    在所述第一时长内通过所述天线面组合A包括的多个天线面上的天线接收数据,并确定所述天线面组合A在所述第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
    将所述第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为所述天线面组合A在所述第一时长内的数据传输性能值。
  16. 如权利要求11或14所述的方法,其特征在于,所述获取所述多个天线面中每个天线面在第一时长内的数据传输性能值,包括:
    对于所述多个天线面中的任一天线面B,开启所述天线面B上的至少一根天线,并关闭除所述天线面B之外的其他天线面上的天线;
    在所述第一时长内通过所述天线面B上的至少一根天线接收数据,并确定所述天线面B在所述第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
    将所述天线面B在所述第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值 的总和确定为所述天线面B在所述第一时长内的数据传输性能值。
  17. 一种天线免调优装置,其特征在于,所述装置应用于CPE,所述CPE包含有权利要求1-5任一所述的天线组件,所述装置包括:
    选择模块,用于基于所述目标数量,从所述多个天线面中选择至少一个目标天线面,所述至少一个目标天线的数据传输性能值大于第一阈值,所述数据传输性能值用于表征所述CPE通过所述至少一个目标天线面上的天线进行数据接收时的接收性能;
    确定模块,用于基于所述至少一个目标天线面上包括的天线确定所述目标数量的目标天线,并将确定的所述目标数量的目标天线作为所述CPE的接收天线。
  18. 如权利要求17所述的装置,其特征在于,所述选择模块包括:
    第一确定子模块,用于当所述多个天线面中每个天线面上设置的天线的数量相同,且每个天线面上设置的天线均为定向天线时,确定所述目标数量与所述多个天线面中每个天线面上设置的天线数量之间的比值k;
    第一选择子模块,用于基于所述k,从所述多个天线面中选择至少一个目标天线面。
  19. 根据权利要求18所述的装置,其特征在于,所述第一选择子模块具体用于:
    若所述k为大于1的整数,则将所述多个天线面中每连续的k个天线面划分为一个天线面组合,得到多个天线面组合;
    依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
    从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
    将确定的天线面组合包括的至少一个天线面确定为所述至少一个目标天线面。
  20. 如权利要求18所述的装置,其特征在于,所述第一选择子模块具体用于:
    若所述k大于1,且所述k不为整数,则对所述k进行取整,得到r;
    将所述多个天线面中每连续的r个天线面划分为一个天线面组合,得到多个天线面组合;
    依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
    从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
    将确定的天线面组合包括的至少一个天线面以及与所述至少一个天线面相邻的一个天线面确定为所述至少一个目标天线面。
  21. 如权利要求20所述的装置,其特征在于,所述确定模块具体用于:
    确定所述目标数量与所述至少一个天线面所包括的天线的数量之间的差值T;
    从与所述至少一个天线面相邻的天线面中选择T根天线;
    将所述至少一个天线面中每个天线面上设置的天线以及选择的T根天线作为所述目标数量的目标天线。
  22. 如权利要求18所述的装置,其特征在于,所述第一选择子模块具体用于:
    若所述k不大于1,则获取所述多个天线面中每个天线面在第一时长内的数据传输性能值;
    从所述多个天线面中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
    将确定的天线面确定为所述至少一个目标天线面。
  23. 如权利要求17所述的装置,其特征在于,所述选择模块包括:
    第二确定子模块,用于当所述多个天线面中每个天线面上设置的天线的数量相同,且每个天线面所在的平面上设置有一根全向天线时,确定所述目标数量与所述多个天线面的数量N之间的差值M;
    第二选择子模块,用于基于所述M和第一数值,从所述多个天线面中选择至少一个目标天线面,所述第一数值是指所述多个天线面中每个天线面上设置的天线的数量。
  24. 如权利要求23所述的装置,其特征在于,所述第二选择子模块具体用于:
    若所述M大于所述第一数值,则对所述M与所述第一数值之间的比值取整,得到w;
    将所述多个天线面中每连续的w+1个天线面划分为一个天线面组合,得到多个天线面组合;
    依次获取所述多个天线面组合中每个天线面组合在第一时长内的数据传输性能值;
    从所述多个天线面组合中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面组合,并从选择的天线面组合中确定在第一时长内的数据传输性能值最大的天线面组合;
    将确定的天线面组合包括的至少一个天线面确定为所述至少一个目标天线面;
    相应地,所述确定模块具体用于:
    从所述至少一个目标天线面包括的天线中选择M根天线;
    将选择的M根天线和所述多根全向天线确定为所述目标数量的目标天线。
  25. 如权利要求23所述的装置,其特征在于,所述第二选择子模块具体用于:
    若所述M不大于所述第一数值,且所述M大于0,则获取所述多个天线面中每个天线面在第一时长内的数据传输性能值;
    从所述多个天线面中选择在第一时长内的数据传输性能值大于所述第一阈值的天线面,并从选择的天线面中确定在第一时长内的数据传输性能值最大的天线面;
    将确定的天线面确定为所述至少一个目标天线面;
    相应地,所述确定模块具体用于:
    从所述至少一个目标天线面包括的天线中选择M根天线;
    将选择的M根天线和所述多根全向天线确定为所述目标数量的目标天线。
  26. 如权利要求19、20或24所述的装置,其特征在于,所述选择模块具体用于:
    对于所述多个天线面组合中的任一天线面组合A,开启所述天线面组合A包括的多个天线面中每个天线面上的天线,并关闭除所述天线面组合A中包括的多个天线面之外的其他天线面上的天线;
    在所述第一时长内通过所述天线面组合A包括的多个天线面上的天线接收数据,并确定所述天线面组合A在所述第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
    将所述第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为所述天线面组合A在所述第一时长内的数据传输性能值。
  27. 如权利要求22或25所述的装置,其特征在于,所述选择模块具体用于:
    对于所述多个天线面中的任一天线面B,开启所述天线面B上的至少一根天线,并关闭除所述天线面B之外的其他天线面上的天线;
    在所述第一时长内通过所述天线面B上的至少一根天线接收数据,并确定所述天线面B在所述第一时长内的每个传输时间间隔的吞吐量和资源块的数量的比值;
    将所述天线面B在所述第一时长内的多个传输时间间隔的吞吐量和资源块的数量的比值的总和确定为所述天线面B在所述第一时长内的数据传输性能值。
PCT/CN2018/101193 2018-08-17 2018-08-17 天线组件、天线免调优方法及装置 WO2020034221A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18930508.9A EP3832798B1 (en) 2018-08-17 2018-08-17 Antenna assembly and antenna tuning-free method and device
PCT/CN2018/101193 WO2020034221A1 (zh) 2018-08-17 2018-08-17 天线组件、天线免调优方法及装置
CN201880096357.0A CN112544013B (zh) 2018-08-17 2018-08-17 天线组件、天线免调优方法及装置
JP2021507973A JP7186281B2 (ja) 2018-08-17 2018-08-17 アンテナアセンブリ、並びにアンテナチューニング不要な方法及び装置
US17/171,170 US11456543B2 (en) 2018-08-17 2021-02-09 Antenna assembly and antenna tuning-free method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101193 WO2020034221A1 (zh) 2018-08-17 2018-08-17 天线组件、天线免调优方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/171,170 Continuation US11456543B2 (en) 2018-08-17 2021-02-09 Antenna assembly and antenna tuning-free method and apparatus

Publications (1)

Publication Number Publication Date
WO2020034221A1 true WO2020034221A1 (zh) 2020-02-20

Family

ID=69524505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101193 WO2020034221A1 (zh) 2018-08-17 2018-08-17 天线组件、天线免调优方法及装置

Country Status (5)

Country Link
US (1) US11456543B2 (zh)
EP (1) EP3832798B1 (zh)
JP (1) JP7186281B2 (zh)
CN (1) CN112544013B (zh)
WO (1) WO2020034221A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172545A (zh) * 2021-12-06 2022-03-11 广州通则康威智能科技有限公司 通信信号选择方法、装置、计算机设备及存储介质
CN114785392A (zh) * 2022-06-17 2022-07-22 阿里巴巴达摩院(杭州)科技有限公司 天线选择方法、通信系统和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326683A (zh) * 2005-12-12 2008-12-17 Wi-Lan有限公司 可自安装的可切换天线
CN104752832A (zh) * 2015-03-02 2015-07-01 联想(北京)有限公司 一种自对准方法和电子设备
CN107863605A (zh) * 2017-10-17 2018-03-30 广东盛路通信科技股份有限公司 多集成cpe mimo天线
WO2018111690A1 (en) * 2016-12-12 2018-06-21 Skyworks Solutions, Inc. Frequency and polarization reconfigurable antenna systems

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100305538B1 (ko) * 1992-12-01 2001-11-22 다치카와 게이지 다빔안테나장치
JPH09200115A (ja) * 1996-01-23 1997-07-31 Toshiba Corp 無線通信システムにおける無線基地局のアンテナ指向性制御方法および可変指向性アンテナ
WO2004093416A1 (en) * 2003-04-07 2004-10-28 Yoram Ofek Multi-sector antenna apparatus
US7057566B2 (en) * 2004-01-20 2006-06-06 Cisco Technology, Inc. Flexible multichannel WLAN access point architecture
US7397425B2 (en) * 2004-12-30 2008-07-08 Microsoft Corporation Electronically steerable sector antenna
US7489282B2 (en) * 2005-01-21 2009-02-10 Rotani, Inc. Method and apparatus for an antenna module
EP1964211A4 (en) * 2005-12-12 2011-04-27 Wi Lan Inc SELF-INSTALLABLE SWITCHING ANTENNA
CN101056451A (zh) * 2006-04-15 2007-10-17 兰州大学电子技术开发应用研究所 用定向天线实现多波束智能天线的方法及装置
US7873326B2 (en) * 2006-07-11 2011-01-18 Mojix, Inc. RFID beam forming system
US7525493B2 (en) * 2006-08-31 2009-04-28 Panasonic Corporation Adaptive antenna apparatus including a plurality sets of partial array antennas having different directivities
US8228233B2 (en) * 2010-04-26 2012-07-24 Dell Products, Lp Directional antenna and methods thereof
US9905922B2 (en) * 2011-08-31 2018-02-27 Qualcomm Incorporated Wireless device with 3-D antenna system
JP6094990B2 (ja) * 2012-11-01 2017-03-15 三菱電機株式会社 アレーアンテナ装置およびその制御方法
US9923621B2 (en) * 2013-02-16 2018-03-20 Cable Television Laboratories, Inc. Multiple-input multiple-output (MIMO) communication system
US20140313080A1 (en) * 2013-04-19 2014-10-23 Telefonaktiebolaget L M Ericsson Multi-beam smart antenna for wylan and pico cellular applications
KR20150094198A (ko) * 2014-02-11 2015-08-19 한국전자통신연구원 멀티안테나 스위칭 시스템 및 그 방법
US9614608B2 (en) * 2014-07-14 2017-04-04 Ubiqomm Llc Antenna beam management and gateway design for broadband access using unmanned aerial vehicle (UAV) platforms
KR101597148B1 (ko) * 2015-01-23 2016-03-02 한국과학기술원 패턴/편파 안테나를 이용한 빔 형성 방법
US9952307B2 (en) * 2015-08-31 2018-04-24 Facebook, Inc. Adaptive antenna tracking of moving transmitters and receivers
US10523247B2 (en) * 2016-01-28 2019-12-31 Amazon Technologies, Inc. Network hardware devices organized in a wireless mesh network for content distribution to client devices having no internet connectivity
CN107317608A (zh) * 2017-07-10 2017-11-03 维沃移动通信有限公司 天线工作模式选择方法、移动终端及计算机可读存储介质
CN107483075A (zh) * 2017-08-30 2017-12-15 努比亚技术有限公司 一种天线切换方法、终端及计算机可读存储介质
US10897286B2 (en) * 2017-12-11 2021-01-19 RF DSP Inc. Adaptive MU-MIMO beamforming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326683A (zh) * 2005-12-12 2008-12-17 Wi-Lan有限公司 可自安装的可切换天线
CN104752832A (zh) * 2015-03-02 2015-07-01 联想(北京)有限公司 一种自对准方法和电子设备
WO2018111690A1 (en) * 2016-12-12 2018-06-21 Skyworks Solutions, Inc. Frequency and polarization reconfigurable antenna systems
CN107863605A (zh) * 2017-10-17 2018-03-30 广东盛路通信科技股份有限公司 多集成cpe mimo天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172545A (zh) * 2021-12-06 2022-03-11 广州通则康威智能科技有限公司 通信信号选择方法、装置、计算机设备及存储介质
CN114785392A (zh) * 2022-06-17 2022-07-22 阿里巴巴达摩院(杭州)科技有限公司 天线选择方法、通信系统和存储介质
CN114785392B (zh) * 2022-06-17 2022-11-04 阿里巴巴达摩院(杭州)科技有限公司 天线选择方法、通信系统和存储介质

Also Published As

Publication number Publication date
EP3832798B1 (en) 2023-10-11
EP3832798A1 (en) 2021-06-09
CN112544013B (zh) 2022-06-28
JP7186281B2 (ja) 2022-12-08
JP2021534678A (ja) 2021-12-09
EP3832798A4 (en) 2021-10-13
US11456543B2 (en) 2022-09-27
US20210167520A1 (en) 2021-06-03
CN112544013A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
EP3429289B1 (en) Wireless lan system, wireless lan base station, wireless lan terminal and communication method
WO2017135455A1 (ja) ユーザ装置、及びランダムアクセス方法
JP2020523922A (ja) 通信方法及び通信装置
EP3468063B1 (en) Information feedback method, apparatus and system
CN107113892B (zh) 一种网关设备自动组网的方法及装置
US11456543B2 (en) Antenna assembly and antenna tuning-free method and apparatus
US11706699B2 (en) System and method for optimized load balancing on 6 GHz radios using out-of-band discovery in a mixed AP deployment
CN110831012B (zh) 用于bbs色码选择的介质和方法
EP3496317B1 (en) System information acquisition method, transmission method, terminal, network transceiving node and storage medium
US20220256592A1 (en) Enhancing triggered single user transmissions in wlan networks
US10708854B2 (en) Apparatus and method for providing network configurability in a wireless network
EP3855833A1 (en) Beam recovery method and apparatus, and terminal and storage medium
CN115243343B (zh) 在6ghz无线电上进行优化负载平衡的系统和方法
CN103152801B (zh) 与无线接入装置建立连接的方法和装置
US11902886B2 (en) Optimizing neighbour report for access points
CN113038503B (zh) 一种天线权值分配方法和装置
CN111787556B (zh) 转台设备控制方法、移动终端、转台设备及无线网络系统
US20230132828A1 (en) Uninterrupted multiple basic service set identifiers
CN114499614A (zh) 无线通信方法、装置、系统、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018930508

Country of ref document: EP

Effective date: 20210304